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Bifurcation and hysteresis in a nonlinear transport model on network motifs
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Nonlinear transport has been observed in many real systems, such as international trade, business transactions,
human movement, and urban traffic. To understand the fundamental properties of transport in such systems,
several models have been proposed in the past few years. These models exhibit complex behavior due to the
interplay between nonlinearity and the underlying network topology. We studied a transport equation on three-
body network motifs both numerically and analytically, and we found bifurcation on two motifs and hysteresis of
a model on one motif. These three motifs show different bifurcation points. The first two motifs have a branching
node, i.e., a node with outdegree 2, and the third motif is a fully connected bidirectional triangle. In particular,
the hysteresis on the bidirectional triangle is not predictable from the linear stability analysis on the uniform
stationary solution. The analysis based on the self-consistency equation of the parameter u [see Eq. (6) for the
precise definition] measuring the ratio between sizes on two nodes reveals the following: The bifurcation on
the first two motifs is due to supercritical pitchfork bifurcation. The difference between these two motifs comes
from the existence of bidirectional edges. The hysteresis on the third motif is due to the combination of the
saddle-node and transcritical bifurcation. Our results imply that the nonlinear transport model exhibits nontrivial
behavior even in minimal settings and that the bifurcation on large-scale networks becomes far more complex
and unpredictable from the underlying network structure.
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I. INTRODUCTION

Nonlinear transport has been found in many phenomena
in the world. As a typical example of nonlinear transport,
nonlinear effects have been observed in world trade [1]
and population movement among countries and cities [2–4],
where the larger the size of the flow target, the larger the
flow rate approximated by a nontrivial power-law relation,
which is called the gravity law. In addition, in recent studies
on complex systems, the number of observed nonlinear flows
has continued to expand to various scales of human-flow sys-
tems [5–8], transportation systems [9,10], international trade
[1,11], and even business-to-business transactions [12].

Despite the fact that such nonlinear transport has been
known for a long time, theoretical issues, such as the stability
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of the stationary state associated with the nonlinearity of trans-
port, have not been sufficiently investigated until recently. In
the past few years, there has been a rapid increase in interest
in these fundamental properties, and several models gener-
alizing the classical random walk with constant transition
probability have been proposed. Specifically, there have been
several models that generalize the usual discrete-time nonlin-
ear random walk with transition probabilities depending on
the current state [13–16], and the continuous-time nonlinear
transport model with injection and dissipation, on which flux
between two sites depends on the target state [17,18]. It has
been found that these models exhibit complex and diverse
behaviors, such as bifurcations [13,17,18], quasiperiodic solu-
tions [14], chaos [15], localized patterns [16], and aggregation
phenomena [19] due to nonlinearity, even under relatively few
degrees of freedom and regular grid structures. Therefore,
complex behaviors of solutions in these models of nonlinear
transport imply that predictive control is fundamentally dif-
ficult, even on a regular grid structure with few degrees of
freedom. The behavior of these models on complex networks
for describing real phenomena is expected to be even more
difficult to evaluate and awaits further study.

In this article, we numerically and analytically investigate
the behavior of the three-body system in which nonlinearity
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is modeled by a power function. Although 3 is the minimum
degree of freedom that exhibits nontrivial behavior, we show
that the bifurcation points and types of bifurcation phenomena
change depending on the underlying network structure. We
found hysteresis in the bidirectional triangle, i.e., a three-body
fully connected graph, and show that the type of branching
changes in response to changes in the structure by adding
edges in the three systems out of all 13 network motifs with
three nodes. These results suggest that we expect more com-
plex bifurcations as the number of degrees of freedom is
increased and that it will be difficult to determine the values of
the bifurcation points. However, we hope that our results can
demonstrate that only a few degrees of freedom can explain
the qualitative behavior observed in large-scale networks [20].

The remainder of this paper is organized as follows.
Section II presents the model definition, numerical results
on three-body motifs, and linear stability analysis; Sec. III
presents the bifurcation analysis with self-consistent equa-
tions; and finally, Sec. IV presents our conclusions.

II. MODEL AND NUMERICAL RESULTS

In this article, we study the following time evolution of
size variables x j for each node j = 1, 2, . . . , N on the directed
network with N nodes:

dx j

dt
=

∑
i

Ai jx
γ

j∑
k Aikxγ

k

xi − (1 + ν)x j + 1, (1)

where Ai j is the adjacency matrix of the network, i.e., Ai j =
1 if there exists a directed edge from i to j and Ai j = 0
otherwise; γ � 0 is a nonlinearity parameter; and ν > 0 is
a parameter determining the average value of the stationary
solution of Eq. (1):

〈x〉 = 1

N

N∑
j=1

x j = 1

ν
, (2)

which can be understood as the conservation law of the total
amount. Equation (1) is obtained as the transport equation on
the network with uniform linear dissipation with coefficient
ν and uniform constant injection based on the flux, with the
functional form modeled by

fi j ∝ Ai jxix
γ

j . (3)

The interaction (3) includes the law of mass action [21] if
γ = 1. Equation (3) includes a typical type of interaction
called gravity law which can be found in other examples
such as international trade between countries [1], business
transaction between companies [12], and human movement
[3]. In this context, the size variable x represents the annual
gross domestic product, annual sales, and population of cities,
respectively. A previous study reports that Zipf’s law of the
distribution of annual sales of companies can be replicated
using Eq. (1) on the Japanese business network by setting
γ = 0.33 and ν = 0.1 [17].

The role of γ in model (1) is to control the degrees of
preferences, which node i sends more flux to node j for higher
x j . The case when γ is zero corresponds to ordinary diffu-
sion, while the case with positive γ corresponds to nonlinear

transport under which flux from two nodes depends on the size
of the target node.

This model has previously been shown to exhibit bifurca-
tion by controlling γ for fixed ν on many networks [17,18],
including large-scale networks like the Japanese business
network. Since the discovery of bifurcation in the Japanese
business network, the transition point γc has been investigated.
It was previously found that γc may depend on the underlying
network structure, and γc of the Japanese business network is
approximately 0.9 (when ν = 0.1) [17]. Moreover, a regular
ring structure has been proposed as a network replicating
the transition point of the Japanese business network [18].
According to the ubiquity of the nonlinear flow in the real
systems, it may be possible to observe this bifurcation phe-
nomena empirically.

In the recent literature on complex systems, the behavior
of the dynamics on the large-size network has been a main
focus [22–24]. Here, we instead study the model on the three-
body directed connected motifs, or so-called network motifs
[25,26], to explore the behavior of the minimal-size systems.
We study the bifurcation on all 13 network motifs with three
nodes. We found only three out of all motifs exhibit bifur-
cation. We found discontinuous bifurcations both with and
without hysteresis on two classes of three-body motifs.

To study the model behavior, we focused on the behavior
of the stationary solution x(γ ) depending on γ for fixed ν.
For fixed perturbation δx, we introduce the following pro-
tocol, as shown in Fig. 1(b). We simulate the consecutive
process of calculating x(u)(γ ) for γ0 � γ � γ1 and x(d )(γ ) for
γ1 � γ � γ0, where we start calculation of x(u)(γ0) and then
calculate x(u)(γ ) using the initial value x(u)(γ − �γ ) + δx
iteratively from γ = γ0 to reach γ = γ1. We set x(d )(γ1) =
x(u)(γ1), and after that we then calculate x(d )(γ ) using the
initial value x(d )(γ + �γ ) + δx iteratively from γ = γ1 to
γ = γ0 in turn. We fix ν = 0.01 and calculate the stationary
solution of Eq. (1) by the Euler method using the time step
�t = 1. We set perturbation δx to two types. For the first
case, δx = (0, 1, 0), and for the second, δx = (1, 1, 0). The
perturbation is needed to avoid the realization of the unstable
solution. We set the condition that the time evolution is con-
vergent if the average over vertices of the absolute difference
between the present and previous steps is less than 10−8. We
set γ0 = 0.0, γ1 = 5.0, and �γ = 10−3.

We performed numerical simulation on all 13 network
motifs and found only three classes; i.e., motifs 1, 8, and 13
in Fig. 1(c) exhibit bifurcation. We show the results obtained
for three classes in Figs. 2(a)–2(d). We confirmed that the
stationary solution was the same for motifs 1–12, while that
of motif 13 was different for these two perturbations and
independent of the magnitude of the perturbations as well. We
show the numerical results of all 13 motifs in Appendix.

In Fig. 2(a), it can be observed from the bifurcation di-
agram of motif 1 that a supercritical pitchfork bifurcation
occurs. The bifurcation point is γ = 3, which is understood
to be caused by the symmetry breaking between the green
and blue nodes. Even if the symmetry of the these nodes
is broken by the bifurcation, the difference between them is
within a certain range. In Fig. 2(b), the bifurcation diagram
for motif 8 shows a supercritical pitchfork bifurcation like in
motif 1. In this case, the bifurcation point is 1, but it is difficult
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FIG. 1. Overview of the numerical experiment on all 13 network motifs with three nodes. (a) The model we consider. The fraction
appearing in the first term on the right-hand side determines the proportion of inflow coming from the neighborhood of node j. We
study the stationary solution of this model throughout this article. We control the parameter γ and examine whether nontrivial behavior
happens to the stationary solution. (b) The numerical simulation protocol. Initially, we set γ = γ0 and calculate the stationary solution. Then,
starting from the stationary solution for γ − �γ , we add the fixed perturbation δx and then calculate the stationary solution x(γ ) of the
equation displayed in panel (a). We iterate this process up to γ = γ1, and then we add perturbation δx and calculate the stationary solution
x(γ − �γ ) to reach the starting γ = γ0. (c) All 13 network motifs with three nodes. For each motif, we consider the process described in panel
(b) and obtain stationary solutions. (d) The resulting bifurcation diagram with underlying motif. The horizontal axis is the control parameter
γ , and the vertical axis is the value of the stationary solution x. The red, green, and blue nodes are nodes 0, 1, and 2 in panel (c), respectively.
The solid red line, dashed green line, and dotted blue line correspond to the values of the stationary solution at the red, green, and blue nodes,
respectively. For illustration, we show the bifurcation diagram for motif 1. We show the diagrams that exhibit bifurcation for motifs 1, 8, and
13 in Fig. 2, and we show the results for all 13 motifs in Appendix. Motif 1 was found to exhibit supercritical pitchfork bifurcation as a result.

to determine from the numerical results alone whether the
stationary solution at the bifurcation has the same continuity
as motif 1. Intuitively, the reason why the bifurcation point
of motif 8 is smaller than that of motif 1 is that the symmetry
between the blue and green nodes is more easily broken due to
the transfer from the blue node to the green node caused by the
bifurcation. This is because there exists a positive feedback

mechanism only on motif 8, not on motif 1. Figures 2(c) and
2(d) show bifurcation diagrams obtained for the same motif
13. The difference between the two figures is the perturba-
tion: Fig. 2(c) is the case where δx = (0, 1, 0), i.e., only the
green node is perturbed, while Fig. 2(d) is the case where
δx = (1, 1, 0), i.e., the red and green nodes are perturbed.
In Fig. 2(c), the bifurcation appears to be continuous, but

FIG. 2. Bifurcation diagrams of motifs 1, 8, and 13. For each panel (a)–(d), the horizontal axis is the control parameter γ , and the vertical
axis is the value of the stationary solution x. The colors of nodes in the motifs correspond to the colors of the curves. We fix ν = 0.01 for
simulation. We have confirmed that the existence of bifurcation still holds for smaller ν values. (a) The bifurcation diagram of motif 1. The
bifurcation point is approximately 3, which is confirmed by Eq. (4a). The value of the red node does not change throughout the protocol.
The type of bifurcation is the supercritical pitchfork bifurcation due to the symmetry of green and blue nodes breaking. (b) The bifurcation
diagram of motif 8. The bifurcation point is approximately 1, which is consistent with Eq. (4b). Again, the value of the red node does not
change throughout the protocol. The type of bifurcation is the supercritical pitchfork bifurcation for finite ν, and the slope goes to infinity
at the zero-dissipation limit ν → 0. (c) The bifurcation diagram of motif 13 with positive perturbation added on the green node. (d) The
bifurcation diagrams of motif 13 with positive perturbation added on the red and green nodes. The hysteresis loop is obtained on motif 13, i.e.,
a bidirectional triangle. The hysteresis in γ (d )

c = 1.26 � γ � γ (u)
c = 2.01 is present.
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in Fig. 2(d), a discontinuous bifurcation with hysteresis is
observed. As the bifurcation in Fig. 2(c) is different from
the case with Z2 symmetry, it is unclear from the numerical
calculations whether it is a pitchfork bifurcation or not.

On these motifs, the stationary solution at γ � γc can be
analytically derived. By linear stability analysis of the station-
ary solution, one can obtain

motif 1: γ (1)
c = 3 + 2ν, (4a)

motif 8: γ (8)
c = 1 + 2

(2 + ν)ν

3 + ν
, (4b)

motif 13: γ (13u)
c = 2 + 4

3
ν. (4c)

These formulas prove the existence of bifurcation at finite γ

values, even at the zero-dissipation limit ν → 0. The bifurca-
tion points of the three motifs are different. This demonstrates
the difficulty of estimating the bifurcation point for large-size
systems from the underlying network structure.

The eigenvectors corresponding to the leading eigenvalues
of the Jacobian are

motif 1: v1 = (0, 1,−1), (5a)

motif 8: v8 = (0, 1,−1), (5b)

motif 13 :

{
v

(1)
13 = (0, 1,−1),

v
(2)
13 = (1, 0,−1).

(5c)

Equations (5a)–(5c) show that while motifs 1 and 8 have only
one leading eigenmode, motif 13 has two. Motifs 1 and 8
exhibit an essentially unique localized stationary solution at
γ > γc up to symmetry, while motif 13 exhibits two distinct
types of localized stationary solution. This is partly because
motifs 1 and 8 have only one eigenmode corresponding to
the largest eigenvalue in the vicinity of bifurcation, but motif
13 has two eigenmodes. Two distinct linear combinations of
these two eigenmodes may correspond to the two different
localized solutions after bifurcation in Figs. 2(c) and 2(d).

III. BIFURCATION ANALYSIS BY SELF-CONSISTENCY
EQUATION

In this section, we present the results of the bifurcation
analysis by self-consistency equation for motifs 1, 8, and 13.
Here, we introduce the parameter u to measure the degree of
deviation between the sizes of nodes 1 and 2:

u = ln
x2

x1
. (6)

u = 0 corresponds to the uniform state with x1 = x2, and u �=
0 indicates the localized state. We analyze the behavior of u
to understand the behavior of the stationary solution in the
vicinity of the bifurcation. In the following, we show the result
of bifurcation analysis for motifs 1, 8, and 13.

A. Motifs 1 and 8

Here, we derive the self-consistency equation of u on mo-
tifs 1 and 8 as

u = φ(u, γ , ν) ≡ ln
(x0 + 1)eγ u + 1

x0 + 1 + eγ u
. (7)

To obtain Eq. (7), we start with the stationary solution on
motif 1:

(1 + ν)x0 = 1, (8a)

νx1 = 1

1 + ( x2
x1

)γ x0 + 1, (8b)

νx2 = 1

1 + ( x2
x1

)−γ
x0 + 1. (8c)

By taking the ratio between Eqs. (8b) and (8c), we get Eq. (7).
Equation (8a) determines the stationary solution x0 of node
0. In the case of motif 8, by taking the second and third
equations of the stationary solution,

(1 + ν)x0 = x1 + x2 + 1, (9a)

(1 + ν)x1 = 1

1 + ( x2
x1

)γ x0 + 1, (9b)

(1 + ν)x2 = 1

1 + ( x2
x1

)−γ
x0 + 1, (9c)

we obtain the same self-consistency equation (7) as for motif
1. The difference between motifs 1 and 8 is the value of x0

obtained by solving Eqs. (8) and (9), respectively:

motif 1: x0 = 1

1 + ν
, (10a)

motif 8: x0 = 3 + ν

ν(2 + ν)
. (10b)

As usual in the analysis of the self-consistency equation of
the order parameter in the context of mean-field theory, the
bifurcation point is determined by

∂φ

∂u

∣∣∣∣
u=0

= γ x0

x0 + 2
= 1. (11)

Thus, we have

γc = 1 + 2

x0
. (12)

The bifurcation points of motifs 1 and 8 from Eq. (12)
combined with Eqs. (10a) and (10b) coincide with the point
obtained by linear stability analysis in Eqs. (4a) and (4b).

The behavior of φ is described in Figs. 3(b) and 3(c) on
motif 1 and in Figs. 4(b) and 4(c) on motif 8 at fixed ν = 10−2.
According to Figs. 3(c) and 4(c), φ on motif 1 does not change
for different ν, while φ on motif 8 changes significantly. The
shape of the φ curve differs at the bifurcation point between
motif 1 [Fig. 3(b)] and motif 8 [Fig. 4(b)]. Hence, the asymp-
totic behavior of x0 at ν → 0 is key to identifying the type
of bifurcation on motifs 1 and 8. In the case of motif 1, the
bifurcation is continuous even at ν → 0 because x0 is finite.
Meanwhile, in the case of motif 8, the bifurcation becomes
discontinuous at ν → 0 even if it is continuous at finite ν > 0.
Indeed, the localized solution is finite only if ν > 0.

The behavior of the solution of the self-consistency equa-
tion after bifurcation by changing ν is different according to
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FIG. 3. Bifurcation analysis on motif 1 based on the self-consistency equation (7). (a) The solution of Eq. (7) for ν = 10−4 (red), 10−3

(yellow), 10−2 (green), and 10−1 (blue). Points are the results obtained by numerically calculated stationary solution. Lines are the results
based on Eq. (7). The black line indicates the solution of the self-consistency equation (7) at ν → 0. (b) The curves of the right-hand side φ

of Eq. (7) at ν = 10−2 for γ = 1.0 (red), 3.0 (yellow), and 4.0 (green). (c) The curves of the right-hand side φ of Eq. (7) at γ = γc = 3 + 2ν

for ν = 10−4 (red), 10−2 (yellow), and 10−1 (green). (d) The scaling relationship of Eq. (13a) obtained by solving Eq. (7) numerically. The
black line indicates the theoretical prediction of Eq. (18). (e) The scaling relationship of Eq. (13b) obtained by solving Eq. (7) numerically.
The black line indicates the theoretical prediction of Eq. (20).

FIG. 4. Bifurcation analysis on motif 8. (a) The solution of Eq. (7) for ν = 10−4 (red), 10−3 (yellow), 10−2 (green), and 10−1 (blue). Points
are the results obtained by numerically calculated stationary solution. Lines are the results based on Eq. (7); the black line indicates the solution
of the self-consistency equation (7) at ν → 0. (b) The curves of the right-hand side φ of Eq. (7) at ν = 10−2 for γ = 1.0 (red), 2.0 (yellow),
and 2.0 (green). The intersecting point with curves and the black line indicating u = φ corresponds to the stationary solution. The change of
the number of intersecting points corresponds to the bifurcation. (c) The curves of the right-hand side φ of Eq. (7) at γ = γc = 1 + 2+ν

3+ν
ν for

ν = 10−4 (red), 10−2 (yellow), and 10−1 (green). This figure implies that. (d) The scaling relationship of Eq. (13a) obtained by solving Eq. (7)
numerically. The black line indicates the theoretical prediction of Eq. (18). (e) The scaling relationship of Eq. (13b) obtained by solving Eq. (7)
numerically. The black line indicates the theoretical prediction of Eq. (22).
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Figs. 3(a) and 4(a). To evaluate this quantitatively, we derive
the exponents β and δ defined by

u ∼
(

γ − γc

γc

)β

, (13a)

u ∼ ν−δ, (13b)

using Eq. (7). First, we expand the function φ up to third order:

u = φ(u, ν) = γ

γc
u − x0 + 1

3(x0 + 2)2
(γ u)3 + O(u5), (14)

or equivalently, if we ignore the higher-order term O(u5),(
1 − γ

γc

)
u + x0 + 1

3x2
0

(
γ

γc
u

)3

= 0. (15)

To derive the exponents β and δ, we set γ = γc + �γ with
sufficiently small �γ > 0 in Eq. (15) such that

�γ

γc
u − x0 + 1

3x2
0

[(
1 + �γ

γc

)
u

]3

= 0. (16)

Assuming u �= 0 at γ = γc + �γ , we have

u =
(

3x0

x0 + 1

�γ

γc

) 1
2

+ O(�γ )

=
(

3x2
0

(x0 + 1)(x0 + 2)
�γ

) 1
2

+ O(�γ ). (17)

Then, it is obvious that

u ∼
(

γ − γc

γc

)β

, β = 1

2
. (18)

This result is independent of the value of x0, so both motifs 1
and 8 show the same scaling with the same β. This is natural
because φ is an odd function. In the case of motif 1,

u =
(

3
(

1
1+ν

)3(
1

1+ν
+ 1

)(
1

1+ν
+ 2

)�γ

) 1
2

=
(

3

(2 + ν)(3 + 2ν)(1 + ν)
�γ

) 1
2

. (19)

If we fix sufficiently small �γ , then the dependency of ν on u
is

u ∼
{

constant, if ν 	 1,

ν−δ, δ = 3
2 if ν 
 1.

(20)

In the same way, as in motif 1, we obtain

u =
⎛
⎝ 3

(
3+ν

ν(2+ν)

)3(
3+ν

ν(2+ν) + 1
)(

3+ν
ν(2+ν) + 2

)�γ

⎞
⎠

1
2

=
(

3(3 + ν)3

ν(2 + ν)(3 + 2ν)(1 + ν)(3 + 3ν + ν2)
�γ

) 1
2

. (21)

Hence, if we fix �γ , we have

u ∼ ν−δ,

{
δ = 1

2 if ν 	 1,

δ = 3
2 if ν 
 1.

(22)

These scaling relations found in motifs 1 and 8 are con-
firmed numerically in Figs. 3(d), 3(e), 4(d), and 4(e) for
sufficiently small ν. The scaling relation of Eq. (22) indi-
cates that the localized solution of motif 8 does not exist
at the zero-dissipation limit. This bifurcation is discontinu-
ous at the zero-dissipation limit, and the crossover from the
second-order transition to the first-order transition at ν > 0 is
observed.

The difference in the continuity of the bifurcation between
motifs 1 and 8 at sufficiently small ν is due to positive feed-
back by reciprocal edges between node 0 and nodes 1 and 2.
Motif 8 contains a feedback mechanism, which allows a flow
between nodes 1 and 2 via node 0. Motif 1 does not contain
such a feedback mechanism, so the flow between nodes 1 and
2 is absent and only dissipates outside. For sufficiently large
ν, the continuity of bifurcation on motifs 1 and 8 is the same
because the external dissipation becomes dominant and the
feedback mechanism does not work.

B. Motif 13

In the case of motif 13, it is nontrivial from its structural
symmetry whether the stationary solution can be captured by
the single-order parameter u = ln x2

x1
. To verify that at least

two of the three values of the stationary solution coincide, we
calculate the vector field using the dynamics on the plane rep-
resenting the conservation x0 + x1 + x2 = 3

ν
, which is given

by

dx0

dt
= xγ

0

xγ

2 + xγ

0

x1 + xγ

0

xγ

0 + xγ

1

x2 − (1 + ν)x0 + 1,

dx1

dt
= xγ

1

xγ

0 + xγ

1

x2 + xγ

1

xγ

1 + xγ

2

x0 − (1 + ν)x1 + 1,

dx2

dt
= xγ

2

xγ

1 + xγ

2

x0 + xγ

2

xγ

2 + xγ

0

x1 − (1 + ν)x2 + 1. (23)

Figures 5(b) and 5(c) show the vector fields of the right-
hand side of Eq. (23) for γ � γ (d )

c for γ = 0 and 1. In these
cases, the uniform solution ( 1

ν
, 1

ν
, 1

ν
) is the unique fixed point.

This point is stable, and the vector field seems to flow into this
fixed point. γ = 1.5 is shown in Fig. 5(d) as a typical case
when γ (d )

c � γ � γ (u)
c . In this case, there exist three stable

fixed points of the vector field, reflecting the symmetry in ad-
dition to the uniform solution, and there are also three unstable
fixed points. In this case, stable fixed points other than the
uniform solution observed in Fig. 5(d) still exist, and a tran-
scritical bifurcation occurs where the stability of the uniform
solution alternates with the unstable fixed points that existed
in Fig. 5(d). As a result, in Fig. 5(f) for γ = 2.5 satisfying γ �
γ (u)

c , it is observed that the uniform solution becomes unstable
and there are six stable fixed points in total. The three fixed
points near the uniform solution correspond to the stationary
solution obtained in Fig. 2(c), and the three fixed points at
the edge of the triangle correspond to the stationary solution
obtained in Fig. 2(d). From Figs. 5(b)–5(f), it is confirmed that
fixed points exist only when at least two of three coincide in
all cases. Therefore, by observing the behavior of u = ln x2

x1
,

we can analyze the bifurcation phenomenon and find that
it does not lose its generality. To confirm the nonexistence
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FIG. 5. Streamlines of the vector fields given by the right-hand side of Eq. (23) on the plain representing the conservation law x0 + x1 +
x2 = 3

ν
for γ = 0, 1, 1.5, 2, 2.5, and 3. In panels (b)–(f), the fixed points are annotated by points, the blue points correspond to stable fixed

points, the red points correspond to saddle points, and the white points correspond to unstable fixed points. (a) The mapping to the phase
diagram on the triangle x0 + x1 + x2 = 3

ν
. The point G on the right side is the point representing the uniform solution ( 1

ν
, 1

ν
, 1

ν
). The red point

represents the state (x0, x1, x2) corresponding to the left side. The highlighted triangle region R corresponds to the subset of phase space such
that x0 < x1 < x2. (b) γ = 0. Streamlines are flowing into the unique fixed point G. (c) γ = 1.0. Streamlines are flowing into unique fixed point
G, as in the case of panel (b). (d) γ = 1.5. This case satisfies γ (d )

c � γ � γ (u)
c . There are multiple stable fixed points other than the uniform

solution G. (e) γ = 2.0. The transcritical bifurcation where the stability of the unstable fixed points and the stable fixed point G change. (f)
γ = 2.5. The fixed point G is unstable, and multiple stable fixed points corresponding to two localized states in Figs. 2(c) and 2(d) are present.

of the periodic solution, we focus on the vector field in the
region R corresponding to the set {(x0, x1, x2)|x0 < x1 < x2}
without loss of generality [see Fig. 5(a) for visualization]. In
the case of γ < γ (d)

c , the vector field in R flows into the blue
point corresponding to the uniform solution. In the case of
γ (d)

c < γ < γ (u)
c , the vector field in R flows into the edge GM.

In the case of γ > γ (u)
c , the vector field in R flows into the

blue point corresponding to the localized stable solution. In
any case, the vector field does not have any fixed points in the
interior of R, and there must not exist periodic solutions since
the vector field is gradientlike, due to Bendixson’s theorem
[27]. Finally, there are no periodic solutions across the region
R since the region R does not have vector fields crossing
boundaries. This completes the intuitive argument.

By setting x0 = x2, we define the order parameter u = ln x2
x1

of localization of the stationary solution. The self-consistency
equation is then

u = φ(u, γ , ν) = 1 + ν
2

1+uγ + ν
3

(
2 + 1

u

) . (24)

By finding the solution of Eq. (24), we obtain Fig. 6(a). In
Fig. 6(a), the markers are obtained by numerical calculation
of the model, and the solid line is the solution of Eq. (24).
From this figure, we can see a saddle-node bifurcation at γ =
γ (d )

c and a transcritical bifurcation at γ = γ (u)
c . There are two

stable fixed points in γ � γ (u)
c , and they are consistent with

the existence of two different stationary solutions in motif 13,
as obtained in Figs. 2(c) and 2(d). The behavior of the right-
hand side of Eq. (24) is shown in Figs. 6(b) and 6(c). At γ =
γ (d )

c , a pair of stable and unstable fixed points different from
the uniform solution appears, and at γ = γ (u)

c , the stability of
the unstable fixed point and uniform solution change.

To proceed, we rewrite the equation with respect to γ as
follows:

γ = ψ (u, ν) ≡ 1

u
ln

eu/a − 1

1 − beu
,

a =
2
3ν + 1
2
3ν + 2

, b =
2
3ν

2
3ν + 1

. (25)

The motif of the function ψ is shown in Fig. 6(c). Laurent
expansion of ψ at u = 0 is

γ = ψ (u, ν) = 1 − ab

(1 − a)(1 − b)
− (1 − ab)(a − b)

2(1 − a)2(1 − b)2
u

+ O(u2)

= γ (13u)
c − 1

2
γ (13u)

c u + O(u2),

γ (13u)
c = 2 + 4

3
ν. (26)

This proves the scaling relationship of continuous bifurcation
in Fig. 2(c):

u ∼
(

γ − γc

γc

)β

, β = 1. (27)

The bifurcation point γ (13d )
c where a two-point localized solu-

tion discontinuously jumps to the uniform solution is obtained
as the minimum of ψ (u, ν):

γ (13d )
c (ν) = min

u
ψ (u, ν). (28)

The bifurcation point γ (13d )
c is obtained numerically by solv-

ing Eq. (28) in Fig. 6(f). We found that γ (13d )
c slowly

converges to 1 from the upper side. To consider ν → 0, we
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FIG. 6. Bifurcation analysis on motif 13. (a) The solution of Eq. (24) for ν = 10−4 (red), 10−3 (yellow), 10−2 (green), and 10−1 (blue).
Points are the results obtained by the numerically calculated stationary solution. Lines are the results based on Eq. (24); the black line indicates
the solution of the self-consistency equation (24) at ν → 0. (b) The curves of the right-hand side φ of Eq. (24) at ν = 10−2 for γ = 1.0 (red),
2.0 (yellow), and 2.0 (green). (c) The curves of the right-hand side φ of Eq. (24) at γ = γc = 1 + 2+ν

3+ν
ν for ν = 10−4 (red), 10−2 (yellow), and

10−1 (green). (d) The scaling relation of Eq. (27). The simulation result is presented by red (ν = 10−4), yellow (ν = 10−3), green (ν = 10−2),
and blue (ν = 10−1) points. The black line is the theoretical prediction. (e) The right-hand side of Eq. (25). The values at u = 0 of curves are
γ (u)

c . For sufficiently small ν, γ (u)
c is approximately 2, which is consistent with Eq. (26). The minima of the curves are γ (d )

c . For sufficiently
small ν, γ (d )

c is asymptotically close to 1, which is consistent with Eq. (30). (f) The asymptotics of γ (d )
c . The red points are obtained by

numerical simulation of Eq. (23), and the black line is the curve of Eq. (28).

approximate that a = 1
2 and b = 0 in Eqs. (25) to obtain

γ − 1 = ln 2

u
+ 1

2

e−u

u
. (29)

From this relation, at the limit ν → 0, we found that

γ (d )
c → 1 (30)

because u → ∞.

IV. DISCUSSION

In this study, we investigated the bifurcation on three
classes of network motifs with three nodes, i.e., motifs 1, 8,
and 13 in Fig. 1(c), and we found that the bifurcation points
of these three motifs are different, and the type of bifurcation
changes from supercritical pitchfork to a combination of the
saddle-node and transcritical bifurcation by adding edges to
the motif. Furthermore, we found that hysteresis loops are

FIG. 7. Phase diagram of the model on motifs (a) 1, (b) 8, and (c) 13. Red areas in panels (a)–(c) indicate areas where uniform solutions are
stable; blue areas in panels (a)–(c) indicate areas where uniform solutions become unstable and localized solutions are stable; and the purple
area in panel (c) indicates areas where stable uniform solutions and stable and saddle localized solutions coexist, respectively. In the blue area
in panel (c), motif 13 has multiple stable solutions and multiple saddle solutions due to the symmetry of three nodes. As the boundaries of the
areas, dotted lines in the figure represent Eqs. (4a) (motif 1), (4b) (motif 8), and (4c) (motif 13), and the solid black line in panel (c) represents
Eq. (28). The circles on the x axis indicate the destabilization of the uniform solution: (a) the solution bifurcates continuously (represented by
a white marker), (b) it bifurcates discontinuously (represented by a black marker), and (c) both continuous and discontinuous bifurcations exist
simultaneously (represented by a black and white dual-half marker), corresponding to Figs. 2(c) and 2(d).
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FIG. 8. Numerical simulation results obtained for all 13 network motifs with three nodes. The number of each panel corresponds to the
motif identification number. As mentioned in the main text, motif 13 shows different bifurcation patterns depending on the perturbation (see
panels 13-1 and 13-2). For each panel, the horizontal axis is the control parameter γ , and the vertical axis is the value of the stationary solution
x. Only three motifs, motifs 1, 8, and 13, exhibit bifurcation in 0 � γ � 5 with ν = 0.01. The reasons why the other ten motifs do not exhibit
bifurcation are classified into several categories. Motifs 2, 3, 4, and 7 do not have branching nodes, i.e., nodes with the outdegree being greater
than or equal to 2; thus, the stationary solution is independent of γ . Motifs 5, 6, and 10 have one sink node (the blue node in motifs 5 and
6, and the red node in motif 10); thus, the stationary solution is already localized at γ = 0. Motif 9 has a symmetry of green and blue nodes,
and in fact, it exhibits bifurcation at a large bifurcation point. The bifurcation point goes to infinity at ν → 0 because the bidirectional edge
between the green and blue nodes helps to converge faster to the stationary state.

created between 1 and 2 in the case of motif 13. These
results are summarized in phase diagrams [Figs. 7(a)–7(c)].
The diagrams show the stable solution at given (γ , ν) values.
In the case of motifs 1 and 8, there are only two parame-
ter regions where uniform or localized solutions are stable.
However, in the case of motif 13, there is a parameter re-
gion of coexistence of uniform and localized solutions other
than regions corresponding to uniform or localized stable
solutions.

Various models of the nonlinear transport and the interac-
tion of size variables have been proposed and analyzed to date.
The multistability of some of the models was known, but its
origin was not clear, as a previous paper pointed out [13]. It
is expected that the study of the models on the three-body
system may give a better understanding of the mechanism,
and we hope that the relation between the bifurcation and
hysteresis we showed alongside previously reported results
will be clarified in the near future.
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As we found the hysteresis of the model on small-size
networks, we may potentially observe a hysteresis on other
real systems with small-size networks, such as international
trade and human flow between cities in the long run. The
role of the hysteresis of this nonlinear transport model may
be associated with the stability of many social economic
systems.

Only a few studies have directly discussed the modeling of
nonlinear transport and system stability in complex networks
with hundreds to millions of degrees of freedom, which are as-
sumed to be realistic systems. In the nonlinear transport model
we studied, our results may be associated with the phase
transitions on the Japanese business network [17], which is
known to be scale-free and small-world, and hysteresis [20]
on a certain scale-free network generation model [28]. It is
suggested that motif 13 plays the role of bistable elements in
a large-degree-of-freedom system. Although our results were
obtained for three systems, they are expected to be essential
for explaining the bifurcation phenomena in large-degree-of-
freedom systems obtained to date, as it is known that the
number of motif 13 is significant by the network motif anal-
ysis of the Japanese business network [29,30]. However, the
problem remains that many of the bifurcation points of the
large networks are less than 1, as in the case of the Japanese
business network [17], which is different from the bifurcation
points obtained in the three-body system.

For future work, it is desired to investigate bifurcation in
large-scale networks, such as the Japanese business network,
as a phase transition using our results to clarify the universal-
ity of the diffusion-localization phase transition in large-scale
networks. There is a possibility that the transition point γc and
critical behavior of the transition can be determined by only
the degree distribution. It is expected that the answer to these
fundamental questions may contribute to our understanding
of the behavior of nonlinear transport and eventually to the
stability of many real systems.
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APPENDIX: NUMERICAL RESULTS ON ALL 13
NETWORK MOTIFS

In this section, we show the bifurcation diagrams for all
13 network motifs with three nodes obtained by the procedure
described in the main text (see Fig. 1 for an overview of the
procedure). The resulting figures are presented in Fig. 8.

We add some remarks on why ten motifs do not show
bifurcation. First, it is obvious that motifs 2, 3, 4, and 7 do not
exhibit bifurcation because these motifs do not have branching
nodes, i.e., nodes with the outdegree being greater than or
equal to 2. For simplicity, here, we discuss the differences
between motifs 6 and 9, and motif 1. Motif 1 has a symmetry
of green and blue nodes, but motif 6 has one direct edge
from the green node to the blue node. This edge breaks the
symmetry between green and blue nodes, leading to a drastic
change in the stationary solution of the model. The stationary
solution at γ = 0 is concentrated on the blue node, which is
the only sink of the motif. This implies that there is no drastic
change of stationary solution by controlling γ , which is why
motif 6 does not exhibit bifurcation at all, as in Fig. 8(6). This
reasoning for motif 6 also applies to motifs 5 and 10. Mean-
while, motif 9 has a different reason that bifurcation does not
occur at ν → 0. This motif actually bifurcates at some γc,
and we can show that γc → ∞ as ν → 0. The bifurcation
point is determined by the ratio of the decay rate 2 + ν of
the perturbation by the dissipation rate ν as

motif 9: γc = (3 + 2ν)
2 + ν

ν
� 7 + 4

√
3 ≈ 14(ν =

√
3).

(A1)

The interaction between green and blue nodes is very fast
compared to the external dissipation. As the slowest dynamics
dominate at the long-time behavior, the large value of γ is
needed to bring about bifurcation. This implies that if the
external dissipation is sufficiently small, the bifurcation point
is very high according to Eq. (A1). As a result, no bifurcation
happens at 0 � γ � 5 with ν = 0.01 in Fig. 8 (motif 9).
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