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By utilizing the theoretical tools of optical thermodynamics, we investigate thermalization in nonlinear
disordered lattices beyond the diffusion regime. Even under extreme levels of disorder, we analytically predict the
expected thermal value of entropy and the associated Rayleigh-Jeans distribution, once thermalization ensues.
In this context, we reveal a crossover point of disorder beyond which we observe a pronounced slowdown of
thermalization in a regime characterized by a logarithmic scaling of equilibration times. By employing the same
analytical and numerical tools, we investigate the scaling of thermalization times with respect to both the number
of sites and optical temperatures. By exploring the physics of the underlying nonequilibrium response, we unveil
a multitude of emerging thermal phenomena, including the development of prethermal Rayleigh-Jeans states in
the presence of an optical heat bath and the deceleration of self-heating in Floquet photonic lattices.
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I. INTRODUCTION

Ever since Anderson’s groundbreaking prediction that ran-
domness in a lattice can give rise to localized eigenstates
and inhibit transport, the exploration of disordered systems
has unveiled a diversity of intriguing phenomena [1–5]. In
photonics, while disorder can provide new means in manipu-
lating light [6–9], it must frequently coexist with nonlinearity,
as typically encountered in laser systems or optical waveg-
uides [10–16]. In such context, the dynamics of disordered
systems become exceedingly complex, especially when at-
tempting to predict the evolution of localized wave packets,
typically associated with a remarkably slow diffusion pro-
cess [17–20]. While this process is directly relevant to the
interplay between disorder and nonlinearity, it provides only
a limited view of the asymptotic response of disordered sys-
tems.

To comprehensively understand the response of disordered
nonlinear settings, it would be necessary to deploy tools from
statistical mechanics and thermodynamics. In this context,
predicting the onset of thermalization in disordered nonlinear
systems, like those described by nonlinear Schrödinger type
models (NLSE) [21–24], poses a formidable challenge as
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analytical indicators of equilibration are not always clearly
defined. Traditionally, thermalization has been predicted by
observing a distribution akin to a Gibbs ensemble (by using
fitting parameters), or simply by observing wave-packet diffu-
sion [20,25–28]. In most cases, this problem is addressed by
employing arbitrary metrics for entropy growth and extraction
of temperature. However, to employ the maximization of en-
tropy as a reliable measure requires a precise definition of the
entropy’s thermal value (i.e., its value at equilibrium). This, in
turn, requires knowledge of all equilibrium properties, from
arbitrary initial conditions, as well as a rigorous expression
for the entropy itself.

In this study, we employ the theoretical framework of opti-
cal thermodynamics [29–36] to study the nonlinear dynamics
of disordered photonic systems beyond the diffusion regime.
By introducing a formal scheme, we predict the average
modal distribution at equilibrium and the associated thermal
value of the optical entropy. In this regard, we ultimately
provide precise criteria for numerically evaluating the speed
of thermal relaxation into a maximum (thermal) entropy state.
We show that a strong disorder leads to a pronounced slow-
down of thermalization times above a localization crossover
point, signifying a logarithmic scaling regime with unique
nonequilibrium dynamics, dominated by long-lived modal os-
cillations. We further investigate settings where the optical
energy is not dynamically conserved. Under slowly varying
conditions, we analytically calculate the optical temperature
from the instantaneous value of energy, thereby predicting
stable prethermal Raylegh-Jeans states, even under extreme
disorder. We illustrate these results in a disordered optical sys-
tem coupled to a heat bath and a self-heating Floquet lattice.
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A. Thermalization dynamics in disordered optical lattices

We investigate photonic disordered lattices through the
lens of optical thermodynamics by considering a generalized
square lattice of size Mx × My, governed by

i∂t ai j = βi jai j+|ai j |2ai j +
Mx∑

k

My∑

l

κi j,kl akl , (1)

where i, j, k, l are spatial site indices (i, k towards x and
j, l towards y), βi j represent on-site potentials, and κi j,kl are
coupling or exchange coefficients. The second term on the
right side describes Kerr-type nonlinear effects. Here, we
consider two types of disordered lattices, in one dimension
and two dimensions. The first one corresponds to an Anderson
system with on-site randomness βi j = �Ai j,ξ where � is the
disorder strength and Ai j,ξ is a bounded random Anderson
potential with a possible spatial correlation length ξ . The
second arrangement corresponds to an Aubry-André (AA) po-
tential with a randomness in each direction �[cos(2πai + φ)]
where the spatial frequency a is a good irrational number that
guarantees aperiodicity. We note that for this system the AA
localization-delocalization threshold is � = 2 [37].

In Eq. (1), eigenmode localization is tied to the disorder
introduced in βi j , while the Kerr operator acts as a mechanism
that drives the system into thermalization by promoting a
chaotic power exchange between the eigenmodes. Here, the
vector ai j can be expanded using the linear eigenmode basis,
as ai j (t ) = ∑

n cn(t )e−iεnt un,i j where un,i j are the eigenmode
field profiles, cn(t ) represent the complex modal occupan-
cies, and εn are the eigenvalues. A fundamental axiom of
optical thermodynamics dictates that state evolution must
occur ergodically in phase space in the presence of invari-
ant quantities. For an isolated and fully conservative optical
arrangement like the ones considered here, two invariants are
at play: the optical power P = ∑

n |cn|2 and the optical energy
U = −∑

n εn|cn|2 which corresponds to the linear part of the
total Hamiltonian H tot = U + HNL (H tot is an exact invariant
of motion), where the fluctuations of HNL are assumed negli-
gible in the weakly nonlinear regime. Under these conditions
the system eventually relaxes into a Rayleigh-Jeans (RJ) dis-
tribution [29,38,39], given by

〈|cn|2〉 = −T/(εn + μ), (2)

where T and μ represent, respectively, the optical temperature
and chemical potential of the system (see Appendix A). In
this respect, the theory of optical thermodynamics allows one
to calculate the optical temperature and chemical potential in
Eq. (2) for any arbitrary initial conditions (with known U, P).
This is accomplished by solving a system of two equations,
namely, the equation of state, U − μP = MT , and the equa-
tion for power, P = ∑

n |cn|2, after substituting Eq. (2) [29].
Moreover, one can associate any input conditions to a thermal
value of the optical entropy, given by S = ∑

n log |cn|2, which
is equivalent to

ST H =
∑

n

log [−T/(εn + μ)]. (3)

The latter expression provides a precise criterion for equi-
libration, for any disordered optical system in the weakly

nonlinear regime. In other words, it furnishes a definite value
based on which one can determine in a definitive manner
whether a system has thermally relaxed or not. This aspect is
particularly important for disordered lattices, given their ex-
tremely slow relaxation dynamics and quasi-random spectral
properties.

In general, the strength of couplings, the strength of non-
linearity, and the level of disorder enter on equal footing in
Eq. (1). Therefore, in the following, we normalize the former
two and consider only � as a free parameter. In this regard,
we identify three key variables that can influence the speed of
thermalization, namely, the disorder strength �, the number
of sites M, and the expected RJ temperature T . By employ-
ing Eq. (3) as our absolute metric for thermal equilibrium,
we declare the onset of thermalization when the condition
Sp = [S(t ) − ST H ]/[S(0) − ST H ] � 0.02 is met.

To investigate the scaling with respect to �, we examine
four Anderson and Aubry-André lattices [a = √

(19/50), φ =
π/5], in one-dimensional (1D) and two-dimensional (2D)
configurations, involving 30 and 400 sites, respectively. The
results are averaged over Na = 200 ensembles, when keeping
U and P constant. In Fig. 2(a) we identify a threshold that
signifies a transition to a universal logarithmic scaling regime
of thermalization times, characterized by a significant slow-
down of mode mixing, after � = 2. As we will demonstrate,
this value is linked to a crossover in the nonlinear wave-
mixing dynamics, correlated with the degree of eigenmode
localization. In general, claiming universality for � = 2 can
be challenging. However, considering that the lattices un-
der study generally display comparable levels of eigenmode
localization at this level of disorder, it is anticipated that
thermalization times will diverge in a similar manner.

In Figs. 2(b) and 2(c) we plot thermalization times for
the 1D Anderson lattice with respect to the number of sites
and the expected RJ temperature, respectively. A general rule
of thumb for optical systems with zero disorder is that ther-
malization times scale with P/M. Here, we find this to hold
true even for high disorder levels where a flat scaling regime
emerges. The results of Fig. 2(b) are extracted by initiating
the lattices at an identical eigenvalue window (forcing a spe-
cific T ) with total power P = P0M and Sp � 0.05. Next, we
monitor thermalization times (Sp � 0.02) as the temperature
varies from 0 to ±∞. We observe that thermalization times
increase logarithmically as the temperature drops. At lower
temperatures, the RJ distribution involves only a few modes
with closely spaced eigenvalues at the tail of the spectrum.
This limits the mode-mixing pathways, as these modes tend
to be randomly localized at distinct sites of the lattice (that are
typically far apart) under high disorder.

In order to gain a deeper understanding of this scaling
behavior, we focus on the following equation:

i∂t cn =
∑

n1,n2,n3

V n1,n2,n3
n c∗

n1
cn2 cn3 ei(εn+εn1 −εn2 −εn3 )t , (4)

which describes the evolution of the modal occupancies, ob-
tained by projecting Eq. (1) onto the linear modal basis. Here,
V n1,n2,n3

n = ∑
i j unun1 un2 un3 correspond to the four-wave mix-

ing overlap integrals of the involved eigenmodes (with indices
n, n1, n2, and n3). In general, the degree of power exchange
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FIG. 1. Relaxation times as a function of (a) disorder strengths for four different lattices initiated out of equilibrium, (b) the number of
sites for a 1D Anderson lattice, and (c) temperature for the same lattice. (d)–(f) Average modal occupancies for a 30-site Aubry-André lattice
for different disorder strengths, at time t = 10. The lattice is initiated by exciting only one eigenmode (u14). At � = 2 a crossover threshold
exists that separates the ballistic (� = 1) and the localized regime (� = 3). (g)–(i) Phase space trajectories in the subspace spanned by the
modal occupancies |c4|2 and |c5|2.

between different modes in the presence of nonlinearity is
determined by two key factors: the degree of phase matching
and the level of spatial overlapping, dictated by Vn. In a lattice
with extended (nonlocalized) eigenmodes, the Vn amplitudes
are comparable for all different possible combinations of the
n, n1, n2, n3 mode indices. In this respect, it is expected that
the strength of the mode-mixing process will be primarily
determined by the phase matching condition of the eigen-
values. Here, phase matching is attained if εn + εn1 − εn2 −
εn3 ≈ 0. Under this condition, the exponential term will vary
slowly, thus allowing this particular combination of modes
to exchange power. Otherwise, this nonlinear exchange is
considerably suppressed.

In Figs. 1(d)–1(f) we plot the modal amplitudes of the 1D
Aubry-André lattice subjected to different levels of disorder.
We initially excite only the 14th supermode, u14, with the in-
dex n being in ascending order, from the lowest to the highest
eigenevalue. For � = 1, and after t = 10, we can observe that
power has spread “diffusively” into the nearest eigenmodes
in the εn axis [Fig. 2(d)], a process that is expected to persist
until a RJ distribution is formed. This signifies the dominant
role of phase matching in thermalization for low disorder
levels. On the other hand, under strong disorder (� = 3),
mode overlapping overtakes phase matching as the dominant
mechanism. In this case, the overlap integrals Vn will be effec-
tively nonzero only for combinations of modes that are tightly
localized in neighboring sites. Indeed, in Fig. 1(e) we notice
that power was primarily exchanged between modes that are
physically nearest in the discrete lattice space indexed by i,
irrespective of their distance in the εn axis. Of interest would
be to observe what happens exactly at the crossover threshold
of the Aubry-André lattice. Here, for � = 2, we notice that

power has been equally exchanged between modes that are
both nearest in the εn axis as well as between neighboring
quasi-localized states. This point coincides with the crossover
in the logarithmic scaling regime.

It is apparent that, in this logarithmic domain, each mode
exhibits effectively a nonzero Vn only when paired with
other neighboring modes. A strong indicator of the transi-
tion between these two regimes is an oscillatory dynamical
response in modal space, a behavior reminiscent of chaotic
spots [25]. To illustrate this behavior, we plot the nonlinear
evolution for the 30-site Aubry-André lattice in a reduced
phase space spanned by the modal occupancies of u4 and u5

[Figs. 2(g)–2(h)]. The lattice is initiated by populating only
these two modes, selected on purpose because they exhibit
strong nonlinear coupling due to their localization in neigh-
boring sites. For � = 0 we observe fully chaotic dynamics
where after a short observation time (t = 5102), the system
succeeds in exploring its full phase space rapidly, in an er-
godic fashion. On the other hand, for a strong disorder at
� = 5, we observe perpetual oscillations between u4 and u5

with a slowly varying amplitude. For this level of disorder, to
achieve full coverage of the phase space, evolution times must
exceed the time mark of t = 15106 [as shown in Fig. 2(i)],
when thermalization ultimately ensues.

II. NONEQUILIBRIUM DYNAMICS AND EMERGENCE
OF MODAL OSCILLATIONS

By monitoring the thermal relaxation of strongly disor-
dered lattices we can show that classical localization can
indeed deeply suppress thermalization times. However, we
need to provide a decisive argument for the success of
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FIG. 2. (a) A weakly disordered Aubry-André lattice (� = 1) is excited very close to its thermal equilibrium by randomly initiating each
ensemble at U = 2.3 and P = 2. The ensemble average at t = 0 and at t = 102 corresponds to the same RJ distribution without demonstrating
any deviations from this thermal equilibrium. (b) A strongly disordered Aubry-André lattice (� = 5) can escape thermal equilibrium. This
effect is driven by the strong mutual coupling between particular pairs of eigenmodes. (c) Two eigenmodes that are localized in neighboring
sites (u4, u5) are locked into perpetual oscillations. The time evolution of the modal occupancies |c4|2 and |c5|2 is illustrated for three different
ensembles as well as for the ensemble average.

thermalization and the sustainability of equilibrium below the
limiting case of infinite ensembles. To explore this aspect,
we analyze the evolution dynamics of the 1D Aubry-André
lattice comprising 30 sites with a disorder strength � = 5.
In the results of Fig. 1 each ensemble was initiated out of
equilibrium by exciting only a subset of modes, differentiated
only by the modal phases. In contrast to these results, here, we
examine the statistics of an AA system by initiating each en-
semble at a state with both a random phase and amplitude for
each mode by respecting the two invariants, at U = 2.3 and
P = 2. By utilizing a very large number of such ensembles
(Na = 104), we can verify that the ensemble average at time
t = 0 (before initiating the simulation) corresponds exactly to
the theoretically predicted RJ distribution of Eq. (2). In this
regard, we can employ such a combination of random initial
states to successfully initiate a system extremely close to the
theoretically predicted RJ equilibrium.

Figures 2(a) and 2(b) illustrate the thermal evolution for a
low disorder (� = 1) and a high disorder (� = 5) AA case,
respectively, when initiated close to the theoretical thermal
equilibrium at T = −0.44. In the first scenario, the system
remains at equilibrium for all subsequent observation times,
in accord with the theoretical assertions of optical thermo-
dynamics (i.e., the value of the optical entropy can never
decrease). On the other hand, the results for the strongly

disordered lattice diverge noticeably. The system gradually
deviates from its theoretically predicted equilibrium by form-
ing localized ridges in the averaged spectra and remains
indefinitely in a newly formed state. This particular result can
be replicated exactly by increasing the ensemble number to
Na = 105, indicating that this effect might persist even close
to the limit of infinite ensembles. This is a possible indication
that localization might prevent the system from exploring its
entire phase space in a fully fair and ergodic manner in finite
timescales. While this breakdown is not severe, it remains
relevant to the problem discussed herein. Similar effects can
be observed for other 1D and 2D cases.

To delve deeper into the origin of these effects we focus
on two out of the 30 eigenmodes of the system, in particular
u4 and u5. These two eigenmodes correspond to neighboring
localized states, as shown in Fig. 2(c). Considering the strong
local overlap of their intensity profiles as well as the small sep-
aration in energy, their mutual nonlinear coupling is expected
to dominate the local dynamics. The lower panel of Fig. 2(c)
illustrates the evolution of the modal occupancies |c4|2 and
c5|2, as an average over all Na ensembles. Evidently, the two
modal amplitudes transition from their initial thermal values
to a nonthermal equilibrium state. In addition, the power
variations in each mode mirror the fluctuations in the other,
revealing their strong mutual coupling. A similar response is
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also observed in the temporal evolution of individual ensem-
bles, as illustrated in the same figure. However, in contrast
to the ensemble average, each individual ensemble sustains a
continuous oscillation between the two modes. This behavior
is observed consistently in all ensembles, which indicates
that the system might remain practically indefinitely in this
dynamic phase, considering the already very high value of
Na. It therefore becomes apparent that emergent oscillations
between neighboring localized states can distinctly alter the
nonequilibrium response of strongly disordered classical lat-
tices. In general, such clusters of strongly coupled modes can
involve three or even more localized states.

III. PRETHERMALIZATION PHENOMENA
UNDER STRONG DISORDER

Of interest would be to explore the thermal response of
disordered lattices when U is not conserved. Under slowly
varying conditions, the optical temperature T can be calcu-
lated from the instantaneous value of U , at each time t , thereby
predicting the form of a possible prethermal RJ distribution.
We consider an example where energy is exchanged with a
heat bath, and a time-periodic lattice where energy is absorbed
by the drive.

In our heat bath example, we consider two different species
for the optical field which here correspond to two different
circular polarizations of light (left- and right-handed). Non-
linear interaction between the two species are enabled via
cross phase modulation effects. Here, the two polarizations
aR

i, j and aL
i, j obey separately Eq. (1), and also involve an ad-

ditional term of the form γ |aR(L)
i, j |2aL(R)

i, j . This term allows for
an exchange between the internal energies UL and UR of these
two species, leading to a system of two nonlinearly coupled
equations,

i∂tα
L
i, j = βi jα

L
i, j +

∑

k,l

κi j,klα
L
k,l + ∣∣αL

i, j

∣∣2
αL

i, j

+ γ
∣∣αR

i, j

∣∣2
αL

i, j = 0 (5)

i∂tα
R
i, j = βi jα

R
i, j +

∑

k,l

κi j,klα
R
k,l + ∣∣αR

i, j

∣∣2
αR

i, j

+ γ
∣∣αL

i, j

∣∣2
αR

i, j = 0, (6)

where the L and R indices specify the nature of the two species
A and B. The last two terms in Eqs. (5) and (6) describe
the self- and cross-phase modulation effects responsible for
thermalization and energy exchange between polarizations,
respectively. Here, the coefficient γ denotes the strength of
the cross-phase interaction, which is typically equal to 2 for
circular polarized light.

In this context, we study a 2D array with κi, j = 1 com-
prising 40×40 elements corresponding to a waveguide lattice
able to guide both a left- and right-handed polarized light.
The 39 leftmost columns comprise an ordered lattice of
waveguides that support only a right-handed polarization,
while the rightmost column comprises disordered waveg-
uides that allow both polarizations [Fig. 3(a)]. In this respect,
the subsystem of 40×40 sites where right-handed polar-
ized light is supported is considered to be the optical bath,

while thermalization is studied on the rightmost 1×40 dis-
ordered subsystem, associated only with the left-handed
polarization.

According to classical thermodynamics, a body in contact
with a heat bath will exchange energy and will eventually
attain the temperature of the bath THB. This process is first
investigated for the 1D Anderson lattice for � = 1. The heat
bath is initiated directly at equilibrium, at THB = −0.17, while
the small subsystem is initiated at an out-of-equilibrium state
with an expected Ts = −0.87 (calculated from Us and Ps at
t = 0). Figure 3(b) illustrates the thermal evolution of the
disordered subsystem and the gradual relaxation of its tem-
perature to THB.

Next, we investigate the same problem for a much stronger
disorder (� = 8). We excite four eigenstates of the 1D lattice
that correspond to eigenmodes tightly confined in neighboring
sites and therefore are highly coupled. During evolution, the
heatmbath quickly thermalizes the four excited eigenmodes,
resulting in a prethermal RJ distribution that applies exclu-
sively to these modes, while no power is exchanged with
the rest of the 1D lattice. The temperature T of this state is
explicitly calculated from the instantaneous U of the subsys-
tem comprising the four modes, while the brown curves are
obtained analytically. The fact that the RJ curves perfectly
match the quasi-equilibria of the blue surface plot suggest the
onset of prethermalization. The right panel of Fig. 3(c) shows
the temperature of the full disordered system TS as well as the
temperature of the subsystem TSS , which evolves into THB. In
general, we assume that the state observed in Fig. 3(c) will
remain active until power eventually spreads to the remaining
26 modes, an exponentially slower process. In this respect,
it becomes apparent that for a high enough cross-species
interaction strength γ , a heat bath can rapidly prethermalize
local subsystems of a disordered lattice, effectively circum-
venting the thermal slowdown experienced by the rest of the
system.

Another class of configurations that does not maintain en-
ergy invariance and can exhibit prethermalization is that of
time-driven (Floquet) systems [40–45]. Floquet lattices man-
ifest self-heating, wherein they gradually drive themselves
into an infinite temperature state through their own nonlin-
ear dynamics. In other words, time-driven systems tend to
perpetually absorb energy from their own lattice variations,
thus changing their internal energy. To investigate this class
of effects, we study a diatomic topological lattice with a
periodic square unit cell. The two main sites per unit cell
are shown in blue and red in Fig. 3(d). The lattice comprises
61 sites and follows the dynamics of Eq. (1). In contrast
to our previous examples where κ were uniform and nor-
malized to unity, now we define four alternating coupling
terms that vary sinusoidally, i.e., κn = sin(2πt/Tf + φn) with
φn = φn+1 + π/2 a rotating phase shift. This leads to a quasi-
spectrum with two topological edge states at the Floquet gap
above a certain Tf , a scheme demonstrated in various photonic
realizations [46,47].

In Fig. 3(e) we demonstrate the self-heating process for
� = 0, where U is no longer conserved but gradually drops
to zero towards an infinite temperature state, associated with
modal equipartition. The system is initiated at a prethermal-
ized RJ state, with T and μ calculated from the instantaneous
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FIG. 3. (a) A 40×40 waveguide lattice is divided into a 1×40 disordered sublattice that supports both left- and right-handed polarized light.
The remaining 39×40 supports only right-handed polarized waves. Information as to thermalization of the subsystem is obtained only from
the left-handed polarization of the sublattice, while the remaining system represents a heat bath. (b) Thermal evolution (left) and relaxation of
temperature (right) for � = 1. The disordered sublattice’s temperature TS relaxes into the temperature of the bath THB. (c) Thermal evolution
(left) and relaxation of temperature (right) for � = 8. The heat bath will prethermalize the subsystem involving only these four modes. (d)–(f)
A disordered Floquet square lattice. The couplings are modulated sinusoidally in time. (d) The Floquet lattice with no disorder self-heats into
an infinite temperature after initiated at a prethermal RJ distribution. (e) A Floquet lattice with Anderson disorder self-heats at a greatly reduced
pace. (f) Self-heating in a Floquet array for various Tf and �.

energy U , associated with the Floquet quasi-spectrum of the
disordered Hamiltonian Heff = i/Tf log[UM (T )], with UM =
−i

∫ t
o dt ′H (t ′) the unitary operator and H the instantaneous

linear Hamiltonian of Eq. (1). Next, we study localization ef-
fects by including Anderson disorder. Linear diagonalization
reveals that the degree of eigenmode localization is correlated
not only to the strength of the disorder � but also to the period
of modulation Tf . This indicates that Tf might antagonize �

in slowing down thermalization. Figure 3(f) demonstrates the
relaxation dynamics of the lattice at � = 4. Evidently, the
self-heating process slows down and U remains closer to its
initial value for a much longer time, while a prethermal RJ
state manifests at all times.

To quantify the relaxation times of U , we must account
for both � and Tf . In Fig. 3(g) we plot the variation of
the internal energy for a delocalized (� = 0), moderately
localized (�= 4), and strongly localized case (� = 8) for
different Tf . For a small enough period (Tf = 2), in all
cases, the Floquet lattices reach an infinite temperature at
a relatively fast rate, while, in contrast, high Tf values can
stabilize the system almost indefinitely in the presence of
strong disorder. It becomes clear, therefore, that photonic
systems that manifest both localization and time periodicity
can avoid self-heating, while manifesting stable prethermal

Rayleigh-Jeans states for very long times, with T and μ

associated with the instantaneous U .
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APPENDIX A: THE RAYLEIGH-JEANS DISTRIBUTION

We consider a microcanonical ensemble of a conservative
optical system with a finite number of modes M with energy
levels εi, each associated with a degeneracy gi. Let us now
assume that the system is composed of N = ∑

i ni indistin-
guishable photons ni at a specific wavelength distributed over
gi states with the same energy εi. The total energy (“optical
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internal energy”) is E = −∑
i εini. In such a system, the

number of ways (W ) in which one can arrange ni particles
within gi levels is given by

W =
∏

i

(ni + gi − 1)!/[ni!(gi − 1)!]. (A1)

Maximizing the total optical entropy SN = ln W , under the
two individual constrains (N and E are constants of motion),
leads to a Bose-Einstein distribution

ni/gi = 1/(e−α−βεi − 1) (A2)

with the help of the Stirling approximation (ln n! = n ln n − n)
and by involving the Lagrange multipliers α, β. Under the
condition −α − βεi 	 1 the Bose-Einstein distribution re-
duces to a Rayleigh-Jeans distribution:

ni/gi = −1/(α + βεi ). (A3)

This limit is valid in the context of classical optics, con-
sidering that the number of photons (associated with the
total power) is much larger than the number of available
modes (ni/gi 	 1 hence e−α−βεi → 1). We can then promptly
impose the relation ni/gi = nc|ci|2, where nc represents a
proportionality factor. To reach the final form of the RJ distri-
bution we adopt the more conventional definitions for optical
temperature T and chemical potential μ, as α = μ/(T nc),
β = 1/(T nc), obtaining

|ci|2 = −T/(μ + εi ). (A4)

APPENDIX B: DERIVATION OF THE EQUATION
OF STATE

In a finite optical system that supports M modes we
employ the following definitions: the optical entropy S =∑M

i ln |ci|2, the total power P = ∑M
i |ci|2, and the opti-

cal energy U = −∑M
i εi|ci|2. Taking these expressions into

account, we obtain the following expression for a system into
thermal equilibrium:

1/TU − Pμ/T = 1/T
M∑

i

εi|ci|2 − μ/T
M∑

i

|ci|2

=
M∑

i

[
εi/(εi + μ) + μ/(εi + μ)

] = M,

(A5)

which directly leads to the equation of state in its final form:

U − μP = MT . (A6)

APPENDIX C: IMPACT OF EIGENVALUE STATISTICS

Eigenvalue statistics are important in distinguishing be-
tween thermalizing and ergodic phases in quantum lattices.

1

εn

30mode - n
-4

4

S

STH

1 30mode - n 1 30mode - n

time-t 105 106104 103 104102 103 104102103

-36 -36 -36

-180

FIG. 4. Entropy maximization for an Anderson lattice with
� = 7 (left), a 1D chain with zero disorder (middle), and a mixed
lattice having exactly the same eigenvalues of the first system and
the eigenmode field profiles of the second (right). Evidently, the
eigenvalue statistics play a minimal role in suppressing the process
of thermalization.

To highlight the fundamental difference between thermalizing
quantum and optical (classical) lattices, we investigate the im-
pact of the eigenvalue statistics in optical disordered systems
by considering a similarity transformation on an Anderson op-
tical lattice with disorder strength � = 5 (with M = 30 sites).
A Hamiltonian produced under a similarity transformation
retains an identical spectrum with the original Hamiltonian,
albeit with different eigenmode profiles. In this respect, we
consider a mixed Hamiltonian H ′ = V −1EV where E is a
diagonal matrix with the eigenvalues of the disordered An-
derson Hamiltonian H and V is a matrix with columns that
correspond to the eigenvectors of a 1D tight-binding chain
with unit couplings and zero disorder (with Hamiltonian H0,
effectively an Anderson lattice with � = 0). In Fig. 4 we
simulate the Kerr nonlinear evolution for these three cases
(disordered H , nondisordered H0, mixed H ′). First, we verify
that the lattice thermalizes rapidly into a RJ distribution for the
nondisordered case while thermalization times are severely
suppressed for the disordered lattice. Interestingly, thermal
equilibrium in the mixed (third) lattice is attained at a rate
that is much closer to the nondisordered case (albeit around
three times slower). It is therefore apparent that the eigen-
value statistics and therefore the phase matching conditions
in the disordered spectra play a minimal role in suppressing
thermalization, considering that the difference in relaxation
times between the first and the third case is on the order of
105. Therefore, we may conclude that the origin of the thermal
suppression can be attributed almost exclusively to the spatial
localization of the eigenmodes.
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