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Mastering percolation-like games with deep learning
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Though robustness of networks to random attacks has been widely studied, intentional destruction by an
intelligent agent is not tractable with previous methods. Here we devise a single-player game on a lattice that
mimics the logic of an attacker attempting to destroy a network. The objective of the game is to disable all
nodes in the fewest number of steps. We develop a reinforcement learning approach using deep Q-learning that
is capable of learning to play this game successfully, and in so doing, to optimally attack a network. Because the
learning algorithm is universal, we train agents on different definitions of robustness and compare the learned
strategies. We find that superficially similar definitions of robustness induce different strategies in the trained
agent, implying that optimally attacking or defending a network is sensitive to the particular objective. Our
method provides an approach to understand network robustness, with potential applications to other discrete
processes in disordered systems.
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I. INTRODUCTION

In order for a networked system to be functional, the nodes
need to be connected to one another. Though a small number
of nodes may become disconnected without imperiling the
system’s overall performance; if the paths between nodes no
longer exist on a macroscopic scale, the system will generally
be nonfunctional.

Percolation theory describes this transition from a con-
nected network to a nonconnected one having many small
connected components. Early work on percolation treated the
process of breaking connectivity as thermal, with sequential
node or link failures occurring uniformly at random [1,2],
thereby connecting the new theory of network science with
older work in polymers, fractals and flow in inhomogeneous
media [3–5]. Later, Cohen et al. showed how percolation
theory can be extended to nonrandom attack heuristics [6].

In recent years, there has been increasing interest not just
in how a network responds to node removals under vari-
ous heuristics, but rather attempting to discover the optimal
attack. Attempting to optimize the attack or defense of a
network arises naturally in epidemiology [7–9] and infrastruc-
ture resilience, respectively. The closely related question of
detecting influential nodes in an opinion spreading network
has also been treated as a type of optimal percolation [10–12].
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Machine learning suggests a different approach for opti-
mizing percolation strategy. Instead of defining analytically
tractable heuristics, machine learning methods treat the prob-
lem as a black box, and use the expressive power of multilayer
neural networks to optimize the objective. Deep reinforcement
learning is particularly promising in this regard. The landmark
AlphaGo [13] and AlphaZero [14] projects proved that deep
reinforcement learning is capable of discovering superhuman
strategies for Go, Chess, and other classic board games. Go is
of particular interest for our scenario, as winning the game re-
quires one to create lattice connectivity more effectively than
one’s opponent, and can be analyzed in terms of percolation
[15]. Similarly, recent works in power grid resilience have
used reinforcement learning to discover worst-case scenarios
[16–18].

Here we formulate a simple single-player game over a
square lattice, in which the objective is to disable all of the
nodes in as few steps as possible. The squares of the board
represent nodes of a network, each being connected to its four
nearest neighbors. Each square can be in one of four states:
active (green), inactive (blue), attacked (red), and blocked
(black). At the onset, the nonblack squares form one or more
components based on their network connectivity. At each step,
the player can disable an active node, turning it from green to
red, as shown in Fig. 1. The red squares are functionally equiv-
alent to black squares. This affects the overall connectivity of
the system, and may disconnect a component, turning all its
squares blue. The game ends when all of the components have
turned blue, i.e., lost connectivity.

When defining a percolation-like game, the simplest cri-
terion of membership in the largest connected component is
not useful, as some component will always be largest, and
the game will end only when all nodes have been eliminated.
To cast percolation as a game we begin by introducing two
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FIG. 1. A percolation-like game The aim of the game is to
disconnect the green cells by attacking them (shown in red). If a
component is disconnected from the largest connected component of
green cells it is colored blue. When the largest remaining connected
component of active (green) cells is smaller than one of the inactive
(blue) components, it too becomes inactive and the game is over
(bottom right). For other percolation-like games, see Fig. 2.

distinct game modes, corresponding to different ending crite-
ria: network mode and flow mode.

In network mode [Fig. 2(a)] the nodes are active as long
as they are in the largest connected component, and that
component is larger than the largest of the inactive com-
ponents. This is comparable to the transition in which the
second largest component overtakes the largest component in
standard percolation, which has been utilized for difficult to
measure percolation transitions [19], and divergence of the
second-component size is observed at criticality [20]. With
this objective, the player can win more quickly by keeping the
largest inactive component large, and not try to cause maximal
disconnection at each step.

In flow mode [Fig. 2(b)], we assume a lattice structure and
the condition for remaining active is that the node belong to
a connected component including nodes on both the top and
bottom edges of the lattice. This captures the ability of “cur-
rent” to flow across the lattice, imagining the sites as resistors

and the edges of the lattice as fixed voltage sources. While this
mode assumes a specific physical structure, network mode is
well defined on any topology. Here, we focus on 2D lattice
topologies for simplicity and comparability across modes. The
objective of the game is to make all the nodes disconnected
(shown in blue) in as few moves as possible, see Fig. 1 for
an example game. In contrast to previous work on network
dismantling, which seeks to optimize cumulative efficiency
of the dismantling process [21–24], we focus on objectives
that minimize the steps to completion. Our objectives are thus
more similar to to golf than the two-player competition found
in other percolation-like games such as Hex [25] or Go.

We have tested the game extensively with human players
of all ages, who found its solution to be learnable, though not
trivial. The game can be played freely online [26].

II. RESULTS

Given a well-defined objective such as the percolation-like
games defined above, we train an agent to master the game
using deep convolutional networks and Q-learning, a form of
reinforcement learning. The goal here is to learn a Q function:

Q(s, a), (1)

which encodes the total future reward that can be accrued by
playing an action a in game state s, assuming optimal subse-
quent play. In our setting, s is the current game board, and the
eligible actions a are all squares whose state is alive (green, in
our color scheme). In possession of such a function, the agent
plays according to a greedy strategy, always choosing the best
possible action a∗ in the given game state, namely

a∗ = argmaxa Q(s, a). (2)

We parametrize the (unknown) Q function using a deep
convolutional neural network, which we train for a given game
mode via self-play on randomly initialized n × n game boards
with a range of initial active (green) densities (vis à vis the
parameter p). Because we use convolutional networks, the
same agent can be trained and play on boards of multiple
sizes. In the main text, we highlight results on n = 20, and
we explore other sizes in Supplemental Material, S1 [27].
For details of the neural network architecture and training
algorithm, we refer the reader to Sec. IV.

(a) (b) (c)

FIG. 2. Three percolation-like games. (a) Network. The game ends when the largest component is made smaller than the second largest
component. The dotted squares represent the board state in the step before the final move. The green dots represent the sites that had been
active and the blue dots represent the second largest component. (b) Flow. The game ends when the passage from top to bottom is blocked.
(c) Noodle. The game ends when the ratio of faces (tick marks) to (in)active squares, analogous to the surface area to volume ratio in this
system, exceeds a specified ratio K . This mode will be introduced after the results of network and flow mode are presented.

013067-2



MASTERING PERCOLATION-LIKE GAMES WITH DEEP … PHYSICAL REVIEW RESEARCH 6, 013067 (2024)

(a)

(b)

FIG. 3. Number of steps to completion for agents trained on the
flow task and the network task, compared to random moves, playing
(a) the network mode and (b) the flow mode. As the boards become
more open (higher p), more moves are required to complete the
game. The random curve represents the standard percolation process.
In (a), we see that the flow-trained agent performs poorly on the
network task, while the network-trained agent performs well on both
tasks, see Fig. 5 for further details. Solid lines denote the aver-
age performance over games on 1000 randomly generated 20 × 20
boards with the given probability p, with standard deviation for
error bars.

After training a deep-learning agent for each game mode,
we first analyze their performance on the game mode on
which each was trained (on-task performance). We find that
trained agents significantly outperform random move selec-
tion for both network [Fig. 3(a)] and flow [Fig. 3(b)] modes.
The difference between the trained agents and random play
is not substantial when the initial board is close to the per-
colation threshold (p ≈ 0.6), but their performance diverges
as the sparseness increases (p → 1). This is expected, as near
criticality, the likelihood of a random move ending the game
becomes very high.

Given that Q-learning produces a Q function, which es-
timates the best-case total moves to completion for each
candidate action, we can gain insight into the agent’s strategy
by visualizing the Q value of each square at different stages
of a game. An example for network mode is shown in Fig. 4,
and more examples are presented in Supplemental Material,

FIG. 4. Illustration of game play in terms of Q values. For each
stage of the game (top row), the trained agent calculates a Q value,
corresponding to the move that minimizes the objective, as shown in
the bottom row. While for the first move, the agent identifies several
potentially good moves, the second move has exactly two moves,
either of which will end the game. Example shown for agent playing
the network mode with initial open spaces of 0.75. See Supplemental
Material [27], Figs. S2–S16, for more examples.

Figs. S2–S16 [27]. We see that the agent frequently identifies
multiple moves of essentially equal value. We also find that it
correctly learns to maximize the largest inactive component
size as the most effective path to success in this mode. In
particular the agent correctly identifies choke points bridging
large active (green) components as high-value moves, whose
play will win the game quickly.

Having agents trained on different objectives, it is instruc-
tive to examine their performance when attempting the task
they were not trained for. We find that the machine strategy
for network mode is also performant in flow mode, though
somewhat less effective [Figs. 3(b) and 5(a)]. But interest-
ingly, the converse is not true [Fig. 3(a)]. Though the flow
agent often solves the network game in a reasonable number
of steps, it can also get stuck and require a very large number
of steps to completion [Fig. 5(b)]. This is understandable
because the optimal strategy for flow mode is simply to create
any horizontal barrier across the lattice, but for network mode
this strategy—while it works in some cases—is not a valid
general solution. The fact that the network strategy proves
good enough for the flow mode, while the flow strategy fails
for the network mode suggests a hierarchy of difficulty. Until
now, we have considered two game modes in which connec-
tivity is defined in ways similar to conventional percolation.
However, our learning framework can explore a far more
diverse set of objectives. As an example, we consider a new
objective inspired by surface energy in which the a compo-
nent become inactive if the surface area to volume ratio of
their component exceeds a given threshold K . Specifically,
we compute the ratio of the number of faces on the boundary
of a component and the sites contained within, as in shown
Fig. 2(c). The component is marked inactive if this ratio is
greater than K . The surface area of percolation components
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(a)

(b)

FIG. 5. Comparison of performance for different agents. While
the agent trained on the flow objective completes the flow objective
faster, it generalizes poorly when it attempts the network objective.
In contrast, the agent trained on the network objective takes longer
to complete the network objective but generalizes better to the flow
objective.

has been studied under random attacks as cluster hulls [28],
perimeters [29], and the surface fractal dimension [30]. Be-
cause the agent must increase the circuitousness within the
components, we call this objective noodle mode.

Though noodle mode reflects a substantially different ob-
jective compared to the other modes and is not even based
on connectivity, our deep learning architecture can train an
agent to master this game, as we show in Fig. 6. Interestingly,
we find that neither the noodle agent nor the network agent is
particularly successful at the other’s task (Fig. 7).

III. DISCUSSION

Network resilience under attack is a problem that arises
in multiple contexts, and yet conventional analysis treats the
problem without allowing for the intentionality of the attack-
ing agent. Here we have shown how the problem of network
robustness can be recast as a playable game, enabling us to

FIG. 6. Noodle mode game play. The objective here is to bring
the ratio of surface area (number of faces shared with boundaries) to
volume (number of squares) for each component below K = 2. This
objective is less intuitive, yet still learnable, as shown in Fig. 7.

(a)

(b)

FIG. 7. Number of steps to completion for agents trained on
the noodle task and the network task, compared to random moves,
playing (a) the network mode and (b) the noodle mode. In contrast
to Fig. 5, where we showed the network-trained agent performing
well on both network and flow modes, here we find that neither
the network nor the noodle agent performs well on the other’s task.
Results are obtained from 1000 simulated games on a 20×20 board,
with standard deviation for error bars.
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explore the behavior of human or machine agents. The game
itself has been enjoyed by many people and may prove valu-
able as a tool for science education. In particular, defining the
end state as the moment that the second largest component be-
comes larger than the largest component allows us to conserve
the basic logic of percolation while delivering a nontrivial
game, which can be accessed online [26]. The fact that the
game constitutes a fresh yet realistic task also enables future
research comparing human and machine patterns of learning.

By casting percolation as a game we have shown that it
can be solved via deep reinforcement learning. Though we
began with standard percolation, by utilizing Q-learning we
are able to generalize to unusual objectives like noodle mode.
The selective transferability of learning between some tasks
(flow and network) but not others (network/flow and noo-
dle) suggests that percolation-like games can be decomposed
into distinct noncommensurate hierarchies of difficulty. We
hypothesize that these distinct task hierarchies are a generic
feature of the space of percolation-like games.

There are many discrete time processes, which are not
amenable to conventional differential equation representa-
tions [31]. Many such processes can be characterized as a
percolation-like game as described here, and the approach we
have demonstrated here can aid in their analysis.

For the purposes of simplicity, we have limited ourselves
to lattice topologies in this work. However, our approach can
also be generalized to more complex topologies using the
same Q-learning framework by making use of graph convo-
lutional networks [32].

And while we have focused on the attack scenario, similar
objectives can be defined for a defensive scenario, where the
objective is to maintain or restore connectivity or functionality
[33]. This enables a fusion of network resilience and deep
learning to model the complex adaptive games of attack and
defense in natural and human systems.

IV. MATERIALS AND METHODS

A. Deep Q-learning

Bellman equation. By its definition, the Q function must
obey a self-consistent recurrence relation (the Bellman equa-
tion), namely

Q(s, a) = r(s, a) + max
a′

Q(s′, a′). (3)

Here, s′ is the new game state that would result from playing
the action in question (a) in the current state (s), and r(s, a)
is the immediate (incremental) reward obtained in the pro-
cess. In our setting, we use r(s, a) = −1 in all game modes,
meaning the agent receives a penalty for every move played.
By playing to maximize Q [cf. Eq. (2)], the agent thus strives
to complete the game in the minimum number of moves. By
definition, we have the boundary condition

Q(s∗, a) = 0 (4)

for any terminal game state s∗ (when all connected compo-
nents are blue, in our color scheme). Together with Eq. (3),
this allows us to model Q(s, a) by fitting an appropriately
general universal approximator function.

TABLE I. Hyperparameters.

Hyperparameter Meaning Value

d depth 10
m embedding dimension 64
Nreplay replay capacity 106

Trollout roll-out frequency 103

Nrollout games per roll-out 10
εmax initial exploration probability 1.00
εmin final exploration probability 0.05
Tanneal ε annealing period 105

Nbatch batch size 128
Tmax total train epochs 106

Tupdate target network update frequency 103

Network architecture. We parametrize Q(s, a) using a deep
Q network (DQN), consisting of two stages. First, a feature
embedding, which takes as input a n × n × 4 boolean tensor,
corresponding to a one-hot encoding of the status of each
of the n × n squares. We stress that this is the only input
provided to the learner; we deliberately refrain from providing
additional information (such as positional encoding or other
handcrafted features) to the network, as our goal is to probe
the learnability of percolation-like dynamics without human
guidance. The output of the network is a n × n × m tensor
x, encoding the state of each of the n2 cells (i, j) as an m-
dimensional feature vector, xi j . The embedding is performed
by a d-layer convolutional neural network, wherein each layer
consists of a 3 × 3 convolution followed by batch normaliza-
tion and a ReLU nonlinearity. The initial convolution maps 4
inputs (channels) to m outputs, and all subsequent convolu-
tions are m → m. Here d and m are hyperparameters. Note
that the input to each convolution is zero padded to preserve
the board size upon output; because the board cells all have
nonzero values, this padding also provides information about
the edges of the board to the network.

Given the embedded board state x, we evaluate Q(s, a) by a
function Q̂(v, xi j ), which uses xi j as a proxy for the action a =
(i, j), and a vector of global (pooled) features v as a proxy for
the board state as a whole (s). Specifically, we take v to be a
4m length vector comprised of the minimum, maximum, sum,
and average of x, where each operation is applied channelwise
to each of the m features in x. We then calculate the Q value
according to:

Q(s, a) = Q̂(v, xi j ) = wT
1 relu[w2v,w3xi j],

where we set Q(s, a) = −∞ for ineligible actions (nongreen
squares) a, ensuring they will not be chosen under the greedy
policy defined by Eq. (2). Here, w1 ∈ R5m, w2 ∈ R4m×4m, and
w2 ∈ Rm×m are trainable weights. As such, Q(s, a) depends
on a large number of parameters: w1, w2, and w3 as well as the
parameters of each convolutional layer in the embedding. The
values of these parameters that produce the best fit to Eqs. (3)–
(4) are learned via self-play.

Training. We train each agent on synthetic data (see
Sec. IV) as described in Algorithm 1. At every step (epoch)
of the training process, we update the DQN weights via
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Algorithm 1 Training.

Initialize the replay memory M to capacity Nreplay

for Epoch e = 1 to L do
if e mod Trollout = 0 then

Generate a set S of Nrollout random boards
for Board s ∈ S do

while s is not terminal do
Select an action a according to

a =
{

Random eligible square w.p.ε

argmaxa Q(s, a) w.p.1 − ε

Play a, yielding incremental reward r and next state s′

Add experience (s, a, s′, r) to M
s ← s′

end while
end for

end if
Sample a batch of experiences B of size Nbatch uniformly from M
Update the weights w over B via gradient descent on Eq. (3)

end for

back propagation, seeking to minimize the mean-squared er-
ror between the left- and right-hand sides of Eq. (3). In all
simulations, we use the Adam optimizer [34], with a learning
rate of 10−4. We take advantage of two techniques to improve
training: experience replay and double Q-learning.

In experience replay, we keep a buffer M containing the
most recent Nreplay experiences (s, a, s′, r), where Nreplay is a
hyperparameter. At every training epoch, we sample a batch of
Nbatch experiences uniformly from the buffer, and evalute the
left- and right-hand sides of Eq. (3) over this batch, and update
the weights accordingly. As the network is trained, we period-
ically add new experiences to the replay buffer by rolling out
the updated policy. Specifically, every Trollout epochs, we play
Nrollout complete games from randomly initialized boards, and
add those experiences to the replay buffer. To balance explo-

ration and exploitation, we use an ε-greedy policy for action
selection. At every step of a game, the agent selects a random
eligible action with probability ε, or greedily according to the
current Q function [via Eq. (2)] with probability 1 − ε. The
exploration probability ε is decreased linearly from εmax to
εmin over the first Tanneal epochs of training, remaining at εmin

thereafter. Here εmax > εmin are hyperparameters.
Double Q-learning helps mitigate the overestimation of Q

values that can occur in traditional Q-learning [35], using
an intermediary technique called fixed Q targets. In this ap-
proach, one keeps two copies of the DQN: a policy network,
and a target network. The policy network is used to play the
game (select actions) and hence evaluate the left-hand side of
Eq. (3), Q(s, a), and has its weights updated every iteration of
training. In contrast, the target network is kept largely static,
being used only to evaluate the right-hand side of Eq. (3). Ev-
ery Tupdate iterations, we update the target network by copying
the weights from the policy network, where Tupdate 	 1 is a
hyperparameter.

The values of all hyperparameters used in this study are
listed in Table I. All simulations in this study were performed
in PyThon, using the PyTorch library for deep learning. Our
source code is freely available online [36].

We generate training/validation data by randomly initial-
izing board states of sizes 20 × 20 (n = 20) with a fraction
1 − p of blocked (black) squares. The remaining squares are
set to active (green) or inactive (blue) according to the rules
of the given game mode. We discard any boards that represent
terminal states. We sample p uniformly between [0.5, 1.0]. As
such, the agent for each game mode is trained and validated
on boards over a range of fill densities.
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