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Diminishing topological Faraday effect in thin layer samples
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A striking feature of three-dimensional (3D) topological insulators (TIs) is the theoretically expected topolog-
ical magnetoelectric (TME) effect, which gives rise to additional terms in Maxwell’s laws of electromagnetism
with an universal quantized coefficient proportional to half-integer multiples of the fine-structure constant c.
In an ideal scenario one therefore expects also quantized contributions in the magnetooptical response of TIs.
We review this premise by taking into account the trivial dielectric background of the TI bulk and potential
host substrates, and the often present contribution of itinerant bulk carriers. We show (i) that one obtains a
nonuniversal magnetooptical response whenever there is impedance mismatch between different layers and (ii)
that the detectable signals due to the TME rapidly approach vanishingly small values as the impedance mismatch
is detuned from zero. We demonstrate that it is methodologically impossible to deduce the existence of a TME
exclusively from an optical experiment in the thin film limit of 3D TIs at high magnetic fields.

DOI: 10.1103/PhysRevResearch.6.013068

I. INTRODUCTION

The hallmark feature of three-dimensional (3D) topolog-
ical insulators (TIs) is the existence of a quantized surface
conductance that arises from the topological bulk properties
and of the solid-state system [1-7]. It is quantized in units
of (% + n)e? /h, in which e denotes the electron charge, /4 the
Planck constant, and n = (0, 1, 2, ... ). Another key charac-
teristic of the TI surface states is the coupling of the spin
and momentum degrees of freedom of TI surface conducting
electrons [8,9]. In the theoretical limit of a perfectly insulating
bulk, this coupling gives rise to the existence of a bulk linear
magnetoelectric effect in the form of an E - B term, which
constitutes the topological magnetoelectric effect (TME)
[10,11]. The latter is sometimes conceived as an independent
effect, but is really just a way of describing the 3D TI conduc-
tance in terms of a bulk magnetoelectric material, provided
it is geometrically possible to define a magnetoelectric polar-
ization [12]. It is therefore instantly clear that if the surface
conduction is quantized so must be the TME and vice versa.

The experimental reality is much less clear. Any realistic
TI sample will have a finite amount of bulk carriers and even
for very small amounts (<10'® cm™3) it is not obvious up to
which point the considerations that yield the E - B term hold
in practice. A further practical limitation arises from the fact
that the cleanest available samples are thin films [13,14], for
which it is difficult to experimentally access the bulk portion
of the 3D TI in which the TME resides. The question therefore
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is: How can the presence of a quantized TME unambiguously
be demonstrated in an experiment?

One very early proposal was to employ magnetooptical
polarimetry to this end, in particular, polar Faraday/Kerr rota-
tion experiments. The presence of the E - B term will modify
the continuity conditions at the interfaces/surfaces and trans-
late the quantized surface conductance into a quantized and
therefore clearly distinguishable Faraday/Kerr response [10].
The key prediction was that the Faraday response should be
quantized in units of integral multiples of the fine-structure
constant «, and this universal topological Faraday effect
(TFE) was thought to be a signature feature of 3D TIs [10].
Later theoretical work refined this idea in terms of the avail-
able material systems, for which, due to the relevant energy
scales the experiment, had to be performed in the (far) in-
frared spectral region (we will elaborate on this aspect below)
[15]. The latter constraint is a hard one, because the long
wavelengths involved prevent a direct measurement of bulk
properties by optical techniques for the thin films. In partic-
ular, they inhibit the separation of the optical response of the
two surfaces in the time domain.

Nonetheless, claims on the experimental observation of the
TFE followed soon [16—18]. In these works Faraday rotations
that either extrapolate to or are to experimental accuracy
within o were reported. These results quickly gave rise to new
questions. Beenakker pointed out that in the stratified slab
geometries employed in these works the TFE contributions
from the two surfaces should exactly cancel [19]. A general
question is further, how unique Faraday rotations close to o
really are and how one can clearly assign the physical origin
of such a signal. And finally, the question arises whether or
not it is at all methodically possible, to unambiguously deduce
the existence of a TME term exclusively from the polarimetry
response in the thin film limit.

We address these questions by calculating the magnetoop-
tical response of a homogeneous film that hosts a TME in the
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semiclassical limit, i.e., we make no particular microscopic
assumptions beyond the existence of a 3D strong TI [12]
and describe the interaction with the electromagnetic wave in
a classical fashion. We explicitly assume a description that
builds on the existence of an E - B term rather than a picture
that starts from the surface conductance. This is the more
natural view when the TME is the subject of the experimental
study and the two perspectives are interchangeable in the clean
theoretical limit. The resulting framework is valid for any
linear magnetoelectric material and useful beyond the scope
of the TME, but here we confine the discussion to the case of
the 3D TI.

The paper is organized as follows. We first derive and
discuss the response in the (idealized) clean dielectric limit.
Second, we study the scenario in which residual bulk carriers
coexist with TI surface states. Third, we discuss the connec-
tion to the conceptually close but fundamentally different ac
response of a quantum Hall system. We finally demonstrate
that the observables of a Faraday/Kerr experiment do not
allow for an unambiguous assignment of the presence of a
TME in the thin film limit.

II. OPTICAL POLARIZATION ROTATION IN 3D TIs

Polarimetry experiments measure the polarization of the
electromagnetic wave when being reflected from (Kerr geom-
etry) or transmitted through (Faraday geometry) an interface
at which the impedance properties change. The impedance
change can generally be induced by either changes in the
permittivity and/or the permeability. For magnetoelectrically
active materials there is further a direct coupling between E
and B components, which actually means that the electric
field induces a magnetization and the magnetic induction a
polarization [20]. For the linear magnetoelectric (ME) effect
this coupling results in terms proportional to E - B in the
Lagrangian of the system [21].

A formally similar term arises in the context of the hypo-
thetical cosmological axion, which is why the magnetoelectric
term in topological systems has been coined axion term or
sometimes 6 term, as the coupling coefficient is often labeled
such. This labeling is rather misleading, because the cosmo-
logical axion has a very different physical meaning than the
TME and in fact any linear magnetoelectric contribution will
have a formal resemblance to the axion term [21], without
actually describing the same physics.

For the remainder of this work we will call the E - B
term simply the TME and take the corresponding response
as explicit terms that we add to the dielectric displacement
and the magnetic induction. We split the permittivity into a
dielectric contribution into which we lump the total response
of all nonitinerant charge carriers of the system (the classic
dielectric response), and the conductivity contribution arising
from free carriers.

A. Clean dielectric limit

We first consider the idealized situation in which there are
no free carriers in the system at all, which we refer to as
the clean dielectric limit. In the most general case the optical
polarization state of a electromagnetic (EM) wave is elliptical,

which is described by two mutually orthogonal linear polar-
ization components £ and E that are shifted by some phase
in real space. We first define the complex quantity p as

p=—. (1)

For Faraday/Kerr measurements one usually starts out with
a well-defined linearly polarized wave, which we take to be
polarized along E,. Any induced rotation of the plane of
polarization will then be given by the in-phase contribution
of p. We hence define the rotation angle 6 as

6 = Re{arctan(p)}. )

The ellipticity ¢ is the angle provided by the ratio of the out
of phase component of p and is given by [22]

¢ = % arcsin[tanh(2 Im {arctan(p)})]. 3)

We then use the Jones formalism to calculate the transmit-
ted electric field components. The effect of any interface on
the polarization state can be described by a2 x 2 transmission

matrix
s t
T=1{" P, 4
r=(p ) @

Upon transmission through a multilayer stack one generally
has to take into account the optical thickness of layers, which
gives rise to the well known Fabry-Pérot patterns. Observ-
ing the TME requires gapping out the Dirac cone, which is
commonly done with a magnetic field. The Dirac gap needed,
however, is typically only a few meV in energy [2]. Because of
this and also to avoid photodoping by photocarrier excitation
to energetically higher bulk bands, Faraday/Kerr experiments
on the TME have been performed in the far infrared (FIR)
spectral region.

On the other hand, typical sample thicknesses are well
below 100 nm and often only a few monolayers, which is
at least three orders of magnitude thinner than the optical
wavelength in the FIR regime. We therefore neglect finite
thickness contributions for the remainder of this work. Such
contributions are in principle straightforward to add at a later
stage and will have no impact on the general results stemming
from the TME, which only contributes at the interfaces.

In the thin film limit the resulting electric field vector E,
after interaction with n interfaces is then given by:

E, J_) - <Ei J_)
=111 ) &)
(Et,n ,E I\ E)

where the index of T denotes the interface number.

To derive the elements of T, we start with the continuity
conditions for EM waves at an interface between two materi-
als a, b:

n-D=0
nxE=0

n-B=0 ©
nxH=0.

Due to the TME, there are collinear electric and magnetic
fields arising, which alter the usual definitions of the electric

013068-2



DIMINISHING TOPOLOGICAL FARADAY EFFECT ...

PHYSICAL REVIEW RESEARCH 6, 013068 (2024)

displacement field D and the magnetic field H [10]:

€0
D = SrSQE — 2P30l —B
H“o
1
B+2Pw | 22E
Mr Lo Mo

with relative permittivity ¢,, relative permeability w,, vacuum
permittivity &g, vacuum permeability o, the TME polariza-
tion P3, and the fine-structure constant c.

From Egs. (6) and (7), we derive the relations between inci-
dent and transmitted field components, from which we obtain
the transmission matrix elements by comparing coefficients
(the derivation is given in detail in Appendix A). For normal
incidence this yields

2
A= ( [Era 4 /8“’) + QP —Pre) (8
/JLr,a Mrb

@)

H =

2 Era Era Erb
bys = tpp = — ‘ [ — [— 9
e A Mr,a( Mr.a * Mr,b) ( )
4 [erq
tsp = _tps = _z » (P3,b - P3,a)a- (10)

In a similar fashion, one can derive the components of the
reflection matrix (A same as for transmission) and obtain for
normal incidence:

P ) _ B oy, — Pi | (1)
s = PP A Ura Wrb Hb 3
4 Era
Fsp = TFps = —— —(Psp — P3q)cx. (12)
AV g Y

We next study the polarization response for a linearly s-
polarized EM wave propagating through a single interface of
materials a and b at normal incidence. For the transmitted
wave we obtain

E 1\ _ [ ts t 1\ [ty
<Ez,||) B (—tx,, t;:) <0> - (—ts,,> (13)

and the complex Faraday rotation is defined by (analogous for
Kerr rotation k)

I
O = arctan(—-2). (14)

Ss
Up to this point the dielectric functions are real and ac-
cordingly only a rotation but no ellipticity can be induced. Let
material a be topologically trivial and b topologically nontriv-
ial, then P3, =0 and P;, = 1/2 (mod 1). For the resulting

Faraday/Kerr rotation we finally obtain
4 /= (Pyy — Py o)

Kra

0,1 = arctan( ) (15)
2 [z (i + Vi)
= arctan(; o) (16)
-2 % o
Ok1 = arctan(ﬂ ECT— ). (17)
Hra Hrb

Let us now examine Eqs. (16) and (17) in detail. We imme-
diately recognize one important result: There is no universal

al2
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FIG. 1. Kerr and Faraday rotation after interaction with a single
interface in dependence of the permittivity of the second material
(while ¢,; = 1). The dotted lines indicate the region of parameter
space that cannot be accessed with physically reasonable material
values.

topological Faraday or Kerr effect. The optical polarization re-
sponse heavily depends on the impedance mismatch between
the layers, which in case of nonmagnetic layers reduces to the
dielectric mismatch. This refinement of the initial theoretical
predication was also stated by the original authors [2], but
obviously this message has not been widely received and even
recent experimental publications keep repeating claims on the
existence of a universal Faraday response [23]. We stress that
this polarization response is a feature of the TFE itself. Up to
this point we deal with isotropic materials without free carri-
ers, so without the TME contribution there is no Faraday /Kerr
rotation at all (at normal incidence). This is also immediately
verified upon inspection of Egs. (10) and (12), which yield
zero for 5, and ry, if P3 remains zero and accordingly the
Faraday/Kerr rotation vanishes.

For a quantitative discussion we plot in Fig. 1 the mag-
nitude of the topological Faraday/Kerr angle against the
dielectric mismatch of the layers with fixed ¢,,; = 1 (vacuum).
In the case of dielectrically matched layers we restore the
initial prediction of the TFE, which is ~90° for the Kerr angle
and a Faraday angle equal to «/2 for a single interface [10]
(only when g,.1» = 1).

For nonzero dielectric mismatch the rotation angles contin-
uously detune to different values. Within reasonable physical
limits (g,.1/&,2 < 1) the Faraday angle can only be < «/2 and
decreases with increasing dielectric constants. In reflection
geometry this produces systematically smaller Kerr angles
values, which rapidly approach zero (the —180° values the
well-known phase jump upon reflection off media with higher
optical density). The physical reason for this behavior is read-
ily understood. For the dielectrically matched case there is no
regular reflection.! The TME term couples an E; component
to the transmitted £, , which gives rise to Faraday rotation,

"More accurately, the sheer existence of a magnetoelectric ef-
fect already introduces an impedance mismatch between the two
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FIG. 2. Top: General layer-stack for two interfaces. The contri-
bution from TME is indicated by the magnetoelectric polarization
P;, which can only be 0 (no TME contribution) or 1/2 (TME con-
tribution) [10]. Bottom: Faraday rotation through two interfaces in
slab geometry for different combinations of permittivities of all three
layers. Layers one and three are taken to be topologically trivial
(P; = 0), layer two hosts the TME (P; = %) with its permittivity set
to 10.

the magnitude of which is set by the coupling constant of
E| and E;. To maintain the continuity of the electric field at
the interface a component of —FE needs to be simultaneously
reflected. Since there is no other reflection, this results in a
Kerr angle of —90°.

However, the magnitude of the reflected —E is rather
small. With dielectric mismatch there is a component of E |
reflected, which rapidly increases with increasing dielectric
mismatch, effectively rotating the plane of polarization back
to the incident polarization state. With part of the incident
E, now reflected, the magnitude of the transmitted portion
of E, decreases. Since the transmission factors #; and 7,,
scale with ¢, ,, while 7y, and 1, scale with /¢, ,, this results
in a continuously decreasing rotation angle with increasing
&rq and vice versa, obviously impacting the Kerr angle. In
summary, while the TME is quantized in units of «, the TFE
is not quantized at all and in fact can take different values
depending on the exact dielectric mismatch.

After having discussed the fundamentals, we will now as-
sess the experimentally more relevant transmission through
a slab geometry as depicted in Fig. 2. We here follow a

materials leading to a regular reflection even with matching permit-
tivities and permeabilities. In case of the TME, this contribution is
scaling with & (11) [while the rotation-driving contribution scales
with o (12)] and therefore is very small.

more general approach to the total rotation after transmission
through two interfaces:

(EI’J_> - TbT (Ei,J_)

= a

Ey )  ——\Ei
(tss,atss,b - tsp,atsp,b) Ei,L
+(tss,a tsp,b + txp,a tss,b) Ei,ll

_(tss,a tsp,b + tsp,a tss,b) Ei,J_
+(tss,atxs,b - tsp,atsp,b) Ei,II

In order to preserve the initial rotation angle

!
t‘vs,a tsp,b + tsp,a tsx,h =0 (18)

must hold.
For a symmetric configuration, the transmission coeffi-
cients can be represented as

A=A, =A,
lss,a = 3 8r_ﬂ< Fra + 8r!b>
AY pra \V Hra V Krb
4 [e
tsp,az__ e (P3b_P3a)Ol
& & &
tss,bz \/ rb (\/ r,a +\/ r,b)
Mr.b Mr.a Mr,b
4 Erb
tipp = — [ —— (P35 — P3 o),
i A Mrb ¢
which leads to
4 gragrb <\/8ra \/grb>
Lysalsph = —— — + :
e A2 \/Mra Mrb Mra Mrp
“(Psp— Py o)
tsp,a tss,b = - tss,a tsp,b

and Eq. (18) is always valid, which reproduces the Beenakker
argument that the TME contributions should cancel [19].

For nonidentical impedance mismatch at the two interfaces
we obtain, again, a continuous evolution of the Faraday rota-
tion away from zero values, as plotted in Fig. 2 for ¢,, = 10.
The general trend is an increase of the Faraday rotation angle
with increasing impedance mismatch, capping at the expected
value for a single interface when ¢, 1,3 becomes very large.
The sign of the rotation angle is entirely determined by the
mismatch ratios. As main result, we again obtain that there is
no universal topologically defined quantized Faraday rotation.

For the Kerr rotation, only the interface on which the wave
is reflected matters in the thin film approximation and no fur-
ther insight is gained. Any additional interfaces do not add to
the absolute value of rotation, since any individual interface,
which is passed twice but in different directions, can be treated
as two interfaces with symmetrical layer stack, for which the
total rotation vanishes.

As a closing remark, we point out that while we restrict
the discussion in this paper to nonmagnetic systems, the ob-
tained results implicate that magnetooptical detection of a
potential TME contribution in 3D quantum anomalous spin
Hall systems is outright impractical. Set apart from the fact
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that any TME contribution is going to be vanishingly small
against a ferromagnetic magnetization to begin with, the re-
sulting impedance mismatch between the ferromagnetic and
nonmagnetic layers is enormous. From the above it is then im-
mediately clear that the magnetooptical response is likewise
going to be dominated by the impedance mismatch and any
TFE signal is again not quantized and extremely small against
the regular ferromagnetic magnetooptical contribution, likely
below any available practical detection threshold.

B. Residual bulk carrier contribution

Up to this point the impact of itinerant carriers on the mag-
netooptical response has been neglected. This is a common
approximation in the bulk of the theoretical literature [10,15],
but does not very well resemble the experimental reality. All
experimentally available TI systems host a finite amount of
bulk carriers. Even excellent materials require the control of
a gate [24] or need to be probed at mK temperatures [13] to
not be dominated in their physical response by the residual
bulk carriers. For the magnetooptical response of the TME
we have found the impedance mismatch of the layers to be
decisive. As a general statement, the influence of itinerant
carriers on the continuity conditions of the fields at the inter-
face is striking even for very low carrier concentrations (and
completely dominates already at mediocre concentrations).
This is particularly true in the thin film limit, for which one
often neglects the dielectric background of the layer altogether
[16]. It is therefore likely that any realistic (i.e., quantitative)
model has to take itinerant carriers into account.

To model the impact of residual bulk carriers we follow the
well-established literature [25] and add the TME terms to the
formalism. For the sake of clarity we briefly summarize the
derivation instead of just giving the result. The current density
J connects to the electric field E via Ohm’s law

j=oE (19)

through the conductivity tensor o. The tensor character of
the conductivity arises from the anisotropy that is induced by
the presence of a static magnetic field By needed to break
time-reversal symmetry, a requirement for the TME to be
observable.> We assume isotropic media and align By along
the z axis, which we further take to be normal to our sample
(i.e., Faraday geometry). The conductivity tensor o then takes
the form

O = | —Oxy Oxx 0 (20)

without loss of generality. Using this, we define the general-
ized dielectric tensor &

e=gl+—o (21)

2If this is achieved by other means, the situation simplifies, but
since all existing experimental work employed magnetic fields to
break time-reversal symmetry, we consider the more general sce-
nario.

with relative permittivity &, that contains the contribution of
all nonitinerant carriers, unity matrix [, frequency of light
w, and vacuum permittivity &p. In the given geometry the
dielectric tensor then takes the explicit form

Exx &y O
E=1 &y Exx 01, (22)

which is commonly labeled as gyrotropic dielectric tensor and
for which the components take the explicit form

i
Exx = &r + Oxx (23)
wE(
i
Exy = Oxy (24)
) wey
i
&z = & + —— 0. (25)
wE

From Egs. (8)—(12) it is evident that the square root of
the dielectric function is required for the derivation of the
transmission/reflection matrix. We hence need to calculate the
corresponding square root matrix, which satisfies the equation

y’=¢. (26)

For our choice of coordinates the solution to this equa-
tion is

Vax Vxy 0
Z =\ Vo Vxx 0 (27)
0 0
with the components
1
Vax = E(\/Exx - igxy + \/8xx + igxy) (28)
i - .
Yy = E(\/gxx — 18y — \/Sxx + lgxy) (29)

Vz = \/‘9_22 (30)

We then perform the same derivation as in Sec. IT A, but
with the complex dielectric function matrix. The derivation
is shown in detail in Appendix A and finally yields for the
resulting transmission and reflection matrix elements:

2
1 1
A= — Vxx,a + ./ — Yxx,b
Ma b
2
1 1
+ - yxy,a + - )/xy,b + 2(P3,b - P3,a)a (31)
Ma Hb
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2 1

Iss = tpp

tip = —tps

1, o, 1
= - - - xy,atx xx,a¥Vxx 2P _Ra xy,a 32
Ao Vo (nyﬁm,a)ﬂ/ﬂb (VeraVard + VixaVaes) + 2(Psp = Ps.a)Viya & (32)
2 1 1
=_ - (%\x bYxy,a — Yxx,aYxy,b ) 2(P3h_P3 a)yxxaa (33)

Tss = rpp— ‘[ yxva ‘[ )’va—Z(Pab—P%a)Ol ‘I yxya 1 nyb+2(P3b_P3a)a

2
+//La Viva — W — Yax hi| (34
2 1 [1
Fsp = I'ps ZZ H_ E(Vxx,byxy,a - Vxx,a]/xy,b) - 2(P3,b - P3,a)yxx,a ag. (35)

For a more quantitative discussion on the impact of residual
bulk carriers we need to model the free carrier conductivity.
A widely applied approach for the analysis of the infrared
spectral response of free carriers is the Drude model. For the
degenerate case (i.e., electrochemical potential resides in the
conduction band) the Drude model actually reproduces the
analytical form obtained from the Boltzmann transport equa-
tion in relaxation time approximation [25], and will therefore
generally be a good starting point for experiments on the BiSe
material family. It is further rather successful upon describing
the sub-THz ac transport response in the diffusive regime for
wide class of materials [25]. We emphasize that our goal is
not to find a quantitative description for the most general
case but rather to establish general trends. Conductivities ob-
tained from more powerful models can always be inserted into
Eqgs. (31)-(35).

In the Drude model, the components of o take the follow-
ing form:

ne*t* 1
O = > (36)
m 1+ (w.t*)
ne*t* w.T* 37)
g =
Xy m 1+(w(_[*)2
2%
o, =1 (38)
m

with carrier concentration n, electron charge e, effective scat-
tering time 7* = 7 /(1 — iwt) and scattering time t, effective
mass m, and cyclotron frequency w, = eB/m.

We first briefly review the well-established free carrier
response of a system without a TME contribution (for an
extensive review see Ref. [25]), in order to clearly work out
the difference in the magnetooptical response if a TME term
is present. We consider a stratified three-layer system in which
the active film is encapsulated between two layers of vacuum
in Faraday geometry. The permittivity in the second (active)
layer is deliberately set to 1, which yields the contribution of
free carriers only, neglecting any lattice background. We set
the effective mass at m = 0.1myg, which is on the order of mag-
nitude for typical TI materials [14], mg as free electron mass.
Similarly, the choice for the scattering time is motivated by the

(

reported experimental values of the carrier mobility u in HgTe

samples (high 10° cm?/Vs) [13,26,27] and Bi2Se3 samples

(3800 cm?/Vs) [14], using the relationship T = pm/e.
Starting without external magnetic field, Fig. 3 shows the

ne_ 5],

evolution of the plasma edge, described by w, = |/ 5=

The smeared-out edge at low frequencies corresponds to the
low-frequency limit of the Drude approximation (wt < 1).In
this regime, ¢(w) is purely imaginary, which results in finite
transmission through the interface.® At higher frequencies the
edge becomes sharper as it approaches the high-frequency
limit (wt > 1), for which g(w) takes real values. In this
limit, two regions arise: For o < w), the dielectric function
is real valued negative and accordingly the incident EM wave
is practically completely reflected. For o > w), £(w) is real
valued positive, which results in finite transmission. In the
case of our modeled permittivities of ¢, = 1 of all contributing
layers, this results in nearly perfect transmission.

For the evaluation of the free carrier optical response in
external magnetic field, we set the carrier concentration to n =
6 x 10" cm—3, which matches the residual bulk carrier con-
centration in experimentally available high-quality TI films
[24,26,27]. Figure 4 shows the cyclotron resonance proper-
ties for the first interface of the three-layer system. We first
discuss the properties of the cyclotron active circular mode ¢_
and the cyclotron inactive mode ¢, displayed in the panels
of Figs. 4(a) and 4(b), respectively. The zero value of the
dielectric function traces the evolution of the effective plasma
frequency w), with external magnetic field. This follows from
the definition of w), for zero field, for which the real part of
the dielectric function vanishes for v = w,,.

It is instructive to first consider the lossless case for which
T — 00 (no scattering occurs). In this limit, 7* = i/w and
as a result o, is purely imaginary and o,, purely real [see
Eqgs. (38)]. According to Eqgs. (25) this results in a purely real
&xy and a purely imaginary &y, which means in this limit the
cyclotron modes €4 = &,, = igy, are both purely real.

3The transmission through a layer of finite thickness generally
would depend on the layer thickness, which is ignored here because
of thin film approximation.
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FIG. 3. Normalized transmission through the first interface of the
three-layer systems dependent from multiple orders of magnitude of
carrier concentrations in the second layer and the frequency of the
incident electromagnetic wave. The normalization is relative to the
incident power density in the first layer for each data point.

This implies that transmission of the cyclotron inactive
mode through the interface is only possible if w > wj. For
the active mode, an additional transmission region occurs for
o < w. < wy,. From these considerations it is immediately
obvious that close to w,, for ® < w, the cyclotron active mode
&_ will dominate the transmission signal and vice versa, for
o > w, transmission of the cyclotron inactive mode &, will.
This is also reflected in the total transmission intensity, which
we show in Fig. 4(c) for finite 7.

If 7 is finite, the cyclotron resonance is damped and the
cyclotron active mode takes the value zero at w,. Further, the
nonvanishing imaginary part of the dielectric function results
in a positive real part of the refractive index even in the regions

1.2 s 12
; , 0.8 g
0.8 | 0+ 0.8 0.6 E
N 0.4 &
0.4 - N-2 0.4 .5 <
Q 14 B

3 0.0 0.0° ‘0.0

2 () (©) _
()]
3 12 4 12 40 9
0.8 2 0.8 20 g
o L
0.4 '—2 0.4 -20 %
©
4 ©
0.0 0.0' 405

(b) (d)

w/wp

FIG. 4. Cyclotron resonance properties for linearly polarized in-
cident EM wave. (a), (b) Real part of dielectric function in circular
basis &4 = &, Eiey,. (c) Normalized transmission through the first
interface. (d) Faraday rotation after transmission through the first
interface. External magnetic field is along positive z axis. Simulation
performed without TME contribution.

where Re(e1) < 0, which enables propagation of the mode.
This can be clearly seen in Fig. 4(c): In Re(e+) < O regions
the transmission is reduced compared to Re(ex) > 0 regions.
The total transmission in these regions, however, does not
completely go to zero, because of the nonvanishing imaginary
part and partly because the other mode can still be transmitted
in this regime. Even if the real part of the dielectric function in
both cyclotron modes is negative, there is still finite transmis-
sion due to the contribution of the respective imaginary parts
of e+.

With these considerations in mind we now inspect carrier-
induced Faraday rotation upon an incident linearly s-polarized
EM wave [E;, = (1, 0)]. From Eq. (2) we obtain for the Fara-
day angle O :

Or = Relarctan(—t,p/t5)]. 39)

Without TME contribution, Egs. (31) reduce upon trans-
mission through the first interface to

Iy = 2 (1 + Vxx) (40)

Isp = -2 Vxy (41)

with
1
Vix = 5(\/5+ VEo) (42)
= (V). (43)

The resulting Faraday rotation is shown in Fig. 4(d). It
resembles the different transmission regions of the respec-
tive cyclotron modes and results in huge rotation signals that
approach £45° in the vicinity of w, for the lossless case.
Comparing the resulting rotation angles with the expected
rotation from the TME contribution, which is of order « /2, it
immediately follows that for an unambiguous assignment of
the signal to a TME contribution one has to measure far above
the cyclotron resonance frequency. To quantify this further, we
plot out the respective region of Fig. 4(d) on more useful scale
for comparison to TME induced Faraday rotation in Fig. 5(a).
From this plot it becomes clear that the free carrier-induced
Faraday rotation signal significantly contributes on the scale
of the magnitude of the TME-induced rotation.

We finally turn to the discussion of the impact of the TME
contribution on the magnetooptical response in the presence
of itinerant carriers. We keep all parameters but the P; value
of the active layer constant, which we hence set to P3 ;, = %,
corresponding to the scenario of a 3D TI film. Figures 5(b) and
5(c) summarize the resulting TME-induced Faraday rotation
upon passing through the first interface of the stack. For detec-
tion frequencies w in the vicinity of w, the Faraday rotation is
huge and completely dominated by the free (i.e., bulk) carrier
response. The presence of the TME contribution modifies the
overall response slightly, but the difference is very small. An
experimental distinction between the case with and without
TME contribution would require accurate knowledge of the
sample properties, which is most probably beyond realistic
scenarios. Most importantly, there is no unique feature an
experimentalist could look for, apart from some minor mag-
netooptical response effects that depend on sample details.
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FIG. 5. Comparison of Faraday rotation with and without TME contribution. Rotation (a) without [and (b) with] TME contribution after
the first interface. For noticeable difference the resonances are excluded. (c¢) Difference in rotation between simulation with and without TME
contribution over wide frequency range, including resonances, after the first interface. As a guide to the eye the value for «/2 is included.
(d) Rotation with TME contribution after both interfaces. (e) Difference in rotation between simulation with and without TME contribution

over wide frequency range, including resonances, after both interfaces.

At large frequencies w > w,, the result of the clean di-
electric limit is reproduced and the Faraday rotation angle
approaches «/2 due to the fact that we set ¢, = 1 for the
purposes of this discussion. For the more realistic scenario of
& # 1, the Faraday rotation 6 will approach the value for
the previously derived scenario of the clean dielectric limit,
taking continuous values in the range o/2 > 6y > 0. The
total Faraday rotation upon passing through the entire stack
is depicted in Figs. 5(d) and 5(e). At this point we recognize
an interesting difference with the clean dielectric limit. For
o > o, the TME-induced contributions to 6y again cancel
out. In contrast, there is now a net 6 resulting from the TME
in the spectral region close to w.. This stems from the fact
that the two interfaces are no longer completely antisymmetric
due to the presence of the perpendicular magnetic field and its
impact on ¢. This net signal is, however, very small (order
10~%°) and certainly beyond the capabilities of contemporary
FIR polarimeters.

Summarizing, just like for the case of the clean dielectric
limit, the resulting TME-induced 6F is neither quantized nor
provides a unique and unambiguously assignable experimen-
tal feature. In terms of magnitude of the rotation, the net signal
is very small. A clear designation of its origin will require an
accurate referencing to the situation without TME contribu-
tion, which is in our assessment practically not feasible.

C. ac quantum Hall effect

Finally, we discuss how the ac quantum Hall effect is dif-
ferent from a TME response and how the above findings line
up with the fact that there are reports of an experimental obser-

vation of a universal topological Faraday effect. To this end,
we first revisit the Faraday effect arising from 2D (quantum
well) systems in general, which is most easily done in circular
basis for the transmittivity 4 = #, = if,. For sake of simplicity
and direct comparison, we again consider the geometry dis-
cussed in Fig. 2 with the 2D active layer sandwiched between
two layers of vacuum. Under normal incidence, the Fresnel
coefficients of the 2D system then take the form [28]

2

N 44
2+Z()O’i ( )

I+
in which Z, is the free space impedance and o1 = o, £ ioyy
the sheet conductivity. The latter is again a function of the
frequency w. The decisive difference with respect to the pre-
vious derivation is that this formula explicitly assumes the 2D
situation, which means there is no bulk and accordingly also
no associated bulk magnetoelectric contribution. The induced
Faraday angle is hence given in the usual fashion by

1 1

1, ty —t_ o
tanOp = > = —i = =—i[ —= ). @9

ty t++t_ Z+:

Substituting Eq. (44) into Eq. (45) we obtain
Zo(o- —04)

tan O = —i—0 0= " T 46
d 4+ Zy(o-+o0y) (40)
Zyoy
=% @7)
2+ZOUxx

This is a general result and does not include any particular
approximations. For any realistic experimental scenario one
will of course have to account for the presence of the dielectric

013068-8



DIMINISHING TOPOLOGICAL FARADAY EFFECT ...

PHYSICAL REVIEW RESEARCH 6, 013068 (2024)

contribution of the substrate and potentially the influence of
a metal gate (if present). The former is straightforward and
will just enter the substrate index of refraction into the de-
nominator of Eq. (47). The latter is more critical and crucially
depends on the gate details. For the sake of clarity of the
argument we neglect these influences here.

In the dc quantum Hall regime, we find the conductances
0w =0and oy, =v- <, withv=1,2,3,..., in which e is
the bare electron charge and / the Planck constant. In the
low-frequency limit o (w) — o(w = 0), and the Faraday ef-
fect is merely an optical probe of the ac quantum Hall effect.
Entering these approximations into Eq. (47), we finally obtain

UZ() 62
2h

This result was first predicted in the seminal work of Volkov
and Mikhailov [29] and resembles what is generally referred
to as the ac quantum Hall effect. Two conclusions arise im-
mediately upon comparing to the TME. First, even in the
hypothetical limit of very clean systems for which the approx-
imation of the clean dielectric limit holds, the observation of a
Faraday rotation of integral multiples of « is not unequivocal
evidence of the existence of a TME without further experi-
mental insight.* The second conclusion arises upon inspecting
the employed geometry in the published literature on the TFE.
All these works were done in clean Faraday geometry. For the
TME this resembles the situation discussed in Fig. 2. From the
considerations of the previous sections it is clear that a TME
can only induce negligibly small Faraday angles and that in
this geometry only an ac Hall contribution can be a potential
candidate for the origin of the observed signal, as was already
pointed out by Beenakker [19].

Apart from this, a few comments on the experimental situ-
ation must be made. Despite the fundamental character of the
quantum Hall effect, there is remarkably little work on the dy-
namical (optical) Hall conductivity oy,(w), and even more so
in the THz frequency region. The existing experimental work
in the latter regime demonstrates plateaulike and steplike fea-
tures in the Faraday rotation angle, but these are not quantized
in units of o and are clearly superimposed on the spectrally
close cyclotron resonance [30,31]. The situation is different in
the microwave spectral region, for which the probing radiation
is many (order 10) linewidths below cyclotron resonance, but
also here the approximation o (w) — o (w = 0) does not hold
[32,33] and the dynamic scaling behavior of o is subject to
debate [34-36].

The physical origins of the ac QHE in 2D electron systems
and the TME in 3D TIs are obviously very different. In par-
ticular, the notion of a bulk bears no relevance in the former
case. It is, however, surprising that the alleged agreement
with the low-frequency limit appears to be so much better in
3D TI systems. In practice, the currently available samples
are all in the thin film limit for optical measurements and a

tan 0y = —

= —va. (48)

“This statement is equally true if one takes the impact of the
substrate into account, as has been done by various authors. The
procedure changes the absolute value of the Faraday angle the over-
all sample stack yields, but otherwise the line of argumentation is
unchanged.

distinction between ac QHE and TME cannot be acquired in
a methodological clean fashion from the optical data alone.
The main difference between the TME and the ac QHE is in
the geometry of the magnetic field, with which the surface
states are gapped out [12]. In a Faraday geometry of a thin
film 3D TI, no net Faraday rotation will result from the TME,
even if the TME is present. On a more fundamental level the
problem is even deeper. For the Faraday geometry employed
in the existing experimental publications [16—18], no uniform
magnetoelectric polarization P; can be formally defined [12].
If the notion of a TME is then still useful on a conceptual level
remains at least doubtful.

III. CONCLUSION

We have shown that there is no universally quantized TFE
in a 3D TI for which a TME is present. The experimentally ob-
servable Faraday rotation angle depends on the exact interplay
of TME polarization and nontopologically induced impedance
mismatch, and will generally be very small. The vacuum
angle of «/2 represents the upper boundary and will rapidly
approach zero as the regular impedance mismatch sets in. We
emphasize that it is also not simply additive as was recently
assumed in the experimental analysis of the magnetooptical
response of ferromagnetic anomalous quantum Hall samples
[23], for which the TFE contribution actually is vanishingly
small. A situation in which only one surface induces an optical
polarization rotation in the presence of a TME cannot occur,
as we have conclusively shown. The very concept of a TME in
terms of a bulk polarization is only meaningful in the setting
of a 3D TI. This necessitates that a beam traversing through a
sample passes through at least two optically active surfaces.

Overall, the actual experimental situation is such that there
is no unambiguously clear assignable TME signature in the
magnetooptical response in the same spirit as a quantized Hall
conductance in a dc transport experiment. The decomposition
of the net Faraday signal rather requires further detailed input
of the material properties.

Methodologically, the TFE and the ac quantum Hall effect
are very difficult to disentangle as both provide a magne-
tooptical response only at the interfaces. This is particularly
true for thin films, in which THz experiments sample the
response of top and bottom surfaces of the TI active material
simultaneously. The last constraint may be relaxed for thicker
layers [37], which also allow for the resolution of reflexes
coming from different surfaces of the layer hosting the TME
in time-domain optical experiments.

For the existing experimental reports on the observation of
a TFE, it is certainly possible that the signal stems from the
optical response of a dc quantized Hall conductance, but from
this one cannot infer that a TME is also present. The TME
and the Hall conductance are evidently closely related effects
in 3D TIs, but the latter does not necessitate the presence of
the former. A notable fact is that the key experimental signa-
tures were all observed at high (several Tesla) magnetic fields
[16—18]. For the TME in a 3D TI this should not be necessary.
It is only required to break time-reversal symmetry, which a
small magnetic field also achieves. This raises a fundamental
question: At these high magnetic fields, is the system under
investigation still a 3D TI or has the magnetic field driven

013068-9



BERGER, BAYER, MOLENKAMP, AND KIESSLING

PHYSICAL REVIEW RESEARCH 6, 013068 (2024)

the system already into the quantum Hall state, for which
the edge channels may well be composed of bulk states? The
Faraday rotation signal of a thin film sample will not be able
to distinguish between the two situations, as we show in the
ac quantum Hall section.

We conclude that from the existing data no clear answer
can be given to this question. It will require further work, both
experimental and theoretical, to clearly establish where and
how the this transition occurs and how the presence of the
TME can be unambiguously pinned down in a nonmagnetic
sample. This is notably different for ferromagnetic materials
in the quantum anomalous Hall regime. Here, the scaling
behavior of the flow diagram provides a clear experimental
signature for the presence or absence of a TME [38—40].5 It is
desirable to establish equally clear experimental fingerprints
also for the case of realistic nonmagnetic TI materials.
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APPENDIX A: DERIVATION OF TRANSMISSION
MATRIX ELEMENTS

Notation: All bold printed symbols are vectors. If the same
symbol is printed regular, it describes the absolute value of
this vector. Matrix symbols are underlined.

The goal of this derivation is to describe the transmission
through an arbitrary interface between two materials a and
b and subsequently calculate the polarization state of the
electromagnetic wave after transmission. The easiest way to
achieve this is using the Jones formalism. A great advantage
of this formalism is that even complex interfaces can be de-
scribed as matrices. The interaction of the incident light with
this interface is easily evaluated by calculating the matrix
product of the transmission matrix 7 and the vector of the
incident EM wave.

E; E; |
’ =T ’ Al
(En> _<Enn> A
I8 t
T=(" SP). (A2)
- (tps Ipp

The indices ¢ and i stand for transmitted and incident, E for
electric field, L and || for the projections perpendicular and
parallel to the incident plane.

To derive the elements of T, the actual components of
incident, reflected, and transmitted electric fields of an EM

5In magnetic 3D TTIs the transition from the v = +1 to the v = —1
(in units of e? /h) surface transport conductance (or vice versa) can be
experimentally tuned by flipping the direction of the magnetization.
This is not directly possible in nonmagnetic 3D TIs and as a result
the scaling behavior of the flow diagram does not provide the same
experimental access in nonmagnetic materials as it does for ferro-
magnetic samples.

y-axis (interface) k
t

P2

z-axis

material b
€p, Up, Op

material a
Eq Ha, g

FIG. 6. Incident, reflected and transmitted EM wave at an inter-
face, represented by the x-y plane, between two materials a and b.
Only wave vector k and the electric field E of the EM wave are shown
here. The magnetic field H can be described by k and E, see main
text.

wave at an interface need to be defined first, see Fig. 6. The
corresponding components are given in (A3).

E;\

E, = | E;jcosg,

—Ei7|| sin Da
Er,J_

_Er,|| COS @q

—E, | sing,
E

E, = E; | cosqyp

—E; | sing,
0

sin @,

COS ¢,

0

sin ¢,

—Cos @,

0
sin ¢y
COS @)

k[ =k[

—E;

E; | cosg,
—E; | sing,
—E;
_Er,i COS @4

Lyl Sin Pa

k[XE[Zk

k. xE, =k

ki xE, =k (A3)

_E[,J_ sin ©Op
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Additionally, the continuity conditions for EM fields at an 1
interface will be important: = Uiy . |—kH (A11)
Er€oMr Mo
n- D = 0 n- B = 0
(A4)

nxE=0 nxH=0. ee0 1
= H= | _ (kxE). (A12)

Especially the “n x ...” equations are of interest here. But let Irito K
us take a step back, first. Starting with Maxwell’s equation So, as should be well known, one can describe H in terms of
oH 5 k x E. g, and u, are the relative permittivity and permeability,

VxE= THrHto " (A5) respectively.

With that, let us focus on (A4) again. To fully describe

and the definition of the electric £ and magnetic field H the fields at the interface between two different materials the

E = E, ¢®—on (A6) topological EM constitutive equations need to be taken into
account:
H = H,y ®=, A7
0 (A7) D = ¢,60E — 2Py |-2B
both derivatives needed in (A5) can be calculated and are Ho (A13)
given by 1 &0
VXE =ik xE Mr ko Ko
oH _ (A8) The TME manifests as collinear coupling between electric and
Y —lwH, magnetic fields, formally represented in the second summands

on the right-hand side of (A13).
With incident, reflected and transmitted fields, from (A4)
follows

which results in following relation between E and H, combin-
ing (AS) and (A8) together:

kxE = ppowH (A9) nxE;i+nxE,=nxE, (Al4)

= pribock H (A10) nxH;+nxH,=nxH,. (A15)

Combining this with (A3) and (A12) results in

—E; | cos ¢, E, | cos g, —E; ) cosgy
E; . + E. — E 1 =0
0 0 0
—E; | cosg, E,.  cosg, —E, | cosgp
Era ’ Erb ’
—Ei + —E; - —E (A16)
Mr,a 0 0 Mrb 0
—E; ) cos g, E, | cos g, —E; | cos gy
+2P; E; 1 + E. . —2Pa E; 1 =0.
0 0 0

In the most generalized case ¢ is a matrix. For Faraday configuration (external magnetic field parallel to beam propagation) and
assuming beam propagation is along z axis (as discussed in the main paper) the resulting dielectric matrix takes the form [25]:

Exx &y O
e=|—-&y &x O0]. (A17)
0 0 e

Since the square root of this matrix is needed for (A16), let us define a new matrix satisfying the condition

yi=¢ (A18)
For given geometry this matrix has the same form as ¢
Vxx Yxy 0
y=|—% Yuo 0] (A19)
0 0 Vzz

For further information about the components of y refer to Eq. (30).

013068-11



BERGER, BAYER, MOLENKAMP, AND KIESSLING PHYSICAL REVIEW RESEARCH 6, 013068 (2024)

Performing the matrix product of (A19) in (A16) leads to

0= (=Ejj + Ey) cos @q + E; | cos gy (A20)
O=E  +E..—E (A21)
1 1
0= M_[yxx,a(Er,J_ - Ei,J_) COS Py — Vxy.a (Ei,|| + Er,||)] + E[VXX’I;ELJ_ COS ¢y + ny,bEt,H]
+ 2P a(E. — E;))cos @, + 2 Pspa Ep j cos g, (A22)
1 1
0= I [~7eva(Er s — Ei1)c08 9o = Viva(Ei + Ery)] = m [Ver.pEr, 1 €OS @5 — Vax ]
na rb
+2P 0(E; L +E.1)—2P,aF . (A23)

Evaluating the dependencies of E,. |, E,., E; |, and E;  from E; | and E; | with Table I and Cramer’s rule leads directly to
the elements of 7', after all (A1) is still valid, which means:

E; | tuEi | +tpE
— ) A A24
(Et II) (tpsEi,i + tppEi,II ( )

By sorting the resulting dependencies by E; | and E; |, one can easily identify the matrix elements by comparing coefficients

A Mr.a ra

2 1 1
Isp = — (Vxx bYxy,a — Vxx,aVx ,b) —2a Vxx,a €OS (Pb(PS,b - P3,a)
AN tra (V [hrb e g
2 1 1
tps = COS @q Ccos (pb()/xx,ayxy,b - Vxx,hyxy,a) +2a yxx,a(P3,b - P3,a)
A Mra Mrb

2 1 1 [ 1
tpp = Z ( COS Qg (VXZXﬂ + yxzy,a) + cos gob(yxx,ayxx,b + yxy,ayxy,b) + 2a %(y,a(ﬂ,b - P3,a)>
Mra Mra Mrb

2 1 1 [ 1
tyy = — ( Cos %(szx,a + szy,g) + P Cos (pa(yxx,ayxx,b + ny,ayxy,b) +2«a Vxy,a €OS ¢4 COS wb(P3,b - P3,a)>
r,b

(A25)

cOoS @p 1
(,/ Yxy,a COS @4 + ‘/ nyb005<ﬂb+20l(P3b—P3 a)) (d Vay,a + Vs 2 COS(ﬂb(Ps,b—P3,a)>
COS @q Mrb
cos gob
yxx aCOS @ + yxx »COS @y —Vira yxx b (A26)
r,a COS (pll

Of course, the same method can be employed to get the elements of the reflection matrix R, if one wanted to investigate the case
of reflective geometry. The resulting elements, with A from (A26), are

1 1 1
~ — Vxy,aCOS Qg — | — Vxy,b COSQp — 2a (P3,b - P3,a)
A Mr,a Mr,b
cos (pb 1
— Vxva T —Vxy,b +2a cos (Pb(P3,b - P3,a)
Mr,a COos (pa Mr,b
cos (pb 1
Vxx aCOS Qg — yxx b COS @y — Vxx,a — Vxx,b
r,a Cos (pa MHrb
sp— ! Yxx,bVxy,a — Vxx,aVxy,b —2a Vxx,a COS (Pb(PS b — P3,a)
" AV tra Mrb
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2 |1 ( [ 1
Fps = — COS ¢p
Mr,a Mrp

Vxxa%\yb) 2a Vxxa(P3b_P3a))

Tpp = — |:<” yxyacosgoa ‘[ yxybcos¢b+2a(P3b_P3a)>

cos ga;,
— Vxy.a
ra

cos %
X _(

We now check for internal consistency with the results
obtained for the clean dielectric limit. Therefore, we assume
that no carriers are present, so that the whole contribution
of the conductivity matrix vanishes and the dielectric func-
tion is a diagonal matrix, which only has the entries ¢,, see
Egs. (22)—(25). This reduces to

Vxx :\/E_r

Yy = 0.

Yxx,a COS Qq +

(A28)

(A29)

For the same geometry as in Sec. IT A, we get for one inter-
face (trivial-topological) the transmission matrix elements:

2 Era Era 8rb)
ty =t,, = — — + ! (A30)
w A \/Mra (\/Mr,a \/Mr,h
Era
Lsp = — Ips =__ (P3h_P3a)a (A31)

8ra Erb 2
( / / ) + QWP — Poa)”,  (A32)
Mra Mr,b

which is just a reproduction of matrix elements as (8)—(9).
Thus, the same rotation angles result and the total rotation
is zero, the models are consistent. The same holds for the

TABLE I. Field component coefficients.

E.. Ey
(A20) 0 cos (pa
(A21)
(A22) JiVacosg, — 7 Yora + 2P3 40 COS ¢,
(A23) = [7Eyiacosg, + 2Py g Veca
+ E. E
(A20) 0 COS @y
(A21) -1
(A22) ﬁh Yxx,b COS @) \/gyxrvh + 2P0 cos gy
(A23) _\/gyx}\b COS @p — 2P31h06 ﬁrb Yxx.,b
= Ei. Ei
(A20) 0 COS @,
(A21) -1 0
(A22) / t Yir.a COS Qg 7 Vava + 2P0 cos @,
(A23) _\/EVX’V'“ COS ¢, — 2P3_a(¥ \/;yxx,a

[ 1
—Vxyb T 2a cos ‘ph(PS,b - PS,a))
Mr,b
1 1 COoS @p
Vxx,b COS @) Yxx,a
Hr.p Mra COS @q

(A27)

|

reflectivity matrix elements, which can be checked in the same
fashion.

(

APPENDIX B: SUBSTRATE OF FINITE THICKNESS
AND MULTIPLE REFLECTIONS

One may wonder whether accounting for an additional
layer in the simulation emulating the presence of a substrate
of finite thickness could reestablish the universal character of
the TME in the TFE. In order to address this question, we
consider a stack consisting of four layers: vacuum, TI mate-
rial, substrate, vacuum. For a quantitative analysis we limit
ourselves to zero magnetic field, which we will show already
conclusively answers the question. We take ¢, 4, = 10 for
the dielectric constant of the substrate (order of magnitude
of typical semiconductor substrates, e.g., GaAs, CdTe, etc.),
e.r1 = 25 for the bulk dielectric constant of the TI thin film
layer, and set €.yoc = 1 for the remaining vacuum layers.
This corresponds to the setting of a HgTe sample on a CdTe
substrate investigated in vacuum.

In general, we consider the thickness of the TT layer hosting
the TME to be small against the wavelength of the EM wave
(up to 100 nm layer thickness vs. ~0.3 mm wavelength at 1
THz), and therefore treat the TI layer in the thin film limit. For
typical substrate thicknesses this approximation is, however,
not valid. The substrate optical thickness is typically of the
order of a couple of wavelengths for typical TI thin film
samples in THz polarimetry. Assuming that the substrate is
an isotropic dielectric, there is no optical polarization rotation
induced upon traversing through the substrate layer. The finite
thickness will, however, introduce a spatial-temporal phase
to the electric field vector, which modulates the transmitted
(reflected) intensity (the well-known etalon effect) and deter-
mines the magnitude of the electric field vector at the position
of the substrate back interface (and all further interfaces upon
multiple reflections). In general, the observed absolute polar-
ization rotation angle value therefore depends on the thickness
of the substrate.

For comparison with actual experiments, we distinguish
between time-domain and continuous wave (cw) mode of
operation. Time-domain polarimetry experiments enable the
unambiguous distinction of individual internal reflections
passing through the layer stack. Picking out the first trans-
mitted pulse then corresponds to the scenario discussed in the
main text in Sec. IT A.
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FIG. 7. (a) Rotation angle for individual higher-order reflexes
inside a substrate layer of finite thickness after full transmission.
(b) Rotation angle for the superposition up to the nth multiple reflex
inside a substrate layer of finite thickness after full transmission. The
generalized layer stack is shown as inlay as well as the definition of
the reflex index n (reflexes offset for clarity). The dielectric constant
of the TI layer is given by ¢,7; = 25, the substrate &, = 10 and
the remaining layers are set to the value of vacuum &, ,,c = 1.

A cw experiment is usually performed at the etalon max-
imum to maximize the signal intensity on the detector (see,
e.g., Ref. [17]). For the illustration purposes of this Ap-
pendix we therefore discuss absolute values for an example
in which the substrate thickness corresponds to an integral
multiple of the optical wavelength (etalon maximum). For
multiply reflected pulses we add the polarization contribu-
tion of the optically active interfaces, which we calculate
by employing the well-established transfer matrix approach.
The relevant entries of the matrices are given by Egs. (8)—
(12). The resulting rotation angles for higher-order reflexes
n are shown in Fig. 7(a). The rotation angle is always eval-
uated in the final vacuum layer after transmission through
all interfaces. Reflex O is transmitted through all interfaces
without any internal reflection, reflex 1 additionally includes
reflection off the substrate/vacuum interface and then off the
substrate/TI interface, reflex 2 includes two reflections off
each substrate interface, and so on. The individual rotation
angle monotonically increases with reflex index n (modulo

phase jump, which is explained further below) due to the
topological contribution of the substrate/TI interface. For the
cumulated rotation angles, all # electric field vectors are first
added up and then the total rotation angle is calculated (e.g.,
the notation “3 cumulated reflexes” stands for the rotation
angle for the superposition of reflexes 0, 1, 2, and 3). We
emphasize that this is not the same as adding up the individual
rotation angles, due to the exponential reduction in amplitude
for each subsequent internal reflection. Starting from a posi-
tive angle for the pure transmission, which is determined by
the dielectric mismatches between all four layers, the total ro-
tation angle becomes negative and reduces in magnitude when
including the first internal reflection. Considering even more
internal reflections results in an oscillatory behavior of the
angle of total rotation as function of the considered reflexes
n, Fig. 7(b). The cw limit is then described by n — oo, for
which the total rotation approaches zero.

The oscillatory behavior of the rotation angle for higher-
order reflexes is explained by analyzing Eqs, (9)—(12). After
transmission through the vacuum-TI and the TI-substrate
interface both components are positive for the given layer
stack and incident wave vector. Upon reflection off the final
substrate-vacuum interface r;, is zero, because none of these
layers has any topological contribution. Further, the reflection
occurs on an interface from an optically thicker to an optically
thinner medium (&,sub > &;.vac). According to Eq. (11), where
&r,a corresponds to &, qp, I'ss 1S positive while 7, is negative.
Thus, the p component of the electromagnetic wave changes
sign, while the s component does not. The sign change of the
p component does not imply a phase jump in this case, but is
a direct consequence of the choice of coordinate system and
continuity conditions. The derivation of these components in
A is performed for arbitrary angles of incidence and from that
it is obvious that in the limit of normal incidence the p com-
ponent flips sign upon reflection, while the s component does
not. The amplitude of both components is reduced by the same
amount, hence, the magnitude of the angle of rotation does
not change. Analogously, the subsequent reflection off the
substrate-TI interface is from a thinner to a thicker medium,
which now flips the sign of the s component, instead of the
p component. This results in a phase jump of 180° in both
components, a well-known textbook result. Additionally 7y, is
nonzero and adds a topological contribution to the rotation an-
gle. In total, after a full internal reflection inside the substrate
layer, the wave vector is flipped by 180° and rotated an addi-
tional small amount due to the topological contribution from
the substrate-TI interface. For a second full internal reflection
after the first, the signs flip again and another small addi-
tional topological rotation occurs. Each subsequent reflection
overcompensates the rotation of the previous reflection by a
decreasing amount due to the reduction in amplitude, which
results in the pattern shown in Fig. 7, approaching a net
rotation of zero in the limit n — oo.

Summarizing, including more layers in the layer stack
cannot restore the universal character of the TME in the
TFE. Detailed knowledge of the material parameters of all
contributing layers is obligatory to predict the final polariza-
tion for time-domain experiments, and the cw limit the total
rotation angle rapidly approaches zero with increasing reflex
number.
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