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Understanding random-walk dynamical phase coexistence through waiting times
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We study the appearance of first-order dynamical phase transitions (DPTs) as “intermittent” coexisting phases
in the fluctuations of random walks on graphs. We show that the diverging timescale leading to critical behavior is
the waiting time to jump from one phase to another. This timescale is crucial for observing the system’s relaxation
to stationarity and demonstrate ergodicity of the system at criticality. We illustrate these results through three
analytical examples which provide insights into random walks exploring random graphs.
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I. INTRODUCTION

Random walks are arguably the most versatile model [1,2]
to describe various transport processes in natural and artifi-
cial environments described as complex networks, including
spreading of infections, propagation of information, search
algorithms, and community detection [3–8]. Often, studies
focus on dynamical observables whereby a single random
walker hops on a graph and accumulates information related
to some characteristics of the states visited over time. Among
these dynamical observables we list first-passage times,
currents, occupation times, and entropy production rates. Al-
though the typical behavior of these dynamical observables
obtained for long times is nowadays of easy interpretation,
fluctuations and rare events, which are important over finite
observation times, are less understood. In particular, among all
possible rare events, dynamical phase transitions are strongly
relevant.

Dynamical phase transitions (DPTs) are considered
as changes in the random-walk fluctuation mechanisms.
These have been observed in various models of single and
many-particle interacting systems, involving the limit of
certain parameters [9]. These are large system sizes [10–23],
large particle numbers [24,25] and system volumes [26,27],
or parameters associated to stochastic resetting [28–33], or
again small rate/weak noise limits [34–37] and strong driving
fields [38] of driven particle models. Recently, DPTs were
observed in association with anomalous scaling of large
deviations too [39–41].

DPTs are considered to arise whenever a nonanalytic (crit-
ical) behavior appears in large deviation functions, e.g., scaled
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cumulant generating functions (SCGFs) or rate functions.
This critical behavior is surely a necessary condition, unlike
time-reversal symmetry breakings [15–17,26], manifesting
the divergence of a relevant timescale in the system. In the
context of Markov processes, such a diverging timescale may
arise as consequence of metastability [42–45] whereby the
system slowly relaxes from a state that appears stationary at
short times towards another that is genuinely stationary.

Nonetheless, it is important to note that a nondifferen-
tiable point in a large deviation function is not enough to
demonstrate a transition, such as phase coexistence, in the
fluctuations of a dynamical observable [9,18,21]. When ex-
amining the time-dependent dynamics of a general diffusive
system and considering a large deviation function of it, the
latter might not exhibit all the characteristics of an equi-
librium free energy—notably, large deviation functions of
driven diffusive systems may be nonlocal in the density
profile [46,47]—except in several cases as demonstrated in
Refs. [16,17,34], where a Landau theory can be fully devel-
oped. Therefore, in such scenarios care must be taken and
to link a kink in a SCGF to a physical transition one needs
to better understand the phenomenology of the model be-
ing analysed, which may or may not show equilibrium-like
phases [9,18,21].

In this paper, we show that when a nondifferentiable
point appears in the SCGF of a time-additive observable of
a random walk, the relevant diverging timescale—akin to
a correlation length in equilibrium statistical mechanics—
supporting the coexistence of two phases is the waiting time
to jump from a phase to the other. Having two coexisting
phases is intended at the level of single random-walk tra-
jectories being “intermittent,” i.e., the random walker keeps
hopping from a phase to the other. In such a scenario, we
will show that by opportunely rescaling the large deviation
functions with the jump waiting time, the kink in the SCGF
disappears, restoring a fully analytic function and the large
deviation principle for the observable under examination. This
means that the system once observed with the right timescale
is still ergodic and therefore the walker visits all regions
of the state space. We illustrate our findings through three
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analytical examples. Two of these are borrowed from a pre-
vious publication [22]—see also Appendix A for an overview
of the main results of Ref. [22]—while one is entirely original.
We believe these examples help to understand fluctuations of
random walks exploring random graphs and the appearance
of delocalization-localization DPTs [14,19,48]. It has been
observed that in this context DPTs appear when the random
walk (RW) observes a time additive cost that relates to local
features of the random graph, such as the connectivity. As
described toward the end of the paper, the three examples we
discuss are progressively more suitable to catch the important
features underlying these DPTs in RWs exploring Erdös-Rény
random graphs, which are known to serve as a useful play-
ground to study real-world networked systems [6,7,49].

II. MODEL SET UP, LARGE DEVIATIONS,
AND THE DRIVEN PROCESS

We consider an n-time-step RW X = (X1, X2, . . . ,

X�, . . . , Xn) on a finite connected and undirected graph
G = (V, E ) characterized by a set of states V of finite size
N and a set of edges E . The RW dynamics is determined by
the N × N stochastic transition matrix � = {πi j} giving the
probability πi j of the RW to move from X� = i at time � to
X�+1 = j at time � + 1. If i and j are not connected, then
πi j = 0; otherwise, 0 < πi j � 1.

At each time step � the RW collects a certain “cost” (or
“reward,” “observable”) related to the state of the system
visited, namely f (X�). We focus on the dynamical observable
that characterises the mean cost visited by a random-walk
trajectory,

Cn = 1

n

n∑
�=1

f (X�), (1)

with f a bounded function. Because the RW is ergodic—this
is guaranteed by the properties of the graph G [50,51]—Cn

converges to the ergodic average∑
i∈V

ρi f (i) := c∗, (2)

where ρ = {ρi} is the stationary distribution of the RW.
For a finite observation time, the observable Cn is a ran-
dom variable of the random-walk process and its distribution
PN,n(Cn = c) := PN,n(c) is known to take the large deviation
form [50–52]

PN,n(c) = e−nIN (c)+o(n), (3)

with the time-leading behavior given by the nonnegative large
deviation rate function IN (c) and o(n) denoting corrections
smaller than linear in n.

The large deviation rate function IN (c) can be hard to derive
if the distribution PN,n(c) is unknown. In such a case, the rate
function can be calculated by means of the so-called Gärtner–
Ellis theorem [50–52]. This states that given a differentiable
scaled cumulant generating function (SCGF)

�N (s) = lim
n→∞

1

n
lnE[ensCn ], (4)

the rate function IN can be obtained via the following Legen-
dre transform:

IN (c) = s∗c − �N (s∗), (5)

where s∗ is the unique root of � ′
N (s) = c [50]. In particular,

given that the RW X is ergodic, the form of the SCGF simpli-
fies to

�N (s) = ln ζs, (6)

where ζs is the dominant eigenvalue of the so-called tilted
matrix �̃s = {(π̃s)i j}, with components

(π̃s)i j = πi je
s f (i). (7)

The large deviation picture is complete once we understand
how fluctuations Cn = c are created in time. To do so, we
construct the driven process [53–55] which, in this context,
is a biased RW [19,54] whose transition probability matrix is
given by

(πs)i j = (π̃s)i j rs( j)

rs(i)e�N (s)
, (8)

where rs is the right eigenvector associated with ζs. Under
this process, the observable Cn is asymptotically distributed
according to the canonical form

P(s)
N,n(Cn = c) = enscPN,n(c)

E[ensCn ]
. (9)

The driven process is well defined for finite N , still Marko-
vian, and ergodic and can be interpreted as the effective
dynamics of the subset of paths of the original RW leading
to a fluctuation Cn = c = � ′

N (s) [19,48].

III. DYNAMICAL PHASE TRANSITIONS:
PHASE COEXISTENCE

Thanks to the Perron–Frobenious theorem, at finite N , the
SCGF (4) and the rate function (5) are both analytic functions
[50,51]. However, there is no general theorem that guarantees
that for infinite N

�(s) := lim
N→∞

�N (s), (10)

and its Legendre transform I (c) are analytic. As mentioned
in the introduction, there are many cases described in the
literature where large deviation functions show singular points
for such a limit.

Often, these singularities are interpreted as DPTs, viz.
changes in the mechanisms that generate particular fluctua-
tions of the observable Cn. In studying transitions, we follow
a common practice used for equilibrium systems, as proposed
by Ehrenfest [56]. Even for time-dependent models, we use
the noncontinuous derivative of the SCGF to determine the
order of the transition [57]. For this reason, a nondifferen-
tiable point sc in the SCGF �(s) is often referred to be a
first-order DPT and therefore to signal an abrupt change in
the fluctuations of Cn and, consequentially, the emergence of
phase coexistence. However, it has recently been pointed out
that such singular response of the SCGF is not strictly related
with coexisting phases.

013077-2



UNDERSTANDING RANDOM-WALK DYNAMICAL PHASE … PHYSICAL REVIEW RESEARCH 6, 013077 (2024)

Indeed, other scenarios could arise, such as that of a slow
system, or a pure ergodicity-breaking transition [18,21]. Ap-
plied to our context, in the former case, the random walker is
simply extremely slow in moving from a phase to the other
and the overall picture is that one of a RW slowly leaving
a metastable state and being absorbed by a stable one. In
the latter, we assist to the breaking of the large deviation
principle for the observable under examination and therefore
trajectories either visit one phase or the other (no mixing). Al-
beit their different physical interpretations, all these scenarios
are commonly described by the blow-up of a characteristic
timescale, namely τ (N ), for N → ∞.

Fully characterizing the timescale τ (N ) allows one to prop-
erly rescale the Laplace parameter s around sc, the SCGF
�(s), and the rate function I (c) as

s̄(s) = τ (N )(s − sc), (11)

�̄N (s̄) = τ (N )[�N (s(s̄)) − �(sc)], (12)

ĪN (c) = τ (N )I (c), (13)

such that s̄ and �̄N (s̄) are now centered around 0 and we
can rewrite (3) at leading order in n and for an observation
time n � τ (N ) [58] as PN,n(c) ≈ e−n̄ĪN (c) with a new “speed”
given by n̄ := n/τ (N ). The system restores a large deviation
principle and does not experience ergodicity breaking if the
functions (12) and (13) are smooth for N → ∞. We also
anticipate here that the estimation of the relevant timescale
τ (N ) is obtained through an analytical expansion as the N-
leading behavior of Eq. (12) (see the examples below for
further details).

Incidentally, from Eq. (9) we can obtain the rate function
and, by Legendre transform, the SCGF of the driven process
which read

I (s∗ )
N (c) = IN (c) − s∗c + �N (s∗), (14)

�
(s∗ )
N (s) = �N (s + s∗) − �N (s∗), (15)

having replaced s with s∗ in Eq. (9) to indicate that we set the
driven process at, in principle any, fixed s∗. Therefore, �̄N (s̄)
in Eq. (12) and ĪN (c) in Eq. (13) represent the τ (N )-rescaled
versions, for s∗ = sc, of Eqs. (15) and (14), respectively. In
other words, the function ĪN (c) is the limiting (for N → ∞)
rate function associated with the observable Cn of the driven
process at sc, opportunely rescaled by the diverging timescale
τ (N ). The latter provides an indication of the required simu-
lation time for the driven process to relax and yield reliable
statistics of Cn.

Finally, we argue that in the case of a two-phase coex-
istence, signalled by a nondifferentiable point in the SCGF
�(s), the relevant timescale τ (N ) is played by the waiting
time to jump from a phase of the system to the other. In
the following, we discuss three illustrative examples of RWs
exploring graphs. For these, phase coexistence in the fluctua-
tions of Cn is visualized by simulating the driven process, i.e.,
simply letting the random walk run over the state space, in the
vicinity of the critical parameter sc for large values of the pa-
rameter N and checking that RW trajectories are intermittent
between the two phases (see, for instance, Fig. 3).

FIG. 1. Two-state random-walk model. Labels on edges refer to
the transition probabilities between the states.

IV. EXAMPLES

A. Example 1: Two-state random walk

We start by considering a two-state RW. We name the two
states “chain” and “bulk” and define the transition matrix to be

� =
(

1
2

1
2

1
N 1 − 1

N

)
, (16)

such that, by increasing N , the RW spends on average more
time in the “bulk” [59]. See Fig. 1 for a sketch of the states and
the transition probabilities of the two-state RW model. Finally,
the observable considered is (1) with f (chain) = 1/N and
f (bulk) = 1. In other words, the RW collects a normalized
cost f —yielding an observable Cn ∈ (0, 1]—that is
instrumental to the study of delocalization-localization DPTs
of RWs on random graphs. In such a scenario the RW observes
the mean-connectivity visited, which is approximately
proportional to N , the number of nodes in the graph, when
visiting the “bulk”, and 1 when visiting a “chain” (we refer
the reader to the last section of the paper for more details).

Typically, according to Eq. (2), the RW collects a cost
c∗ = (2 + N2)/(2N + N2) which approaches 1 for large N .
SCGF (4) and rate function (3) characterizing the long-time
fluctuations of this observable have already been studied in
Ref. [22]. In the limit N → ∞ the SCGF �(s) develops a kink
at s = sc := − ln 2 which leads to a linear section in I (c) [see
black curves in Figs. 2(a) and 2(b)]. For s < sc, fluctuations
arise from a longer time spent in “chain”, while for s > sc,
fluctuations arise from a longer time spent in “bulk”.

FIG. 2. Two-state RW: SCGFs �N (s) in panel (a) and rate func-
tions IN (c) in panel (b) at increasing values of N (colored curves)
along with their limiting functions �(s) and I (c) (black curves).
Rescaled versions �̄N (s̄) and ĪN (c) (colored curves), along with their
limits �̄(s̄) and Ī (c) (black curves) in panels (c) and (d).

013077-3



DAVID C. STUHRMANN AND FRANCESCO COGHI PHYSICAL REVIEW RESEARCH 6, 013077 (2024)

FIG. 3. From panels (a)–(d), intermittent trajectories visiting
“bulk” and “chain” at increasing values of N for the two-state RW
model. The larger the N the longer the waiting time to visit the other
phase.

At the critical value sc, the walker will spend half its time
in “chain” and the other half in “bulk” as this typically realizes
the fluctuation Cn = 0.5. In particular, in the long-time limit
an intermittent behavior will arise whereby the walker, after
spending a certain amount of time in “chain”, will hop onto
“bulk” and viceversa. For such a simple model, there is no
other way the RW can create the fluctuation associated with sc.
We capture this intermittent behavior in Fig. 3 by simulating
the driven process (8) with s = sc for finite but increasingly
larger values of N .

Evidently, the larger the N the longer the time the
RW waits before hopping to the other phase. This is the
relevant—arguably the only for this model—timescale τ (N )
that diverges for N → ∞ and that leads to the appearance
of a kink in the SCGF at sc. The derivation of this effective
timescale was accomplished in a previous work [22]—without
much physical insights—by considering a general power-law
form of τ (N ), analytically expanding Eq. (12) in N and
selecting the correct exponent for the power law such that
the leading order of the expansion �̄(s̄) := limN→∞ �̄N (s̄)
is not trivial. For a detailed explanation of the derivation,
we refer the reader to Ref. [22]. In Figs. 2(c) and 2(d) we
display �̄N (s̄), its Legendre transform ĪN (c), and their respec-
tive limits �̄(s̄) = s̄ + √

4 + s̄2 − 2 and Ī (c). Because of the
smoothness of these last functions, in the timescale defined by
τ (N ) a large deviation principle is restored and fluctuations
can be studied at sc.

In Fig. 5(a) we plot τ (N ) = √
N and compare it with

the mean waiting time to hop from “chain” to “bulk” and
viceversa at increasing values of N . The average value of this
quantity is obtained by simulating a driven process at s = sc,
counting the transitions unidirectionally between the states,
and dividing the simulation time by the number of transitions.
Noticeably, for this particular example only, the derivation of
the driven process mean waiting time to hop from a phase to
the other at criticality can also be carried out analytically using
standard methods and show that it matches, at leading order,
τ (N ). To do so, one calculates the dominant eigenvalue and
right eigenvector of the tilted matrix (7) and use that to build
the finite-N driven process transition matrix (8), which, for

FIG. 4. The bulk-chain random-walk model reduced to four
qualitatively different states. The edge labels are the transition prob-
abilities where N is the number of nodes in the full graph. The nodes
are labeled by their node degree and the different sizes of the nodes
are used to distinguish between the chain (small) and the bulk (large).

convenience, is shown in Eq. (B1) in Appendix B. The mean
waiting time to hop from “chain” to “bulk” (→) and viceversa
(←) can easily be calculated following Refs. [60,61] and
reads

τ→ = 1

(π− ln(2))1,2

=
√

N + 3 − ln 2

2
+ 1 − 6 ln 2 + (ln 2)2

8
√

N
+ O(N−2),

(17)

τ← = 1

(π− ln(2) )2,1

=
√

N + 1 + ln 2

2
+ −7 + 4 ln 2 + (ln 2)2

8
√

N
+ O(N−2).

(18)

The leading orders in Eqs. (17) and (18) equal τ (N ) = √
N

derived by analytical expansion of �̄N (s̄) as explained earlier.
At the critical point s = sc and in the limit N → ∞ the driven
process is not ergodic and it will either visit one phase or
the other, but will not be able to visit both because τ (N )
diverges. For s < sc (case marked as s−) it will only visit the
“chain” phase and for s > sc (case s+) it will only visit the
“bulk” phase. To help the reader better understand the critical
dynamics, we display in the following the leading order in N
for N → ∞ of the driven process transition matrices obtained
from Eq. (B1):

�s− =
(

1 + O(N−1) O(N−1)

1 − 2es + O(N−1) 2es + O(N−1)

)
, (19)

�s+ =
(

1
2es + O(N−1) 1 − 1

2es + O(N−1)

O(N−1) 1 + O(N−1)

)
. (20)

Furthermore, we remark that τ (N ) has the same scaling
form of the relaxation time of the driven process for s = sc

calculated as the negative inverse of the spectral-gap loga-
rithm of Eq. (8) [not displayed in Fig. 5(a) as fully overlapping
τ (N )]. Evidently, τ (N ) well matches the analytical standard
calculation leading to τ→ and τ← and numerical simulations
in Fig. 5(a) providing evidence that the critical timescale in a
phase-coexistence scenario is determined by the waiting time
between jumps.

013077-4



UNDERSTANDING RANDOM-WALK DYNAMICAL PHASE … PHYSICAL REVIEW RESEARCH 6, 013077 (2024)

FIG. 5. Time rescalings τ (N ) for the models investigated (black dashed lines) compared with mean waiting times to hop from one phase
to the other for simulations of driven processes at s = sc. The functional forms from panels (a)–(c) are

√
N , N and (ln N )1/2 where in panels

(b) and (c), these are multiplied by the N-independent prefactors 1.048 and 1.364. For each N we run 100 simulations of n = 106 time steps
(average marked as a solid colored line within one standard deviation).

B. Example 2: Bulk-chain random walk

We now focus on a slightly more complicated model. Dif-
ferent from the previous case, the fluctuation at the critical
point can arise through two different mechanisms and we
will show that the dominant one is an intermittent behavior
supporting phase coexistence.

We analyze an unbiased RW with transition matrix

πi j = ai j

ki
, (21)

with A = {ai j} representing the adjacency matrix of a graph of
N nodes, i.e., ai j = 1 if states i and j are connected and ai j =
0 otherwise, and ki = ∑N

j=1 ai j representing the connectivity
of state i. The graph is composed by a fully connected bulk of
N − 2 nodes and a single chain of 2 nodes with connectivity
2 and 1 (we name this structure “dangling chain”). Because of
symmetry, the graph has only 4 qualitatively different nodes.
These are: the node of degree 1 at the edge of the chain, the
node of degree 2 in the middle of the chain, the node of degree
N − 2 (gateway from now on) connecting bulk and chain, and
a representative node of the bulk of degree N − 3; see Fig. 4.
On such a structure, the unbiased RW collects a cost of the
form (1) with f (X�) = kX�

/N . As briefly discussed also in
the previous example, the normalized cost chosen is useful
to study the dynamical behavior of RWs on random graphs as
explained in the last section of the paper.

As N increases, the RW spends more time in the bulk of the
graph. The ergodic value, denoted by c∗, can be calculated and
is given by c∗ = (−18 + 23N − 8N2 + N3)/[N (10 − 5N +
N2)]. In large graphs, the RW tends to get lost in the bulk for
a simple entropic reason: the higher the number of neighbors,
the harder to find the dangling chain. Fluctuations of this
model were already studied and we refer to Ref. [22] for
details on the calculations. In Figs. 6(a) and 6(b) we report the
SCGF �N (s), the rate function IN (c), and their limiting behav-
ior for N → ∞. Evidently, a kink appears at sc := −(ln 2)/2.
Similarly to the previous case, for s < sc, the RW favors the
dangling chain, while for s > sc, it favors the bulk. At the
critical value, it splits its time equally between both phases.

For this particular model there are two distinct ways the
RW can split its time between bulk and dangling chain. On the

one hand, the RW could keep hopping back and forth from the
node of degree 2 and the gateway. On the other hand, it could
spend some time in the dangling chain, then hop to the bulk
and spend some time there before jumping back. Although
both mechanisms are possible, the latter is more probable than
the former. We checked this both estimating the probability
of the two different events per unit time (as suggested in
Ref. [21]) and by running simulations of the driven process
at sc for increasingly larger values of N .

We find that trajectories are intermittent in this case too. As
they are qualitatively equivalent to the previous case we refer
back to Fig. 3 for illustration purposes. The larger the N the
longer the waiting time of the RW before it visits the other
phase. By analytically expanding Eq. (12) in N as mentioned
for the previous example we calculate τ (N ) = N and the
rescaled function �̄(s̄) (its form is lengthy and not reported
here, see Ref. [22]). We plot the latter, its Legendre transform,
and numerical realizations for finite N given by Eqs. (12) and
(13) in Figs. 6(c) and 6(d). Numerical realizations smoothly
approach �̄(s̄) endorsing the idea that at the relevant timescale
τ (N ) no critical behavior emerges.

FIG. 6. Bulk-chain RW: SCGFs �N (s) in panel (a) and rate func-
tions IN (c) in panel (b) at increasing values of N (colored curves)
along with their limiting functions �(s) and I (c) (black curves).
Rescaled versions �̄N (s̄) and ĪN (c) (colored curves), along with their
limits �̄(s̄) and Ī (c) (black curves) in panels (c) and (d).
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Eventually, in Fig. 5(b), we compare the form τ (N ) =
N—corresponding to the relaxation timescale of the driven
process in this case too—with numerical simulations of the
driven process waiting time at the critical value sc for different
values of N . Since the analytically derived τ (N ) captures
only the leading functional form in N , we found that the N-
independent prefactor 1.048 is needed to match the simulation
data. We interpret the prefactor as a conversion factor from an
absolute waiting time, the actual number of steps the random

walk takes before hopping to the other phase, to a relative
one, viz. measured in terms of the unit time given by the case
N = 1. The numerical simulations strongly support the theory,
providing further evidence that the waiting time is the key
factor leading to a diverging timescale and dynamical phase
coexistence. To better visualise the critical dynamics, in the
following we display the leading order in N for N → ∞ of
the driven process transition matrices around the critical point
sc as calculated in Ref. [22]:

�s− =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1 + O(N−1) 0 O(N−1) 0

0 − es

3s + O(N−1) 0 1 + es

3s

0 0 1 − O(N−1) O(N−1)

⎞
⎟⎟⎟⎟⎠, (22)

�s+ =

⎛
⎜⎜⎜⎜⎝

0 1 0 0
e−2s

2 + O(N−1) 0
(
1 − e−2s

2

) + O(N−1) 0

0 O(N−1) 0 1 + O(N−1)

0 0 O(N−1) 1 + O(N−1)

⎞
⎟⎟⎟⎟⎠. (23)

Similarly to Example 1, for s < sc (s− case) the RW will
only visit the “chain” of the state space, while for s > sc (s+
case) the RW will only visit the “bulk”.

C. Example 3: Three-state random walk

We consider a novel model of a RW over three states
named “chain1”, “chain2”, and “bulk”, characterized by the
following transition matrix:

� =

⎛
⎜⎜⎝

0 1 0
1
2 0 1

2

0 k̄
ln N 1 − k̄

ln N

⎞
⎟⎟⎠, (24)

with k̄ and N being two positive parameters of the model
such that k̄ � ln N . Like the previous models, we can visu-
alise the underlying graph as a dangling chain (composed
by “chain1” and “chain2” states) linked to a bulk, which in
this case is composed of a single self-looped state. Just like
the bulk-chain RW model, increasing the value of N reduces
the probability for the random walker to transition from the
bulk to the dangling chain. However, due to the logarithmic
dependence on N (which will be motivated in the following),
this transition is relatively easier compared to the bulk-chain
RW model. Finally, the RW collects also in this case an ob-
servable of the form (1) with f (chain1) = 1, f (chain2) = 2,
and f (bulk) = k̄; see Fig. 7. In this case too, the cost chosen is
instrumental to the study of DPTs of RWs on random graphs
(see next section for details).

The long-time behavior of the observable Cn is given by
c∗ = [k̄(5 + ln N )]/(3k̄ + ln N ) and fluctuations can be stud-
ied with large deviation theory as outlined above. The SCGF
�N (s) in Eq. (4) can be calculated analytically but its form
is lengthy and since it is not useful here is not displayed.
Its limit for N → ∞ in Eq. (10) can also be calculated and

reads

�(s) =
{

3s−ln 2
2 if s < sc

k̄s if s > sc
, (25)

with a kink at

sc = ln 2

3 − 2k̄
. (26)

These functions, along with their transforms, i.e., IN (c) and
I (c), are displayed in Figs. 8(a) and 8(b). Once again,
when s > sc, the RW will spend more time in the bulk
(c > c∗), while for s < sc the RW favors the dangling
chain (c < c∗).

At the critical value sc the RW will spend half its time in
the dangling chain and the other half in the bulk. Even in
this case intermittent behavior arises as leading mechanism
to generate fluctuations around the critical point sc. We check
this numerically by simulating the driven process (8) for in-
creasingly larger values of N [62] and plot the trajectories in
Fig. 9. Even in this scenario, as the value of N increases, the
RW experience longer waiting times before transitioning to
the other phase.

We derive �̄(s̄) as leading-in-N behavior of Eq. (12) and
the timescale τ (N ). Analytically, we proceed by considering

FIG. 7. The three-state random-walk model. The edge labels are
the transition probabilities. The positive parameters k̄ and N need to
satisfy k̄ � ln N . The nodes are labeled by their node degree and the
different sizes of the nodes are used to distinguish between the chain
(small) and the bulk (large).
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FIG. 8. Three-state RW: SCGFs �N (s) in panel (a) and rate func-
tions IN (c) in panel (b) at increasing values of N (colored curves)
along with their limiting functions �(s) and I (c) (black curves).
Rescaled versions �̄N (s̄) and ĪN (c) (colored curves), along with their
limits �̄(s̄) and Ī (c) (black curves) in panels (c) and (d).

the characteristic equation for the dominant eigenvalue
λ = e�N (s) of the tilted matrix (7), i.e.,

(ek̄s − λ)(e3s − 2λ2) − ek̄s ln k̄

ln N
(e3s + e2sλ − 2λ2) = 0.

(27)

We replace s and �N (s) as functions of s̄ and �̄N (s̄) inverting
the relations given in Eqs. (11) and (12), respectively. Then,
we make an educated guess and also replace τ (N ) = (ln N )α

with α > 0 and keep only the first order in (ln N )−α of
Eq. (27). The value of α = 1/2—the smallest possible—and
the smooth function �̄(s̄) are found imposing that the zero
of the leading term of Eq. (27) is not the kinked function
in Eq. (25). Figures 8(c) and 8(d) display the plots of �̄(s̄)
and Ī , along with their finite-N approximations (12) and
(13), respectively. The smoothness of the limiting functions
suggests, once again, that there is a proper timescale in the
large deviations such that no critical behavior is observed.

Eventually, we compare in Fig. 5(c) the scaling τ (N ) =
(ln N )1/2 with the mean waiting time computed numerically

FIG. 9. From panels (a)–(d), intermittent trajectories visiting
“bulk” and “chain” at increasing values of N for the three-state RW
model. The larger the N the longer the waiting time to visit the other
phase, although because of the logarithmic scale the change is less
evident with respect to the two-state RW of Fig. 3.

by simulating driven processes with fixed s = sc for increas-
ingly larger values of N . Once again, τ (N ) corresponds to the
relaxation timescale of the driven process and its form well
matches numerical simulations of the waiting time multplied
by an N-independent prefactor 1.364 similar to the bulk-chain
RW example. We conclude that the waiting time is the leading
diverging timescale supporting phase coexistence in the first-
order DPT.

D. Implications for Erdös–Rényi random graphs

We have discussed three models that aim to capture the
characteristics of a simplified version of an unbiased RW
exploring an Erdös–Rényi (ER) random graph. Following
Refs. [7,14,19], an ER graph is created by randomly connect-
ing a fixed number N of nodes. The probability of connecting
two nodes is determined by k̄/N , where k̄ represents the aver-
age connection of the graph. After generating the graph, only
its largest connected component is retained and used as a base
structure for a RW collecting a cost as in Eq. (1).

Large deviation theory has recently been employed to
study this model [14,19]. In the case where k̄ is sufficiently
small, indications of a DPT have been identified between a
phase characterized by bulk delocalization and another phase
where the RW localises along dangling chains. Although no
formal proof has been provided thus far for the existence of
this DPT in the infinite-size ER graph ensemble, in recent
times new interesting literature has appeared on phase co-
existence in networked systems [37,48,63,64]. Understanding
DPT behavior is crucial, not just for providing a more detailed
description of the dynamics of stochastic dynamical systems,
but also because real systems inherently experience fluctua-
tions. This comprehension not only gives us insight into their
dynamics but also provides a potential means, through the
driven process, to control the occurrence of specific phases
that could either benefit or harm the system.

The two-state and the bulk-chain RW models had pre-
viously been introduced [22] as analytical models aimed at
explaining the delocalization-localization DPT in ER graphs
(see Appendix A for a summary of the results relevant for
our paper). Our three-state RW takes a further step in this
direction. In the bulk-chain RW, increasing the size of N
expands the bulk by adding fully connected nodes. However,
this does not accurately reflect the behavior of adding a node
in an ER graph, where the new node is not fully connected
but, on average, maintains the same number of connections
k̄. Nevertheless, the presence of the new node increases the
distance between a random node in the bulk and a node
with degree 1 in a dangling chain. Since the average shortest
distance between any two nodes of a random graph increases
logarithmically with N , our third model considers the proba-
bility of transitioning from the bulk to the dangling chain to
be inversely proportional to ln N . Meanwhile, we maintain a
constant cost (1) accumulated by the RW while visiting the
bulk phase, which is equal to k̄.

Indeed, this new model aligns more closely with the explo-
ration of an ER random graph. Our three-state RW exhibits
a delocalization-localization DPT that occurs at the criti-
cal value (26), which is inversely proportional to k̄. This is
expected in the ER graph too: The larger the k̄ the more
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connected the bulk, the smaller the tilting s to escape it. How-
ever, what is particularly striking about this transition is its
speed, which goes like (ln N )1/2 and indicates the RW under-
goes an exceptionally slow change in behavior as N increases.

V. CONCLUSION

We have investigated the appearance of first-order dynam-
ical phase transitions in large deviation functions of simple
discrete-time and space dynamical systems. The key finding
of our study is that a kink in the scaled cumulant generating
function of a time-additive observable for a random walk
indicates phase coexistence when the dominant diverging
timescale is the waiting time for the random walk to transi-
tion between phases. The characterization of such a timescale
allows us to properly rescale large deviation functions and
therefore rule out nonergodic behavior.

We have shown these results with three illustrative exam-
ples that work towards a better understanding of a potential
delocalization-localization dynamical phase transition in ran-
dom walks on Erdös–Rényi random graphs. Our results
suggest that such a transition may appear at a remarkably slow
rate, scaling as O[(ln N )1/2], which poses significant chal-
lenges for numerical studies. Finally, we note that our work
could serve as a theoretical ground to accelerate the learning
process in numerical sampling schemes of large deviations
near dynamical phase transitions [65–68].
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APPENDIX A: OVERVIEW OF THE RESULTS IN REF. [22]

We present a concise overview of the key findings from
Ref. [22] without delving into the technical details of the
calculations. We refer interested readers to the original paper
for an in-depth analysis.

In Ref. [22], the authors explore the exact large devia-
tion functions of a local dynamical observable [specifically,
Eq. (1) in this study] for a random walk on two distinct
models of connected and undirected graphs. These models,
corresponding to the first two examples discussed earlier,
capture essential physical aspects of the random-walk dynam-
ics on Erdös–Rényi random graphs. Numerical investigations
[14,19] already revealed a nondifferentiable point in the SCGF
of the observable, indicating a sudden transition in the fluctu-
ation mechanisms. This transition manifests as a shift from
a fully delocalized state, where the random walk evenly ex-
plores the entire graph, to a fully localized state, where the
random walk becomes confined to a specific portion of the
graph. This observation supports the concept of a DPT as
previosuly discussed.

In their study, the authors of Ref. [22] analytically de-
rive the large deviation functions for the simplified models
considered. In both cases, they demonstrate the occurrence
of a DPT reminiscent of delocalization-localization behav-
ior. What matters for our work is the form of the rescaled
SCGFs presented in Ref. [22] and the determination of the
relevant diverging timescale leading to a nondifferentiable
point in the SCGFs. The authors employ a variational method
in Ref. [22], formally discussed in Ref. [69], obtaining a
polynomial equation that is then analytically expanded to
reveal the crucial diverging timescale of the model (au-
thors had no clue about the physical interpretation of such
a timescale). Notably, this polynomial equation aligns with
Example 3 mentioned earlier, representing the characteris-
tic equation for the dominant eigenvalue of the pertinent
tilted matrix. The timescales derived in Ref. [22] are dis-
cussed in Examples 1 and 2, namely, τ (N ) = √

N and τ (N ) =
N , respectively. Example 3 introduces additional elements
capturing other physical features in a simplified model, tak-
ing a step further in comprehending the emergence of a
delocalization-localization DPT for random walks on random
graphs.

APPENDIX B: FINITE-N FORM OF DRIVEN PROCESS
TRANSITION MATRIX OF EXAMPLE 1

We display in the following the finite-N form of the driven
process transition matrix of Example 1:

�s =

⎛
⎜⎜⎜⎝

2e
s
N√

e
2s
N −4(1− 3

N )es(1+ 1
N )+4(1− 1

N )2e2s+e
s
N +2(1− 1

N )es

√
e

2s
N −4(1− 3

N )es(1+ 1
N )+4(1− 1

N )2e2s−e
s
N +2(1− 3

N )es

4(1− 2
N )es

1
N

√
e

2s
N −4(1− 3

N )es(1+ 1
N )+4(1− 1

N )2e2s+3e
s
N −2(1− 1

N )es√
e

2s
N −4(1− 3

N )es(1+ 1
N )+4(1− 1

N )2e2s−(1− 4
N )e

s
N +2(1− 1

N )es

4(1− 1
N )es√

e
2s
N −4(1− 3

N )es(1+ 1
N )+4(1− 1

N )2e2s+e
s
N +2(1− 1

N )es

⎞
⎟⎟⎟⎠. (B1)

The form of the matrix is used in the main text to analytically derive the mean waiting time to jump from “chain” to “bulk”
and viceversa as well as to run numerical simulations of the driven process at sc = − ln 2 for increasing values of N .
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