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We develop an orbital-free functional framework to compute one-body quasiprobabilities for both fermionic
and bosonic systems. Since the key variable is a quasidensity, this theory circumvents the problems of finding the
Pauli potential or approximating the kinetic energy that are known to limit the applicability of standard orbital-
free density functional theory. We present a set of strategies to (a) compute the one-body Wigner quasiprobability
in an orbital-free manner from the knowledge of the universal functional and (b) obtain those functionals from
the functionals of the one-body reduced density matrix (1-RDM). We find that the universal functional of optical
lattices results from a translation, a contraction, and a rotation of the corresponding functional of the 1-RDM,
revealing the strong connection between these two functional theories. Furthermore, we relate the key concepts
of Wigner negativity and v representability.
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I. INTRODUCTION

Detecting and understanding quantum features at the
macroscopic level is one of the main theoretical and techno-
logical challenges of modern quantum sciences. Nowadays,
state-of-the-art experiments can directly observe nonclassical
behavior (as quantum superposition) in systems with a truly
macroscopic number of particles [1–4]. A powerful theoret-
ical and computational strategy to detect that quantumness
is by directly measuring the system’s corresponding Wigner
function. Although normalized to unity, Wigner functions are
quasiprobability distributions that can take negative values, a
phenomenon that has no classical counterpart. As a result, in
a wide range of research fields the detection of negativity of
the Wigner functions has been linked to nonclassical features
of quantum states and is broadly considered a distinctive sig-
nature of quantum entanglement [5–7], contextuality [8–10],
quantum computation [11], quantum steering [12,13], or even
quantum gravity [14].

Due to the exponentially large Hilbert spaces of quan-
tum many-body systems, finding the corresponding Wigner
function is, in general, a computationally prohibitive task.
Yet when dealing with identical particles it is possible to
circumvent the Hilbert space’s exponential growth by re-
lying upon universal functionals of certain reduced, more
manageable, quantities. For instance, based on the important
observation that electronic systems are fully determined by
the ground-state density [15], density functional theory (DFT)
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is a prominent methodology in electronic structure calcu-
lations, with applications ranging from quantum chemistry
and material science [16,17] to self-driving labs [18]. Un-
fortunately, although progress is being made to reconstruct
many-body observables from the density [19,20], standard
DFT is, in general, not suitable for describing many nonclassi-
cal features from which Wigner negativity is just a remarkable
example.

A recent phase-space formulation of DFT employs, as the
central variable, the one-particle Wigner quasidensity. Similar
to the Hohenberg-Kohn theorems of DFT, this quasidensity
is in a one-to-one correspondence with the respective ground
state for interacting many-fermion/boson systems [21]. Its
main feature is that the one-body Wigner function can be ac-
cessed directly, without precomputing the full wave function
or finding the map to the ground-state density. This Wigner
quasidensity functional theory (quasi-DFT) is a promising
theoretical tool to model many-body problems while account-
ing for nonclassical features, strong interactions, and quantum
correlations, with the same computational cost as standard
DFT. As we show below, the theory has also the potential
to bypass well-known problems of orbital-free DFT which,
while achieving a computational linear scaling with the sys-
tem size, requires expressing the kinetic energy in terms of
the density [22,23]. Despite these clear advantages, there
are neither orbital-free nor orbital-dependent functionals for
quasi-DFT.

The main goal of this work is to unveil a set of
equations that allows us to compute the fermionic/bosonic
one-particle quasidensity in a fully orbital-free manner. We
show that ω(r, p), the one-particle Wigner quasidensity, satis-
fies the following effective eigenequation:

heff (r, p) � ω(r, p) = μω(r, p), (1)

where heff (r, p) = 1
2 p2 + vext (r) + veff (r, p). Here vext (r) is

the external potential, veff (r, p) is the certain effective poten-
tial that we introduce below, and the symbol � is the so-called
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star product of phase-space quantum mechanics. We show that
introducing this � product in the context of functional theories
has far-reaching consequences for functional theories applied
to fermionic and bosonic systems. For instance, since it is
possible to express this � product as a sum in powers of h̄,
it is possible to truncate at some order, and, as a result, an
infinite sequence of differential equations will arise.

This work is organized as follows. First, we review orbital-
free functional theories and discuss the Wigner formulation
of DFT. Second, we derive an Euler-Lagrange equation for
the one-body Wigner quasidensity. Next, we derive Eq. (1)
and discuss its main theoretical implications. We then em-
ploy the Hubbard model to present a functional realization
of quasi-DFT and perform a calculation with a large number
of particles. We conclude with a summary and discuss some
implications of our results.

II. FUNCTIONAL THEORIES OF THE MANY-BODY
PROBLEM

The enormous success of DFT in electronic structure
calculations is mainly due to the existence of a set of
self-consistent one-particle equations that allow for the com-
putation of the density ρ(r) from one-particle Kohn-Sham
orbitals {φ j (r)} [24]:

ρ(r) =
N∑

j=1

|φ j (r)|2. (2)

Although DFT is cheaper than wave-function methods, this
Kohn-Sham formulation still has a well-known unfavorably
computational scaling with the cube of the number of elec-
trons [25]. Orbital-free DFT has a much more favorable,
linear scaling with the system size [17,22], because to find
the ground-state electron density, the total energy expression
is directly minimized in the set of densities whose number of
electrons is fixed. This yields the following Lagrangian:

L[ρ(r)] = E[ρ(r)] − μ

(∫
ρ(r)dr − N

)
, (3)

with E[ρ(r)] = T [ρ(r)] + Eext[ρ(r)] + EH[ρ(r)] + Exc[ρ(r)]
being the kinetic, external, Hartree, and exchange-correlation
energy functionals. Applying a functional derivative with
respect to the electron density yields the Euler-Lagrange equa-
tion of orbital-free DFT:

δT [ρ(r)]

δρ(r)
+ Veff (r) = μ, (4)

where Veff (r) = Vext (r) + VH(r) + Vxc(r) are the functional
derivatives of the energy functionals.

However, this derivation makes it clear that the computa-
tional advantage of orbital-free DFT is counterbalanced by the
fact that the quantum mechanical kinetic energy functional
is unknown, reducing both its accuracy and its applicability.
Efforts are being made to solve this problem either by writing
it as a classical, approximate function of the electron density,
or, more recently, by training deep neural networks [22].

A parallel intellectual effort is the one-particle reduced
density matrix functional theory (1-RDMFT) whose purpose
is to seek a universal functional of the one-body reduced

density matrix (1-RDM) [26–28]:

γ (r, r′) =
∑

j

n jϕ j (r)ϕ∗
j (r′), (5)

for fermionic [29–31], bosonic [32–35], or relativistic [36]
interacting particles. Similar to DFT, 1-RDMFT is based on
a one-to-one correspondence between the ground state and
its corresponding 1-RDM. Yet, although this theory is in a
better position than DFT to tackle strong correlations due to
the presence of fractional occupations n j [37,38], its broad use
has been hampered by the absence of Kohn-Sham-like equa-
tions for the natural orbitals ϕ j (r) (i.e., the eigenvectors of the
1-RDM) [28,39], and therefore, 1-RDMFT is computationally
much more demanding than DFT [40].

While DFT and 1-RDMFT are somehow connected theo-
ries [e.g., the diagonal of the 1-RDM γ (r, r) gives the density
ρ(r)], they are in practice quite different. One of the main
differences lies in the fact that the functionals of 1-RDM are
usually written as a de facto reconstruction of the two-body
reduced density matrix (2-RDM) in terms of the 1-RDM,
i.e., the occupation numbers nj and the natural orbitals ϕ j (r)
[41,42]. For instance, for two-electron systems in the singlet
case the exact 2-RDM can be written in terms of the 1-RDM
[43]:

	(r, s; r′, s′) = 1

2

∑
i j

√
nin jϕi(r)ϕi(s′)ϕ∗

j (r′)ϕ∗
j (s′). (6)

This has two consequences: first, the theory takes in prac-
tice the form of a natural orbital functional theory where
	[{n j}, {ϕ j}] is the functional to be evaluated [44], and
second, the attempt to build an orbital-free formulation of
1-RDMFT is nonexistent, despite the fact that it could boost
its broad applicability and its computational efficiency. This
work can be seen as an attempt to fill this gap and initiate
such an orbital-free framework for 1-RDMFT.

III. WIGNER QUASI-DFT

Before presenting our novel conceptual framework we re-
cap the phase-space formulation of quantum mechanics. Next,
we present two complementary equations to perform orbital-
free calculations of the one-body Wigner quasidensity.

A. Phase-space formulation of quantum mechanics

In the phase-space formulation of quantum mechanics,
observables are represented by symbols, i.e., functions of po-
sition r and momentum p coordinates. Out of many choices,
Wigner functions host a quite natural representation of quan-
tum mechanics [45], mainly because in the classical limit it
turns out to be the phase-space distribution of statistical me-
chanics. While there are other phase-space distributions (e.g.,
Berezin’s Q or P functions), the Wigner functions are the only
ones that are real and give the correct marginal probabilities
(i.e., they give the densities of DFT by partial integration).
Furthermore, as indicated in the Introduction, the negativity
of the Wigner function is broadly considered a distinctive
signature of non-classical quantum features.

In this phase-space formulation, quantum operators cor-
respond uniquely to phase-space classical functions via
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the Weyl correspondence. Operator products correspond to
� products. This noncommutative star (twisted or Moyal)
product is commonly defined by the phase-space pseudodif-
ferential operator [46]:

� ≡ exp[ih̄(�∂r �∂p − �∂p�∂r )/2], (7)

where the arrows denote that a given derivative acts only
on a function standing on the left or right. This product is
defined by Q( f � g) = Q( f )Q(g), where Q( f ) is the quan-
tized operator version (by the Weyl rule) of the phase-space
function f [47]. The eigenvalue problem for the Hamiltonian
H reads H � fn = En fn = fn � H . Another important property
is that the integral of the � multiplication reduces to a plain in-
tegral, namely,

∫
d� ( f � g) = ∫

d� (g � f ) = ∫
d� f g, with

d� = d3rd3 p.

B. One-body quasidensity

By definition, the one-body Wigner quasidensities are
given in terms of the 1-RDM γ (r, σ ; r′, σ ′) by the following
relation:

ωσσ ′
(r, p) = 1

π3

∫
γ (r − z, σ ; r + z, σ ′) e2ip·z d3z, (8)

where σ ∈ {↑,↓} are the spin variables. Notice that the
marginal

∑
σ

∫
ωσσ (r, p) d3 p gives exactly the density ρ(r)

(the central object of DFT) [48].
A generalization of the Hohenberg-Kohn [15] and Gilbert

[26] theorems to Hamiltonians of the form H = h + V , with a
fixed two-particle interaction V , proves the existence of a uni-
versal Wigner functional FV [ω] of the one-body quasidensity
ω [21]. Indeed, for any choice of the one-particle phase-space
Hamiltonian h(r, p) = 1

2 p2 + vext (r, p), the energy functional

E[ω] ≡
∫

h(r, p) ω(r, p) d� + FV [ω] � Egs, (9)

with d� = d3rd3 p being the phase-space infinitesimal vol-
ume, is bounded from below by the exact ground-state energy.
The equality in Eq. (9) holds when E[ω] is evaluated using the
ground-state one-body quasidensity ωgs.

Two similarities arise with both DFT and 1-RDMFT. As
in standard DFT, the functional FV [ω] is completely inde-
pendent of any external (phase-space) potential v(r, p). As
in 1-RDMFT, it is also completely independent of the kinetic
energy and depends only on the fixed two-particle interaction
V .

The (universal) functional FV [ω] obeys a constrained-
search formulation, by considering only many-body wave-
functions that integrate to the same ω:

FV [ω] = min
�→ω

〈�|V |�〉. (10)

While the functional is unknown, it is known that, due to
the exact knowledge of the kinetic energy functional, it has
some better scaling properties than the functionals in DFT. For
instance, by defining ωλ = ω(λr, λ−1p), one can show that
FV [ωλ] = λFV [ω] [21].

Furthermore, in stark contrast to DFT, any one-particle
observable o(r, p) can be computed directly from the
ground-state one-particle Wigner function by using a rather
simple linear functional: 〈ô〉 = ∫

o(r, p)ω(r, p)d�. While

two-particle observables remain challenging, we present be-
low a way to derive the interacting part of the ground-state
energy for discrete systems from the knowledge of the func-
tional of 1-RDMFT.

Finally, in a quite natural way, one-body quasidensities
inherit the representability conditions of the 1-RDM. In fact,
due to unitary invariance, those can be expressed as conditions
on the eigenvalues of γ [49]. Therefore, it is convenient to use
the spectral representation of ω (i.e., ω = ∑

i ni fi) to find its
representability conditions. In general, ni � 0. In addition, in
the case of fermions,

ω � ω � ω, (11)

which is just a consequence of the Pauli exclusion principle
[50].

C. Two equations for the one-body quasidensity

We now exhibit our first result: the exact equation for the
phase-space one-body quasidensity. Let E[ω] be the energy
functional of the Wigner function (9), subject to the constraint∫

d�ω(r, p) = N . The N-particle phase-space density which
minimizes such a functional is found by applying a functional
derivative of the Lagrangian E[ω] − μN with respect to ω,
yielding the Euler-Lagrange equation of Wigner quasi-DFT:

h(r, p) + δFV [ω]

δω(r, p)
= μ. (12)

There is an important consequence of this result. As is well
known, one of the central problems in orbital-free DFT is
approximating the kinetic energy functional in terms of the
density [51,52] or, alternatively, the Pauli potential [53,54].
It is, indeed, particularly crucial that the Pauli principle be
captured precisely in the kinetic energy. As we can see in
Eq. (12), this important problem is completely absent in the
phase-space formalism. First, the kinetic energy and the ex-
ternal potential are exact, rather simple phase-space functions,
and no approximation is needed. Second, the representability
condition of the Wigner function (11) guarantees that the
Pauli principle is fulfilled. As a consequence, our orbital-free
quasi-DFT needs only to approximate the universal functional
FV [ω].

We present the second result of our work. Inspired by
the work of Levy, Perdew, and Sahni [55], we exhibit an
exact eigenequation for the one-particle quasidensity that does
not require natural orbitals. Indeed, operation on the right
of the Eq. (3), evaluated at the exact ground-state one-body
quasidensity, with the same function, yields a �-eigenvalue
equation,

heff (r, p) � ωgs(r, p) = μωgs(r, p), (13)

where heff (r, p) = h(r, p) + δFV [ω]/δω(r, p)|ω=ωgs . In the
same way, operation from the left gives

ωgs(r, p) � heff (r, p) = μωgs(r, p), (14)

These equations can be compared with the one from
orbital-free DFT for

√
ρ(r) [56]:[− 1

2∇2 + vext (r) + veff (r)
]√

ρ(r) = μ
√

ρ(r), (15)
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where vext (r) is the external potential and veff (r) is a sum of
the Kohn-Sham vKS(r) and the Pauli vθ (r) potentials. While
the advantage of Eq. (15) over the more common Kohn-Sham
approach is evident, a general expression for vθ (r) in terms
of the density is unknown [54]. Strikingly, in the phase-space
formulation, only the derivative of the functional is needed
and no Pauli potential is required.

Introducing the product � in the context of functional the-
ories has additional advantages: it is possible to truncate the
expansion at some power of h̄, and, as a result, a sequence of
different differential equations will arise. Indeed, the formula
(13) allows for a Wigner-Moyal expansion of the equation for
the quasidensity [57]:∑

n

inh̄n

2nn!
heff (�∂r �∂p − �∂p�∂r )nω = μω, (16)

which can be separated into two equations, namely,∑
n

(−)nh̄2n

22n(2n + 1)!
heff (�∂r �∂p − �∂p�∂r )2n+1ω = 0 (17)

and ∑
n

(−)nh̄2n

22n(2n)!
heff (�∂r �∂p − �∂p�∂r )2nω = μω. (18)

These equations comprise a quite rich structure. For instance,
up to order O(h̄3), we have {heff , ω} = 0, where {, } denotes
the Poisson bracket of classical mechanics, and

heff

[
1 − h̄2

8
(�∂r �∂p − �∂p�∂r )2

]
ω = μω. (19)

To be solved, these equations require, of course, some approx-
imate form of the exact functional FV [ω] and its functional
derivative. Unfortunately, explicit functionals of ω are absent
in the literature (save the exchange part of the Hartree-Fock
functional that we present in Appendix B). In the next section,
we propose and work out a strategy to find such functionals.

IV. FUNCTIONAL REALIZATION

As already mentioned, although 1-RDMFT functionals
could be Wigner transformed, almost all of them are written
in terms of natural orbitals [42,58–67], so they are not suited
for our purposes. Let us, therefore, illustrate the potential of
orbital-free quasi-DFT by discussing the generalized Fermi
and Bose-Hubbard models, whose standard version has been
broadly used to unveil aspects of functional theories [32,68–
72]. For two sites, the interacting Hamiltonian, containing all
particle-conserving quartic terms, can be written with three
parameters in the following way:

V (u1, u2, u3) = u1

∑
j=l,r

n̂ j (n̂ j − 1)

+ u2n̂l n̂r + u3
[
(b†

l )2b2
r + (b†

r )2b2
l

]
, (20)

where b†
j , b j , and n̂ j are the corresponding creation, annihila-

tion and particle-number operators on the left and right sites
j ∈ {l, r}. Normalizing to 1 and assuming real-valued matrix
elements, the 1-RDM can be represented in the lattice-site

basis |l〉, |r〉 as

γ = 1
2 + �γ · �σ , (21)

where �γ = (γlr, 0, γll − 1
2 ), �σ = (σx, σy, σz ) is the vector of

Pauli matrices, and γi j = 〈i|γ | j〉.
To write the corresponding (discrete) Wigner transforma-

tion we follow Refs. [73–76], where the Wigner function is
represented on a grid of twice the dimension of the underlying
Hilbert space { j, n}. For the momentum basis, we choose the
one in which the hopping term of the Hubbard Hamiltonian is
diagonal: |n〉 = [|l〉 + (−1)n|r〉]/√2 for n ∈ {0, 1}. This grid
can be seen as a two-dimensional vector space over a finite
field, in which the Wigner function is defined as

|
ωl,1 | ωr,1

|
|

ωl,0 | ωr,0

|
As explained in Appendix A, for a qubit, a phase-space point
operator is [76]

�(n, φm) = 1
2 [1 + (−1)m(|0〉〈0|) − |1〉〈1|)
+ (−1)n(|0〉〈1|) + |1〉〈0|)
+ i(−1)n+m(|0〉〈1|) − |1〉〈0|)]. (22)

Therefore, by computing ω(n, φm) = 1
4 Tr[γ�(n, φm)], one

finds in vectorized form the following equation:

|ω〉〉 = 1
2D|γ 〉〉, (23)

where

|ω〉〉 =
(

ωl,0

ωl,1

)
and D =

(
1 1
1 −1

)
, (24)

with ωr,1 = 1
2 − ωl,0 and ωr,0 = 1

2 − ωl,1. Notice that D is
an orthogonal matrix. Inverting Eq. (23) one gets |γ (ω)〉〉〉 =
D|ω〉〉. Thus, the one-body Wigner quasidensity can now be
computed as

ω j,n = 1
2 [γ j j + (−1)nγlr]. (25)

As it should be, the marginal densities are recovered by the
partial sums:

∑
n ω j,n = γ j j and

∑
j ω j,n = γ̃nn, where γ̃nn is

the momentum density. Since ωl,0 and ωl,1 determine ωr,0 and
ωr,1, we take ωl,0 and ωl,1 as our two degrees of freedom.

Using the semipositivity of γ , it is straightforward to check
that the representability condition reads as follows:(

ωl,0 − 1
4

)2 + (
ωl,1 − 1

4

)2 � 1
8 . (26)

In Fig. 1 are presented two different realizations of the Hamil-
tonian (20) for both 1-RDMFT and quasi-DFT. It can be seen
that the functional of quasi-DFT results from the respective
1-RDMFT functional after a translation, a contraction, and
a rotation of 45◦. This result is general for lattice systems,
as indicated in Appendix A. Finally, notice that, due to the
general form of the formula (25), the same result will hold
for the Fermi-Hubbard dimer. After applying Eq. (12) [or a
discrete version of Eq. (13)], one can find ωgs for specific
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FIG. 1. Universal functionals of 1-RDMFT FV [γ ] and Wigner
quasi-DFT FV [γ ] for two realizations of the generalized Hubbard
dimer (20) for three particles.

values of t (the strength of the hopping term) and vl − vr (the
external potential).

Finally, we present the last result of this section. The con-
nection between 1-RDM and quasidensities presented above
allows us to relate two important concepts in Wigner and
functional theories: Wigner negativity and v representability.
The question is: which fermionic or bosonic ground states give
place to Wigner one-body quasidensities with negative values?
We answer explicitly this question for two and three particles
for the standard Hubbard dimer in Fig. 2: There are four
disconnected ground-state regions of Wigner negativity (the
yellow areas). Relating these two important concepts seems
to be new in the literature.

V. FUNCTIONAL FOR CONDENSATES

In this section, we present results for the Wigner quasi-
density for an arbitrary number of particles close to the
condensate phase. We use the spherical symmetry of the
quasidensity (26) to parametrize it with a radius ρ and
an angle ϕ, namely, ωl,0(ρ, ϕ) = 1

4 [1 + √
2ρ cos(ϕ)] and

ωl,1(ρ, ϕ) = 1
4 [1 + √

2ρ sin(ϕ)]. While an analytical expres-
sion for the universal functional is beyond the scope of what
is currently possible, it is still possible to provide an expres-
sion for the condensate state. Following Refs. [32,34], let
us perform the following rotation of the original site basis:
|ρ〉 = cos (ϕ/2)|l〉 + sin (ϕ/2)|r〉 and |ϕ〉 = − sin (ϕ/2)|l〉 +
cos (ϕ/2)|r〉. In this new basis, states of the form

|N − n, n〉ρ ≡ 1√
N − n)!n!

(a†
ρ )N−n(a†

ϕ )n|0〉.

FIG. 2. Representation of the domain of Wigner one-body quasi-
densities for the Bose-Hubbard dimer (20) with u1 = 1 and u2 =
u3 = 0, for two and three bosons. Wigner positive ω > 0 are repre-
sented in black (non-v-representable) and orange (v-representable).
Wigner negative ω are represented in yellow (v-representable) and
gray (non-v-representable).

map to one-body quasidensities with the same ϕ and only
ρ changes. The idea is to perform the transformation of the
entire Hamiltonian to the states |ρ〉 and |ϕ〉. This will allow
us to perform the calculation of the functional in the vicinity
of the condensate phase analytically. For simplicity let us
consider the Hamiltonian V (u1, u2, 0) of Eq. (20), which we
write from now on as

V (u1, u2) = u1

∑
j=l,r

n̂ j (n̂ j − 1) + u2 n̂l n̂r . (27)

Let us separate the Hamiltonian into two terms:∑
j=l,r n̂ j (n̂ j − 1) ≡ ĥ1(ρ, ϕ) and n̂l n̂r ≡ ĥ2(ρ, ϕ).

The first term ĥ1(ρ, ϕ) was computed in Ref. [32,34], giv-
ing

ĥ1(ρ, ϕ)

= [
1 − 1

2 sin2(ϕ)
](

n̂2
ϕ + n̂2

ρ

) + 1
2 sin2 (ϕ)(N + 4n̂ρ n̂ϕ )

+ 1
2 sin2 (ϕ)[(â†

ρ )2(âϕ )2 + (â†
ϕ )2(âρ )2] + κ̂1(ρ, ϕ),

(28)

where κ̂1(ρ, ϕ) is an operator that contains only one-particle
excitations, which plays no role in our derivation. For the
second term we obtain

ĥ2(ρ, ϕ)

= 1
4 sin2(ϕ)

(
n̂2

ϕ + n̂2
ρ

) + [1 − sin2(ϕ)]n̂ρ n̂ϕ + 1
4 N sin2(ϕ)

− 1
4 sin2 (ϕ)[(â†

ρ )2(âϕ )2 + (â†
ϕ )2(âρ )2] + κ̂2(ρ, ϕ).

(29)

Here the operator k2(ρ, ϕ) contains only one-particle
excitations, and will also play no role in our derivation.
Next, we write the state |�B̃EC〉 = α0|N, 0〉ρ ± α1|N − 2, 2〉ρ
and compute the expectation value 〈�B̃EC|V (u1, u2)|�B̃EC〉.
It will be convenient to define δ = 2α2

1 = 1 − ρ. The exact
relation with the Wigner function amounts to ωl,0(ϕ, δ) =
1
2 [cos2(ϕ/2)(N − δ) + sin2(ϕ/2)δ + cos(ϕ/2) sin(ϕ/2)(N −
δ). We then obtain an expression for the universal functional
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(with an explicit dependence with the number of particles N):

FN [ω(ϕ, δ)] = E (0)
u1,u2

(ϕ) − E (1/2)
u1,u2

(ϕ)δ1/2

+ E (1)
u1,u2

(ϕ)δ + O(δ3/2),

where E (0)
u1,u2

(ϕ) = [N (N − 1) − 1
2 N (N − 1) sin2(ϕ)]u1 + 1

4 N
(N + 1) sin2(ϕ)u2, E (1/2)

u1,u2
(ϕ) = √

N (N − 1)(u1 − 1
2 u2) sin2

(ϕ), and E (1)
u1,u2

(ϕ) = (N − 2)[(u2 − 2u1) + 1
2 sin2(ϕ)(6u1 −

3u2)]. This functional describes an arbitrary number of atoms
in the phase space. Notice that u2 = 2u1 exactly cancels the
term δ1/2 that gives the Bose-Einstein condensate (BEC)
force.

VI. CONCLUSION

Unveiling the role of quantum effects at the classical
level is a crucial problem for many areas of quantum
science ranging from developing quantum technologies to
the characterization of quantum entanglement. The Wigner
quasiprobability is usually employed as a probe of such quan-
tumness. In this work we have presented and developed a set
of strategies to (a) compute ω(r, p), the (fermionic or bosonic)
one-body Wigner quasidensity in an orbital-free manner from
the knowledge of the universal functional, and (b) to ob-
tain those functionals from functionals of the 1-RDM. By
providing an Euler-Lagrange equation and a Wigner-Moyal
eigenequation, we showed that ω(r, p) can be computed as
a stationary point without referring to orbital equations, cir-
cumventing some known problems of orbital-free DFT (e.g.,
approximating the kinetic energy functional or finding the
Pauli potential). We would like to emphasize that one of the
most important aspects of our results is that the � product gives
a rich structure for extracting the corresponding one-particle
Wigner function. In that sense, quasi-DFT is a functional
theory that can connect directly with DFT and with semiclas-
sical expansions of the many-body problem. There are several
potential research directions from our results: First, one could
develop machine-learning quasi-DFT functionals, which is
now current practice for standard DFT [77–80]. Second, since
Wigner negativities carry important quantum information it
will be interesting to see what information they can unveil
for electronic correlations [81,82] or fermionic entanglement
[83]. Finally, it could be quite promising to tackle—within
this orbital-free framework—quantum excitations in the same
spirit of state-average calculations [84] or the recently formu-
lated w-1-RDMFT [85].
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APPENDIX A: DISCRETE WIGNER FORMALISM
FOR THE HUBBARD MODEL

Here we apply the discrete Wigner formalism to the Hub-
bard model of L sites. This is defined in the L-dimensional
Hilbert space HL whose position basis is S = {|1〉, . . . , |L〉}.
Another orthonormal basis for the same Hilbert space is
{|φ0〉, . . . , |φL−1〉}, defined by the Fourier transform:

|φm〉 = 1√
L

L∑
n=1

einφm |n〉, (A1)

with φm = 2π
L m. The set of pairs {n, φm}n,m constitutes an L ×

L grid. This is the phase space 	L associated with the Hilbert
space HL [74].

The operators

n̂ =
∑

n

n|n〉〈n| (A2)

and φ̂ = ∑
m φm|φm〉〈φm| can be used to construct the follow-

ing unitary operators:

V̂ = exp

(
i
2π

L
n̂

)
and Û = exp(iφ̂), (A3)

which satisfy the Weyl relation [76]

D̂(k, l ) ≡ exp

(
−i

πkl

L

)
Û kV̂ l = exp

(
i
πkl

L

)
Û lV̂ k, (A4)

for k, l ∈ Z. With this operator, the authors of Ref. [76] define
the phase-space point operator as

�̂κ (n, φm) = 1

L

∑
k,l

κ (k, l )D̂(k, l )e−i(kφm+ 2π
L ln), (A5)

with a kernel κ (k, l ), whose properties are determined by
the properties of �̂κ . For instance, by the operator’s her-
miticity condition, �̂κ (n, φm) = �̂†

κ (n, φm) that holds for all
(n, φm) ∈ 	L, which is needed to map phase-space functions
to Hermitian operators, results in the condition κ∗(k, l ) =
(−1)L+k+lκ (L − k, L − l ). For odd L = 2N + 1, for instance,
a kernel can be chosen to be [76] κ (k, l ) = cos(πkl/L).

The map between f (n, φm), a real function in 	L, and f̂ , an
operator in HL, is realized by means of the following relation:

f̂ = 1

L

∑
m,n

f (n, φm)�̂κ (n, φm). (A6)

Equation (A6) can now be used to find the Wigner quasidistri-
bution. Since the average value of the observable represented
by the operator f̂ in a state defined by the density operator γ̂

reads

Tr[γ̂ f̂ ] = 1

L

∑
m,n

f (n, φm)Tr[γ̂ �̂κ (n, φm)], (A7)

a natural definition for the Wigner quasiprobability (for
the kernel κ) arises: ω(n, φm) = Tr[γ̂ �̂κ (n, φm)]. From this
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definition, one can write

ω(n, φm) =
∑
m′,n′

D(n, φm; n′, m′)〈n′|γ̂ |m′〉, (A8)

where

D(n, φm; n′, m′)

= 1

L2

∑
k,l,s

κ (k, l )ei( πkl
L +kφs+n′φs+l −m′φs−kφm− 2π

L ln).

If one vectorizes both ω and γ , to wit,

|ω〉〉 =

⎛⎜⎜⎝
ω(1, φ0)
ω(1, φ1)
ω(1, φ2)

...

⎞⎟⎟⎠ and |γ 〉〉 =

⎛⎜⎜⎝
〈1|γ |1〉
〈1|γ |2〉
〈1|γ |3〉

...

⎞⎟⎟⎠, (A9)

one can formally write Eq. (A8) as |ω〉〉 = D̂|γ 〉〉.

APPENDIX B: HARTREE-FOCK IN PHASE SPACE

In this last section, we investigate the form of the orbital-
free Hartree-Fock equations in phase space for a system of
N electrons. As the respective wave function is a single
Slater determinant, the one-body reduced-density matrix is a
projector:

γ (r, r′) =
N∑

n=1

ϕn(r)ϕ∗
n (r′),

with
∫

ϕn(r)ϕ∗
m(r)d3r = δnm. The first result we prove is that

the corresponding Wigner function satisfies ω � ω = ω.
Proof. Let us first define the Wigner phase-space or-

bitals χn(r, p) = ∫
ϕn(r − z)ϕ∗

n (r + z)e2ip·zd3z. They satisfy
the following equation:

χn(r, p) � χm(r, p)

=
∫

χn(r′, p′) χm(r′′, p′′)e2i(r·p′−r′ ·p+r′ ·p′′−r′′ ·p′+r′′ ·p−r·p′′ ) d�′ d�′′

=
∫

ϕn(r′ − z′) ϕ∗
n (r′ + z′) ϕm(r′′ − z′′) ϕ∗

m(r′′ + z′′) e2i(r′′−r′ )·pe2i(z′+r−r′′ )·p′
e2i(z′′+r′−r)·p′′

d�′ d�′′ d3z′ d3z′′

=
∫

ϕn(r′ − z′) ϕ∗
n (r′ + z′) ϕm(r′′ − z′′) ϕ∗

m(r′′ + z′′)e2i(r′′−r′ )·p δ(z′ + r − r′′) δ(z′′ + r′ − r) d3r′ d3r′′ d3z′ d3z′′

=
∫

ϕn(r′ + r − r′′) ϕ∗
n (r′ − r + r′′) ϕm(r′′ + r′ − r) ϕ∗

m(r′′ − r′ + r)e2i(r′′−r′ )·p d3r′d3r′′.

Letting u = r′′ − r′ and v = r′ + r′′ − r, we have

χn(r, p) � χm(r, p) =
∫

ϕn(r − u) ϕ∗
m(r + u) e2iu·pd3u

∫
ϕm(v) ϕ∗

n (v) d3v = δnmχn(r, p).

As a consequence,

ω(r, p) � ω(r, p) =
∑
nm

χn(r, p) � χm(r, p) =
∑
nm

χn(r, p)δnm = ω(r, p). (B1)

�
This result indicates that we have to solve the Hartree-Fock functional subject to the condition ω � ω = ω and the normaliza-

tion
∫

ω(r, p)d� = N . Using the Lagrange multipliers α(r, p) and β, the variational problem reads as follows:

δ

{
EHF[ω] −

∫
α(r, p)[ω(r, p) � ω(r, p) − ω(r, p)] d� − β

[∫
ω(r, p) d� − N

]}
= 0. (B2)

Before performing the variation note that

δ

δω(r, p)

∫
α(r, p) ω(r, p) � ω(r, p) d� = δ

δω(r, p)

∫
α(r, p) ω(r′, p′) ω(r′′, p′′)e2i(r·p′−r′ ·p+r′ ·p′′−r′′ ·p′+r′′ ·p−r·p′′ ) d� d�′ d�′′

=
∫

α(r′, p′) ω(r′′, p′′)e2i(r′ ·p−r·p′+r·p′′−r′′ ·p+r′′ ·p′−r′ ·p′′ ) d�′ d�′′

+
∫

α(r′′, p′′) ω(r′, p′)e2i(r′′ ·p′−r′ ·p′′+r′ ·p−r·p′+r·p′′−r′′ ·p) d�′ d�′′

= ω(r, p) � α(r, p) + α(r, p) � ω(r, p). (B3)

Using this result in Eq. (B2), we obtain

L(r, p) ≡ fHF(r, p) − ω(r, p) � α(r, p) − α(r, p) � ω(r, p) + α(r, p) − β = 0, (B4)

where fHF(r, p) = δEHF[ω]/δω(r, p). Multiplying (with the � product) this equation on the left by ω(r, p) [i.e, ω(r, p) � L(r, p)]
and on the right [i.e., L(r, p) � ω(r, p)], and then subtracting both equations, we obtain that ω � anticommutes with fHF(r, p):

[ fHF(r, p), ω(r, p)]� ≡ fHF(r, p) � ω(r, p) − ω(r, p) � fHF(r, p) = 0. (B5)
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This is the equation of ω(r, p) within Hartree-Fock theory. Recall that it admits an expansion in h̄. For this reason, this
equation allows a semiclassical expansion that does not exist in the double-coordinate representation.

To finish the calculation we give now the explicit form of fHF(r, p). Let us define the one-particle Hamiltonian h(r, p) =
p2/2m + v(r), with v(r) being the external potential. Using the inverse of the Wigner transformation, the Hartree-Fock energy
reads

EHF[ω] =
∫

h(r, p) ω(r, p) d� + 1

2

∫
ω(r, p) ω(r′, p′)

|r − r′| d� d�′ − 1

2

∫
ei(p−p′ )·(r−r′ ) ω((r + r′)/2, p) ω[(r + r′)/2, p′]

|r − r′| d� d�′.

A straightforward calculation finally gives

fHF(r, p) = h(r, p) +
∫

ω(r′, p′)
|r − r′| d�′ −

∫
ei(p−p′ )·r′

|r′| ω(r, p′) d�′

= h(r, p) +
∫

n(r′)
|r − r′| dr′ −

∫
ω(r, p′)
|p − p′|2 dp′. (B6)
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