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Quantum machine learning has emerged as a promising utilization of near-term quantum computation devices.
However, algorithmic classes such as variational quantum algorithms have been shown to suffer from barren
plateaus due to vanishing gradients in their parameters spaces. We present an approach to quantum algorithm
optimization that is based on trainable Fourier coefficients of Hamiltonian system parameters. Our ansatz is
exclusive to the extension of discrete quantum variational algorithms to analog quantum optimal control schemes
and is nonlocal in time. We demonstrate the viability of our ansatz on the objectives of compiling the quantum
Fourier transform and preparing ground states of random problem Hamiltonians. In comparison to the temporally
local discretization ansätze in quantum optimal control and parametrized circuits, our ansatz exhibits faster and
more consistent convergence. We uniformly sample objective gradients across the parameter space and find that
in our ansatz the variance decays at a nonexponential rate with the number of qubits, while it decays at an
exponential rate in the temporally local benchmark ansatz. This indicates the mitigation of barren plateaus in our
ansatz. We propose our ansatz as a viable candidate for near-term quantum machine learning.
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I. INTRODUCTION

Quantum machine learning (QML) connects classical ma-
chine learning and quantum information processing. This
emergent field promises new methods that advance quantum
computation [1,2] and has brought forth a class of approaches
referred to as variational quantum algorithms (VQA) [3–6].
In particular, noisy intermediate-scale quantum (NISQ) de-
vices [7–9] are predicted to benefit from the synergies with
machine learning found in VQA. These approaches optimize
parameters in a sequence of unitary operations, the product
of which describes the time evolution of the system. The
optimization is performed with respect to a chosen observable.
Examples include quantum approximate optimization algo-
rithms (QAOA) [10,11], quantum neural networks [12–18],
quantum circuit learning [19], and quantum-assisted quantum
compiling [20–22].

Similarly, quantum optimal control (QOC) aims to opti-
mize the time-dependent system parameters of a quantum
system to attain a given objective [23–29]. QOC has been
connected to VQA approaches, and advantages of moving
from the discrete circuit picture to the underlying physical
system parameters have been demonstrated [30,31]. Such ana-
log VQA approaches commonly utilize piecewise constant,
or stepwise, parametrization ansätze [32–36], which behave
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like the Trotterized limit of very deep parametrized quantum
circuits with very small actions per gate.

A major obstacle of VQA is the existence of barren
plateaus in the loss landscapes, i.e., increasingly large regimes
in the parameter space with exponentially vanishing gradients,
which hinder training [37–44]. The general scaling behavior
and emergence of barren plateaus is largely not understood
and the dependence of barren plateaus on the details of VQA
has been an active field of research in recent years. The com-
parison of local to global objective functions, the dependence
on circuit depth, and the effects of spatial and temporal lo-
cality of parametrizations have been studied in connection to
barren plateaus [40–42,45–47]. In particular, the emergence
of barren plateaus has been proven in time-locally parameter-
ized quantum circuits for global objective functions and for
local objective functions in the case of nonshallow circuits
[40,42,45]. Limiting the controllability of such ansätze can
reduce the onset of barren plateaus [47–50], which constitutes
a tradeoff in expressibility [51,52] in favor of trainability. This
includes ansätze that are tailored to a given problem, such as
the variational Hamiltonian ansatz [4,53], the unitary coupled
cluster ansatz [54], and QAOA [11]. These results suggest
that nonlocal ansätze that depart from the parametrized cir-
cuit paradigm may mitigate barren plateaus without the loss
of generality. Overcoming the obstacle of barren plateaus is
crucial for the success of near-term QML technologies.

In this paper, we propose a parametrization ansatz for
quantum algorithm optimization using generalized analog
protocols. In this ansatz we directly control the Fourier co-
efficients of the system parameters of a Hamiltonian. This
constitutes a method that is nonlocal in time and is exclusive

2643-1564/2024/6(1)/013076(9) 013076-1 Published by the American Physical Society

https://orcid.org/0000-0002-9406-0615
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013076&domain=pdf&date_stamp=2024-01-22
https://doi.org/10.1103/PhysRevResearch.6.013076
https://creativecommons.org/licenses/by/4.0/


LUKAS BROERS AND LUDWIG MATHEY PHYSICAL REVIEW RESEARCH 6, 013076 (2024)

to analog quantum protocols as it does not translate into dis-
crete circuit parametrizations which are conventionally found
in VQA. We compare our ansatz to the common optimal
control ansatz of stepwise parametrizations for the example
objectives of compiling the quantum Fourier transform as well
as minimizing the energy of random problem Hamiltonians.
This comparison shows that this Fourier-based ansatz results
in solutions with higher fidelity and, in particular, superior
convergence behavior. Note that the optimization of Fourier
coefficients has been proposed for the control of molecular
dynamics [55]. It has also been used in a mixed approach that
optimizes in the basis of piecewise constant functions [56], as
well as in phase-modulated gradient-free optimization [57].
The Fourier basis has also been used with tuned frequencies
in the CRAB algorithm [23,58]. However, studies on this par-
ticular ansatz in the context of analog quantum computing as
a natural extension of VQA appear to be lacking. We demon-
strate that our ansatz exhibits nonexponential scaling behavior
with respect to the number of qubits in the objective gradient
variance, which suggests the absence of barren plateaus. We
conclude that our ansatz is a promising candidate for efficient
training and avoiding barren plateaus in VQA.

II. METHODS

In quantum circuits, the time-dependent Hamiltonian pa-
rameters that implement the gates are sequential, rather than
parallel, and therefore contain long idling times. This is a
consequence of deconstructing unitary transformations into
algorithmic sequences of logical gates. Figure 1 illustrates
different levels of abstraction of quantum algorithms. The
departure from the conventional quantum circuit paradigm
towards a larger and more intricate space of solutions of
quantum protocols enables a computational speed-up due to
parallelized Hamiltonian operations.

We write a general time-dependent Hamiltonian as

H (t ) =
∑

j

θ j (t )Hj, (1)

where Hj are Hermitian matrices that define the system. θ j (t )
are the parameters that determine the time dependence of
the system. The resulting time-evolution operator is formally
written as

Uθ = T̂

[
exp

{
−i

∫ 1

0

∑
j

θ j (t )Hjdt

}]
, (2)

where T̂ indicates time ordering. We restrict the time evolu-
tion to t ∈ [0, 1] and use units in which h̄ = 1, for simplicity.
The unitary transformation Uθ is explicitly a function of the
protocols θ j (t ). In order to perform numerical optimization,
it is necessary to choose a particular parametrization for the
θ j (t ).

In the ansatz which we highlight in this work, we
parametrize the θ j (t ) in terms of the first nf real-valued
Fourier coefficients θ j,k such that

θ j (t ) =
nf∑

k=1

θ j,k sin(πkt ). (3)

(a)

(b)

(c)

(d)

FIG. 1. Levels of abstraction of quantum algorithms. A common
formulation of quantum circuits consists of a set of discrete gates (a).
The physical realization of these gates consists of temporally isolated
control protocols of the system parameters. These are denoted as
θ j (t ) for the different parameters (b). A more efficient realization
utilizes the full space of temporal evolutions of the parameters θ j (t ).
This includes fully parallel protocols which take less time to com-
plete the task (c). Any such protocol can be expressed via its Fourier
coefficients θ̂ j,k , which we specifically treat as trainable parameters
in our ansatz (d).

This ansatz is motivated by its inherent temporal nonlocal-
ity, as varying a single parameter θ j,k changes the protocol
θ j (t ) at all points in time. It presents a natural choice for a
time-nonlocal parametrization that results in protocols that
are smooth and slowly varying by construction, which is
advantageous experimentally. We initialize the parameters
θ j,k randomly between ±π/k, such that slow modes are
emphasized.

In addition to our ansatz, we consider the stepwise ansatz
that uses the common discretization in terms of piecewise
constant system parameters,

θ j (t ) = θ j,k,
k

nf
� t <

k + 1

nf
, (4)

with k = 0, . . . , nf − 1. We initialize the θ j,k randomly
between ±π . This ansatz is time local and generates discon-
tinuous step functions with n f steps with values θ j,k . These
steps are reminiscent of the sequences of parametrized gates
in quantum circuits as they are conventionally found in VQA.
Due to its connection to conventional parametrized variational
circuits, this ansatz serves as a benchmark to which we com-
pare our ansatz of Eq. (3).
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FIG. 2. Illustration of hybrid quantum optimization. A quantum
processing unit (QPU) is assumed to have controllable parameters θ .
Problem-specific input r is mapped onto the initial state of the qubits,
which the QPU evolves in time according to the parameters θ and
its underlying Hamiltonian H . The final qubit state is measured to
determine the value of an objective function Lθ and the Fubini-Study
metric g. These quantities are used on a classical machine to approx-
imate the quantum natural gradient step to update the parameters θ

and improve Lθ .

In either ansatz, we optimize the parameters

θ =
∑

j,k

θ j,k ê j,k (5)

with respect to a given objective function Lθ , which encodes
a target transformation. The exact expression of any objective
Lθ depends on the details of the problem it describes. The ê j,k

are formally constructed unit vectors that collect the trainable
parameters θ j,k in the vector θ. Successful optimization corre-
sponds to a time-evolution operator Uθ which implements the
target transformation. For a single optimization iteration, we
vary the individual parameters θ j,k by a small δ and evaluate
the objective function to estimate the respective derivatives

∂Lθ

∂θ j,k
≈ Lθ+δê j,k − Lθ

δ
(6)

such that we obtain the gradient

∇Lθ =
∑

j,k

∂Lθ

∂θ j,k
. (7)

We then update the parameters as

θold → θnew = θold − ηg†∇Lθ, (8)

where η is the learning rate, which we update dynamically
using the ADAM [59] algorithm. g is the Fubini-Study metric,
which contains information on the quantum geometry of the
system in order to improve training behavior and makes this
approach a quantum natural gradient descent method [60].
This method is illustrated in Fig. 2. For more details see the
Appendix.

Note that in a physical realization, the parameters θ j (t )
cannot become arbitrarily large, and are limited by physical
constraints or features of the realization. In our numerical
approach, these parameters are unbounded. However, we find
that these parameters remain reasonably small throughout
learning, as we show below.

III. RESULTS

We compare our Fourier ansatz to the stepwise ansatz for
the objectives of quantum compiling and energy minimiza-
tion. Further, we evaluate the scaling behavior of the variances
of objective gradients with respect to the number of qubits.
Throughout this work we use the Ising Hamiltonian [61] with
a two-component transverse field for nq qubits as the control-
lable system that generates the variational unitary Uθ . It is

H (t ) =
nq∑

j=1

(
B j

x (t )σ j
x + B j

y (t )σ j
y

) +
nq−1∑
j=1

Jj (t )σ j
z σ j+1

z , (9)

with controllable parameters B j
x (t ), B j

y (t ) and Jj (t ). We con-
sider open boundary conditions, such that the index of Jj (t )
goes up to j = nq − 1. In total this gives (3nq − 1)nf train-
able parameters in θ, as the B j

x (t ), B j
y (t ) and Jj (t ) take the

role of the θ j (t ) in Eq. (1). Our ansatz in Eq. (3) presents a
general parametrization of system parameters and therefore
the particular choice of the Hamiltonian is not essential. In
particular, neither the Fourier ansatz nor the choice of the
Hamiltonian are informed a priori by any objective at hand.
They are agnostic to the optimizational tasks we utilize them
for.

A. Quantum compiling

We first demonstrate the performance of our ansatz for the
example of learning implementations of the quantum Fourier
transform (QFT) represented by the unitary operation V , op-
erating on nq qubits. The matrix elements of V are

Vk,l = 2− nq
2 exp{i2πkl2−nq}, (10)

where k, l = 1, . . . , 2nq . For compiling unitary transforma-
tions, we utilize the objective function

LU
θ = 1 − 1

|{r}|
∑

r

| 〈r|U †
θ
V |r〉 |2, (11)

where {r} is a set of randomized unentangled input states

|r〉 = ⊗nq

i=1

[
cos

(
φi

2

)
|0〉 + eiψi sin

(
φi

2

)
|1〉

]
, (12)

which is similar to recent methods [62]. This objec-
tive function estimates the implementation error ε = 1 −
|Tr(U †

θ V )2−nq |2 between the unitaries Uθ and V . Note that
there exist state estimation and tomography methods [63–67]
that are experimentally favorable over the overlap in Eq. (11).
Here, we use this overlap due to its straightforward numerical
accessibility.

In Fig. 3, we show the estimated implementation error ε

during training, as a function of nf for nq � 4. We observe that
both implementations converge to the target transformation
for sufficiently large nf . For smaller nf the accessible unitary
transformations generated from the ansätze Eqs. (3) and (4)
are insufficient and presumably do not contain the QFT on nq

qubits.
We emphasize that our Fourier-based ansatz is consistently

outperforming the stepwise ansatz in terms of convergence
speed. We show in Figs. 3(a)–3(c) that our ansatz tends to
converge after roughly 50, 100, and 200 training iterations for
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(a) (d)

(b) (e)

(c) (f)

FIG. 3. Implementation errors during training of the quantum
Fourier transform. The errors ε during training as a function of the
hyperparameter nf for the QFT for nq = 2 (a and d), 3 (b and e),
and 4 (c and f) for our Fourier based ansatz (a)–(c) and the stepwise
protocol ansatz (d)–(f). For sufficiently large nf � nf,min both ansätze
converge to very small errors. Our Fourier-based ansatz outperforms
the stepwise ansatz in terms of convergence speed and consistency.

nq = 2, 3, and 4, respectively. Figures 3(d)–3(f) show that the
stepwise protocol ansatz tends to converge after roughly 100,
300, and 1800 iterations for nq = 2, 3, 4, respectively. For
nq = 4 in Fig. 3(f), the convergence behavior of the stepwise
ansatz is increasingly inconsistent. The stepwise ansatz has
the tendency to linger at suboptimal fidelities from which it
only moves away very slowly. This behavior becomes more
prominent with increasing nq and is a consequence of the loss
landscape that follows from the parametrization in Eq. (4).
Our ansatz does not show this behavior, but rather exhibits
faster and more direct convergence. This is an indication for
the absence of vanishing gradients, as is apparent when com-
paring Figs. 3(c) and 3(f).

In order to further evaluate the quality of the converged
solutions, we show the minimal errors after training εopt with
respect to the hyperparameter nf for both ansätze in Figs. 4(a)
and 4(b). We find the minimal nf that is necessary for con-
vergence during training to be approximately nf,min ≈ 4, 6,
and 8 for nq = 2, 3, and 4, respectively. The minimal nf

necessary for convergence appears to be the same for both
ansätze in this example. For larger nf , the minimal error con-
verges to very small values that show no strong dependence
on nf . For the cases of nq = 3 and nq = 4, the resulting min-
imal error tends to approach εopt ≈ 10−5. We note that for a

(a) (b)

(c) (d)

FIG. 4. Minimal errors and effective actions for training the
quantum Fourier transform. The minimal errors εopt (a and b) found
during training and the corresponding effective protocol actions �opt

(c and d) of both ansätze. The training results are for the QFT for
nq = 2 (blue circles), 3 (red triangles), and 4 (green squares). The in-
consistent εopt in the stepwise ansatz for nq = 4 (b) is a consequence
of the suboptimal convergence behavior, related to the emergence of
barren plateaus.

concrete experimental realization, additional considerations,
e.g., what dissipative processes are present and how well a
specific parameter can be tuned dynamically, determine the
overall success of these approaches, which will be explored
elsewhere.

As a second figure of merit we consider the effective im-
plementation action, which we quantify with the integrated
magnitude of the vector of system parameters θ(t ), such that

� =
∫ 1

0
|θ(t )|dt . (13)

Given that the parameters θ j (t ) have the units of energy, this
quantity is an overall measure of the phase or action that is
accumulated during the time evolution. It therefore quantifies
an estimate of both the energy that is required to implement
a protocol in a given time, as well as the time that is required
given a bound to the magnitude of the parameters θ j (t ). This
figure of merit allows us to determine whether a solution with
improved fidelity in our Fourier ansatz merely emerges due
to decreased time efficiency. In Figs. 4(c) and 4(d) we show
the effective actions �opt of the same optimal solutions of
Figs. 4(a) and 4(b), with respect to the hyperparameter nf .
We find the two ansätze to be very similar in terms of nec-
essary action and therefore time efficiency. In both ansätze,
there is no strong dependence on the hyperparameter nf past
nf,min. While the implementation actions consistently remain
reasonably small, there is a clear and expected tendency of
implementations to require larger effective actions with in-
creasing amounts of qubits.
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(a)

(b)

(c)

FIG. 5. Training trajectories for energy minimization. Learning
trajectories for the ground state preparation of three randomly gen-
erated problem Hamiltonians for nq = 4, 5, 6 qubits for our ansatz
(solid lines) and the stepwise ansatz (dashed lines). �E = 〈E〉θ − E0

is the expected energy of the prepared states relative to the ground
state energy. In all cases nf = 16.

B. Energy minimization

As a second optimization task, we consider the energy
expectation value of a problem Hamiltonian Hp and its mini-
mization. Specifically, we consider the objective function

LE
θ = 〈E〉θ = 〈0|U †

θ
HpUθ|0〉 , (14)

where Uθ is the time-evolution operator of the Hamiltonian
given in Eq. (2), which we use to construct the trial state
Uθ |0〉. We use the shortened notation |0〉 = |0〉⊗nq of the state
where all qubits are in the logical zero state. We perform
this ground state search for random problem Hamiltonians
for both our ansatz and the stepwise ansatz with nf = 16.
In this example we do not apply the quantum natural gra-
dient (QNG), i.e., we set the metric g = 1, for simplicity.
Figure 5 shows the energy differences to the ground state
energies �E = 〈E〉θ − E0 for the training trajectories of three
randomized problem Hamiltonians for up to six qubits. We
again see that our ansatz outperforms the stepwise ansatz in
terms of convergence speed. There is an increasing tendency
of gradients to flatten out in the stepwise ansatz. This behavior
is not present in our ansatz and indicates the onset of barren
plateaus in the optimization of ground state preparation for
stepwise protocols.

C. Objective gradient variances

In order to quantify the presence of barren plateaus, we
consider the variance of the gradients of the objective func-
tion for both our ansatz and the stepwise ansatz. In random
parametrized quantum circuits this amounts to uniformly sam-
pling possible initializations in the parameter space of θ [40].
In analog parametrizations of quantum algorithms, the param-
eter space is aperiodic and noncompact such that sampling
is more intricate. We consider uniformly sampled vectors θ

inside a (3nq − 1)-dimensional ball with radius |θ|max for each
time step in the stepwise ansatz, and |θ|max/k for each kth
Fourier mode in our ansatz. The value of |θ|max determines
the set of reachable states of a given ansatz. We consider the
variance of the gradient with respect to the first parameter

Var
[
∂θ1,1LE

θ

] = 〈(
∂θ1,1LE

θ

)2〉 − 〈
∂θ1,1LE

θ

〉2
(15)

for the specific problem Hamiltonian

Hp = σ 1
z σ 2

z

nq∏
j=3

1 j . (16)

We calculate the variance as a function of |θ|max for up
to eight qubits for nf = 128. Analytical arguments on the
existence of barren plateaus in randomly parametrized quan-
tum circuits (RPQCs) [40] rely on time-local expressions of
the gradient of a loss function such as Eq. (14). This also
applies to the stepwise ansatz. However, in our ansatz given
by Eq. (3), the expression is

∂θ1,1LE
θ = i

∫ 1

0
sin(πt ′) 〈0|U 0

t ′
[
Ut ′

1 HpU
1
t ′ , H1

]
Ut ′

0 |0〉 dt ′, (17)

where U b
a is the time-evolution operator from the time a to

the time b � a. For a � b it is U b
a = (U a

b )†. The variance of
this expression includes all possible covariances of time-local
changes to the protocols θ(t ), which differs substantially from
the variances in RPQCs. Further, in the parameter space of
θ(t ), the unitaries Ut ′

0 and U 1
t ′ are neither necessarily indepen-

dent in the sense of the Haar measure nor guaranteed to be
two designs. Therefore, the analytical argument for RPQCs
[40] does not apply to our ansatz. In particular, the argument
generates no statement about the scaling behavior.

In Fig. 6(a), we show the results of the stepwise ansatz. We
find that the variance is independent of the amount of qubits
nq for small |θ|max. For increasing |θ|max, the variance decays
exponentially with |θ|max with slopes that are independent of
nq. More importantly, the variance decays exponentially as
a function of nq with a log-scale slope of roughly ln( 1

2 ), as
indicated by the equally spaced lines. The stepwise ansatz is
reminiscent of a continuous Trotterized limit of parametrized
circuits and therefore these results are consistent with barren
plateau studies on RPQCs [40].

In Fig. 6(b), we show the results for our ansatz. The vari-
ances show asymptotic behavior as functions of |θ|max. They
converge at increasingly large values of |θ|max, which vastly
exceed implementation actions that are necessary for highly
entangling unitaries such as the QFT, as we show in Fig. 4(c).
Thus, in our ansatz |θ|max provides a useful hyperparameter
for initialization that can be tuned to comparatively small
values where the scaling with nq is very favorable. Further,
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(a)

(b)

FIG. 6. Variances of the energy objective gradient. The variance
of the gradient ∂θ1,1LE

θ of the loss function LE
θ = 〈0|U †

θ [σ 1
z σ 2

z ]Uθ|0〉
for up to eight qubits for the stepwise ansatz (a) and our Fourier-
based ansatz (b) on a logarithmic scale. The parameters are sampled
uniformly within a radius of |θ|max for nf = 128. The lines are visual
guides.

we find that the variance decreases as a function of nq at
a decreasing and nonexponential rate. This nonexponential
scaling behavior indicates the reduction of barren plateaus in
our ansatz, in particular during initialization.

IV. CONCLUSION

We have proposed a system-agnostic ansatz of analog
variational quantum algorithms rooted in quantum optimal
control. The central feature of our ansatz is that it treats the
Fourier coefficients of the time-controlled system parameters
of a given Hamiltonian as trainable. Therefore, our ansatz
is nonlocal in time and has no direct analog in discretized
parametrized quantum circuits. By restricting the modes to
low-end frequencies we keep the amount of trainable param-
eters low, while also ensuring smooth quantum protocols and
sufficient controllability by construction. We have applied a

measurement-based stochastic quantum natural gradient op-
timization scheme to our ansatz to generate protocols for the
quantum Fourier transform for up to four qubits. Additionally,
we have optimized ground state preparation processes for ran-
dom problem Hamiltonians for up to six qubits. We compared
the results to optimizations of the more commonly utilized
stepwise parametrization ansatz. The results we have pre-
sented here are limited to few-qubit systems, as the numerical
simulations on the native Hamiltonian level are computation-
ally more demanding than the circuit-based counterparts of
conventional VQA. This does not translate into a lack of
scalability in a true hybrid realization of the proposed method.

We have demonstrated that the convergence behavior of
our ansatz outperforms the stepwise protocols in speed and
consistency. We have found the effective implementation ac-
tion to be comparable and to remain reasonably small in
both ansätze. We have analyzed the gradient along the loss
landscape for both ansätze, and have shown that our ansatz
shows nonexponentially decreasing variances with respect to
the amount of qubits, indicating an absence of barren plateaus.
The stepwise ansatz shows a characteristic exponential decay
with the amount of qubits that is consistent with barren plateau
studies on random parametrized quantum circuits. The scaling
behavior of objective gradient variances for larger systems,
as well as tuning the sampling range for initialization and its
relation to expressibility, will be elaborated on elsewhere.

In conclusion, our ansatz is a promising candidate for miti-
gating barren plateaus in quantum algorithm optimization and
presents an alternative to parametrizations that are discrete or
local in time. This approach is of direct relevance for current
efforts of implementing quantum computing, as it provides
realistic and efficient access to optimal quantum algorithm
protocols.

ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation)—SFB-925—
Project No. 170620586, and the Cluster of Excellence
“Advanced Imaging of Matter” (EXC 2056), Project No.
390715994.

APPENDIX: QUANTUM NATURAL GRADIENT

In order to estimate the gradient of Lθ , we modify a single
component θ j,k by a small amount δ = 10−7. This results in
slightly altered time-evolution operators U j,k

θ
= Uθ+δê j,k and

values for the objective Lθ+δê j,k . This gives access to the finite
difference estimate

∂Lθ

∂θ j,k
≈ Lθ+δê j,k − Lθ

δ
. (A1)

We do this for all possible j and k and write


∇Lθ =
∑

j,k

∂Lθ

∂θ j,k
ê j,k . (A2)

The quantum natural gradient update �θ is then given by [60]

g(�θ) = −η 
∇Lθ, (A3)
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where η is a dynamical learning rate following the ADAM
algorithm with standard parameters and a step size of 0.01
[59]. The quantum natural gradient considers the underlying
geometry of the parametrized states using the Fubini-Study
metric g, which has the components

g( j,l )
(i,k) = Re

[〈
∂θi,qψ

∣∣∂θ j,l

〉 − 〈∂θi,qψ |ψ〉 〈ψ |∂θ j,l ψ〉]
≈ Re

[〈r|U †,i,q
θ

U j,l
θ

|r〉 − 〈r|U †,i,q
θ

Uθ|r〉 〈r|U †
θ
U j,l

θ
|r〉].

(A4)

The corresponding operator products are naturally expressed
as longer time-evolution operators of the same form as Eq. (2)

with the given parameters θ as

U †,i,q
θ

Uθ = T̂
[
e−i

∫ 2
0

∑
j,k (θ j,k+δê j,k êi,q(t−1)) sin(πkt )Hj dt

]
, (A5)

and analogously U †,i,q
θ

U j,l
θ

and U †
θ
U j,l

θ
.  is the Heaviside-

function such that the parameter θi,q is slightly altered
by δ at t = 1. The Fubini-Study metric g with re-
spect to |r〉 = Ur |0〉⊗n can be measured by evaluating
〈0|⊗nq U †

r U †,i,q
θ

UθUr |0〉⊗nq . Solving the linear system of
Eq. (A3) yields the quantum natural gradient descent step.
For very large experimental setups, determining the curvature
with respect to only a select subset of θ can be a beneficial
compromise in terms of time efficiency.
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