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Universal properties of repulsive self-propelled particles and attractive driven particles
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Motility-induced phase separation (MIPS) is a nonequilibrium phase separation that has a different origin
from equilibrium phase separation induced by attractive interactions. Similarities and differences in collective
behaviors between these two types of phase separation have been intensely discussed. Here, to study another
kind of similarity between MIPS and attraction-induced phase separation under a nonequilibrium condition, we
perform simulations of active Brownian particles with uniaxially anisotropic self-propulsion (uniaxial ABPs) in
two dimensions. We find that (i) long-range density correlation appears in the homogeneous state; (ii) anisotropic
particle configuration appears in MIPS, where the anisotropy removes the possibility of microphase separation
suggested for isotropic ABPs [X.-Q. Shi et al., Phys. Rev. Lett. 125, 168001 (2020)]; and (iii) critical phenomena
for the anisotropic MIPS presumably belong to the universality class for two-dimensional uniaxial ferromagnets
with dipolar long-range interactions. Properties (i)–(iii) are common to the well-studied randomly driven lattice
gas (RDLG), which is a particle model that undergoes phase separation by attractive interactions under external
driving forces, suggesting that the origin of phase separation is not essential for macroscopic behaviors of
uniaxial ABPs and RDLG. Based on the observations in uniaxial ABPs, we construct a coarse-grained Langevin
model that shows properties (i)–(iii) and corroborates the generality of the findings.
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I. INTRODUCTION

Liquid-gas or liquid-liquid phase separation is a typical
collective phenomenon that has been observed in a wide range
of systems from polymer solution [1] to biological materials
[2,3]. Basically, equilibrium phase separation is caused by
attractive interactions between molecules or particles [1], and
the corresponding critical phenomena have been considered
to belong to the Ising universality class [4–6]. In contrast,
in nonequilibrium systems, depending on how the detailed
balance is broken, the critical exponents for phase separation
can deviate from the Ising model values [7], and phase separa-
tion can emerge from different mechanisms such as chemical
reactions [8] and coupling to multiple heat baths [9]. A com-
prehensive understanding of the seemingly broad spectrum of
nonequilibrium phase separation requires theoretical studies
from a unified viewpoint.

For attractively interacting particles that undergo phase
separation, one of the ways to break the detailed balance is
external driving with bulk fields or boundary reservoirs, which
generically changes the density correlation to long-ranged
[7,10–16] and leads to nonequilibrium critical phenomena
[7,17–22]. The driven lattice gas (DLG) [18,23] and randomly
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driven lattice gas (RDLG) [11,24–30] are prototypical mod-
els of nonequilibrium phase separation, in which particles
stochastically move with short-range attractive interactions
under external driving forces. Unidirectional and uniaxial
driving forces are assumed in DLG and RDLG, respectively,
which makes the difference in symmetry between these two
models. In DLG and RDLG, spatial anisotropy of the driving
force causes long-range density correlation [25] and critical
phenomena that do not belong to the Ising universality class
[31–34]. In particular, the universality class for RDLG has
been considered as that for uniaxial ferromagnets with dipolar
long-range interactions [35,36], according to the renormaliza-
tion group (RG) analysis [27,32].

Self-propulsion is another way to break the detailed bal-
ance [37–39]. In a crowd of self-propelled particles, or active
matter, collective phenomena ranging from giant number fluc-
tuations [40,41] to active turbulence [42] have been found
using biological [43–47] and artificial [48–56] systems. In
particular, as shown in simulations [57–61] and experiments
[62], self-propelled particles with repulsive interactions can
undergo phase separation, which is called motility-induced
phase separation (MIPS) [63]. No attractive interactions are
necessary for MIPS, which is distinct from equilibrium phase
separation or nonequilibrium phase separation under external
driving. MIPS has been studied in comparison with equi-
librium phase separation, and similarities and differences
between them have been reported [see Figs. 1(a) and 1(c)].
For example, the global phase diagrams for MIPS [64,65] and
equilibrium phase separation are similar if we exchange the
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FIG. 1. Four types of phase separation. The row and column correspond to the type of phase separation (attraction or motility induced) and
the type of dynamics (isotropic or anisotropic), respectively. In each panel, a typical particle configuration obtained from model simulations is
shown with schematic figures of the single-particle motion and small cluster formation. (a) Brownian particles follow overdamped dynamics
with attractive interactions (wavy lines) and random forces. (b) In RDLG, particles stochastically move with attractive interactions (wavy lines)
and external driving force (red arrow) along an axis (i.e., y axis in the figure). (c) ABPs show self-propelled motion (red arrow) with repulsive
interactions and random forces. (d) Uniaxial ABPs show anisotropic self-propelled motion favored along an axis (i.e., x axis in the figure) with
repulsive interactions and random forces similar to (c) [see Eq. (1) for the detail].

axis of self-propulsion strength for MIPS with that of attrac-
tive interaction strength for equilibrium phase separation. In
addition, the lever rule [1], which is common to equilibrium
phase separation, holds for MIPS in particle models [66], and
consistently, effective free energy has been proposed based on
coarse-grained models [67,68]. In contrast, it is still unclear
whether the critical phenomena for MIPS belong to the Ising
universality class [69–72]. Furthermore, as a unique feature of
MIPS, the nucleation of persistent gas bubbles that can lead to
microphase separation has been found [66,73–75].

In the previous work [76], one of the authors has proposed
another kind of similarity between the anisotropic version
of MIPS and attraction-induced phase separation under ex-
ternal driving. Briefly, it has been found that a lattice gas
model with spatially anisotropic self-propulsion exhibits a
variety of collective behaviors: long-range density correlation,
anisotropic phase separation, and critical phenomena with
the universality class expected to be the same as that for
uniaxial dipolar ferromagnets. All these behaviors have also
been seen in RDLG, which indicates a connection between re-
pulsively interacting particles with anisotropic self-propulsion
and attractively interacting particles under external driving.
However, the generality of such observations is still unclear
beyond the considered lattice gas model. In particular, though
persistent gas bubbles have been observed in active Brownian
particles (ABPs) [66], a prototypical model of MIPS [59],
the fate of gas bubbles under spatial anisotropy has not been
investigated. More broadly, systematic studies of the effect of
spatial anisotropy on active matter are still scarce [77–81].

In this paper, toward a comprehensive understanding of
the relation between the anisotropic MIPS and attraction-
induced phase separation under external driving, we con-
sider ABPs with anisotropic self-propulsion. In Fig. 1, we

show typical particle configurations obtained from model
simulations for the above-mentioned four types of phase sepa-
ration: attraction- and motility-induced phase separation with
isotropic or anisotropic dynamics. In each panel of Fig. 1,
we also schematically show the single-particle motion and
typical configuration of small clusters, which can grow up to
a macroscopic scale and lead to phase separation. Our present
focus is on the relation between the two types of anisotropic
phase separation in the right panels of Fig. 1.

We perform simulations of ABPs with uniaxially aniso-
tropic self-propulsion (uniaxial ABPs). We find that, as ex-
pected from the previous study [76], uniaxial anisotropy
dramatically changes the collective behaviors and causes
long-range correlation, anisotropic phase separation, and crit-
ical phenomena that are presumably in the same universality
class as that for uniaxial dipolar ferromagnets. Furthermore,
uniaxial anisotropy suppresses the growth of gas bubbles in
MIPS [66] and stabilizes macroscopic phase separation. De-
veloping a coarse-grained model for particles with anisotropic
self-propulsion, we corroborate the generality of the observed
phenomena.

II. MICROSCOPIC MODELS

In this section, we explain the numerical implementation of
uniaxial ABPs and RDLG, which are anisotropic extensions
of the isotropic ABPs and equilibrium lattice gas, respectively.
We also present phase diagrams for the two models, which
provide preliminary insights into collective behaviors.

A. Active Brownian particles with uniaxial anisotropy

For uniaxial ABPs, N particles are confined in [0, Lx] ×
[0, Ly] with periodic boundary conditions. The state of the ith
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FIG. 2. Phase behaviors of uniaxial ABPs and RDLG. (a) Typical snapshots of uniaxial ABPs. The parameters are (Lx, Ly ) = (64, 64),
ρ = 0.71 (N = 2908), (μ‖, μ⊥, μθ ) = (1, 0.25, 1.5), ε = 0.01, Pe = 2.5 (left), and Pe = 37.5 (right). (b) Typical snapshots of RDLG. The
parameters are (Lx, Ly ) = (64, 64), ρ = 0.5 (N = 2048), E = 100, β = 0.1 (left), and β = 0.4 (right). (c) Phase diagram of uniaxial ABPs.
The parameters are the same as those for (a). (d) Phase diagram of RDLG. The parameters are the same as those for (b). In (c) and (d), the signs
(+ and ×) indicate the parameter sets where the left and right panels of (a) and (b) are calculated, respectively. The triangle (�) represents the
estimated critical point, the properties of which are discussed in Sec. V B.

particle is specified by position ri and polarity angle θi. The
time evolution of (ri, θi) is governed by

dra
i
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= μab
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Also, ξ ‖
i , ξ⊥

i , and ξ θ
i are Gaussian white noises with 〈ξ q

i (t )〉 =
0 and 〈ξ q

i (t )〈ξ q′
j (t ′)〉 = δi jδqq′δ(t − t ′) (q, q′ =‖,⊥, θ ). The

translational noise ηa
i , representing thermal noise, is added

to satisfy the detailed-balance condition when the self-
propulsion force F0nb

i is absent. We assume the two-body
interaction as V (r) = (k/2)(σ − r)2 for r < σ and V (r) = 0
otherwise. The potential for the polarity angle, U (θ ), is added
to model the effect of spatial anisotropy on self-propulsion,
and ε (� 0) represents the strength of anisotropy. In this work,
we use a simple potential function, U (θ ) = − cos(2θ ), which
enhances the alignment of polarity along the x axis (i.e., θ = 0
or π ). Note that the polarity angle of each particle can take
any value between 0 and 2π , in contrast to the previous model
[76], in which the polarity angle is restricted to 0 or π . We
also stress that we consider anisotropy of the self-propulsion
direction, not of the particle shape.

In the case of ε = 0, the properties of the model [Eq. (1)]
have been studied in Ref. [66]. In particular, the anisotropic
mobility tensor μab

i has been used to enhance the nucleation
of gas bubbles in the phase-separated state. In our numerical
simulations, we follow Ref. [66] and use anisotropic μab

i for
the case of ε > 0. While the anisotropy of μab

i results in the

polarity-dependent response of particle motion to the force, it
does not induce spatially anisotropic particle motion along a
fixed axis, in contrast to the spatial anisotropy caused by ε.
Thus, in the following, we use the term “anisotropy” to refer
to the effects of ε.

Throughout the numerical study, we set σ = 1, k = 20, and
τ = 0.01. The controlled parameters are system size (Lx, Ly),
particle density ρ := N/(LxLy), mobilities (μ‖, μ⊥, μθ ), mag-
nitude of anisotropy ε, and the Péclet number, Pe :=
F0σ/τ , which represents the dimensionless strength of self-
propulsion. The simulations are performed using LAMMPS
[82,83]. The time integration is performed by the Euler
method with time step dt = 0.02.

Figure 2(a) displays snapshots with two sets of parame-
ters, which show that this model undergoes anisotropic phase
separation. We stress that there is no attractive interaction
in uniaxial ABPs, just like isotropic ABPs. As suggested
in Fig. 1(d), this phase separation originates from the self-
propulsion of each particle. We also present the phase diagram
in Fig. 2(c); phase separation emerges for large Pe, which is
also the same as in isotropic ABPs. Thus, this phase separation
is regarded as the anisotropic extension of isotropic MIPS [see
Fig. 1(c)].

B. Randomly driven lattice gas

For RDLG, we consider N particles on a square lattice with
system size (Lx, Ly) in units of the lattice constant. The state
of the ith site is specified by occupation number ni, and the
set of ni represents the configuration of the whole system.
We assume exclusion between particles so that each site can
be occupied by at most one particle, i.e., ni ∈ {0, 1}. We also
consider attractive interaction between neighboring particles,
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which is represented by the following Hamiltonian:

H = −J
∑
〈i, j〉

nin j . (2)

The state of the system is updated in three steps:
(1) We randomly choose two adjacent sites, (i, j), and

calculate the energy difference (H) between the original
configuration and the new configuration obtained by exchang-
ing the state of the ith site with the state of the jth site.

(2) If sites (i, j) are located along the x axis, then the new
configuration is accepted with probability min(1, e−βH ).

(3) If sites (i, j) are located along the y axis, then
the new configuration is accepted with probability
min[1, e−β(H+Eη)], where E is the strength of the driving
force, and η is a random number drawn from a Gaussian
distribution with zero mean and unit variance.

For step 3, the random driving force is applied along the y
axis. We basically set the parameters to J = 4 and E = 100
and control β and ρ := N/LxLy. Note that our numerical im-
plementation leads to the same type of macroscopic behaviors
as those in the previous studies [27,84].

Since the driving force along the y axis (i.e., Eη) competes
with and effectively weakens the attractive interaction (i.e.,
H), the motion of particles that interact with the neighbors
is enhanced along the y axis. In particular, E = 100 is practi-
cally equivalent to the limiting case with E = ∞, where the
configuration is updated regardless of the value of H . This
limiting case has been commonly used in simulations of DLG
and RDLG [7].

Figure 2(b) displays snapshots with two sets of parameters.
This model undergoes phase separation induced by the attrac-
tive interaction [Fig. 1(b)] though the motion of each particle
is affected by the random driving force. We present the phase
diagram in Fig. 2(d); phase separation is controlled by inverse
temperature β, just like in equilibrium particle systems with
attractive interactions [see Fig. 1(a)].

C. Orientation of phase separation

Self-propulsion is favored along the x axis in uniaxial
ABPs, while the driving force is applied along the y axis in
RDLG. Despite this difference in the direction of the enhanced
particle motion, the dense and dilute regions are segregated
along the x axis in both uniaxial ABPs and RDLG [see
Figs. 2(a) and 2(b)]. Such a coincidence of the collective
behavior can be interpreted from a microscopic viewpoint as
follows. For uniaxial ABPs, self-propulsion induces persistent
collision of particles along the x axis, leading to effective
adhesion between particles along the x axis. Since this type of
collision is less probable along the y axis, particles can move
more freely along the y axis. Thus, particle clusters that are
caused by the effective adhesion should be elongated along the
y axis, which results in the segregation along the x axis [see
Fig. 1(d)]. Note that similar cluster patterns have been recently
found in simulations of ABPs with anisotropic self-propulsion
[81]. For RDLG, the driving force enhances the free motion of
particles along the y axis. Thus, particle clusters caused by the
attractive interaction should be elongated in the y direction,
leading to the segregation along the x axis [see Fig. 1(b)]. See

Appendix A for further comparisons between uniaxial ABPs
and RDLG.

III. PROPERTIES OF HOMOGENEOUS STATE

Hydrodynamic descriptions are helpful in understanding
the collective behavior of particles. For RDLG, homogeneous
state properties have been studied using a linear coarse-
grained model [27,85]:

∂tφ + ∇ · j = 0 (3)

with

jx = −∂x
(
ax − Kxx∂

2
x − Kxy∂

2
y

)
φ + √

2Dxξx

jy = −∂y
(
ay − Kyx∂

2
x − Kyy∂

2
y

)
φ + √

2Dyξy.

Here φ(r, t ) is the density fluctuation field, ξ(r, t ) is a
Gaussian noise with 〈ξa(r, t )〉 = 0, and 〈ξa(r, t )ξb(r′, t ′)〉 =
δabδ(r − r′)δ(t − t ′). In the isotropic limit (Kxx = Kxy =
Kyx = Kyy = K , ax = ay = a, and Dx = Dy = D), Eq. (3) is
reduced to the so-called model B [86],

∂tφ = ∇2 δH
δφ

−
√

2D∇ · ξ, (4)

whereH is a coarse-grained Hamiltonian:

H =
∫

d2r
[

a

2
φ2 + K

2
(∇φ)2

]
. (5)

Thus, Eq. (3) is regarded as an extension of model B to
an anisotropic system that respects the symmetry of particle
dynamics in RDLG.

In the following, we demonstrate that the homogeneous
states of uniaxial ABPs and RDLG exhibit the same type of
long-range correlation as a generic feature of the nonequilib-
rium collective dynamics, which can be explained by Eq. (3).
In Appendix D, using the well-known correspondence be-
tween RDLG and uniaxial dipolar ferromagnets [27,32], we
further establish the connection between uniaxial ABPs and
dipolar ferromagnets.

A. Long-range density correlation

The steady-state long-range correlation of a conserved
quantity has been recognized as a general feature of nonequi-
librium systems with anisotropic dynamics [11,13]. Specifi-
cally, the fluctuation of a conserved quantity, which we denote
as δA(r) here, decays as

〈δA(r)δA(r′)〉 ∼ ceq e−|r−r′|/ξ + cneq

|r − r′|α , (6)

where 〈·〉 is an ensemble average in the steady state and ceq

and cneq are constants. The first term represents an exponen-
tial decay that also appears in equilibrium systems, while
the second term is a nonequilibrium correction that leads to
the long-range correlation with a power-law decay. The pres-
ence of long-range correlation (i.e., cneq �= 0) is ubiquitous in
nonequilibrium systems with spatial anisotropy.

In uniaxial ABPs and RDLG, the self-propulsion and driv-
ing force violate the detailed balance in a spatially anisotropic
way, respectively. Thus, the long-range correlation of the den-
sity field, which is a locally conserved field, is expected to
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FIG. 3. Singular structure factors in the homogeneous states.
[(a) and (b)] Heatmap of structure factor S(k) for (a) uniaxial ABPs
and (b) RDLG. [(c) and (d)] Density correlation functions C(x, 0)
(yellow) and C(0, y) (purple) for (c) uniaxial ABPs and (d) RDLG.
In the insets, the absolute value is plotted on the log-log scale. The
parameters used for (a) and (c) as well as (b) and (d) are the same
as those for the left panels of Figs. 2(a) and 2(b), respectively. The
system size is set to Lx = Ly = 360 for both models.

appear in both systems. Though RDLG has been known to
show the long-range correlation [11,27,85], for completeness,
we explain the results for uniaxial ABPs and RDLG in par-
allel. Assuming small self-propulsion Pe in uniaxial ABPs
and low inverse temperature β in RDLG [corresponding to
the plus sign (+) in Figs. 2(c) and 2(d)], we focus on typical
homogeneous states [Figs. 2(a) and 2(b)]. We calculate the
structure factor and the two-point correlation function, which
are defined as

S(k) := 1

LxLy
〈|δρ̃(k)|2〉 (7)

and
C(r) := 〈δρ(r)δρ(0)〉, (8)

respectively. Here ρ(r) := ∑N
i=1 δ(r − ri ), δρ(r) := ρ(r) −

〈ρ(r)〉, and ρ̃(k) is the Fourier transformation of ρ(r).
We show the heatmaps of S(k) for uniaxial ABPs and

RDLG in Figs. 3(a) and 3(b), respectively, both of which
exhibit owl-like or butterfly-like patterns [85]. Analytically,
the observed pattern of S(k) can be characterized by the dis-
continuity at the origin in the Fourier space, i.e.,

lim
kx→0

S(kx, ky = 0) �= lim
ky→0

S(kx = 0, ky). (9)

This discontinuity of S(k) reflects the power-law decay of
C(r) in the real space [85]. As shown in Figs. 3(c) and 3(d),
the correlation function [C(x, y = 0) (yellow) and C(x = 0, y)
(purple)] indeed shows a power-law decay as ∼r−2, which
implies the long-range density correlation. The negative cor-
relation observed in C(x, y = 0) suggests the formation of

FIG. 4. Quantitative comparison between the simulated structure
factor and the theoretical expression [Eq. (10)], where the same data
as plotted in Fig. 3 is used. [(a) and (b)] Structure factor S(kx, ky )
with ky = 4π/Ly, 8π/Ly, and 12π/Ly for (a) uniaxial ABPs and
(b) RDLG. [(c) and (d)] Structure factor S(kx, ky ) with kx = 4π/Lx ,
8π/Lx , and 12π/Lx for (c) uniaxial ABPs and (d) RDLG. In all fig-
ures, the colored dots represent the simulation results, and the black
lines represent the theoretical expression with the best-fit parameter.

transient clusters elongated along the y axis. This orientation
of clusters is consistent with the configurations in phase sepa-
ration shown in Figs. 2(a) and 2(b) (see Sec. II C).

B. Linear coarse-grained model

According to the previous studies, the owl-like pattern of
the structure factor observed in RDLG [Fig. 3(b)] can be
reproduced by the linear coarse-grained model [Eq. (3)] [85].
The similar pattern observed in uniaxial ABPs [Fig. 3(a)]
suggests that uniaxial ABPs and RDLG share the same macro-
scopic dynamics described by Eq. (3). To confirm the validity
of Eq. (3) for both uniaxial ABPs and RDLG, we examine
the structure factor for the coarse-grained density fluctuation,
Slin(k) := 〈|φ̃(k)|2〉 /(LxLy), and φ̃(k) is the Fourier transfor-
mation of φ(r). From Eq. (3), we can obtain [7,85]

Slin(k) = Dxkx
2 + Dyky

2

axkx
2 + ayky

2 + Kxxkx
4 + 2Kxykx

2ky
2 + Kyyky

4 .

(10)
For uniaxial ABPs, we fit the simulation data of S(k)

for k ∈ [2π/Lx, 20π/Lx] × [2π/Ly, 20π/Ly] with Eq. (10),
using Dx, Dy, ax, ay, Kxy, and Kyy as fitting paramters with
Kxx = 1. The fitting results are as follows:

Dx = 0.0287, Dy = 0.00600, ax = 0.0990, ay = 0.0778,

Kxy = 0.525, Kyy = 0.145. (11)

In Figs. 4(a) and 4(c), we plot the observed S(k) (with
dots) and the fitted Slin(k) (with lines). The results show that
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FIG. 5. Persistent gas bubbles in the phase-separated state of uniaxial ABPs. (a) Typical snapshots in the steady state at (Lx, Ly ) =
(1440, 720) for three values of ε. The colors represent the particle density from 0 (blue) to 1.5 (red). (b) Bubble fraction fb as a function
of ε for (Lx, Ly ) = (1440, 720). [(c) and (d)] Bubble size distribution divided by the total liquid area, n(a)/Sliq, for (c) isotropic (ε = 0) and
(d) anisotropic (ε = 0.002) systems. (e) n(a)/Sliq for three values of ε for (Lx, Ly ) = (2880, 1440). In all figures, the parameters are chosen as
ρ = 0.765, (μ‖, μ⊥, μθ ) = (1, 0.3125, 2.75), and Pe = 100.

Eq. (10) quantitatively reproduces the observed behavior of
the structure factor for small |k|, which reflects the long-
wavelength density fluctuation. We also fit the simulation data
of RDLG in the same way as used for uniaxial ABPs. The
fitting results are as follows:

Dx = 1.37, Dy = 1.00, ax = 1.41, ay = 4.52,

Kxy = 0.609, Kyy = −0.0899. (12)

In Figs. 4(b) and 4(d), we compare the observed S(k) and the
fitted Slin(k), which show quantitative agreement as expected.

As discussed in previous studies of DLG and RDLG [7],
we can derive the asymptotic behavior of the long-range part
of the correlation function, Clin(r), which is the inverse Fourier
transformation of Slin(k). From Eq. (10) we can obtain

Clin(x, 0) ∼ −x−2, Clin(0, y) ∼ y−2 (r → ∞), (13)

which is also consistent with the power-law decay of C(r)
observed in uniaxial ABPs [Fig. 3(c)] and RDLG [Fig. 3(d)].

IV. PHASE SEPARATION PROPERTIES

As briefly explained in Sec. II, uniaxial ABPs and RDLG
undergo anisotropic phase separation (Fig. 2). In this section,
we investigate the properties of phase separation of uniaxial
ABPs in more detail. We focus on the nucleation of persis-
tent gas bubbles and the possibility of microphase separation,
which have been found in recent studies [66].

A. Anisotropy-induced removal of gas bubbles

In Fig. 5(a), we show typical density fields in the phase-
separated states for three different values of ε. The detailed
procedure for drawing this figure is given in Appendix E.
From this figure, we find that for ε = 0, numerous gas bubbles

are nucleated within the liquid phase. Throughout this paper,
we use a “gas bubble” to refer to a connected region of the
gas phase surrounded by the largest liquid phase. Note that
we regard the largest gas phase as the gas reservoir and not as
the gas bubble (see Appendix E 2 for the method to detect gas
bubbles). As ε increases, the number of gas bubbles decreases.
For sufficiently large values of ε (e.g., ε = 0.02), the presence
of gas bubbles becomes less evident. To quantitatively charac-
terize this observation, we define the bubble fraction as

fb := Sbubble

S
, (14)

where S := LxLy and Sbubble is the total area occupied by gas
bubbles. We plot fb as a function of ε in Fig. 5(c), which shows
that the fraction of gas bubbles monotonically decreases as ε

increases. For sufficient large ε, fb reaches zero, indicating the
absence of gas bubbles. This observation demonstrates that
the uniaxial self-propulsion prevents the nucleations of gas
bubbles.

In isotropic ABPs (i.e., ε = 0), the nucleation of gas bub-
bles has been examined in Ref. [66], which has revealed a
connection between the existence of gas bubbles and a novel
type of phase separation called microphase separation [73].
To briefly explain the previous results in Ref. [66], we focus
on the size distribution of gas bubbles divided by the total
liquid area, n(a)/Sliq, where a is the area of a single bubble.
In Fig. 5(c), we plot n(a)/Sliq for isotropic ABPs. We find
that n(a)/Sliq for large a fits well with the power-law decay
observed in the reduced bubble model [66]:

n(a)

Sliq
∼ aα (α = −1.77). (15)
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FIG. 6. Absence of gas bubbles in RDLG. (a) Typical snapshots in the steady state for three values of E . The colors represent the particle
density from 0 (blue) to 1 (red). (b) Bubble fraction fb as a function of E . In all figures, the parameters are chosen as ρ = 0.5, β = 0.556, and
(Lx, Ly ) = (720, 360).

Considering that the bubble fraction, fb, and the size distribu-
tion, n(a), are related as [87]

fb = 1

S

∫ Sgas

0
an(a)da, (16)

we can derive the system size dependence of fb as

fb ∼ χliqχ
α+2
gas Sα+2. (17)

Here χliq := Sliq/S and χgas := 1 − χliq represent the area
fractions of the liquid and gas phases, respectively, and are
nearly independent of the system size, S. Thus, as S increases,
fb is expected to increase until it reaches the area fraction of
the gas phase, χgas. This implies that the whole gas phase ex-
ists as persistent gas bubbles surrounded by the liquid phase.
This state has been defined as the microphase-separated state
[66].

As seen in Fig. 5(a), we find that gas bubbles are still
observed for small but finite ε. We consider whether the size
distribution of such gas bubbles can show the power-law de-
cay as observed in isotropic ABPs (i.e., ε = 0). In Fig. 5(d),
we plot n(a)/Sliq for ε = 0.002. In contrast to the isotropic
case, the bubble size distribution does not show the power-law
behavior. Note that this result is not attributed to the finite-
size effect since n(a)/Sliq for different system sizes fall on
a universal curve. More specifically, n(a)/Sliq for ε = 0.002
decays faster than a−2. From Eq. (17), fb is expected to
converge to zero in the large system size limit, implying that
uniaxial ABPs undergo macroscopic phase separation rather
than microphase separation. Thus, we confirm that the type
of phase separation significantly changes by the anisotropic
self-propulsion. We also plot the ε dependence of n(a)/Sliq

for (Lx, Ly) = (2880, 1440) in Fig. 5(e), which shows that the
functional form of n(a)/Sliq is changed by a small amount of
ε. This suggests that microphase separation can be prohibited
even for extremely small ε (e.g., ε = 0.0005), though we
need a more detailed finite-size scaling analysis to draw a
conclusion.

We comment on possible gas bubbles in RDLG. Note that
previous studies on RDLG have not reported any possibility of
microphase separation. As shown in Fig. 6(a), the nucleation
of gas bubbles is hardly observed in typical snapshots for
large systems, and macroscopic phase separation is expected
to appear regardless of the strength of anisotropy. The bubble
fraction, fb, plotted in Fig. 6(b) suggests that the nucleation of
gas bubbles is suppressed by anisotropic driving force E in a
similar way to uniaxial ABPs.

B. Nonlinear coarse-grained model

Though the linear coarse-grained model [Eq. (3)] succeeds
in explaining the homogeneous state far from the critical point
as discussed in Sec. III, it cannot describe phase separation
since nonlinear terms are not included. In previous studies
on isotropic ABPs [66], the qualitative features of microphase
separation and the mechanism behind the observed persistent
gas bubbles have been demonstrated using a coarse-grained
model called Active Model B+ (AMB+) [73,88]. To discuss
the observed suppression of gas bubbles by the anisotropic
self-propulsion from a general perspective, we consider an
anisotropic extension of AMB+:

∂tφ = ax∂x
2φ + ay∂y

2φ + ∇2(bφ3 − K∇2φ + K ′∇4φ)

+ λ∇(∇φ)2 − ζ∇ · [(∇2φ)∇φ] −
√

2D∇ · ξ, (18)

which is also regarded as a nonlinear extension (i.e., adding
the b, λ, and ζ terms) of Eq. (3). The b term can be derived
from a coarse-grained Hamiltonian, and the λ and ζ terms
reflect the violation of the time-reversal symmetry [73]. To
improve numerical stability, the higher-order gradient term
with a small K ′ is also introduced. This term is irrelevant in the
RG sense (see Appendix G 2 for the detail) and is not expected
to affect the qualitative phase behavior. For simplicity, the
effect of anisotropy is minimally retained in the difference
between ax and ay.

Throughout the numerical study of Eq. (18), we set ax =
−0.25, b = 0.25, K = 1, K ′ = 0.2 and D = 0.5. We take
(φ0, λ, ζ ) = (−0.1, 0.5, 5) and (0.4, 1, 4) as low- and high-
density cases, respectively, where φ0 is the spatial average
of φ(r, t ). The strength of anisotropy is controlled by ay

(�ax). Considering the periodic boundary conditions along
both axes [φ(x + Lx, y, t ) = φ(x, y + Ly, t ) = φ(x, y, t )], we
perform numerical integration of Eq. (18) by the explicit Euler
method (see Appendix G 1 for the detail). We regard the
regions with φ < 0 and φ > 0 as the gas and liquid phases,
respectively.

We explain the isotropic limit (ax = ay) with the present
parameter set. In the low-density case, we observe phase sep-
aration with persistent gas bubbles [Fig. 7(a), left], which is
similar to the behavior of uniaxial ABPs [Fig. 5(a), left]. In the
high-density case, we observe microphase separation, where
gas bubbles are present throughout the system [Fig. 7(b),
left]. Such phase behaviors are consistent with the previous
observations in the isotropic AMB+ [73].
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FIG. 7. Suppression of gas bubbles by anisotropy in the
coarse-grained model. For a low-density condition [(φ0, λ, ζ ) =
(−0.1, 0.5, 5)], we show (a) typical snapshots for (Lx, Ly ) =
(256, 128) and (c) bubble fraction fb as a function of anisotropy
strength ay for three system lengths Lx (= 2Ly). For a high-density
condition [(φ0, λ, ζ ) = (0.4, 1, 4)], we show (b) typical snapshots
for (Lx, Ly ) = (192, 192) and (d) bubble fraction fb as in (c). In the
inset of (d), we plot the ay dependence of m, an order parameter for
macroscopic phase separation.

We consider the effect of anisotropy on phase separation
with gas bubbles [Fig. 7(a)]. Similarly to the observation in
uniaxial ABPs [Fig. 5(b)], we find the suppression of bubble
fraction fb as shown in Fig. 7(c). This suggests that the mini-
mal extension of AMB+ (i.e., ax �= ay) is sufficient to explain
the qualitative behavior of uniaxial ABPs. We next examine
the effect of anisotropy on microphase separation [Fig. 7(b)].
We find that microphase separation discontinuously changes
into macroscopic phase separation, indicated by the abrupt
change in fb [Fig. 7(d)]. In addition, we define an order param-
eter for macroscopic phase separation along the x axis as m :=
S(kx = 2π/Lx, 0), where the structure factor is defined as
S(k) := 〈|φ̃(k)|2〉 /(LxLy) with φ̃(k) := ∫

d2r e−ik·rφ(r). As
shown in the inset of Fig. 7(d), the discontinuous change
in m also suggests the discontinuous transition between mi-
crophase separation and macroscopic phase separation.

Let us focus on the case with ax < 0 < ay [see the
right panels of Figs. 7(a) and 7(b)] to consider why strong
anisotropy suppresses gas bubbles and stabilizes macroscopic
phase separation. We neglect the noise term in Eq. (18) by
the mean-field approximation, which has been used in the

previous studies [67,68,73]. Then, the linearized equation for
φ − φ0 is obtained in the Fourier space as

∂t φ̃(k, t ) = −(
axkx

2 + ayky
2 + K|k|4 + K ′|k|6)φ̃(k, t ).

(19)
From ax < 0 < ay, K > 0, and K ′ > 0, we see that the most
unstable wavevector is along the kx axis. Thus, we approxi-
mately neglect the modulation in the y direction and replace
Eq. (18) by ∂tφ = ∂x

2μ, where μ(x, t ) := axφ + bφ3 −
K∂x

2φ + K ′∂x
4φ + (λ − ζ/2)(∂xφ)2. Here chemical potential

μ is a local quantity, in contrast to the isotropic limit (ax =
ay), where nonlocality of chemical potential can lead to phase
separation with gas bubbles and microphase separation [73].
Thus, macroscopic phase separation is expected to appear for
ax < 0 < ay.

V. CRITICAL PROPERTIES

Since uniaxial ABPs and RDLG share the common prop-
erties in the homogeneous and phase-separated states (see
Secs. III and IV), we expect that the critical point for
anisotropic phase separation in each model belongs to the
same universality class. In the following, we support this
expectation using the RG analysis of the coarse-grained model
[Eq. (18)] and the finite-size scaling analysis of simulation
data for uniaxial ABPs.

A. Renormalization group analysis of coarse-grained model

We consider the critical phase transition between the ho-
mogeneous and phase-separated states in the coarse-grained
model [Eq. (18)] under sufficiently large anisotropy with ax <

ay. We first review the previous RG analyses of Eq. (18)
for K ′ = λ = ζ = 0 [26,27,31,32]. Retaining only the rele-
vant variables in the RG sense, we can obtain a model that
is equivalent to a coarse-grained model of uniaxial dipo-
lar ferromagnets, which have dipolar long-range interactions
[26,27,31,32] (see Appendix D for the detail). At the two-loop
level, the critical exponents for the coarse-grained model of
uniaxial dipolar ferromagnets have been obtained [26,27,32]
as

β = 0.315, νx = 0.626 (two-loop RG). (20)

Here β is the exponent for the onset of the order parameter,
and νx and νy (�2νx ) are the exponents for the divergent
correlation lengths along the x and y axes, respectively. For
RDLG, the finite-size scaling analysis of simulation data has
been performed to obtain the critical exponents [27] as

β = 0.33(2), νx = 0.62(3) (RDLG). (21)

These values coincide with the RG results [Eq. (20)] within
the numerical error, suggesting that the critical point for
anisotropic phase separation in RDLG belongs to the univer-
sality class of uniaxial dipolar ferromagnets.

Considering nonzero λ and ζ to discuss the phase behavior
of uniaxial ABPs (see Sec. IV), we can show that λ and ζ

are irrelevant variables in the RG sense (see Appendix G 2
for the detail). This suggests that the introduction of small λ

or ζ does not affect the critical properties of anisotropic phase
separation, and the critical exponents remain the same as those
given in Eq. (20). Thus, like RDLG, the critical point for
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FIG. 8. Finite-size scaling analysis for uniaxial ABPs. The parameters are chosen as ρ = 0.71, (μ‖, μ⊥, μθ ) = (1, 0.25, 1.5), and ε =
0.01. (a) The Binder ratio U as a function of Pe for different system sizes. (b) U and (c) the rescaled order parameter 〈m̂〉 as functions of the
rescaled Pe with the best-fitted critical exponents (β/νx = 0.540, 1/νx = 1.54). (d) ∂U/∂Pe and (e) 〈m̂〉 against Lx near the critical point in the
log-log plot. In (d) and (e), the red dashed lines represent ∂U/∂Pe ∝ Lx

1/νx and 〈m̂〉 ∝ Lx
−β/νx , respectively, with the critical exponents used in

(b) and (c), and the blue dashed lines are counterparts for the expected universality class [Eq. (20)] based on the RG analysis.

anisotropic phase separation in uniaxial ABPs is expected to
belong to the universality class of uniaxial dipolar ferromag-
nets. Note that the irrelevance of λ or ζ is further supported
by the suppression of gas bubbles under strong anisotropy (see
Fig. 7).

B. Connection to uniaxial dipolar ferromagnets

To study the critical point for anisotropic phase separa-
tion in uniaxial ABPs, we perform simulations with a fixed
strength of anisotropy, ε = 0.01. Here, we assume that the
critical exponents are not affected by the specific value of ε.
First, assuming the law of rectilinear diameter [6,89], we es-
timate the critical density as ρc = 0.71 (see Appendix F 1 for
the detail). Next, we perform simulations with ρ = ρc = 0.71
to identify the universality class of the critical point using the
anisotropic finite-size scaling analysis, which has been widely
applied to critical phenomena in externally driven systems
[7,22,90,91]. Since the liquid and gas phases are separated
along the x axis for large Pe [Fig. 2(a)], the degree of phase
separation can be measured by an order parameter,

m̂ := 1

LxLy

N∑
j=1

e−i2πx j/Lx . (22)

The finite-size scaling hypotheses for 〈m̂〉 and the Binder ratio,
U := 〈m̂2〉2/〈m̂4〉, are given as

〈m̂〉 = Lx
−β/νxM

(
Lx

1/νx τ, Ly/Lx
νy/νx ; ε, ρ

)
(23)

and

U = U(
Lx

1/νx τ, Ly/Lx
νy/νx ; ε, ρ

)
, (24)

respectively. Here τ := Pe − Pec is the distance from the crit-
ical point, andM andU are scaling functions. Equations (23)
and (24) are extensions of the scaling hypotheses for isotropic

systems with νx = νy [22], and the values of νx and νy can
be different in anisotropic systems such as uniaxial ABPs
and RDLG. For νx �= νy, to perform the finite-size scaling
analysis, we need to vary the system size with Ly/Lx

νy/νx fixed.
Though νy/νx should be determined in principle by the finite-
size scaling analysis, we choose νy/νx = 2, which has been
commonly used for RDLG based on the RG analysis [26,27].
Following this choice, we perform simulations with five dif-
ferent system sizes satisfying Ly/Lx

2 = 1/242: (Lx, Ly) =
(180, 56.25), (210,76.5625), (240,100), (300,156.25), and
(360,225).

The results of the finite-size scaling analysis are summa-
rized in Fig. 8 (see Appendix F 2 for the detailed procedure).
Varying Pe from 11.5 to 13.0, we find that U as a function
of Pe for different system sizes approximately crosses at a
unique point [Fig. 8(a)], which suggests the presence of the
critical point, Pec. By fitting U (τ, Lx ) and 〈m̂〉(τ, Lx ) with
second-order polynomials, we obtain Pec as

Pec = 12.408(5) (25)

and the critical exponents as

β = 0.35(4), νx = 0.65(6) (uniaxial ABPs). (26)

Using these obtained values, we find that the rescaled plots of
U and 〈m̂〉 collapse onto universal curves [Figs. 8(b) and 8(c)],
which validates the anisotropic finite-size scaling hypotheses
given by Eqs. (23) and (24).

The obtained β and νx [Eq. (26)] agree with the RG result
for the coarse-grained model [Eq. (20)] and the simulation
result of RDLG [Eq. (21)] within the error margin. This in-
dicates that the critical phenomena in uniaxial ABPs belong
to the universality class of uniaxial dipolar ferromagnets, as
expected from the RG analysis (see Sec. V A). To check the
consistency of the obtained values of β and νx, we plot the
Lx dependence of ∂U/∂Pe and 〈m̂〉 at Pe = 12.415 (� Pec)
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TABLE I. Comparison with the critical exponents of related
models.

Model β νx

Two-dimensional (2D) uniaxial dipolar
Ferromagnet (two-loop RG)

0.315 0.626

2D RDLG (Monte Carlo) 0.33(2) 0.62(3)
2D uniaxial ABPs (our study) 0.35(4) 0.65(6)
2D Ising model 0.125 1
3D Ising model (Monte Carlo) 0.326 0.630

in Figs. 8(d) and 8(e). According to Eqs. (23) and (24), the
slopes of ∂U/∂Pe and 〈m̂〉 on the logarithmic scale are 1/νx

and −β/νx, respectively. Indeed, Figs. 8(d) and 8(e) show that
the slopes are comparable to the counterparts for the two-loop
RG result [Eq. (20)].

VI. DISCUSSION

In this paper, to investigate the relation between MIPS
and nonequilibrium phase separation caused by attractive in-
teractions, we have studied the collective properties of 2D
uniaxial ABPs, in which self-propulsion along the x axis is
favored. Performing simulations, we have found three dis-
tinctive features of uniaxial ABPs: (i) generic long-range
density correlation in the homogeneous state, (ii) anisotropic
phase separation with suppressed nucleation of gas bubbles
in contrast to isotropic ABPs, and (iii) critical phenomena
that presumably belong to the universality class of 2D uniax-
ial ferromagnets with dipolar long-range interactions. Since
properties (i)–(iii) are common to RDLG, in which phase
separation is induced by attractive interactions under external
driving, we have established the connection between collec-
tive behaviors of uniaxial ABPs and RDLG. Additionally, we
have constructed a nonlinear coarse-grained model [Eq. (18)]
and substantiated the generality of properties (i)–(iii).

The critical exponents for the models related to this study
are summarized in Table I, which points out that the critical
behaviors of 2D uniaxial ABPs are close to those of the 3D
Ising model rather than the 2D Ising model. This property
is consistent with the previous study concerning 2D uniaxial
ferromagnets with dipolar long-range interactions [35,36]. For
2D uniaxial dipolar ferromagnets, the effective increase in
dimensionality has been attributed to the consequence of the
long-range correlation caused by the dipolar interactions. For
2D uniaxial ABPs, the long-range density correlation arising
from the anisotropic nonequilibrium dynamics (see Sec. III)
effectively increases the dimensionality from two to three,
according to the analogy with uniaxial dipolar ferromagnets
(see Appendix D for the detail).

Our results suggest that the origin of phase separation
(i.e., self-propulsion or attractive interaction) is not essen-
tial for the collective behaviors of particles with anisotropic
dynamics [Figs. 1(b) and 1(d)]. In contrast, for isotropic
systems [Figs. 1(a) and 1(c)], the collective phenomena of
self-propelled particles can be distinct from those of attrac-
tively interacting particles. Specifically, in 2D isotropic ABPs,
persistent gas bubbles or microphase separation can appear
(see Sec. IV) [66,73], and the universality class for critical

phenomena can be different from the 2D Ising class [88].
Further studies are required to elucidate the condition for such
differences in isotropic systems.

Recently, a wide range of active matter phases has been
realized using biological [42–47] and artificial [48–56,62]
systems, especially under anisotropic conditions [92]. The
connection between uniaxial ABPs and RDLG suggests that
active matter can serve as a platform for materializing the
properties predicted for externally driven systems. Though we
have focused on uniaxial anisotropy in this study, it will be
interesting to examine whether the collective behaviors of the
standard DLG can be observed in ABPs with unidirectional
anisotropy, which can be relevant to biological systems with
chemical gradients.
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APPENDIX A: COMPARISON OF MICROSCOPIC
DYNAMICS BETWEEN UNIAXIAL ABPs AND RDLG

We compare the microscopic implementation of uniaxial
ABPs and RDLG. In terms of single-particle dynamics, the
fundamental aspects of the microscopic implementation are
similar. Both models are based on overdamped dynamics,
and the motion of particles is enhanced along the direction
of polarity and driving force. However, by carefully compar-
ing the microscopic implementation, we notice three distinct
differences, which are summarized in Table II. They involve
the direction of polarity, persistence time, and interparticle
interaction:

(1) Uniaxial ABPs allow a full 360◦ rotation of polarity,
whereas RDLG restricts the angle of the driving field to either
θ = 0 or π .

(2) The persistence time of uniaxial ABPs is finite, similar
to that of isotropic ABPs. In contrast, for RDLG, the direction
of the driving force changes randomly, indicating that RDLG
is characterized by the zero persistence time τp = 0.

(3) RDLG contains both short-range attractive interaction
and excluded volume interaction, whereas uniaxial ABPs in-
volve only excluded volume interaction.

Here the persistence time τp is typically defined in ABPs as
from correlation of the polarity ni. For example, in isotropic
ABPs, the correlation of ni is calculated as

〈ni(s) · ni(0)〉 = e−τμθ s, (A1)

and consequently the persistence time is given by τp =
1/τμθ . In the comparison mentioned above, the concept of
persistence time is extended to RDLG by considering the
driving force as the equivalence of the polarity.
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TABLE II. Basic features in microscopic implementation of uniaxial ABPs, RDLG, isotropic ABPs, and equilibrium LG.

Model Direction of polarity Persistence time Intrinsic attractive force Anisotropy

Uniaxial ABPs 0–2π Finite No Yes
RDLG 0 or π Zero Yes Yes
Isotropic ABPs 0–2π Finite No No
Equilibrium LG Not defined Zero limit Yes No

Similarly, we present the relationship between isotropic
ABPs and equilibrium LG in Table II. Notably, the polarity
is not defined in the equilibrium LG. However, an important
point is that the passive Brownian particles, an off-lattice
version of the equilibrium LG, correspond to the zero persis-
tence time limit of isotropic ABPs. Then, by focusing on the
aspects of the persistence time and intrinsic attractive force,
we can interpret uniaxial ABPs and RDLG as one anisotropic
extension of isotropic ABPs and equilibrium LG.

Due to the second point, RDLG cannot be linked to uni-
axial ABPs with continuous changes of parameters such as
the zero persistence time limit. To understand this point, we
focus on the probability distribution of polarity angle, P(θ )
for uniaxial ABPs, which is calculated as

P(θ ) = 1

Z
exp

[
−ε

U (θ )

τμθ

]
, (A2)

where Z is a normalization constant. To localize the polarity
at θ = 0 or π , we must change μθ → +0 with ε fixed or ε →
+∞ with μθ fixed. Clearly, under these continuous changes,
the polarity cannot climb the potential barrier between θ = 0
and θ = π .

APPENDIX B: PROCEDURE FOR CONSTRUCTING
PHASE DIAGRAM

In this Appendix, we explain the procedure for drawing the
phase diagram [Figs. 2(c) and 2(d)] in details.

As the initial state, we prepare the half-filling state by
placing the particles in the right-half. After the relaxation run,
we determine the high- and low-density regions based on the
fact that the center of the mass of the systems xcom coincides
with the center of the high-density region. Specifically, we
identify the high-density region as[

xcom − Lx

10
, xcom + Lx

10

]
× [0, Ly]. (B1)

Also, from the fact that the center of the low-density region
is the farthest from the center of the high-density region, we
identify the low-density region as[

xcom + Lx

2
− Lx

10
, xcom + Lx

2
+ Lx

10

]
× [0, Ly]. (B2)

We then observe the density ρl and ρh in the high- and low-
density regions. In the phase-separated state, the values of ρl

and ρh give the coexisting (binodal) curve, which is drawn in
Fig. 2(c) and 2(d).

APPENDIX C: PARAMETER DETAILS OF FIGS. 3 AND 4

We set the simulation box to Lx = Ly = 360. The par-
ticle number is set to N = 92 016 for uniaxial ABPs and
N = 64 800 for RDLG, which respectively correspond to the
density of 0.710 and 0.50. We start from the initial state in
which the particles are randomly located with zero overlaps.
We perform the relaxation run for 108 time steps (i.e., time =
108dt = 2.0 × 106) for uniaxial ABPs and for 4.0 × 106

Monte Carlo steps for RDLG. After that, we observe the struc-
ture factor S(k). The real-space density correlation 〈ρ(r)ρ(0)〉
is calculated by the inverse Fourier transformation of the
structure factor S(k).

We take the time average in the steady state and the en-
semble average over different noise realizations. For uniaxial
ABPs, the ensemble average is performed over 28 different
noise realizations, and the time average is performed over 400
samples obtained every 106 time steps (i.e., time = 106dt =
20 000). For RDLG, the ensemble average is performed over
96 different noise realizations, and the time average is per-
formed over 400 samples obtained every 20 000 Monte Carlo
steps.

APPENDIX D: RELATION TO EQUILIBRIUM UNIAXIAL
DIPOLAR FERROMAGNET

For RDLG, it is known that the specific patterns of struc-
ture factor S(k) involving the long-range correlations are
analogous to the long-range nature of the uniaxial dipolar
system. Here, we give the definition of uniaxial dipolar fer-
romagnet [35] and briefly discuss the analogy between the
density correlation of uniaxial ABPs and the spin correlation
of uniaxial dipolar ferromagnet.

We start with the Heisenberg model with the short-range
exchange interaction and long-range dipolar interaction. The
Heisenberg spin SR is defined on the two-dimensional square
lattice {R = (nx, ny ) | nx, ny = 0,±1,±2, · · · }, where the lat-
tice constant is set to 1. The Hamiltonian H of this model
consists of the short-range exchange interaction and long-
range dipolar interaction, which is expressed as

H = − G
∑
R �=R′

∑
α,β

[
− δαβ

|R − R′|2 + (Rα − R′
α )(Rβ − R′

β )

|R − R′|4
]

× Sα
RSβ

R′ − 1

2
J

∑
R

∑
δ

SR · SR+δ, (D1)

where
∑

R

∑
δ runs over all nearest-neighbor pairs. Let us

impose the uniaxial condition where the Heisenberg spin
SR is restricted to pointing in the direction of the y axis:
SR = (0, SR, 0). The model reduces to the Ising model with
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FIG. 9. Typical time dependence of the order parameter 〈m̂〉, averaged over differet noise realizations. The parameters are the same as
Fig. 5 [ρ = 0.765, (μ‖, μ⊥, μθ ) = (1.0, 0.3125, 2.75), and Pe = 100.0]. The observation run is performed within the red region.

anisotropic interaction:

H = − G
∑
R �=R′

[
− 1

|R − R′|2 + (Ry − R′
y)2

|R − R′|4
]

SRSR′

− 1

2
J

∑
R

∑
δ

SRSR+δ. (D2)

This model is called the uniaxial dipolar ferromagnet.
In the Fourier space, the dipolar part of the Hamiltonian is

expanded near the k = 0 as

− G
∑
R �=R′

[
− 1

|R − R′|2 + (Ry − R′
y)2

|R − R′|4
]

= a1

(
ky

k

)2

− a2k2
y − (a3 + a4k2) + · · · , (D3)

where {ai}i=1,··· ,4 is a set of numerical constants depending
on the lattice structure. By expanding the short-range part of
Hamiltonian in the same way, we rewrite the Hamiltonian as

H = −
∫

d2k
(2π )2

(
r0 + k2 − h0k2

y + g0
k2

y

k2

)
SkSk′

− u0

∫
d2k1

(2π )2

∫
d2k2

(2π )2

∫
d2k3

(2π )2
Sk1 Sk2 Sk3 S−k1−k2−k3 ,

(D4)

where we ignore the higher-order terms in Sk. The values of
the numerical factor are given in Ref. [35].

The equilibrium state of this system is described by the
canonical ensemble. In the disordered state, the linear approx-
imation leads to the static spin-spin correlation:

〈S(k)S(k′)〉 = C(k)δ(k + k′) (D5)

with

C(k) = T k2

r0k2
x + (r0 + g0)k2

y − h0k2
y k2 + k4 . (D6)

This form is the special case of Eq. (10), indicating that
uniaxial ABPs acquire dipolar-like long-range natures. As

discussed in Appendix G 2, this feature determines the uni-
versality class of critical phenomena.

APPENDIX E: SUPPLEMENTAL INFORMATION OF FIG. 5

The microscopic simulation in the phase-separated phase
of uniaxial ABPs is performed to examine the nucleation of
bubbles, whose results are summarized in Fig. 5. Here, we
explain how to draw them.

1. Relaxation Tun for Observing Gas Bubbles

The simulation box is a rectangle with the ratio of Lx :
Ly = 2 : 1. We prepare an initial configuration by placing
the particles in the region 0 < x < Lx/2 and perform the
relaxation run. In Fig. 9, we present the relaxation process
of the different system sizes for ε = 0 and 0.002, where the
simulation data are averaged over two to eight different noise
realizations. From this figure, we immediately notice that the
relaxation time is significantly longer for the isotropic systems
(ε = 0) compared to the anisotropic system. Additionally, the
relaxation time increases as the system size becomes larger.
According to this observation, we basically perform the relax-
ation run for 2.0 × 108 time steps (i.e., time = 2.0 × 108dt =
4.0 × 106), and after that, perform the observation run for
3.0 × 108 time steps (i.e., time = 3.0 × 108dt = 6.0 × 106).
There is one exceptional case, specifically when (Lx, Ly) =
(4320, 2160) with ε = 0.000, where the relaxation time is
notably longer. In this specific case, we perform the relax-
ation run for 9.0 × 108 time steps (i.e., time = 9.0 × 108dt =
18.0 × 106).

2. Numerical procedure to detect gas bubbles

After a sufficiently long relaxation run, we observe the
bubble fraction, fb, and the size distribution of gas bubbles,
n(a). For this observation, we divide the simulation box into
square cells with a width of δ, and calculate the density field
as the collection of the local density. Figure 5(a) draws the
density field obtained using a bin size of δ = 2.0.

The liquid and gas phases are distinguished based on the
local density ρ(r). The gas phase is designated by ρ(r) <

0.765, while the liquid phase is designated by ρ(r) > 0.765.
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TABLE III. Rectilinear diameter (ρl + ρg)/2 near the critical
point for (Lx, Ly ) = (480, 400) and (720,900).

Pe (480,400) (720,900)

10.0 0.764 0.763
11.0 0.760 0.765
12.0 0.776 0.771
13.0 0.723 0.708
14.0 0.713 0.702
15.0 0.700 0.701

As mentioned in the main text, the gas bubble is defined as the
connected region of gas inside the liquid phase. The largest
gas bubble is regarded as the gas reservoir and not as the
gas bubble. To detect the connected regions of the gas phase,
we used a Julia package JuliaImages.jl, which identifies the
region connected to each other along the x or y axis. The
bubble fraction fb is defined by Eq. (14). In the numerical
procedure, we calculate the bubble fraction fb by rewriting
Eq. (14) as

fb = Sgas − amax

S
, (E1)

where Sgas is the total area of the gas phase and amax is
the maximum area of the gas phase (i.e. the area of the gas
reservoir).

In Figs. 5(b)–5(e), to calculate fb and n(a)/Sliq, we use
the density field obtained with the bins δ = 2.0 for (Lx, Ly) =
(720, 360) and (Lx, Ly) = (1440, 720), δ = 4.0 for (Lx, Ly) =
(2880, 1440), and δ = 6.0 for (Lx, Ly) = (4320, 2160). We
take the time average over 3000 samples obtained every 105

time steps (i.e., time = 105dt = 2000) and the ensemble av-
erage over two to eight noise realizations.

APPENDIX F: SUPPLEMENTAL INFORMATION OF FIG. 8

The simulations near criticality are performed to examine
the universality class, whose results are summarized in Fig. 8
of the main text. In this Appendix, we elaborate on the proce-
dure for obtaining the critical properties such as the position
of the critical point and the universality class.

1. Rough estimation of critical density

We first estimate the critical density by calculating the
rectilinear diameter (ρl + ρg)/2 for various Pe, where ρl and
ρg are the densities in the liquid and gas phases, respectively.
Here, we summarize the supplemental information of this
simulation.

The system size is set to (Lx, Ly) = (480, 400) and
(720,900). The density is set to ρ = 0.765, which corresponds
to the particle numbers N = 146 880 and 495 720, respec-
tively. We prepare an initial configuration by placing the
particles in the region 0 < x < 200 for (Lx, Ly) = (480, 400)
and 0 < x < 300 for (Lx, Ly) = (720, 900). In all simulations,
we perform the relaxation run for 7.5 × 107 time steps (i.e.,
time = 7.5 × 107dt = 1.5 × 106), and the observation run for
2.5 × 107 time steps (i.e., time = 2.5 × 107dt = 0.5 × 106).

The simulation result is presented in Table III. In the large
system size limit, the rectilinear diameter in the homoge-
neous state is equal to the global density of 0.765, while at
the critical point, it coincides with critical density ρc. From
Table III, we observe a distinct change in the rectilinear
diameter between Pe = 12.0 and Pe = 13.0. Specifically, at
Pe = 12.0, it closely matches the expected value of 0.765,
whereas at Pe = 13.0 it significantly deviates from this value.
Based on this observation, we can infer that the critical Péclet
number, Pec, lies between 12.0 < Pec < 13.0 and the critical
density, ρc, is estimated as ≈0.708.

2. Estimation of critical exponents

Based on the estimation of the critical density in the pre-
vious section, we set the density to ρ = 0.710 and change
the Péclet number, Pe, from Pe = 11.5 to Pe = 13.0. As ex-
plained in main text, we set the system sizes to (Lx, Ly) =
(180, 56.25), (210,76.5625), (240,100), (300,156.25), and
(360,225). We show the typical time evolution of the
ensemble average of the order parameter for (Lx, Ly) =
(240, 100), (300,156.25), and (360,225) in Fig. 10. This fig-
ure confirms that our simulation achieves the steady state
after a sufficiently long relaxation run. Using the data
within the red region, we take the time and ensemble
averages for the order parameter 〈m̂〉 and the Binder Param-
eter U := 〈m̂2〉2/〈m̂4〉. The ensemble average is taken over
800 different noise realizations for (Lx, Ly) = (300, 156.25)
and (360,225), and 500 different noise realizations for
(Lx, Ly) = (180, 56.25), (210,76.5625), and (240,100). The
time average is performed by using the data every 4.0 ×
106 time steps (i.e., time = 4.0 × 106dt = 8.0 × 104) for
(Lx, Ly) = (360, 225.5), 2.0 × 106 time steps (i.e., time
= 2.0 × 106dt = 4.0 × 104) for (Lx, Ly) = (300, 156.25),
1.0 × 106 time steps (i.e., time = 1.0 × 106dt = 2.0 × 104)
for (Lx, Ly) = (240, 100), 0.5 × 106 time steps (i.e., time =
0.5 × 106dt = 1.0 × 104) for (Lx, Ly) = (210, 76.5625), and
0.25 × 106 time steps (i.e., time = 0.25 × 106dt = 0.5 ×
104) for (Lx, Ly) = (180, 56.25).

To estimate the critical exponents, we use the anisotropic
finite-size scaling hypothesis Eqs. (23) and (24). We refer to
Ref. [22] for a more detailed discussion of the anisotropic
finite-size scaling. Since the scaling functions M and U are
analytic, we can expand 〈m̂〉(τ, Lx ) and U (τ, Lx ) around τ = 0
as

〈m̂〉(τ, Lx ) =
∞∑

n=0

∂nM
∂τ n

∣∣∣
τ=0

(
Ly/Lx

νy/νx ; ε, ρ
)
Lx

(n−β )/νx τ n,

(F1)

U (τ, Lx ) =
∞∑

n=0

∂nU
∂τ n

∣∣∣
τ=0

(
Ly/Lx

νy/νx ; ε, ρ
)
Lx

n/νx τ n. (F2)

According to these expansions, we fit the simulation data 〈m̂〉
and U to the second-order polynomials to obtain the critical
point Pec = 12.408(5) and the critical exponents β = 0.35(4)
and νx = 0.65(6). For this fitting, the data within −2000.0 <

Lx
1/0.65(Pe − 12.408) < 2000.0 are used.
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FIG. 10. Typical time dependence of the order parameter 〈m̂〉, averaged over differet noise realizations. The parameters are ρ = 0.765,
(μ‖, μ⊥, μθ ) = (1.0, 0.3125, 2.75), and Pe = 12.415.

APPENDIX G: COARSE-GRAINED MODEL

1. Numerical simulation

For simulations of the coarse-grained model [Eq. (18)],

∂tφ = ax∂x
2φ + ay∂y

2φ + ∇2(bφ3 − K∇2φ + K ′∇4φ)

+ λ∇2(∇φ)2 − ζ∇ · [(∇2φ)∇φ] −
√

2D∇ · ξ,

(G1)

with 〈ξa(r, t )〉 = 0 and 〈ξa(r, t )ξb(r′, t ′)〉 = δabδ(r − r′)δ(t −
t ′), we discretize time as t = nt and spatial coordinates
as x = ix and y = jy with periodic boundary conditions.
Accordingly, we replace φ(x, y, t ) by φn

i, j and ξa(x, y, t ) by
(xyt )−1/2ξ n

a,i, j , where ξ n
a,i, j is a Gaussian noise with

〈ξ n
a,i, j〉 = 0 and 〈ξ n

a,i, jξ
n′
b,i′, j′ 〉 = δabδii′δ j j′δnn′ . Using the ex-

plicit Euler method, we replace Eq. (G1) by

φn+1
i, j = φn

i, j + [F (φ)]n
i, jt, (G2)

where [F (φ)]n
i, j is the discretized form of the right-hand side

of Eq. (G1). To determine [F (φ)]n
i, j , we use the second-

order central finite difference for the differential operators
that appear in Eq. (G1) (i.e., ∂x, ∂y, ∂x

2, and ∂y
2), such as

[∂x f ]n
i, j = ( f n

i+1, j − f n
i−1, j )/(2x) and [∂x

2 f ]n
i, j = ( f n

i+1, j −
2 f n

i, j + f n
i−1, j )/x2. The discretization parameters are chosen

as t = 0.01 and x = y = 1, and the model parameters
are fixed as ax = −0.25, b = 0.25, K = 1, K ′ = 0.2, and
D = 0.5 throughout the numerical study. The other param-
eters are (λ, ζ ) = (0.5, 5) for φ0 = −0.1 (low-density case)
and (λ, ζ ) = (1, 4) for φ0 = 0.4 (high-density case), where
φ0 is the spatial average of φ(r, t ). As the initial state for
all the simulations, we use a phase-separated state, φinit (r) :=
−2sgn(φ0) exp[−(x − Lx/2)4/(Lx/4)4] − C, where C is a
constant to set the spatial average of φinit (r) to φ0 (Fig. 11).

We define the liquid and gas phases as the spatial regions
satisfying φ(r) > 0 and φ(r) < 0, respectively. In the same
way as applied to uniaxial ABPs (see Appendix E 2), a Ju-
lia package (JuliaImages.jl) is used to detect the connected
regions of the gas phase. The size of each gas phase, a, is
defined as the area of the regions that satisfy φ(r) < 0 and are
connected to each other along the x or y axis. The bubble frac-
tion, fb, which is plotted in Figs. 7(c) and 7(d), is calculated as

fb := 〈Sgas − amax〉 /(LxLy), where Sgas and amax are the total
and maximum areas of the gas phase, respectively, and 〈· · ·〉
means the average over samples.

To characterize the steady state using bubble fraction fb

and order parameter m, independent samples are taken with
different noise realizations. For the low-density condition
with φ0 = −0.1, which is used for Figs. 7(a) and 7(c), 1152
independent samples are taken with 107 time steps (i.e.,
total time = 107t = 105 for each sample) for (Lx, Ly) =
(64, 32), 1152 independent samples with 4 × 107 time steps
for (Lx, Ly) = (128, 64), and 24 independent samples with
1.6 × 108 time steps for (Lx, Ly) = (256, 128). For the high-
density condition with φ0 = 0.4, which is used for Figs. 7(b)
and 7(d), 1152 independent samples are taken with 107 time
steps for (Lx, Ly) = (64, 64), 288 independent samples with
4 × 107 time steps for (Lx, Ly) = (128, 128), and 128 in-
dependent samples with 9 × 107 time steps for (Lx, Ly) =
(192, 192). To obtain the expectation values, we take the
average over independent samples as well as the time average
over 51 points in the last half of the total time.

We show the typical time evolution of φ in the liquid and
gas phases (φliq and φgas, respectively), averaged over space
and independent samples [Figs. 12(a)–12(c) and 12(e)–12(g)].
The points in the red region in Figs. 12(a)–12(c) and 12(e)–
12(g) are used in time averaging to obtain the ay dependence
of φliq and φgas, which is plotted in Figs. 12(d) and 12(h).
Similarly, we show the typical time evolution of fb in Fig. 13,
in which the points in the red region are used to obtain the
ay dependence of fb [Figs. 7(c) and 7(d)]. Note that, near the
isotropic limit [ax = ay (= −0.25)] for the low-density case

FIG. 11. Initial states used in simulations of the coarse-grained
model. We show the initial states for (a) φ0 = −0.1 with (Lx, Ly ) =
(256, 128) and (b) φ0 = 0.4 with (Lx, Ly ) = (192, 192), which cor-
respond to Figs. 7(a) and 7(b), respectively.
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FIG. 12. Typical time and ay dependence of φ in the liquid and gas phases (φliq and φgas, respectively), averaged over space and independent
samples. We show the time evolution with (a) ay = −0.25, (b) ay = 0, and (c) ay = 0.2 for φ0 = −0.1 and (Lx, Ly ) = (256, 128), as well
as [(e)–(g)] the counterparts for φ0 = 0.4 and (Lx, Ly ) = (192, 192). The values at equally spaced 51 time points within the red region in
(a)–(c) and (e)–(g) are used in time averaging to obtain the ay dependence of φliq and φgas, which is plotted in (d) and (h).

(φ0 = −0.1), the relaxation is slow as seen from Fig. 13(a), and thus the values of fb plotted in Fig. 7(c) can be underestimated
around ay = −0.25, which is not essential for the current study.

2. Renormalization group analysis

Assuming anisotropic systems with ay > 0, we consider the critical phase transition between the homogeneous state and
anisotropic phase separation that occurs as ax is changed. Applying the approach by Martin, Siggia, Rose, Janssen, and de
Dominicis [93–96] to Eq. (G1), we can obtain the probability density for a dynamical path of configurations {φ(r, t )}t∈[0,T ] as

P[φ] =
∫

D(iφ̄) exp(−S[φ, φ̄]). (G3)

Here dynamical action S[φ, φ̄] is given as

S[φ, φ̄] =
∫ T

0
dt

∫
d2r {φ̄[∂tφ − ax∂x

2φ − ay∂y
2φ − bx∂x

2φ3

− by∂y
2φ3 + Kxx∂x

4φ + Kxy∂x
2∂y

2φ + Kyy∂y
4φ − K ′

xxx∂x
6φ

− K ′
xxy∂x

4∂y
2φ − K ′

xyy∂x
2∂y

4φ − K ′
yyy∂y

6φ − λxx∂x
2(∂xφ)2

− λxy∂x
2(∂yφ)2 − λyx∂y

2(∂xφ)2 − λyy∂y
2(∂yφ)2

+ ζxy∂x(∂y
2φ ∂xφ) + ζyx∂y(∂x

2φ ∂yφ)] + Dxφ̄∂x
2φ̄ + Dyφ̄∂y

2φ̄}, (G4)

where we generalize the coupling constants, which are related to the original ones as bx = by = b, Kxx = Kyy = K , Kxy = 2K ,
K ′

xxx = K ′
yyy = K ′, K ′

xxy = K ′
xyy = 3K ′, λxx = λyy = λ − ζ/2, λxy = λyx = λ, ζxy = ζyx = ζ , and Dx = Dy = D.

Considering the tree-level renormalization group analysis of Eq. (G4), we perform the scale transformation as x → c−1x
(c > 1). Requiring the invariance of ay, Kxx, and Dx to consider the criticality of anisotropic phase separation, we can obtain
the scaling of the other quantities: y → c−2y, t → c−4t , φ → c1/2φ, φ̄ → c5/2φ̄, ax → c2ax, bx → cbx, by → c−1by, Kxy →
c−2Kxy, Kyy → c−4Kyy, K ′

xxx → c−2K ′
xxx, K ′

xxy → c−4K ′
xxy, K ′

xyy → c−6K ′
xyy, K ′

yyy → c−8K ′
yyy, λxx → c−1/2λxx, λxy → c−5/2λxy,

λyx → c−5/2λyx, λyy → c−9/2λyy, ζxy → c−5/2ζxy, ζyx → c−5/2ζyx, and Dy → c−2Dy. Thus, ax and bx are relevant variables, the
former of which works as a control parameter for the critical phase transition. The other coupling constants, especially K ′, λ,
and ζ , are irrelevant variables.
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FIG. 13. Typical time dependence of bubble fraction fb, averaged over independent samples. The same parameters as used in Figs. 12(a)–
12(c) and 12(e)–12(g) are used, and the error bar represents the standard error. The values at equally spaced 51 time points within the red
region are used in time averaging to obtain the ay dependence of fb, which is plotted in Figs. 7(c) and 7(d).

Neglecting all the irrelevant variables, we can obtain the effective action for the critical dynamics of Eq. (G1):

Seff [φ, φ̄] =
∫ T

0
dt

∫
d2r[φ̄(∂tφ − ax∂x

2φ − bx∂x
2φ3 + Kxx∂x

4φ) + Dxφ̄∂x
2φ̄], (G5)

which coincides with the effective action for the randomly driven lattice gas [26,27,31,32].
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