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The critical mass effect is a prevailing topic in the study of complex systems. Recent research indicates that
a committed minority of cooperators, unwavering in their beliefs and consistently maintaining cooperation,
can effectively foster widespread cooperation in social dilemma games. However, achieving a critical mass of
cooperation in the one-shot prisoner’s dilemma requires stricter conditions. The underlying mechanism behind
this effect remains unclear, particularly in the context of repeated interactions. This work aims to investigate
the influence of a committed minority on cooperation in the iterated prisoner’s dilemma game, a widely studied
model of repeated interactions between individuals confronting a social dilemma. In contrast to previous findings,
we identify tipping points for both well-mixed and structured populations. Our findings demonstrate that a
committed minority of unconditional cooperators can induce full cooperation under weak imitation conditions.
Conversely, a committed minority of conditional cooperators, who employ extortion strategy, can promote
widespread cooperation under strong imitation conditions. These results are consistent across various network
topologies and imitation rules, suggesting that critical mass effects may be a universal principle in social dilemma
games. Moreover, we discovered that an excessive density of committed extortioners can hinder cooperation in
structured populations. This research advances our understanding of the role of committed minorities in shaping

social behavior and provides valuable insights into cooperation dynamics.
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I. INTRODUCTION

The study of the critical mass effect explores significant
changes in state and properties that occur within complex
nonlinear systems [1-5]. In natural systems, even minor per-
turbations near tipping points can lead to sudden and drastic
transformations, often referred to as “explosive changes.”
For instance, the intricate interplay between system structure
and dynamic characteristics can result in explosive synchro-
nization [6]. Similarly, establishing a specific threshold for
quarantine probability has been observed to effectively mit-
igate the spread of epidemics by isolating infected individuals
[7], while a minority of dissenting particles can disrupt
the flocking state in active Brownian motion [8]. Remark-
ably, these critical phenomena also appear in social systems
such as voting and social segregation. Whether it involves
the convergence of social opinion in voter models [9-11]
or the emergence of distinct segregation patterns character-
ized by similar preferences, such as observed in Schelling’s
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segregation model [12], these social phenomena are initiated
by a few individuals and propagate from individual behav-
ior to collective behavior [13,14]. Such critical phenomena
provide valuable insights into system dynamics, particularly
emphasizing the crucial role of a minority of individuals in
driving overall evolution of social systems.

Studying the evolution of human behavior in social dilem-
mas provides profound insights into the development of social
systems, as it involves the inherent conflict between indi-
vidual interests and collective interests [15-22]. Pairwise
social dilemma games, such as the harmony game, stag-
hunt game, snowdrift game, and prisoner’s dilemma (PD)
game, capture various forms of conflicting interests and ex-
hibit different equilibrium properties within these game types
[15,16]. In the realm of social dilemma games, the influ-
ence of committed individuals who steadfastly adhere to
their beliefs and consistently maintain their behavior on the
emergence of cooperation has been explored using evolution-
ary game theory [9,23-31]. Specifically, research indicates
that committed cooperators, known as “zealots,” who al-
ways cooperate with their opponents, even as a minority,
can effectively trigger widespread cooperation in stag-hunt
dilemma games, which represent coordination problems [27].
Stag-hunt games have two pure strategy Nash equilibria, and
the initial fraction of cooperators in the population heav-
ily influences the outcomes, enabling committed cooperators
to more easily induce large-scale cooperation [27]. Con-
versely, in snowdrift games, which represent situations where
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individuals benefit from being different from others (anticoor-
dination problems), the presence of committed defectors as a
minority can facilitate large-scale cooperation in well-mixed
populations, but not in structured populations [31]. As for
prisoner’s dilemma games, which capture the fundamental
conflict between individual and collective interests and are
frequently used to address the cooperation conundrum, the
emergence of large-scale cooperation depends on factors such
as population structure, imitation intensity, or update rules,
rather than relying solely on the presence of committed co-
operators [26,27,30].

However, previous research has primarily focused on an-
alyzing one-shot game scenarios, where players do not have
repeated encounters with the same opponents [25-31]. In
contrast, in realistic scenarios with repeated interactions, the
dynamic nature of the process allows for the emergence of
a broader range of strategies that can be adopted by players
over time [17-19]. One well-known strategy in iterated games
is tit-for-tat (TFT), where individuals start by cooperating and
then mirror their opponent’s previous actions in subsequent
interactions. Despite its simplicity, TFT has proven highly
successful in sustaining cooperation within populations in
iterated prisoner’s dilemma (IPD) games [17,18]. Expanding
on the concept of iterated games, Press and Dyson introduced
a class of strategies known as zero-determined (ZD) strategies
[19], which establish a linear relationship between an individ-
ual’s payoff and their opponent’s payoff. Extortion strategies,
a subset of ZD strategies, enable players to achieve higher
payoffs than their opponents by a certain percentage [32]
and can serve as a catalyst for promoting cooperation under
specific conditions or in certain population scenarios [33-37].

Building upon this, the following question arises: Can
committed individuals initiate a universal critical mass ef-
fect in the PD game regardless of factors such as imitation
intensity, network topologies, or update rules when repeated
interactions are considered? To investigate this, we concen-
trate on the PD game, which poses a significant challenge
for the emergence of cooperation, instead of examining the
critical mass of cooperation in games such as stag hunt and
snowdrift. Our objective is to understand the mechanisms
behind how a minority of committed individuals can trig-
ger widespread cooperation within the context of the IPD
game. We focus on three typical strategies in the IPD game,
namely unconditional cooperation, unconditional defection,
and extortion, as well as taking into account the presence of
committed individuals who adopt one of these strategies. Our
findings reveal that even a minority of committed individuals
can effectively trigger widespread collective cooperation in
both well-mixed and structured populations, surpassing the
scope of a one-shot PD game. Interestingly, we have dis-
covered that committed extortioners, under a strong imitation
scenario where a more successful individual is always imi-
tated and a less successful one is never imitated [38], exhibit
a significant critical mass effect that enhances cooperation.
Similarly, committed cooperators demonstrate a similar criti-
cal mass effect in a weak imitation scenario where the strategy
imitation is basically random. Additionally, we evaluate the
robustness of this phenomenon by analyzing different network
topologies and alternative strategy-updating rules, thereby
confirming the impact of committed individuals on the critical

mass effect of cooperation. In conclusion, these results imply
that the critical mass of cooperation could serve as a universal
principle in realistic social dilemma games, as it remains re-
silient given different network topologies, network structures,
imitation intensities, and update rules.

II. MODEL

Game model and strategies setting. In a typical IPD game,
a player continuously interacts with the same coplayer in
pairs. In each interaction, both players either choose to co-
operate (C), incurring a cost ¢ to yield a benefit b for the
coplayer, or defect (D) and do nothing. Players can receive
the rewards R = b — ¢ through mutual cooperation, whereas
mutual defection leads to the punishment P = O for them. A
defector can gain the temptation to defect T = b from unilat-
eral defection, while a cooperator only receives the sucker’s
payoff, S = —c. The memory-1 strategy is a type of strategy
frequently discussed in IPD games, in which players take
actions based on the results of the previous interaction. A
memory-1 strategy can be represented by a four-element tuple
[pcc, pcps Poc, pppl, where p;; (i, j € {C, D}) denotes the
probability of choosing cooperation when the player chose
action i and the coplayer chose action j in the previous
interaction. Along this line, the typical strategies can be writ-
ten as follows: unconditional cooperation C [1, 1, 1, 1],
unconditional defection D [0, 0, 0, 0], and tit-for-tat TFT
[1, 0, 1, 0]. The extortion strategy can be denoted as
Eyx [p, 0, g, 0], where the elements satisfy the condition
0 < p, g < 1. Compared with the TFT strategy, the extor-
tion strategy exhibits a lower probability of cooperation in
response to a cooperative opponent in the previous interaction.
This characteristic of reducing cooperative tendencies enables
an extortioner x to guarantee that his or her own “surplus”
exceeds that of the coplayer y by x-fold, represented by r, —
P = x(r, — P), where r; is the long-term payoff of player i
[19,32]. The TFT strategy can be regarded as a limiting case
of the extortion strategy with y = 1 [32], where the player
and coplayer receive the same payoff. This connection enables
us to solely consider the extortion strategy in the mode and
also catch a glimpse of the results associated with the TFT
strategy. Moreover, although the values of p and ¢ can impact
the x in the extortion strategy [19,32], our interest lies in
understanding the impact of introducing the extortion strategy,
rather than delving into the specific variations resulting from
different values of p and ¢g. Therefore we concentrate solely on
the extortion factor x to explore the extortion strategy, without
considering the specific values of p and q.

Investigating evolutionary results necessitates building
upon the outcomes of strategy pair interactions. Adhering
to the methodology outlined in Ref. [32], the mean payoffs
per interaction between the aforementioned strategies can be
expressed using the following matrix:

C D E,
P2
C b—c —c b ic
D b 0 0 (D
B =)
E, hX+CX 0 0
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TABLE 1. List of parameter symbols in our model.

Symbol Description Range of parameter values
N Population size 3000-40 000

0 Proportion of committed individuals in a population [0, 0.5]

(K) The average number of neighbors of a player in a structured population 4

b Temptation to defection [1.0,2.0]

X Extortion factor, a multiple of the extortioner’s surplus relative to the coplayer’s surplus [0, 10]

o Imitation intensity, measures how strongly players base their decisions on payoff comparisons [0,1]

In the given payoff matrix, it is preferable for a player to
choose strategy C in response to an extortioner, rather than se-
lecting strategy E x. When facing a cooperator, choosing E x
is also better than choosing C. This suggests a snowdriftlike
relationship between C and E x, as equilibrium arises when
both parties choose different strategies, similar to a snowdrift
game. We set b — ¢ = 1 to simplify the payoff elements; so
we only need to focus on the extortion factor x > 1 and the
temptation b.

Population setting. Consider a population of size N which
consists of a proportion p (0 < p < 0.5) of committed extor-
tioners who always adopt the E x strategy and a proportion of
normal players equal to 1 — p. To examine the robustness of
the model, we explore the results based on two typical popula-
tions: well-mixed and structured populations. In a well-mixed
population (equivalent to a fully connected network), each
player interacts in a pairwise game with all N — 1 other play-
ers. In structured populations, players are placed on network
nodes and can only interact with immediate neighbors, with
both regular and heterogeneous networks being taken into
account. For the structured regular network, we utilize both
grid lattice and regular small-world (SW) network structures,
where each node in these networks has the same degree. The
construction of a regular SW network follows the method de-
scribed in Ref. [39]; in this method we start with a regular ring
network and the connected edges of some nodes are randomly
exchanged with a rewiring probability of 0.1. Compared
with a lattice network, a regular SW network with the same
average degree exhibits a higher clustering coefficient and a
smaller average shortest path length [16,40]. For heteroge-
neous networks, we utilize the random network generated by
the Erd6s-Rényi (ER) method in Ref. [41] and the scale-free
networks generated by the Barabdsi-Albert (BA) algorithm
in Ref. [40]. These networks exhibit a certain level of ran-
domness where each node has a distinct degree; degree
distributions in these networks are Poisson and power-law
distributions [16,40,41], respectively. All of the mentioned
networks are consistently configured with an average degree
(K) of 4.

Game dynamic. We utilize an asynchronous Monte Carlo
simulation (MCS) approach. Initially, each normal player
holds one of three strategies with equal probability. In each
MCS time step, players acquire payoffs through playing
pairwise games with their direct neighbors. Then, they up-
date their strategies through social imitation. Following these
works [20-22], we implement the finite population analog
of replicator dynamics in strategy updating, allowing for the
inclusion of network heterogeneity in game dynamics. Specif-
ically, a focal player, denoted as i, imitates the strategy of a

randomly chosen neighbor, denoted as j, with a probability
w;;. This probability is determined by the difference in
payoffs:

ifr; >r
! 2

ri—ri
wi(—j — iH-max(K/-,Ki) )
0 otherwise,
where r, is the player’s payoff obtained from interactions
with all neighbors at the current MCS time step, K, is the
number of neighbors of the player x, and H is the maximum
possible payoff difference in a pairwise game (H =b+ ¢
since x > 1). Equation (2) represents the deterministic strong
imitation scenario where only successful players (who have
the high payoffs in the game) can be imitated, and the imita-
tion depends on payoff comparison. The denominator ensures
that this difference in payoff can be transformed into a proba-
bility form. We introduce the imitation intensity parameter o
to investigate weak imitation scenarios in which player imita-
tion is less dependent on payoff comparisons, thereby testing
the model’s robustness. The modification to the player’s strat-
egy imitation probability is as follows:
-«

As a — 1, the game dynamics revert to Eq. (2). Conversely,
as a — 0, the imitation dynamics tend to be random and inde-
pendent of payoff comparisons (i.e., the weak imitation case).
Otherwise, we also explore the results based on the so-called
Fermi rule [38,42] to assess the robustness of the results.
Compared with Eq. (2), the Fermi update rule introduces some
level of noise into the player’s strategy imitation, allowing
even unsuccessful individuals to potentially be imitated (refer
to Appendix A 3 for additional details).

The MCS is conducted on networks of size N =
3000-40000. We primarily focused on the scenario of strong
imitation (i.e., « = 1). We average the results from more than
50 simulations, where each simulation is obtained by aver-
aging the last 3000 time steps over a total of 5 x 10* MCS
time steps. This ensures that the fraction of each strategy in
the population remains stable. The parameter symbols used in
our model are summarized in Table 1.

III. RESULTS
A. Results for well-mixed populations

Before delving into the impact of committed individuals
in the IPD game, let us revisit the influence of committed
cooperators in a one-shot prisoner’s dilemma game. In the
absence of any reciprocal mechanism, defection undeniably
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FIG. 1. Committed extortioners exert a critical mass effect on the emergence of cooperation in the iterated prisoner’s dilemma game within
a well-mixed population. The figure illustrates the average fraction of (a) cooperation C, (b) defection D, (c) extortion E x, and (d) normalized
average payoff 7 for normal players, as a function of the proportion of committed individuals (o). Shown are the results of introducing the
committed extortioners at x = 1 and x = 1.5, with the parameter b set to 1.1. The shaded areas represent the standard deviation of the results.

emerges as the only Nash equilibrium strategy in such games.
Cardillo and Masuda [27] found that introducing committed
cooperators into a well-mixed population does not lead to the
occurrence of critical mass effects in a one-shot PD game. The
research suggests that committed cooperators exhibit a critical
mass effect promoting cooperation only under weak imitation
conditions. These findings suggested that the occurrence of
critical mass effects in a one-shot PD game is dependent on
the imitation intensity parameter.

In this paper, we broaden our scope beyond the committed
cooperators and explore whether a minority of commit-
ted individuals, encompassing both committed unconditional
cooperators and committed conditional cooperators, can
demonstrate a universal critical mass effect. When taking into
account the more common scenario of repeated interactions
between players, interestingly, we observe the emergence of
crucial phenomena triggered by committed individuals in the
IPD game, as illustrated in Fig. 1. The introduction of a
minority of committed conditional cooperators who adopt the
E x strategy can have a significant impact on the outcome
of cooperation. In particular, when p & 0.125, the presence
of committed extortioners can significantly alter the out-
come from the extinction of cooperation (i.e., F¢ = 0) to its
dominance (i.e., Fr = 1). Even for x = 1, where the extor-
tioners are unable to gain an advantage over their opponent,
this phenomenon exists, and the corresponding critical value
of p is approximately 0.09. On the one hand, the snowdrift-
like relationship between C and E x can sustain reciprocity
between committed extortionists and normal cooperators. On
the other hand, defectors are unable to gain benefits by ex-
ploiting committed extortioners, reducing the advantage of
defection over cooperation. Therefore committed extortioners
can support the emergence of cooperation.

Then, we explore the impact of committed individuals on
the payoffs of regular players. Figure 1(d) shows the normal-
ized average payoff (i.e., the payoffs scaled to the range 0-1)
for normal players. When defectors are entirely eliminated,
individuals adopting the Ex do not affect the payoffs of
normal cooperators when x = 1, their behavior being equiv-
alent to that of unconditional cooperators. Nevertheless, for
x > 1, extortioners can achieve a greater surplus compared
with cooperators, as indicated by Eq. (1). As the proportion

of committed extortioners rises, the anticipated result is a
decrease in payoffs for regular players.

We further explore whether committed individuals can
still induce critical effects under varying levels of imitation
intensity. In strong imitation scenarios, the presence of com-
mitted extortioners facilitates the evolution of cooperation.
The existence of committed extortioners in the population
diminishes the profit advantage of defectors since they are
unable to exploit extortioners as stated in the payoff matrix.
Conversely, in weak imitation scenarios, committed individ-
uals act more as broadcasters of their own strategies to the
entire population. As a result, the critical mass effect of
promoting cooperation, triggered by committed extortioners,
diminishes as the imitation intensity decreases (see Fig. 6
in Appendix A 1). However, committed cooperators can still
induce the critical mass effect and achieve pure cooperation
under weak imitation. These findings suggest that committed
individuals possess a broad capability to elicit the critical
mass effect in repeated games, regardless of the imitation
intensity. However, as the extortion factors increase, the
committed extortioners further reduce the profits of normal
cooperators, which weakens the facilitating role of committed
extortioners. This attenuation effect eventually leads to the
disappearance of critical mass effects (as depicted in Fig. 5
in Appendix A 1).

B. Results for structured populations

The critical mass effects induced by committed coopera-
tors in a one-shot PD game within a structured population
depend on the specific network structures. This effect is pri-
marily observed in heterogeneous networks, such as scale-free
networks [27]. In lattice networks, the role of committed co-
operators is counterproductive as it inhibits the evolution of
cooperation [26]. Firstly, we focus on the scenario of a lattice
network. Figure 2 suggests that the presence of a minority of
committed extortioners can greatly enhance the overall level
of cooperation among normal players. In particular, under the
condition of high temptation (i.e., » > 1.06) where coopera-
tion cannot emerge traditionally, the presence of even a small
fraction of committed extortioners can shift the outcome from
complete extinction of cooperation to its existence, similar to
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FIG. 2. On a regular lattice, a minority of committed extortioners can exert a critical mass effect on the emergence of cooperation in the
iterated prisoner’s dilemma game under the strong imitation scenario, which goes beyond the scope of the one-shot prisoner’s dilemma game.
The figure illustrates the average fraction (color-coded) of C, D, and E x strategies and the normalized average payoft 7 for normal players,
plotted against the proportion of committed individuals p and the temptation parameter b. (a)—(d) Results obtained at x = 1. (e)—(h) Results

obtained at x = 1.5.

observations made in well-mixed populations. For x = 1 and
x = 1.5, the introduction of committed extortioners results in
similar outcomes. Consistent with results from the well-mixed
population, committed extortioners have been found to be
effective under strong imitation conditions, whereas commit-
ted unconditional cooperators can also trigger critical effects
in weak imitation scenarios (see Fig. 7 in Appendix A 2).
Furthermore, a high extortion factor negatively impacts their
ability to promote cooperation (as illustrated in Fig. 11 in
Appendix A 2).

It is notable that while a minority of committed individuals
can trigger critical mass effects, introducing more committed
individuals may not always efficiently promote cooperation.
In particular, under low-temptation conditions (i.e., b < 1.06),
cooperators are capable of resisting defector invasion even in
the absence of committed individuals. Introducing a minority
of committed individuals can further enhance cooperation.
However, when more committed individuals are introduced
(i.e., p 2 0.38), regardless of whether they are able to obtain
a surplus payoff (i.e., x = 1 and x = 1.5), it can be observed
that cooperation declines [see Figs. 15(a) and 15(e) in Ap-
pendix A 3]. Otherwise, the introduction of more committed
individuals results in decreased payoff levels for normal play-
ers [see Figs. 15(d) and 15(h) in Appendix A 3]. This reveals
the existence of an optimal p that enables the committed
individuals to effectively promote cooperation. In subsequent
research, we will delve deeper into investigating the underly-
ing reasons behind this phenomenon.

To further investigate the generality of critical effects in-
duced by committed individuals in structured populations, we
explore the outcomes based on regular small-world networks,

Erd6s-Rényi (ER) random networks, and Barabdsi-Albert
(BA) scale-free networks [4,16,40]. In Fig. 3, results suggest
that the outcomes obtained on SW and ER networks are
similar to those observed on a lattice network. Specifically,
the presence of committed extortioners effectively triggers the
critical mass effect and promotes cooperation under strong
imitation (see Fig. 3). The critical mass effect of committed
unconditional cooperators can also be observed under weak
imitation (see Figs. 7-9 in Appendix A 2). Remarkably, the
fraction of cooperation increases significantly when p = 0.06
in the BA network, which implies that committed extortioners
exhibit a critical mass effect on promoting cooperation. We
also explore scenarios involving varying levels of imitation
intensity (see Fig. 10 in Appendix A 2), where we observe that
committed extortioners are effective exclusively under condi-
tions of strong imitation. In contrast, committed unconditional
cooperators are capable of promoting cooperation regardless
of the imitation intensity within the scale-free (SF) network.

In order to validate the robustness of our findings, we ex-
amine a scenario where individual strategy imitation follows
the Fermi rule [43]. This rule introduces a certain degree
of noise during the strategy-updating process. In contrast to
what is described in Eq. (2), this rule allows for the pos-
sibility of imitating an unsuccessful strategy. Significantly,
the model consistently produces similar results, even when
the strategy update rule is altered (as shown in Figs. 12-14
in Appendix A 3). These results demonstrate the universality
of critical mass effects, irrespective of the particular strategy
update rules employed.

We note that an excessive proportion of committed extor-
tioners can lead to a lower fraction of C in Figs. 2 and 3.
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FIG. 3. Committed extortioners can promote collective cooperation in regular and heterogeneous networks. Depicted are the average
fractions of C, D, and E x strategies and the normalized average payoff 7 for normal players as a function of the proportion of committed
extortioners p for (a)—(d) x =1 and (e)—(h) x = 1.5. The parameters are set to N = 4000 and b = 1.8. We consider three representative
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average degree (K) of these networks is fixed at 4. When generating the network structure, the rewiring probability of the regular SW network
is set to 0.1. The generation of the BA network starts with five nodes and adds four edges per step. The shaded areas represent the standard

deviation of the outcome.

In order to explore the underlying mechanisms governing the
impact of committed extortioners on cooperation, we analyze
the temporal evolution and representative evolutionary snap-
shots across various proportions of committed extortioners
in a lattice network. We focus on the lattice network as it
provides more intuitive insights. During the initial stages of
evolution, certain cooperators form clusters and manage to
survive within the population, as depicted in the third-from-
left panel in Fig. 4. In the absence of committed individuals,
the formation of cooperation-extortion alliances becomes un-
feasible due to a low extortion factor (i.e., x = 1.5) [35].
Consequently, the fraction of C experiences a significant de-
cline, ultimately leading to the extinction of cooperation, as
illustrated in Fig. 4(a). Conversely, even a minority of commit-
ted extortioners (i.e., p = 0.05) can sustain the existence of
cooperative clusters through cooperation-extortion alliances,
as shown in Fig. 4(b). When a moderate proportion (i.e.,
p = 0.3) of committed extortioners is present, the likelihood
of normal cooperators encountering them increases, thereby
promoting the extensive formation of cooperation-extortion
alliances, which contributes to the expansion of the cooper-
ative cluster, as indicated in the rightmost panel of Fig. 4(c).
As aresult, the fraction of C increases, leading to the eventual
elimination of defectors. However, an excessive proportion of
committed extortionists can lead to a segregation of normal
noncooperative individuals from cooperators, as depicted in
the second-from-right panel in Fig. 4(d). This segregation

impedes the continued expansion of the cooperative cluster,
resulting in an overall lower level of cooperation compared
with the scenario with p = 0.3.

IV. CONCLUSIONS

In conclusion, our study expands the theory of the critical
mass of cooperation from the one-shot prisoner’s dilemma
game to the iterated prisoner’s dilemma (IPD) game. Un-
like the findings in the one-shot prisoner’s dilemma game,
where the critical mass of cooperation relies on weak imita-
tion intensity or scale-free networks under strong imitation
intensity [27], our extensive Monte Carlo simulations provide
compelling evidence for the significant role of committed
individuals in driving widespread cooperation in the context
of the IPD game. We consistently observed that a minority
of committed unconditional cooperators play a pivotal role
in generating critical mass effects of promoting cooperation,
especially in the case of weak imitation intensity, which is in
line with previous research [27,30,31]. Our findings suggest
that when the imitation intensity is strong, indicating that in-
dividuals place significant value on the differences in payoffs
when updating their strategies, even a minority of committed
conditional cooperators, such as committed extortioners, can
effectively initiate critical mass effects of cooperation. This
holds true irrespective of the extortioners’ ability to gain sur-
plus payoffs.
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Our thorough testing across various network structures
and strategy update mechanisms reinforces the reliability of
these findings. The results demonstrate that the presence of
committed individuals significantly influences cooperation,
regardless of network structure or update rules. This indicates
that the critical mass effect, driven by committed partici-
pants, might be a widespread phenomenon in social systems
with self-interested individuals. Additionally, we found that
a small number of committed extortioners can significantly
boost cooperation in structured populations. However, an ex-
cessively high number of such extortioners can create barriers
between cooperators and defectors, hindering cooperation
spread and diminishing the overall benefits for regular play-
ers. Therefore there appears to be an optimal proportion of
committed individuals that can maximize cooperation within a
network.

In contrast to the one-shot and anonymous PD game,
where participants must choose between unconditional coop-
eration or defection without knowledge of their opponents’

information, this scenario presents significant challenges for
sustaining cooperation. Such a simplistic approach confines
individuals to one of two rigid roles: either committed co-
operator or committed defector. However, this limitation is
alleviated when we move beyond the one-shot game frame-
work and consider scenarios involving repeated interactions.
Repeated games introduce a spectrum of strategies influenced
by various memory lengths, as elaborated in Ref. [44]. In these
contexts, players can adopt more sophisticated strategies, such
as tit-for-tat strategies, zero-determined strategies, and others.
Transitioning to repeated PD games unveils a universal prin-
ciple: Committed individuals can drive the critical mass effect
for cooperation in various scenarios, whether with strong or
weak imitation strength scenarios. This contrasts with the tra-
ditional one-shot PD game where defection dominates, even
considering committed cooperators.

To examine the robustness of the critical mass of commit-
ted individuals given different player update rules, we utilized
two specific rules as examples, based on the disparity in
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players’ payoffs. The first is a replicator-like dynamics rule, a
deterministic update rule where players imitate only the best-
performing strategies. The second is the Fermi update rule,
functioning stochastically and allowing for decision errors
and imitation of less successful players. These rules exem-
plify stochastic and deterministic processes, respectively. Our
findings show that the critical mass of cooperation is robust
given both stochastic and deterministic rules. Given the shared
underlying principle of these rules, we posit that our results
are likely to extend to other update rules incorporating payoff
differences. This suggests that committed conditional coop-
erators can trigger a critical mass of cooperation in scenarios
with strong imitation.

In the study of cooperation evolution within repeated
games, a notable variant is the finitely repeated game. In these
games, players interact with their opponents across multiple
rounds, with the knowledge of when these interactions will
conclude. As the end of the game approaches, end-game
effects often emerge, leading to a decline in cooperative be-
havior [45]. This phenomenon is characterized by players
opting to defect early, aiming to maximize their short-term
gains. Intriguingly, Mao et al. [46] conducted behavioral ex-
periments on finite repeated games and observed the presence
of a minority of individuals who engage in conditional coop-
eration in real-world scenarios. This minority plays a crucial
role in preventing premature defections, thereby stabilizing
the erosion of cooperation. This finding underscores the sig-
nificance of a minority in maintaining cooperation in finite
repeated games. In contrast, our model is based on another
type of repeated game—the infinitely repeated game, where
players participate in an unlimited number of interactions
without knowledge of their termination. Given the fundamen-
tal nature of both game types in the study of cooperation
evolution, our work aims to furnish a theoretical framework.
This framework seeks to delve into the impact of committed
minorities on cooperation, enriching our understanding in a
more holistic manner.

The study of strategies is an essential aspect of compre-
hending the dynamics of cooperation evolution in repeated
games. Previous research has shown that strategies such as
TFT and win-stay, lose-shift (WSLS) effectively promote
cooperation [17,18,34]. When considering structured popula-
tions, the intermediate “crossover” strategy that lies between
TFT and WSLS emerges as the winner in multiple strategy
evolutions and exhibits robustness [47]. In this paper, we focus
primarily on investigating the extortion strategy. When com-
pared with the TFT strategy, individuals who adopt extortion
tend to cooperate less with their opponents over long-term
interactions [32,34], thereby weakening the effect of direct
reciprocity within our model, allowing us to focus on ana-
lyzing the role of committed individuals in repeated games.
Despite stringent conditions, committed individuals can still
demonstrate the ability to sustain cooperation. To gain a
deeper understanding of the impact of committed individuals’
strategies, it is essential for future research to encompass the
comprehensive strategy space with memory-1 strategies. Fur-
thermore, it is important to consider the influence of irrational
factors and external environmental disturbances, such as de-
cision noise and mutation, on the decision-making process of
real individuals. Integrating these factors can contribute to a
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FIG. 5. As the extortion factor increases, the committed extor-
tioner’s role in promoting cooperation diminishes in a well-mixed
population. Depicted are the average fractions of (a) C, (b) D, and
(c) E x among normal players as a function of the extortion factor x
for committed extortioners. The parameter b is set to 1.1. The shaded
areas represent the standard deviation of the outcome.

deeper understanding of how committed individuals influence
collective behavior in more realistic situations.

Although one-shot games with some prior information
available are more common in realistic scenarios than re-
peated games or one-shot prisoner’s dilemma games without
any information, we chose to disregard this situation in our
model. Our primary focus was to answer how and why com-
mitted individuals can elicit a universal critical mass effect
of cooperation, independent of imitation intensity, network
topologies, or other updating rules. However, we acknowledge
that future studies could explore the critical mass of cooper-
ation within such a framework, especially in the context of
indirect reciprocity. By expanding our understanding of the
critical mass of cooperation within the framework of indirect
reciprocity and reputation dynamics, we can gain a more
comprehensive understanding of the factors that influence co-
operation in real-world social systems. This could shed light
on the mechanisms that facilitate or hinder the formation of
critical mass effects of cooperation in complex social systems.
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FIG. 6. In a well-mixed population, committed extortioners only
promote cooperation under strong imitation intensity, while com-
mitted cooperators only promote cooperation under weak imitation.
Depicted are the average fractions of (a) and (d) C, (b) and (e) D, and
(c) and (f) E x among normal players as a function of the proportion
of committed individuals p for committed extortioners individuals
and cooperators. Strong imitation o — 1 means that the player’s
strategy imitation depends on the difference in payoffs, while the
individual performs random imitation under weak imitation & — 0.
The parameters are set to b= 1.1 and x = 1.5. The shaded areas
represent the standard deviation of the outcome.

013062-8



IMPACT OF COMMITTED MINORITIES: UNVEILING ...

PHYSICAL REVIEW RESEARCH 6, 013062 (2024)

c Ex

(@1.0F — F ® O
- 0.8 H X0
S 06 » %g
© L 15 2.
90.4[, SE
T 0.2} T e B &

0.0 reE=s o L L n n rm
(d)1.0F T g

0.8 —— a=0 ASQ
c Y o]
S 0.6 a=01 |5 3
= _ ® 3
80_4 —— a=0.5 AEE
s 2
- 0.2 168

0 (2]

0 4L
0 0102030405 0 0102030405 1020.
Proportion of committed individuals, p

FIG. 7. The impact of committed individuals on cooperation at
various imitation intensities in a lattice network. Depicted are the
average fractions of (a) and (d) C, (b) and (e) D, and (c¢) and (f) E x
among normal players as a function of the proportion of committed
individuals p for committed extortioners and committed cooperators.
The parameters are set to b= 1.5 and x = 1.5. The shaded areas
represent the standard deviation of the outcome.

Overall, our model uncovers extensive critical effects ini-
tiated by committed individuals and underscores the pivotal
role played by a minority of committed individuals in pro-
moting large-scale cooperation. Our results thus enrich the
study of the critical mass of cooperation within social systems,
especially in systems that contain conflicts between personal
interest and collective interest.
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APPENDIX

1. The influence of imitation intensity and extortion factor
on committed individuals in a mixed population

Figure 5 reports the fractions of three strategies as a func-
tion of extortion factor ¥ when committed extortioners are
introduced into a well-mixed population. While the existence
of committed extortioners can weaken the advantage of de-
fectors, an increase in the extortion factor allows extortioners
to obtain even greater surplus benefits from their interactions
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FIG. 10. The impact of committed individuals on cooperation at
various imitation intensities in a Barabasi-Albert scale-free network.
Depicted are the average fractions of (a) and (d) C, (b) and (e) D,
and (c) and (f) £ x among normal players as a function of the pro-
portion of committed individuals p for committed extortioners and
committed cooperators. The parameters are setto b = 1.8, x = 1.5,
N = 4000, and (K) = 4. The shaded areas represent the standard
deviation of the outcome.

013062-9



HE, SHEN, SHI, AND TANIMOTO

PHYSICAL REVIEW RESEARCH 6, 013062 (2024)

E
= (b)e X
Al_
8
IE:
1@
{
e)Fr =
(e) »
b 1
L i
o8
WE
I 10
}
0.0

QI e N
172457810 12 457 810

Extortion factor, x

12457 810
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normal players as a function of the extortion factor x for committed
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1.8, respectively. The shaded areas represent the standard deviation
of the outcome.

with cooperators, which reduces the payoff of cooperators.
As a result, normal players become more inclined towards
extortion strategies. With high extortion factors, the critical
mass effect triggered by committed extortioners becomes un-
sustainable, see Fig. 5(a).

Here, we explore the influence of committed individuals
under varying imitation intensities, where the updating is gov-
erned by Eq. (3). Figure 6 presents compelling evidence of the
critical mass effect exhibited by committed extortioners un-
der strong imitation. Even under moderate imitation intensity
(¢ = 0.5), they still demonstrate a critical mass effect, albeit
with diminishing impact as p increases. Conversely, under
weak imitation cases (¢ = 0.1 and o = 0), the presence of
committed extortioners facilitates the prevalence of extortion
rather than promoting cooperation. In contrast, committed
unconditional cooperators significantly enhance cooperation
under weak imitation and also trigger a critical mass effect.

C D Ex

(a)1.0 F— o 7(b) ———————(C)F ° o
0.8 w X &
c v 83
S 06f 1t $3
S 04f 1 S
T 0.2} 1t ﬁ 11 12g

0.0 E | o0

(d1.0 (e)m R
i - o

= 3

c 0.8} 1 F 1+ —= B=10 -8%
S 06F: {4t p=10" 18 3
® 04f 10 —— B=10 {3 %
0.2} 1 L ——p=102 188

w

0.0k H
0 0102030405 0 0102030405 0 0.102030405
Proportion of committed individuals, p

FIG. 12. The impact of committed individuals on cooperation
using the Fermi rule in a well-mixed population. Depicted are the
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among normal players as a function of the proportion of committed
individuals p for committed extortioners and committed cooperators.
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FIG. 13. The impact of committed individuals on cooperation
using the Fermi rule in a lattice network. Depicted are the average
fractions of (a) and (d) C, (b) and (e) D, and (c) and (f) E x among
normal players as a function of the proportion of committed individ-
uals p for committed extortioners and committed cooperators. The
parameter y is set to 1.5.

2. The influence of imitation intensity and extortion factor
on committed individuals in structured populations

Based on the findings illustrated in Figs. 7-9, it was ob-
served that the committed individuals had a similar impact on
lattice, SW, and ER networks, in terms of imitation intensity.
The presence of committed extortioners can facilitate the evo-
lution of cooperation and exhibit a critical mass effect, which
aligns with the results observed in mixed well-behaved popu-
lations. This suggests that under strong imitation, committed
extortioners can promote cooperation, while committed un-
conditional cooperators work under weak imitation intensity.
Furthermore, it was observed that there exists an optimal
proportion of committed individuals that effectively facilitates
cooperation in these networks.

For the SF network scenario, Fig. 10 demonstrates that
committed extortioners exhibit critical mass effects in promot-
ing cooperation under strong imitation intensity. Moreover,
we observe that committed unconditional cooperators can also
trigger a critical mass effect to facilitate the evolution of
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FIG. 14. The impact of committed individuals on cooperation us-
ing the Fermi rule in a Barabasi-Albert scale-free network. Depicted
are the average fractions of (a) and (d) C, (b) and (e) D, and (c) and
(f) Ex among normal players as a function of the proportion of
committed individuals p for committed extortioners and committed
cooperators. The parameters are set to b = 1.8, x = 1.5, N = 3000,
and (K) = 4. The shaded areas represent the standard deviation of
the outcome.
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cooperation among normal players, irrespective of whether
the selection is strong or weak. These results reveal that
regardless of the imitation intensity or the type of network,
committed individuals have the potential to extensively trigger
critical mass effects.

We also investigated the impact of the extortion factor on
committed extortioners within a structured population. Fig-
ure 11 illustrates that as the extortion factor increases, the
ability of committed extortioners to promote cooperation is
reduced. However, in a scale-free network, committed extor-
tioners continue to exhibit critical effects regardless of the
value of the extortion factor.

3. The impact of the pairwise Fermi rule

Unlike the scenarios described in the main text, the individ-
ual’s strategy update adheres to the replicator-like dynamics

rule, where only the successful player can be imitated. Here,
we explore the scenario with the Fermi rule [42], which
captures the decision-making process of individuals with
bounded rationality. In this scenario, a normal focal player i
imitates the strategy of a randomly selected neighbor j with a
probability of p;;:

1
1+ exp{(ri — 1))/ B}

where r, represents the payoff of player x and 8 denotes
the imitation intensity. 8 — 0 indicates that player strategy
imitation is completely dependent on differences in payoffs,
while for 8 — +o00, player strategy imitation tends to become
random and unrelated to payoffs. Typically, 8 is set to 0.1.

Figures 12—-15 suggest that when player strategy updating
is governed by the Fermi rule, the role of the committed
individuals is robust.
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