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Structural features of jammed-granulate metamaterials
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Granular media near jamming exhibit fascinating properties, which can be harnessed to create jammed-
granulate metamaterials: materials whose characteristics arise not only from the shape and material properties of
the particles at the microscale but also from the geometric features of the packing. For the case of a bending
beam made from jammed-granulate metamaterial, we study the impact of the particles’ properties on the
metamaterial’s macroscopic mechanical characteristics. We find that the metamaterial’s stiffness emerges from
its volume fraction, in turn originating from its creation protocol; its ultimate strength corresponds to yielding
of the force network. In contrast to many traditional materials, we find that macroscopic deformation occurs
mostly through affine motion within the packing, aided by stress relief through local plastic events, surprisingly
homogeneously spread and persistent throughout bending.

DOI: 10.1103/PhysRevResearch.6.013061

I. INTRODUCTION

When granular materials undergo a jamming transition,
their mechanical properties change drastically. Through this
transition, the granulate changes from a liquid-like, de-
formable or flowing state, in which it can plastically deform,
to a solid-like state, in which relative particles’ positions are
persistent and the granulate can withstand a finite load be-
fore yielding [1,2]. From this property of granular media, a
range of applications emerges – most notably their use in soft
robotics. Jamming-based actuators are remarkable for their
range of mechanical properties: from soft and deformable ob-
jects, they can be actuated into full rigidity, becoming suitable
even for load-bearing applications [3].

We investigate the macroscale mechanical properties of
the granular jammed state. More precisely, we consider a
granulate in its jammed state as a metamaterial. Metamaterials
are artificially engineered to have properties not found in
naturally occurring materials [4]. They draw their properties
not only from that of their constituents, but also from their
structural features. Thus, the mechanical characteristics of
jammed-granulate metamaterials are not only due to the par-
ticles’ properties on the microscale (such as stiffness, Poisson
ratio, surface friction, size distribution, etc.), but also due
to structural features of the metamaterial. The structure of a
jammed granulate is in turn defined by the contact network
and its statistics; besides particles’ properties [5–7], it follows
from the details of the creation of the jammed state, that is, its
history [8–14] and external forces such as gravity [15].

The critical volume fraction, φJ, at which the jamming
transition occurs, and the corresponding coordination num-
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ber, zJ, depend on the properties of the particles [2,11,16] –
in particular, interparticle friction [16–19]. These quantities
are among the most significant structural characteristics of
the jammed state, as the macroscopic properties of jammed
granular media scale with the deviation from zJ [2,16,20].
Indeed, the macroscopic properties of the material, such as
stiffness, shear strength, yield strength, and others, are medi-
ated by the properties of the contacts between the particles
at the microscale. Therefore, to understand and optimize
jammed-granulate metamaterials, it is insufficient to know
their dependence on the microscopic particle properties. Such
studies can be found in the literature, e.g., for applications in
robotics [21–24], construction [25–27], or medical technolo-
gies [5,28].

In the current paper, we focus on the structural aspect of
jammed-granulate metamaterials. To identify their material
characteristics, we numerically perform four-point bending
on a metamaterial beam, composed of a granular medium
enclosed by an elastic membrane pressure-jamming the gran-
ulate. The beam’s response to bending is largely determined
by the granulate’s compressive behavior, due to contact
forces; tensile forces are due to the membrane enclosing the
granulate [25–27]. The share of particles under compression is
determined by the positions of the neutral axis, which depends
on the applied confining pressure, and on the deformation
of the beam (i.e., the strain or stress applied) [26,29]. We
vary the Young’s modulus and friction of the particles, and
study the macroscopic stiffness and ultimate strength of the
metamaterial, before focusing on the underlying structural
features of the contact network.

II. SYSTEM DESCRIPTION

A. Setup

We consider a jammed-granulate metamaterial beam
of rectangular cross-section (4 cm × 8 cm) and length
L = 40 cm (see Fig. 1). The beam consists of granular
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FIG. 1. Sketch of the system studied: a simply supported beam
subjected to four-point bending.

particles confined by a soft membrane. In numerical simula-
tions, the beam is subjected to four-point bending.

Four-point bending produces constant shear stress between
the loading points and is, therefore, the preferred test to deter-
mine material characteristics. Two rods were initially placed
above the beam at positions L/3 and 2L/3, as per industry
standards [30,31]. They move downwards at constant veloc-
ity 0.2 mm s−1, thus imposing bending. The deflection �z at
position L/2 quantifies the beam’s deformation. Perturbations
propagate at the speed of sound in granular media, which has
been estimated to be at least 50 ms−1 [32,33]. A rough calcu-
lation, even for our softest particles, gives the same order of
magnitude, O(10 ms−1). This is much higher than the applied
deformation velocity of O(10−4 ms−1). Hence, the applied
deformation is quasistatic.

We perform discrete-elements (DEM) simulations [34–36]
using MercuryDPM [37]. The membrane is modelled by a
mass-spring system with triangular elements for granulate-
membrane interactions as introduced recently [38]. The
details of the simulation method can be found in Appendix A.

B. Initial conditions: Preparation protocol

Granular packings are largely determined by their forma-
tion procedure. We use the coefficient of friction between
particles as a parameter to generate jammed-granulate pack-
ings of different initial packing characteristics.

The preparation protocol comprises the following steps:
(1) Initial placement: Frictionless particles (μ = 0) with

uniformly distributed radii Ri ∈ [1.66, 1.84] mm are placed at
random positions inside the membrane, such that they do not
enter in contact with one another.

(2) Lubachevsky-Stillinger: To generate a packing with
a defined volume fraction φinit, we apply the Lubachevsky-
Stillinger algorithm [39]: the particles’ radii increase gradu-
ally while keeping the membrane’s interior volume constant
until a desired volume fraction φinit is reached. Note that the
volume fraction φinit is that before applying pressure to jam

the packing. The entire system is contained in a cuboid-shaped
solid mold to ensure that the beam keeps its shape and does
not increase in size by deforming the elastic membrane.

(3) Application of confining pressure: We gradually apply
a pressure difference �p between the beam’s interior and the
ambient surrounding to the confining membrane (effectively
applying vacuum inside the beam). �p is termed confining
pressure in the following. For this step, we apply the friction
coefficient μ = μinit. The jammed-granulate beam shrinks in
volume, correspondingly. While �p is gradually increased,
the cuboidal shape of the granular beam is preserved by
moving the planes constituting the solid mold, such that the
membrane remains in contact with the mold.

The choice of the friction coefficient μinit determines the
volume fraction, φbend, at the beginning of the bending test.
After initialization and before bending, we set the particles’
friction coefficient to μ = μp, the particles’ friction during
the bending test. Figure 2 summarizes the full simulation
protocol.

C. Initial conditions: Characterization

1. Average coordination number

An important characteristic of a jammed packing is the
average number of contacts per particle, z. Since the prepa-
ration protocol determines the properties of the packing, the
average contact number should depend on the parameters of
this protocol, namely: the volume fraction φinit before ap-
plication of confining pressure; the friction coefficient μinit

during the application of the pressure; the magnitude of the
confining pressure �p. Figure 3 shows these functions: z(φinit )
with fixed parameters �p and μinit, and z(�p) with fixed
parameters φinit and μinit.

In both figures, we see a decrease in average contact num-
ber with increasing friction coefficients. Similar behavior is
known from the theory of hard spheres. Here, asymptotically,
the average number of contacts scales as z = 2 D for fric-
tionless particles and as z = D + 1 for μ → ∞, where D is
the dimension of the system. For finite friction μ, z ranges
between these limits, which can be described by a constraint
function (see Ref. [40] for details).

2. Pair correlation

The pair correlation function

g(r) =
〈

ni(r)

4π (r/rmean)2

〉
i

(1)

characterizes the regularity of homogeneous particulate mate-
rial. Here, ni(r) is the number of particles intersecting with
the surface of a sphere of radius r placed at the center of

FIG. 2. Simulation protocol. For discussion see body of text.
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FIG. 3. Average contact number, z, of the packing generated
according to the preparation protocol. (a) z as a function of the initial
packing fraction, φinit, for fixed confining pressure �p = 90 kPa and
several values of the initial friction coefficient, μinit. (b) z(�p) with
fixed parameters φinit = 0.5 and μinit as per legend.

particle i. 〈·〉i indicates the average over all particles i in the
system. Figure 4 shows g(r) for fixed pressure, �p = 90 kPa,
and variable initial packing fraction, φinit [Fig. 4(a)], and for
fixed initial packing fraction, φinit = 0.5, and variable pressure
[Fig. 4(b)]. In all cases studied, we do not see any sign of
crystallization, which would appear in the pair correlation
function as narrow vertical peaks due to long-range ordering.
Rather, we observe vanishing peaks as r increases, showing
only short-range ordering. This indicates that our system re-
mains amorphous in all cases shown [41].

D. Beam stiffness and ultimate strength

The macroscopic response of the beam to bending is its
deflection �z (see Fig. 1) and its resistance to the rods’
motion, measured as the force F acting on the rods. The Euler-
Bernoulli beam theory [42] provides the following relations to
convert the measurements into stress σ and strain ε:

σ = FL

h2d
, (2)

ε = �z
108h

23L2
. (3)

Here, the beam’s length L (which is also its support span),
height h, and depth d define the geometry of the beam (see

FIG. 4. Radial pair correlation function for (a) fixed confining
pressure, �p = 90 kPa, and various values of the initial packing
fraction, φinit, and (b) fixed initial packing fraction, φinit = 0.5, for
various values of confining pressure. Particle material parameters:
Ep = 100 MPa and μp = 0.3.

FIG. 5. Exemplary stress-strain curve. The elastic modulus (ini-
tial slope of the curve, dashed line) and ultimate strength (dotted line)
are displayed. The inset shows an examplary stress-strain curve for
a cyclic bending simulation up to ε = 0.002. The insets region is
indicated by a red rectangle in the main figure. The displayed data
was obtained for a system with Ep = 100 MPa and μp = 0.3.

Sec. II A). Details on the derivation of this relation are given
in Appendix B.

The typical stress-strain curve is presented in Fig. 5. It
shows three stages: an initial steep increase followed by a
plateau or turning point, and, finally, a second steep increase.
For the initial steep increase, in the limit of small strain, we
assume the linear relation σ = Ebε. Here, the proportionality
constant Eb measures the beam’s macroscopic stiffness, deter-
mined by linearly fitting the stress-strain curve for ε � 0.002.
Note that the term “stiffness” is used, although the beam does
not follow the exact load path when released during this phase.
This property is shared by many ordinary materials, which
also experience some structural plasticity even for small de-
formation, responsible for nonfully recovered properties and
aging. Yet, the difference between loading and unloading is
low in the considered range, as can be seen in the inset of
Fig. 5.

The plateau or turning point indicates the ultimate strength
Yb of the beam, i.e., the maximum amount of stress, σ , that
the jammed system can resist. To calculate Yb, the measured
stress and strain signals are smoothed by applying a Gaussian
filter and used to calculate the first derivative σ ′(ε) with cen-
tral differences. The derivative is filtered again and used to
calculate the second derivative σ ′′(ε). The ultimate strength is
the stress value at which the second derivative switches sign
(from negative to positive).

After this plateau, in the final region of steep increase, the
membrane takes over and dictates the behavior of the stress-
strain curve. Hence, it no longer provides insight into the
behavior of the jammed granular media inside the beam.
The simulations run until ε ≈ 0.08 is achieved to ensure that
the stress-strain relation has reached the third region.

In the following, the analysis focuses on the particles,
fixing the membrane’s stiffness and varying the particles’
properties. However, the membrane’s properties also influence
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FIG. 6. The beam’s macroscopic properties as a function of the constitutive particles’ microscopic properties. The beam’s (a) stiffness
modulus, Eb, and (b) ultimate strength, Yb, are shown for the particles’ friction coefficients, μp ∈ [0, 1.2], and the particles’ stiffnesses,
Ep ∈ [5, 100] MPa, obtained with protocol A: the volume fraction, φbend, depends on the particles’ friction coefficient during bending.

the beam’s response: we showed in previous work that stiffer
membranes lead to stiffer beams [7].

III. RESULTS AND DISCUSSION

The results presented below are obtained for a relatively
low initial volume fraction of φinit = 0.5, to avoid artificially
jamming the packing before applying the confining pres-
sure, �p. The confining pressure is fixed at �p = 90 kPa, a
relatively high value, because previous studies showed that
jammed beams are more stable for large confining pressure
[29,38].

A. Microscopic to macroscopic properties

The particles’ properties are varied to determine the re-
lation between the microscopic particle properties and the
macroscopic properties of the jammed granular beam. Specif-
ically, we vary the particles’ stiffness Ep ∈ [5, 100] MPa and
friction coefficients μp ∈ [0, 1.2].

The beam’s macroscopic properties are initially explored
for the intuitive choice μinit = μp, where the granular media’s
volume fraction at the beginning of the bending test, φbend

(i.e., the volume fraction after the application of the confining
pressure) is a function of the particles’ friction coefficient
during bending: φbend = φbend(μinit ) = φbend(μp). The choice
μinit = μp is termed protocol A in the following. Figure 6
displays a heatmap of the beam’s macroscopic stiffness Eb

[Fig. 6(a)] and ultimate strength Yb [Fig. 6(b)] for the parame-
ter space of interest.

Stiffer particles lead to a higher beam’s macroscopic
stiffness [Figs. 6(a) and 8(a)], which can be expected.
As shown in previous work [7], the beam’s stiffness
is related to the particles’ elastic modulus following a
power law.

One might naively expect that a large friction coefficient
also leads to a beam of high stiffness, as highly frictional
particle-particle contacts can withstand high load. Surpris-
ingly however, a large friction coefficient decreases the
stiffness of the beam. Our hypothesis is that this is a result of

the lower number of contacts within the jammed packing for
large μp: if the confining pressure is applied to a packing of
high friction, the particles pack with low density. Therefore,
the total number of contacts within the jammed packing is
low. This results in each individual contact being under high
load, and in turn, in a low macroscopic stiffness of the jammed
phase. We will explore this idea further in the next section.

Note that μp = 0 represents a special case where no force
opposes particles to sliding against each other, which lets
particles reorganize easily. The low macroscopic stiffness for
μp = 0 indicates that to develop a significant mechanical re-
sistance to external load, friction is necessary for the stability
of the jammed packing.

The beam’s macroscopic ultimate strength Yb [Figs. 6(b)
and 8(b)] shows two effects: for hard particles (Ep = 50 MPa
and Ep = 100 MPa), increasing μp leads to an increase in
Yb, because large forces are necessary to allow particles to
slide against each other to relieve the load. For soft particles
(Ep = 5 MPa and Ep = 10 MPa), this is only true at low par-
ticles’ friction, μp < 0.3. For large μp, a further increase of
μp leaves Yb unchanged or decreases its value. This shows
the competition of two effects: a high friction coefficient μp

increases the amount of force one contact can carry, but also
reduces the number of contacts within the system, because the
system jams at lower volume fraction. At large values of μp,
further increase of load carried per contact cannot compensate
for the reduced number of contacts.

Note that the spread of the ultimate strength is gener-
ally smaller for low particle stiffness than for large particle
stiffness. This is because the higher deformation and higher
density of softer particles hampers the relative motion
between neighboring particles.

B. Influence of preparation through density

To eliminate the effect of the packing’s density and its
number of contacts, the bending process is performed with
a fixed value of μinit = 0.3 but several μp. This preparation
protocol is termed protocol B in the following. Here, the
granular medium’s volume fraction φbend ≡ φbend(μinit ) at the
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FIG. 7. The beam’s macroscopic properties as a function of the constitutive particles’ microscopic properties. The beam’s (a) stiffness
modulus, Eb, and (b) ultimate strength, Yb, are shown for the particles’ friction coefficients, μp ∈ [0.3, 1.2], and the particles’ stiffnesses,
Ep ∈ [5, 100], obtained with protocol B: the volume fraction, φbend, is the same for all values of the particles’ friction coefficient, μp.

onset of bending is constant and independent of the particles’
friction during bending, μp. Values of μp < μinit are excluded
for protocol B, because lower friction coefficients allow for
further compression of the beam and thus φbend would no
longer be independent of μp. Figure 7 displays the heatmap of
the beam’s macroscopic stiffness Eb [Fig. 7(a)] and ultimate
strength Yb [Fig. 7(b)] obtained with protocol B.

The beams’ macroscopic stiffness Eb is equal for equal
values of Ep. The particles’ friction coefficient μp does not
influence Eb. As hypothesized above, the effect seen for proto-
col A, where high friction leads to low macroscopic stiffness,
is a result of different contact numbers achieved for different
friction coefficients: more contacts provide greater resistance
for the same amount of deformation. The macroscopic stiff-
ness of the jammed phase is defined by its volume fraction
through the number of contacts, as each contact can bear a
finite amount of the load. The interparticle friction does not
otherwise influence the macroscopic stiffness of the jammed
packing.

Contrariwise, the beam’s macroscopic ultimate strength Yb

increases with increasing μp [Fig. 7(b)]. This contrasts with
protocol A, where an increase in already large μp decreases
Yb for systems with low particle stiffness. The high ultimate
strength for large μp results from high frictional forces, which
need to be overcome for the beam to yield. Systems obtained
with protocol B have equal density φbend, hence, the system is
not weakened by a low amount of contacts for large μp.

Figure 8 shows a direct comparison of the protocols A

and B. For μp = 0.3, where φbend is similar in both protocols,
identical macroscopic beam properties are observed. For μp >

0.3, both the beam’s macroscopic stiffness Eb [Fig. 8(a)] and
ultimate strength [Fig. 8(b)] are higher for protocol B than for
protocol A, because protocol B leads to higher density φbend.
That is, if φbend is forced to be constant (protocol B), then μp

has no influence on the beam’s stiffness, Eb, while Yb increases
with increasing μp. In both protocols, the tunability of Eb and
Yb with particles’ friction μp is weak. If present at all, then it
is strongest for small friction, μp → 0. An increase of particle

FIG. 8. Macroscopic mechanical properties of the beam for increasing particles’ friction coefficients, μp ∈ [0, 1.2]. (a) Macroscopic
beam’s stiffness modulus, Eb, lines connect the points. (b) Macroscopic beam’s ultimate strength, Yb, lines indicate an exponential fit.
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TABLE I. Fit parameters of Eq. (4) [Yb(μp)], for different values
of particles’ elastic modulus, Ep, for both protocols A and B.

Ep (MPa) Protocol Y 0
b (kPa) Y ∞

b (kPa) a

5 A 18.31 35.78 251.52
B 36.01 37.64 2.53

10 A 23.17 46.92 13.92
B 40.63 49.31 5.31

50 A 18.89 81.58 9.27
B 29.14 95.63 3.98

100 A 20.63 96.15 6.67
B 35.65 119.41 2.85

stiffness, Ep, directly correlates with an increase of the beam’s
macroscopic stiffness, Eb, and ultimate strength, Yb.

Figure 8(b) suggests that the beam has a finite ultimate
strength, Yb, even in the limit of μp → ∞. To approximate
this behavior, we fit an exponential function of the form:

Yb(μp) = (
Y 0

b − Y ∞
b

)
e−aμp + Y ∞

b . (4)

Here, Y 0
b ≡ Yb(μp = 0) and Y ∞

b ≡ Yb(μp → ∞) are the
beam’s ultimate strength in the limit of zero friction and
infinitely large friction coefficients. The fit constant a de-
scribes the curvature of the fit function. Lines in Fig. 8(b)
present the fitted functions. Fit-parameters for all simulated
Ep are shown in Table I.

C. Robustness of the force network

The beam’s ability to resist external bending stress orig-
inates from the force network formed among the particles.
Hence, investigating the force network throughout the bend-
ing process can help understanding the mesoscopic meaning
of the ultimate strength.

Figure 9(a) displays the average force per contact 〈F 〉
as a function of the external bending stress σ . The data is
displayed for protocol B (all bending experiments start at the
same volume fraction), to isolate the effect of different friction
coefficients from volume fraction effects. Two regimes can
be distinguished in the average contact force: for an exter-
nal bending stress lower than the beams’ ultimate strength,
σ < Yb, the average force increases with increasing σ . For
higher σ , the average force decreases with increasing σ . The
ultimate strength corresponds to the point where the force
network yields under the applied stress.

While the average force decreases for σ > Yb, the average
tangential force, 〈Ft〉, displayed in Fig. 9(b) (right ordinate
axis), keeps increasing throughout the whole bending process,
though the rate of increase is lowered after reaching the ul-
timate strength. This suggests that more contacts reach the
Coulomb limit where particles can slide against each other.
The particles’ motion then leads to stress release through
breaking contacts and lowered normal forces.

The relative amount of contacts within 5% of reaching the
Coulomb limit is shown in Fig. 9(c). It increases throughout
the process, although at a lower rate for σ > Yb. Hence, for
a fixed number of contacts (i.e., at a given volume fraction),
the microscopic particle friction μp, which determines the

FIG. 9. Force per interparticle contact, F , as a function of the
macroscopic bending stress, σ , applied to the beam (all mea-
surements follow protocol B, i.e., start at similar volume fraction
φbend). The average force per contact 〈F 〉 (a) is broken down into
two components: the average normal force 〈Fn〉 (b, left axis) and
the average tangential force 〈Ft〉 (b, right axis). The fraction of
contacts close to or at the Coulomb limit indicates the overall
fragility of the contact network (c). All variables are shown for hard
particles (Ep = 100 MPa), and particles’ friction coefficients μp ∈
[0.3, 0.6, 0.9, 1.2]. Vertical lines drawn at σ = Yb(μp) indicate the
ultimate stress obtained from the stress strain measurement.

Coulomb limit, also determines the quantitative threshold
when the force network will yield.

Note that this behavior is similar for both hard and soft
particles (not shown here), with the difference that the value
of the average force per contact is higher for hard particles
than for soft particles.

D. Neutral plane location

Bending divides the beam into two parts: one above the
neutral axis, where the beam gets compressed, and one be-
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FIG. 10. The coarse-grained displacement of particles relative to the beam’s center. Negative values indicate motion towards the
beam’s center. Positive values indicate motion away from the beam’s center. Subfigures display the displacement in the x direction (a),
(b) and y direction (c), (d) at low strain (a), (c) and large strain (b), (d). The displayed data is obtained from systems with μp = 0.3,
Eb = 100 MPa, and protocol A. The displacements are measured between two snapshots, 2.5 s apart. Details of the calculation are given
in Appendix C.

low the neutral axis, where the beam is in tension. This is
made obvious by the motion of the particles relative to the
beam’s center, as shown in Fig. 10. The beam’s center is
at (x, y) = (L/2, 0) (see also Fig. 1). In the upper part of
the beam, particles are compressed by moving towards the
beam’s center, while in the lower part of the beam they move
away from the beam’s center, as the lower part of the beam
is in tension. This is in agreement with previous work on
jammed-granulate beams [26,29].

In the upper part of the beam (which is in compression),
along the x direction (see Fig. 1), large displacements are
recorded, notably at the beam’s extremities. At the begin-
ning of the experiment, at σ 
 Yb [σ � 15 kPa, Figs. 10(a)
and 10(c)], all particles move towards the beam’s center, but
particles at the extremities have to be displaced more to reach
the beam’s center, which creates the compressive top part.
In the later stage of the experiment starting around σ ≈ Yb

[σ � 100 kPa, Figs. 10(b) and 10(d)], the large displacements
at the beam’s extremities result from the macroscopic bend-
ing motion of the beam as a whole: the extremities are bent
inwards by the membrane, which forces this motion.

In y direction, the motion relative to the beam’s center is
negligible compared to the motion in x direction, as visible in
Figs. 10(c) and 10(d) by the absence of color.

Through the bending test, the neutral plane (zero values in
Fig. 10) shifts towards the top part of the beam.

E. Clusters of motion

When forced to deform, a confined jammed granular
medium responds in two ways: (1) by localized plastic events,
where one particle triggers small-scale reorganizations in its
surroundings; (2) by large-scale, coordinated affine motion
of its individual components, where the beam deforms like
a homogeneous material, where all particles move without
changing their position relative to their neighbors.

To investigate the predominant mechanism, we look at the
mean squared deviation of particle i’s actual displacement
relative to its neighboring particles from the displacement it
would have, if the packing deformed in an affine manner. It is

given by [43]

D2(i, t, t ′)= 1

N

∑
j

[
r j (t

′) − ri(t
′) − (1 + ε)[r j (t ) − ri(t )]

]2
,

(5)

where t and t ′ are the compared times. The summation loops
over all N particles j in the vicinity of particle i, and ε is the
uniform strain of the region. The minimum Dmin = minε |D|
is obtained by finding an appropriate strain ε and quantifies
the local deviation from the affine deformation. A high value
of Dmin indicates small-scale plastic events (mechanism 1),
while a low value indicates movement in the bulk (mechanism
2). In the following, the particles’ Dmin values are obtained by
comparing two snapshots 2.5 s apart. Particles with less than
3 contacts are excluded from the analysis.

Examples of Dmin/dmean values within the beam are shown
in Fig. 11 for two different stages of bending. Regions
of localized and bulk deformation are shown in yellow
(clear) and blue (dark), respectively. Note that the value of
Dmin/dmean remains small throughout the experiment, showing
that the jammed phase tends to deform in an affine motion
in general.

The spatial autocorrelation function quantifies the length-
scale on which particles undergo a similar degree of localized
deformation. Its definition is given in Appendix D. Fig-

FIG. 11. Dmin/dmean of the beam. Examples are displayed for
systems with the particles’ stiffness Ep = 100 MPa and friction co-
efficient μp = 0.3 and external stress values of (a) σ = 15 kPa and
(b) σ = 100 kPa.
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FIG. 12. Spatial autocorrelation function of Dmin. Different lines
are averaged over σ for intervals of 25 kPa. The line color indicates
the intervals’ average value. The displayed data is obtained for μp =
0.3 and Ep = 100 MPa with protocol B.

ure 12 shows the autocorrelation, C(r), for different stages
of bending stress throughout the simulation. The correlation
of neighboring particles is high, C(r)/C(0) > 0.8. Although
it decreases for an increasing distance r, it remains high
within the investigated region. This indicates that all particles
deviate from the affine transformation in a similar manner.
There is no systematic difference between different stages of
bending.

F. Local density variations

To quantify the change in local volume fraction associ-
ated with the deformation mode, we plot Dmin/dmean of every
particle in the system, against each particle’s change in lo-
cal volume fraction, �φ, in Fig. 13. For this analysis, we
calculate a particle’s local volume fraction by dividing the par-
ticle’s volume by the volume of its Voronoi cell. Dashed lines
represent the average change in local volume fraction, 〈�φ〉.
For low stress σ < Yb, on average, the local volume fraction
of particles in the top part of the beam [Fig. 13(a)] increases
(〈�φ〉 > 0) due to compression. For high stress σ > Yb, the
local volume fraction decreases on average (〈�φ〉 < 0) in
the top part of the beam. In the bottom part of the beam
the local volume fraction decreases on average, indepen-
dent of the external stress σ . The absolute value of �φ of
the individual particles increases with increasing stress, and
so do the Dmin values, becoming greater for high bending
stresses.

The deviation from the affine deformation, Dmin, is cor-
related with the change in local particle volume fraction: a
large Dmin corresponds to a large �φ. This is visible from the
V-shaped lower edge of all points in Fig. 13.

G. Spatial distribution of local deformation

The data displayed in Fig. 13 suggests that there is a differ-
ence in Dmin between the beam’s top part (in compression)
and its bottom part (in tension). Therefore, we look at the
distribution of Dmin as a function of height, h, in the beam.
Figure 14 shows the distribution for different intervals of
stress, σ , throughout the bending process. In the initial stage
of bending, Dmin is larger in the top (compressive) part of the

FIG. 13. Dmin value of each particle divided by the mean particle
diameter dmean, as a function of the change in each particle’s local
volume fraction, �φ, obtained by Voronoi tessellation. The beam
is divided into: (a), (c) its top part, in compression, and (b), (d) its
bottom part, in tension. A particle is assumed to be in the top part
if its distance to the top membrane is shorter than its distance to the
bottom membrane. Otherwise, it is assumed to be within the bottom
part of the beam. Plots (a), (b) display data for σ < Yb, plots (c), (d)
for σ > Yb. Points are plotted semitransparent to visualize regions
with many overlapping points. Dashed vertical lines indicate the
average 〈�φ〉 for all points in each subfigure. All plots are obtained
for μp = 0.3, E = 100 MPa, simulated with protocol A.

beam than in its bottom part. For high σ , Dmin is larger in the
lower part of the beam (in tension). The transition between
those behaviors happens around the beam’s ultimate strength
at σ ≈ Yb. Figure 15 compares Dmin along the beam’s height
for different friction coefficients at high σ , towards the end
of the bending experiment. For all friction coefficients, we
observe a similar spatial distribution. However, high particles’
friction leads to a more pronounced difference between the

FIG. 14. Normalized Dmin as a function of height, h. The height
is measured from the center plane of the beam, which is the ge-
ometrical midplane between the beam’s top and bottom surface.
Negative values indicate positions in the tensile part of the beam,
while positive values indicate positions in the compressive part of
the beam. Different lines are averaged over σ for intervals of 25 kPa.
The line color indicates the intervals mean value. The displayed data
is obtained for μp = 0.3 and Ep = 100 MPa.
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FIG. 15. Normalized Dmin as a function of height, h, for friction
coefficients μp ∈ {0.3, 0.6, 0.9, 1.2}. The height is measured from
the center plane of the beam, which is the geometrical midplane
between the beam’s top and bottom surface. Negative values indi-
cate positions in the tensile part of the beam, while positive values
indicate positions in the compressive part of the beam. The plot is
obtained for 175 kPa � σ � 200 kPa with protocol B.

top and bottom parts of the beam, where regions of nonaffine
deformation appear shifted towards the bottom part of the
beam, in tension. In other words, high friction inhibits mo-
tion where the granulate is in compression, hence less plastic
events happen in the top part of the beam. Note that there is
no significant difference between the two protocols, although
normalized Dmin values obtained with protocol A (not shown
here) show closer values, because the effect of friction is
weakened by the differing volume fractions φbend at the onset
of bending.

H. Temporal distribution of local plastic events

The spatial average 〈Dmin〉 as a function of macroscopic
bending stress, σ , can further clarify how the beam deforms
throughout the bending process. Figure 16 displays the evo-
lution of 〈Dmin〉 and the corresponding volume fraction φ,
throughout the bending test, for different parameter combi-
nations.

As observed for the average force per contact, 〈Dmin〉 is
nonmonotonic, dividing each bending test in two regions
around a macroscopic stress approximately equal to the
beam’s ultimate strength, σ ≈ Yb. For low stress, σ < Yb,
〈Dmin〉 decreases with increasing stress. During this initial
stage of bending, the system densifies. Affine contraction of
the granular fabric allows the volume fraction to increase,
which leads to less individual particle motion and less local-
ized deformations (decreasing 〈Dmin〉 value).

During the second stage of bending, i.e., for high stress,
σ > Yb, 〈Dmin〉 increases with increasing stress. Concurrently,
the volume fraction, φ, decreases, effectively leaving more
space for the particles to move. This is true specifically in the
beam’s bottom part, below the neutral axis, where the beam
is in tension. This second regime corresponds to the desta-
bilization of the force network observed in Sec. III C, which
happens simultaneously with that of the contact network.

Let us look at how the particles’ properties influence the
system’s behavior. Although all systems, independently of
the particles’ elastic modulus or friction coefficient, exhibit
the two regimes described above, both quantities play a role.

Looking at 〈Dmin〉 for the particles’ elastic modulus, we
find that it differs by almost one order of magnitude between
the system with soft particles [Ep = 10 MPa, Figs. 16(a)–
16(d)] and hard particles [Ep = 100 MPa, Figs. 16(e)–16(h)].
This is a result of the denser system obtained for soft particles:
the higher deformability of the soft particles allows them to
achieve a higher volume fraction than hard particles, at the
same confining pressure. A denser packing hampers relative
motion of the particles, and thereby localized nonaffine defor-
mations.

Focusing further on the influence of the particles’ friction,
we find that for protocol B, i.e., systems where the initial
volume fraction φbend is independent of μp [Figs. 16(c), 16(d),
16(g), and 16(h)], the volume fraction φ and 〈Dmin〉 have a
low spread and are similar for all friction coefficients. Only
for a friction coefficient of μp = 0.3, 〈Dmin〉 separates from
the ones obtained for other friction coefficients [Figs. 16(c)
and 16(g)]. The separation occurs because particles with lower
friction are able to move under a lower external load in a sys-
tem of equal density. For μp > 0.3, 〈Dmin〉 are also expected
to deviate one by one from that of larger μp, as the stress
increases beyond the studied region and allows more contacts
to overcome the Coulomb friction threshold—and that, for
gradually higher μp. Systems simulated with protocol A, i.e.,
systems where the initial volume fraction φbend is a function of
μp, exhibit a larger spread in volume fraction φ and localized
deformations 〈Dmin〉, compared to systems simulated with
protocol B. Systems starting with a lower volume fraction (i.e.,
higher μp) provide more space to each individual particle and
hence allow for more local deformation.

IV. CONCLUSION

The macroscopic properties of granular metamaterials de-
pend heavily on the properties of their constituent particles,
and on the spatial arrangement of these constituents. In this
work, we analyzed the influence of the particles’ elastic
modulus and friction coefficient on the mechanical proper-
ties of a jammed granular beam. We particularly studied the
mesoscopic-scale effect of particles’ properties by investigat-
ing the mechanisms through which these influence the beam’s
macroscopic properties in the case of jammed granular media.

We find that a higher particles’ elastic modulus increases
the stiffness and ultimate strength of the beam, although hard
particles pack less densely than soft particles, the latter being
able to deform into a very dense jammed phase.

Particles’ friction μp has a more complex influence on the
jammed-granulate macroscopic response. Friction is neces-
sary for the stability of jammed packings. Without friction
(μp = 0), there is no resistance to particles sliding against
each other, and minimal loading can cause large-scale reorga-
nization. If the preparation of the packing is done at the same
particles’ friction coefficient, μp, as the bending experiment,
then high μp increase the beam’s ultimate strength, but con-
trary to intuition, decrease the beam’s stiffness. By varying
initial conditions, we showed that this decrease in the beam’s
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FIG. 16. The average Dmin value divided by the mean particle diameter dmean (a), (c), (e), (g) and the volume fraction φ (b), (d), (f), (h) as
a function of applied bending stress. Simulations are executed with protocol A for plots (a), (b), (e), (f) and protocol B for plots (c), (d), (g),
(h). Vertical lines drawn at σ = Yb(μp) indicate the ultimate stress obtained from the stress-strain measurement. Please note the different axis
scales between the left and right panels (respectively, Ep = 10 MPa and Ep = 100 MPa).

stiffness is an effect of volume fraction: for beams composed
of a packing of equal volume fraction, the particle’s friction
does not have influence on the macroscopic stiffness of the
jammed phase. The ultimate strength Yb(μp), however, is a
function of the friction coefficient.

These results highlight that both particles’ material proper-
ties and preparation protocol are essential in determining the
macroscopic properties of jammed-granulate metamaterials.

Beyond stiffness and ultimate strength, we analyzed the in-
ternal structure of the granular beam: on isotropically jammed
granular phases, we showed that the ultimate strength mea-
sured from stress-strain curves coincides with a failure of the
force network. This failure constitutes a delimitation between

two regimes, persistent for all particles’ properties studied.
Prior to failure, each contact carries an increasing amount
of load. From the force network failure and beyond, contacts
break to release stress, while an increasing amount of contacts
gets close to the Coulomb threshold.

We further demonstrated that deformation happens in a
generally affine manner, meaning that the granular network
is compressed or extended in a coordinated motion of parti-
cles. When local plastic events are observed, they are spread
homogeneously throughout the beam, and persist throughout
bending, both in size and in location. Before failure of the
force network, those events mostly contribute to densification
in the compressive part of the beam (top half), while they
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FIG. 17. Membrane enclosing the granular beam. Solid rectan-
gles indicate the fixed vertex particles or holding points of the beam.
The dashed rectangle indicates the region of vertex particles used to
measure the displacement �z.

occur due to lower volume fractions in the tensile part (bottom
half) for higher stresses.

Our findings provide guidelines for selecting granular
particles and a suited preparation protocol, towards the
creation of jammed-granulate metamaterials with targeted,
application-specific mechanical properties. To maximize the
stiffness, particles with a large elastic modulus should be
preferred, and a preparation protocol resulting in high packing
density should be implemented. To maximize the ultimate
strength, particles with high friction should be chosen, while
still keeping the packing dense. Tunability is maximized
by varying μp from very small, μp → 0, to intermediate,
μp ≈ 0.6.

We also showed that granular packing density, φ, can be
used as a tuning parameter in such system. Although protocol
B might seem artificial from an experimental perspective, its
goal, namely to create an initial packing at a density inde-
pendent of the particles’ friction coefficient, can be obtained
experimentally:

(1) Packing density can be increased by pre-constraining
the granulate once it is enclosed by the membrane during
manufacturing. This can be achieved by imposing reorgani-
zations by deformation while maintaining pressure to force
the granular media into a denser configuration.

(2) Vibrating the system, during or after manufacturing,
will increase the packing density.

(3) By using particulate media whose friction, particle
size, or stiffness can be altered [44,45], for example by tem-
perature, charge, or water content, packing density can all be
tweaked.

Further exploration, notably experimental, of collective
effects within a jammed medium under load, will deepen our
understanding of amorphous solids and inform novel concepts
for granular metamaterials.
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APPENDIX A: SIMULATION METHOD

1. Particle-particle interaction

For the particle-particle interaction, we assume viscoelastic
spheres with dry friction [46,47]. Two contacting particles at
positions ri and r j with radii Ri and Rj , and masses mi, mj ,

feel the normal force

Fn
i j = max

⎛
⎜⎝0,

2Ep

√
Reff

i j

3(1 − ν2
p )

(
ξ

3
2

i j − 3

2
Aξ

1
2

i j ξ̇i j

)⎞
⎟⎠ ri − r j

|ri − r j | .

(A1)

Here, we use ξi j = Ri + Rj − |ri − r j | and Reff
i j = RiRj/(Ri +

Rj ). The particle material is described by the elastic mod-
ulus, Ep, the Poisson ratio, νp, and the relaxation time A,
see Refs. [48,49]. We use A = 7 × 10−6 s, which corresponds
to the coefficient of restitution ε ≈ 0.8 for spheres of radii
R = 2.5 mm, with Ep = 100 MPa and νp = 0.254 impacting
at velocity 2 m/s [50].

Friction between nonsliding contacting particles is mod-
eled by a force in the tangential direction [51],

F t
i j = − min

(
2

3
kt

i jξ
t
i j, μFn

)
ξt

i j

ξ t
i j

. (A2)

Here, assuming isotropic particles,

kt
i j = 8

Ep

2(1 + νp)(2 − νp)

√
Reff

i j ξi j, (A3)

is the tangential stiffness and μ the friction coefficient. ξt
i j is

the vector valued tangential compression, which is set so zero
on contact formation and integrated using

ξ̇
t
i j = (ṙi + ωi × bi j ) − (ṙ j + ω j × b ji ) − ξ̇

ri − r j

|ri − r j | , (A4)

where ωi, ω j are the particles’ angular velocities and bi j =
−(Ri − ξi j/2) ri−r j

|ri−r j | points from the center of particle i to-
wards the contact point. Throughout the contact, we ensure
ξt

i j is tangential to the contact by rotating it appropriately [36].
The minimum rule in Eq. (A2) ensures, that the Coulomb rule
is upheld. If |F t

i j | � μ|Fn
i j |, then we include sliding dissipa-

tion and modify the tangential force,

F t
i j = −2

3
kt

i jξ
t
i j − γ

√
meff

i j kt
i j ξ̇

t
i j . (A5)

Here, γ is twice the damping ratio and meff
i j = mimj/(mi +

mj ) is the effective mass.

2. Particle-membrane

We use a 2D mass-spring system to model the flexible
membrane [52] and define the connectivity of the membrane’s
vertex particles by a triangular mesh with a hexagonal unit
cell. We insert triangular patches between the membrane’s
vertex particles. The interaction between a granular particle
and the membrane is then given by the contacts of the gran-
ular particle with the triangular patches of the membrane.
The velocity and the contact forces are interpolated between
the patch and the associated vertex particles based on the
barycentric coordinates of the contact point. This interpolation
ensures a well-defined behavior for contacts sliding along the
membrane. For a more detailed description of the membrane
model, we refer to Ref. [38].

The repulsive force of the contact is calculated similarly to
the particle-particle force described in Appendix A 1.
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TABLE II. Material parameters of the particles and the mem-
brane used in simulations.

Particles Membrane

Radius R/thickness (mm) 2.2 to 2.5 0.3
Density ρ (kg/m3) 2000 2000
Elastic modulus Ep (Pa) 5 × 106 to 108 107

Poisson’s ratio ν 0.245 0.33
Normal viscous parameter A 7 × 10−6 7 × 10−6

Friction coefficient μp/μm 0 to 1.2 1.2
Initial friction coefficient μinit 0.3
Tangential damping γ 0.3 0.3
Membrane damping γm 0.15

3. Membrane-mold interaction

The interaction between the mold and the membrane is
given by the contacts between the membrane’s vertex particles
and the mold. Again, the force of the contact is calculated sim-
ilar to the particle-particle force described in Appendix A 1.

4. Pressure application

To apply the confining pressure to the membrane, each
triangular patch of area, Aw

i , and normal unit vector, êw
i , is

loaded with a force, F w
i = Aw

i �p êw
i , where êw

i is defined
such that the force acts from outside the membrane to the
granulate located inside.

5. Membrane supports and beam deflection

We fix the translational degrees of freedom of some ver-
tex particles close to the beam’s extremities to model the
simple supports used in the bending experiment. Similarly,
membrane-particles in the middle of the beam’s bottom face
are used to determine the beam’s deflection by recording
their positions. Figure 17 indicates the exact location of the
respective membrane-particles in our system.

6. Simulation parameters

If not specified differently, then in our simulations we use
the parameters given in Table II.

APPENDIX B: DERIVING STRESS AND STRAIN

For the stiffness we consult the static Euler-Bernoulli beam
theory for small deformations. The theory relates the bending
moment in y direction, My, and shear force in z direction, Qz,
of a beam of length, L, with elastic modulus, E , to the dis-
placement, �z, through the following differential equations:

My = −EI
d2�z

dx2
, Qz = −d

dx

(
EI

d2�z

dx2

)
(B1)

from our setup of a simply supported four point bending beam
with a load length of one third of the beam length, we can
further specify

My(x) = 1

2

⎧⎪⎪⎨
⎪⎪⎩

Fx for x < L/3,

FL
3 for L/3 � x � 2L/3,

F (L − x) for 2L/3 < x,

(B2)

Qz(x) = 1

2

⎧⎪⎨
⎪⎩

F for x < L/3,

0 for L/3 � x � 2L/3,

−F for 2L/3 < x.

(B3)

We integrate Eq. (B1) with Eqs. (B2) and (B3) while apply-
ing appropriate boundary conditions. At the position x = L/2
we obtain the following relation between displacement and
applied force

�z

(
L

2

)
= FL3

6

23

108EI
. (B4)

We calculate the stress at the position x = L/2, z = −h/2,

σ = −Myz

I
= FLh

6I
= FL

h2d
, (B5)

where we used the height, h, and depth, d , of the beam. With
the assumption σ = Eε at small strain, Eqs. (B4) and (B5),
allow us to define the strain

ε = �z

(
L

2

)
108h

23L2
. (B6)

This is approximately ε ≈ 4.7�z(L/2)h/L2, which is equiv-
alent to the formular provided, e.g., in Ref. [30]. Note, in the
main text �z refers to the beam’s central displacement, i.e.,
�z ≡ �z(L/2).

APPENDIX C: COARSE-GRAINED DISPLACEMENT

The displacement �ri(t ) of particle, i, relative to the
beam’s center, xc, (the position halfway between the beams
extremities in the x and y directions) is given by

�ri(t ) = [ri(t ) − ri(t − �t )] � ri(t ) − xc

|ri(t ) − xc| , (C1)

where � is an element-wise multiplication. We apply coarse
graining with a Gaussian kernel function with width of one
particle diameter and divide by the coarse-grained number
density to obtain the continuum displacement �r(r, t ) for any
position r within the beam [53,54].

APPENDIX D: AUTOCORRELATION FUNCTION

We use auto correlation functions to study the spatial and
temporal similarity of Dmin values within the beam. We calcu-
late the spatial autocorrelation with

Ci(r) = 1

M

∑
j

Dmin,iDmin, j

dmean
, |ri − r j | = r ± �r, (D1)

C(r) = 1

N

∑
i

Ci(r), (D2)

where Ci(r) is the spatial autocorrelation function for particle
i. It takes all M particles j at a distance of r ± �r into account.
C(r) is then constructed by averaging the correlation functions
over all N particles of the system.
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