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Exploring the neighborhood of 1-layer QAOA with instantaneous quantum polynomial circuits
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We embed 1-layer QAOA circuits into the larger class of parametrized instantaneous quantum polynomial
circuits to produce an improved variational quantum algorithm for solving combinatorial optimization problems.
The use of analytic expressions to find optimal parameters classically makes our protocol robust against barren
plateaus and hardware noise. The average overlap with the ground state scales as 2−0.31(2)N with the number of
qubits N for random Sherrington-Kirkpatrick (SK) Hamiltonians of up to 29 qubits, a polynomial improvement
over 1-layer QAOA. Additionally, we observe that performing variational imaginary time evolution on the
manifold approximates low-temperature pseudo-Boltzmann states. Our protocol outperforms 1-layer QAOA on
the recently released Quantinuum H2 trapped-ion quantum hardware and emulator, where we obtain an average
approximation ratio of 0.985 across 312 random SK instances of 7 to 32 qubits, from which almost 44% are
solved optimally using only 4 to 1208 shots per instance.
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I. INTRODUCTION

Since its introduction by Farhi et al. [1] in 2014, the quan-
tum approximate optimization algorithm (QAOA) has been
explored in the quantum computing literature as one of the
most promising heuristics for achieving quantum advantage
on near-term devices [2,3]. This is only one example of a
larger class of variational quantum optimization algorithms,
which attempt to produce good solutions to combinatorial
optimization problems by sampling a parametrized quantum
circuit [4–8]. In the absence of full quantum error correction
[9], the required circuits must be sufficiently shallow to with-
stand noise, yet expressive enough to find states with high
overlap onto the ground state. QAOA is a particularly good
choice for satisfying these criteria, as it has an adjustable
number of layers p. It can be understood as a Trotterized
version of the quantum adiabatic algorithm (QAA), for which
compelling theoretical evidence of performance exists [10].
Additionally, it was shown that even for small numbers of
layers, sampling from the QAOA ansatz is a hard task for
classical computers [11].

In this regime of a small number of layers, the form of the
Trotterized QAOA operators may not be the best choice. This
has motivated [12–15] the addition of extra parameters to the
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QAOA ansatz so that, instead of evolving the state according
to the problem Hamiltonian, each parameter in the ansatz has
the freedom to evolve independently. By doing this, an ansatz
of the same depth may incorporate corrections that would
otherwise require multiple layers.

In particular, 1-layer QAOA circuits—with and with-
out the additional parametrization—belong to the class of
parametrized quantum circuits known as weighted graph
states (WGS) used to simulate condensed matter systems
[16–22]. For these states, the reduced density matrix in a
subsystem of fixed size can be computed classically, allowing
the efficient evaluation of local observables on a classical
computer. This property permits the derivation of analytic
and exact expressions for 1-layer QAOA on arbitrary local
Hamiltonians [23] and for extra-parametrized circuits on some
restricted local Hamiltonians [12,13]. Such expressions are
used to train the model classically, bypassing typical limita-
tions such as the appearance of barren plateaus [24].

In this manuscript, we explore the embedding of 1-layer
QAOA into the broader class of parametrized instantaneous
quantum polynomial (IQP) circuits, for which similar hard-
ness of sampling theorems exist [25,26], even in the presence
of moderate noise [27]. IQP circuits also belong to the
class of WGS, but compared to QAOA and existing extra-
parametrized variants our ansatz uses all-to-all two-qubit
interactions, making its implementation problem independent
and most natural for trapped-ion quantum computers. We ad-
ditionally show that analytic and exact expressions can be ob-
tained for arbitrary local Hamiltonians, and use them to train
the model via robust classical techniques like the Runge-Kutta
method [28]. We emphasize the role of starting the training
from the optimal QAOA and finding a nearby local minimum
rather than aiming for a global optimum, which avoids the
challenging exploration of nontrivial landscapes [29].

2643-1564/2024/6(1)/013071(7) 013071-1 Published by the American Physical Society

https://orcid.org/0000-0002-4852-1919
https://orcid.org/0000-0001-7853-9581
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013071&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1103/PhysRevResearch.6.013071
https://creativecommons.org/licenses/by/4.0/


SEBASTIAN LEONTICA AND DAVID AMARO PHYSICAL REVIEW RESEARCH 6, 013071 (2024)

FIG. 1. Diagrammatic representation of the algorithm. The 1-
layer QAOA ansatz is a submanifold of the IQP ansatz and provides
a warm start in the optimization protocol. The trajectory between the
QAOA optimum and the IQP optimum is defined via the McLachlan
variational principle and is computed classically. Color coding the
optimization landscape represents the effective temperature of the
associated state, with lower temperature states (blue) having a higher
chance of sampling the ground state. The quantum computer is
only used during the sampling step, which is known to be difficult
classically.

This leaves only the key ingredient of sampling from the
final quantum state to be performed on the quantum device, as
illustrated in Fig. 1. A recent investigation of the states pro-
duced by 1-layer QAOA [30] shows that sampling produces a
distribution close to a Boltzmann distribution, at temperatures
beyond the reach of classical sampling techniques such as
Markov Chain Monte Carlo (MCMC) [31]. We improve on
this result by lowering the temperature further, using varia-
tional quantum imaginary time evolution (VarQITE) [32,33].
However, the constraint of keeping the state in the variational
manifold limits our ability to follow exact imaginary time
evolution, distorting the distribution.

The manuscript is structured as follows. Section II provides
a brief review of QAOA. Our IQP ansatz is introduced in
Sec. III, where we make the connection to 1-layer QAOA,
describe the derivation of analytical expressions and how
to use them for classical training, and discuss a previ-
ous work [34] that challenges the possibility of quantum
advantage with IQP circuits. In Sec. IV we describe our
protocol for approximating thermal distributions and solving
combinatorial optimization problems, while Sec. V presents
numerical performance results. First, the average overlap
with the ground state obtained with an exact state-vector
simulator is polynomially better than for 1-layer QAOA on
random Sherrington-Kirkpatrick (SK) Hamiltonians of up to
29 qubits. Second, when approximating thermal distributions
we can reach lower temperatures than 1-layer QAOA but
the approximation quality reduces. Third, we demonstrate
a better performance than 1-layer QAOA at solving ran-
dom SK Hamiltonians of up to 32 qubits in the recently
released Quantinuum’s trapped-ion H2 quantum hardware
and emulator. Using a reduced number of shots, the best
solution per instance presents a large approximation ratio
and is optimal for a large fraction of instances. Finally,

Sec. VI discusses the methods, results, and future research
directions.

II. THE QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

The standard implementation of the QAOA [1] attempts to
create states with large overlap onto the ground eigenspace
of some optimization problem, typically defined through an
Ising Hamiltonian,

H =
∑

i

hiZi +
∑

i< j

Ji jZiZ j, (1)

where the Zi variables can be interpreted as the projections
onto the z axis of a classical or quantum mechanical ensemble
of N spin- 1

2 particles, and (hi, Ji j ) are real coefficients. This
is achieved by starting with the ground state |+〉⊗N of the
trivial transverse field mixing Hamiltonian Hx = −∑

i Xi and
evolving the state under the alternating application of the
propagators of H and Hx. The final trial state is of the form

|�(γ,β)〉 =
p∏

k=1

exp (iβkHx ) exp (−iγkH) |+〉⊗N , (2)

where p is called the level of the QAOA and the sets β, γ of
real coefficients βk , γk are used as variational parameters. The
most commonly used cost function in the optimization of the
ansatz is the expectation value of the problem Hamiltonian

E = 〈�(γ,β)|H |�(γ,β)〉 , (3)

although alternative objective functions have been proposed
[35,36]. For the rest of this work, we will only consider the
1-layer QAOA, which is sufficiently shallow to withstand the
effects of moderate noise and obtains an enhanced average
probability of sampling the ground state quadratically larger
than random guessing [30], i.e., scaling as 2−0.5N .

III. THE INSTANTANEOUS QUANTUM
POLYNOMIAL CIRCUIT

The IQP is a nonuniversal model of quantum computation
with similar roots to the boson sampling problem, whose aim
is to strengthen the general belief that quantum computers
are more powerful than classical machines [25,26]. Under
certain widely believed complexity-theoretic assumptions,
sampling from the IQP state H⊗N exp(−iHIQP(�θ )) |+〉⊗N in
the computational basis of all qubits is a hard task for a
classical computer [26]. Here the IQP Hamiltonian is de-
fined as HIQP(�θ ) = 1

2

∑
i θiZi + 1

2

∑
i< j θi jZiZ j and H is the

Hadamard gate.
The IQP ansatz employed in this work is a generaliza-

tion where Hadamard gates are replaced with independent
parametrized single-qubit rotations Rx(φ) = exp(−iφX/2),
leading to the quantum circuit

|�(θ)〉 =
⊗

i∈N
Rx(φi) · exp(−iHIQP(�θ ))|+〉⊗N , (4)

where θ = ( �φ, �θ ) are free, real parameters. The IQP state is
recovered by setting φi = π/2 and making the transformation
θi −→ θi − π/2. Since the IQP state can be brought to this
form by modifying the final layer of single qubit rotations,
we expect generic states of this form to be difficult to sample
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classically as well. We also make the important observation
that, up to single qubit rotations and energy rescaling, the
IQP state in Eq. (4) is the same as that produced by a 1-layer
QAOA designed to solve for the ground state of HIQP.

This ansatz generalizes the optimization cost function of
Eq. (3) to

E (θ) = 〈�(θ)|H |�(θ)〉 = 〈H〉θ, (5)

which we refer to as the optimization landscape. The task
of computing the cost function defined in Eq. (5) is then
reduced to estimating the expectation values of the spins 〈Zi〉θ
and correlators 〈ZiZ j〉θ in an arbitrary state |�(θ)〉. In the
Supplemental Material [37] we show that the latter expression
can be reduced to calculating partition functions of reduced
Ising Hamiltonians of the form

Ze = 1

2N

∑

{x}
e−iHe(x), (6)

where e’s are single or two qubit subsets. The reduced gener-
ator He retains only the terms in HIQP that anticommute with
the operator Xe = ⊗

i∈e Xi. This leads to a highly restricted
graph topology, for which partition functions can be evaluated
exactly. We generalize this method to show that IQPs have
simple analytic expressions for all expectation values of the
form 〈Ze〉θ , with a number of terms that scales like O(2|e|).

These properties of the IQP ansatz make it a good candi-
date for solving optimization problems, as it is guaranteed to
be at least as powerful as 1-layer QAOA and the training can
be performed efficiently using only classical resources. The
access to exact, analytic expressions for the cost function also
means we do not need to worry about finite sampling or device
errors during training. Barren plateau issues can also be ruled
out, as we can evaluate gradients to arbitrary precision and
use adaptive step sizes. Access to a quantum computer is only
necessary during the final sampling step, so we expect our
protocol to perform well under moderate hardware noise.

As opposed to the standard QAOA ansatz, the IQP is
sufficiently flexible to produce all computational states. In
particular, this means that if a classical algorithm were able to
find the global optimum of Eq. (5), it would also find the exact
ground state of H. In [34], it is shown that the optimization
landscapes of IQP ansatz with only polynomially many terms
(like our ansatz) are generally nonconvex, and computational
states other than the solution may form local minima, which
we call trivial minima. Consequently, converging to such local
minima would imply the algorithm does not need access to a
quantum computer, as the bits xi of the solution corresponding
to the optimal parameters are given by 〈Zi〉θ , which can be
efficiently computed classically.

We prove that the optimization landscapes can contain
nontrivial minima, and give a minimal example of this in the
Supplemental Material [37]. Remarkably, we provide numer-
ical evidence that for the SK model such a local minimum
is located in the vicinity of the QAOA parameters, and show
that sampling the IQP circuit at this point greatly enhances the
chance of finding the ground state compared to QAOA.

IV. METHODS

A remarkable result of [30] is that for a wide range of
optimization problems that can be formulated as in Eq. (1),

the 1-layer QAOA is capable of approximating pseudo-
Boltzmann states proportional to exp(−βH/2) |+〉⊗N , with
large inverse temperature β, up to relative phases that do not
affect the distribution. This is important because sampling this
state produces the same distribution as sampling the mixed
thermal state ρβ = e−βH/Z for classical Hamiltonians, which
is useful for a variety of optimization tasks.

In our work, we use this result to justify the QAOA as
a good starting point in optimizing the IQP ansatz. Since
the 1-layer QAOA ansatz can be recovered by restricting the
parameters of the full IQP, we find the optimal QAOA position
classically, using the BFGS [38] algorithm on the submani-
fold. To find a local optimum in the vicinity of this position,
it is sufficient to use simple gradient descent. However, we
also explore the feasibility of our algorithm for producing
low-energy thermal states, which is achieved using a differ-
ent approach called VarQITE [32,33]. This protocol aims to
find the trajectory on the manifold that best approximates the
action of exp(−τH) on the state. If the initial state is pseudo-
Boltzmann, then applying this operator leads to a decrease in
temperature. The parameters in the ansatz are evolved accord-
ing to the McLachlan variational principle [39]:

A
d

dτ
θ = −1

2
∇E (θ), (7)

where the coupling matrix A describes the geometry of the
variational manifold (i.e., it is the Gram matrix of the tangent
vectors corresponding to each parameter) and τ is the imagi-
nary time variable. In the Supplemental Material [37] we show
that the coefficients of the Gram matrix can be expressed as
expectation values of low-weight Pauli operators in the IQP,
for which we find simple analytic expressions. However, this
calculation is computationally expensive, so when the focus is
on finding a local minimum rather than preserving a thermal
profile, we set A = I and perform simple gradient descent.

In both cases, this linear system of ODEs defines a flow on
the variational manifold, that we solve numerically using the
Runge-Kutta method [28]. We stop this procedure when we
arrive at a local minimum, or when A becomes noninvertible.
This typically happens after a long plateau in the energy
profile, which we illustrate in the Supplemental Material [37].
Such an event becomes a rare occurrence when we increase
the number of qubits, but for problems that exhibit this be-
havior, we choose the optimal parameters in the middle of the
plateau. After finding the optimal parameters, we sample the
circuit and compute the probability of finding the ground state.
We share the code used for implementing this protocol in [40].

We characterize our distributions using an effective inverse
temperature β. This is obtained by minimizing the Kullbach-
Leibler divergence of the IQP distribution to the family of
thermal distributions. Here, we compute the KL divergence
exactly, but in practice, this would be estimated from samples
[41].

V. RESULTS

We test our method on Sherrington-Kirkpatrick (SK)
Hamiltonians [42–44] of up to N = 29 spins using Qiskit ex-
act state-vector quantum simulators [45]. These Hamiltonians
are of the form of Eq. (1) with hi = 0 and Ji j indepen-
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FIG. 2. Optimization results for 300 randomly generated Sherrington-Kirkpatrick Hamiltonians of up to 29 spins. (a) Probability of
sampling the ground state configuration in the optimal IQP ansatz. (b) Enhancement factor pIQP/pQAOA for finding the ground state in the
optimized IQP ansatz compared to the original QAOA. The IQP was optimized until convergence using simple gradient descent. Using a
linear fit, we find the average probability of sampling the ground state pIQP ∼ 2−αN with α = 0.31 ± 0.02 and the average enhancement factor
pIQP/pQAOA ∼ 2δN with δ = 0.23 ± 0.02. The errors indicate the variability in gradient at one standard deviation.

dent and identically distributed Gaussian random variables of
zero mean and a standard deviation of 1/

√
N . The unbiased

SK model presents a Z2 symmetry, so the ground state is
unique up to flipping all qubits. This is a well-understood
spin model with compelling classical solvers [46]. In quantum
optimization it is one of the most studied benchmark problems
[30,47–51].

In Fig. 2, we show how the overlap of the optimized IQP
state onto the ground eigenspace varies with the problem size,
and how it compares to the overlap achieved by the initial
QAOA. Both plots show a clear exponential trend with rel-
atively low and slowly increasing variance. This confirms that
our algorithm has a significantly better exponential scaling
compared to 1-layer QAOA.

We also study how the temperature of the distribution
changes as we perform imaginary time evolution on our vari-
ational manifold up to time τ = 10, close to convergence.
In Fig. 3 we show how the optimal normalized temperatures
achieved by the final optimized IQP state are lower than those
achieved by the starting QAOA state. However, the KL di-
vergence between the optimized IQP state and the best-fitting
thermal state is higher and presents more dispersion than
QAOA across Hamiltonian instances. This indicates that IQP
states might be beneficial for the task of sampling low-energy
eigenstates while QAOA provides a better approximation to
thermal distributions.

In Fig. 4 we plot example distributions produced by the
QAOA and the optimized IQP ansatz. From the qualitative
aspect of the IQP distribution, we see that the performance of
our algorithm in increasing the ground state overlap cannot
be entirely explained as a consequence of having a lower
temperature. The distribution becomes arched, and the prob-
abilities of sampling the low-energy eigenstates rise orders
of magnitude above the predictions of the thermal fit. Future
theoretical work is necessary to understand how this effect
emerges, and whether it is recovered in more general opti-
mization problems.

Our algorithm is also studied in a more realistic setting,
where quantum circuits are affected by hardware noise. We
use the recently released Quantinuum H2 trapped-ion quan-
tum hardware and emulator [52]. The emulator performs exact
state-vector simulations under a noise model that replicates
the noisy behavior of the real device. The device presents
all-to-all connectivity and high-fidelity parametrized gates of
the form exp(−iθZZ ), making it ideal for our protocol and for
QAOA on densely connected Hamiltonians.

For this analysis, we study biased SK models with the
coefficients hi independently sampled from the same Gaussian
distribution as the coefficients Ji j . The presence of the bias
breaks the Z2 symmetry, halving the initial overlap with the
ground eigenspace and making the problem slightly more
general. The bias adds an additional slope in the vicinity of

FIG. 3. Normalized effective inverse temperatures β||J|| in the
QAOA state and the IQP state after VarQITE evolution for a time
τ = 10, for 20 randomly generated Sherrington-Kirkpatrick Hamil-
tonians of each size from 10 to 20 qubits. We also show the average
and standard deviations for the KL divergences of each problem size.
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FIG. 4. Overlap of the state produced by our ansatz onto different
Hamiltonian eigenvalues as a function of energy for the QAOA
parameters (top) and optimized IQP parameters (bottom), for a
randomly generated 20 qubit Sherrington-Kirkpatrick Hamiltonian.
Brighter color indicates higher coarse-grain point density. The red
line illustrates the thermal distribution model that minimizes the KL
divergence. A red circle marks the location of the ground state.

QAOA, that sometimes dissolves the local minimum that we
exploit in the previous study, leaving no obvious method to
pick a point in the gradient-descent trajectory. Our aim for this

analysis is, however, to study the performance in the neigh-
borhood of QAOA, rather than providing the most optimized
form of our protocol. For this purpose we pick the optimized
1-layer QAOA as the first circuit, and three equally spaced
circuits corresponding to three of the first gradient-descent
steps. The Supplemental Material [37] describes the criterion
we used to pick these circuits.

Figure 5 compares the quality of the best solutions ob-
tained by the corresponding four circuits. From the 312
instances, we optimally solve 5, 21, 59, and 86, respec-
tively, for the four circuits. The best solution sampled for
each instance has an average approximation ratio and stan-
dard deviation of (0.87, 0.10), (0.935, 0.083), (0.948, 0.083),
and (0.970, 0.060), respectively. When considering for each
instance only the best solution obtained from the four cir-
cuits as the output of our algorithm, 136 instances are solved
optimally (almost 44%) and the distribution has an average
approximation ratio and standard deviation of (0.985, 0.029).

VI. DISCUSSION

The algorithm we introduce explores the natural con-
nection between the 1-layer QAOA state and IQP circuits.
Studying the vicinity of the QAOA in this broader variational
manifold leads to a better understanding of its optimality as
a shallow-depth quantum heuristic, as well as how it can be
improved.

We show that, for the case of SK Hamiltonians, our
approach amplifies the probability of sampling the ground
state, beyond what can be obtained using classical tools such
as MCMC. The hardware implementation is as resource-
demanding as it is for 1-layer QAOA, and parameter training
can be performed classically in time O(N3). Results on the
Quantinuum H2 show the reliability of our protocol to solve
large instances with scarce quantum resources.

We leave as a future work the development of an optimized
strategy to pick points along the gradient-descent trajectory

FIG. 5. Optimization results on the Quantinuum H2 trapped-ion quantum hardware and emulator for randomly generated biased
Sherrington-Kirkpatrick Hamiltonians of 7 to 32 qubits: two instances per problem size on the device (stars) and ten instances on the emulator
(circles). For each instance we pick four steps along the gradient-descent trajectory, corresponding to the standard 1-layer QAOA, and three
IQP circuits. Then take ∼20.32N ∈ [4, 1208] shots, equally distributed across the four circuits. Each data point in the figure corresponds to the
best solution sampled for each instance. If the best solution is optimal the point is placed in the lower row, while for suboptimal solutions we
place the point in the upper row to visualize the approximation error.
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where sampling from the quantum computer might yield even
better performance.

The results presented motivate the development of strate-
gies to compare the performance of our protocol against
state-of-the-art classical algorithms at the scale of real-world
combinatorial optimization problems. For example, the access
to the analytical expectation value of the problem Hamiltonian
and higher powers of it might provide an efficient way to
estimate the probability of sampling the low-energy tail for
large-scale problems.
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