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Revisiting electromagnetic response of superconductors in mean-field approximation
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In the standard mean-field treatment of superconductors, the electron-electron interactions are assumed
to be written in terms of local density operators. However, more general interactions, such as pair-hopping
interactions, may exist or may be generated in a low-energy effective Hamiltonian. In this work, we study
the effect of correlated hopping interactions toward the electromagnetic response of superconductors. When
only the Hamiltonian after the mean-field approximation is provided, one cannot unambiguously determine its
electromagnetic response whenever such interactions are allowed. This work demonstrates that such interactions
induce additional terms in the current operator, leading to modifications in the Meissner weight and optical
conductivities that deviate from conventional expectations. These results underscore the need for caution when
incorporating gauge fields into the Bogoliubov–de Gennes Hamiltonian.
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Introduction. One of the most remarkable features of su-
perconductors is the Meissner effect, which is the expulsion
of an applied magnetic field from the bulk of the sample [1].
The Bardeen-Cooper-Schrieffer (BCS) theory successfully
explained the mechanism based on the mean-field approxima-
tion [1]. Although this treatment apparently breaks the U(1)
symmetry, the vertex correction restores the gauge invariance
of the response kernel [2].

In the study of superconductors at the mean-field level, one
often starts with the Bogoliubov–de Gennes (BdG) Hamilto-
nian without specifying the Hamiltonian before the mean-field
approximation. The BdG Hamiltonian is not invariant under
U(1) phase rotation and thus its coupling to the gauge field
is not uniquely determined. This results in ambiguities in the
electromagnetic response of superconductors described by the
BdG Hamiltonian.

To see the problems in detail, let us revisit the mean-
field approximation from the microscopic perspective. The
mean-field approximation is a common technique to handle
many-body interactions. However, when employing the mean-
field approximation, certain ambiguities arise, as shown in
Fig. 1. One source of ambiguity pertains to how we define
the order parameters. Depending on the specific choice of
order parameters, different mean-field Hamiltonians can be
derived, even when applied to the same microscopic model
[Fig. 1(a)]. In this paper, our primary focus is on the su-
perconducting order parameter, so this particular issue is not
the central concern of our study. Another form of ambiguity
arises when we only know a mean-field Hamiltonian be-
cause many microscopic models can end up with the same
mean-field Hamiltonian [Fig. 1(b)]. This, in turn, leads to
ambiguity in the physical observables such as electromag-
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netic responses. Furthermore, in the superconductive case,
there is an additional ambiguity introduced when dealing with
the incorporation of gauge fields [Fig. 1(c)]. Let us consider
superconductors described by the BdG Hamiltonian ĤBdG :=
α

∑
k �̂

†
k HBdG

k �̂k + C with

HBdG
k :=

(
Hk �k

�
†
k −HT

−k

)
. (1)

Here, Hk describes band dispersions for the normal phase,
�k is the gap function that satisfies �−k = −β�T

k , and C is
a constant. The parameters α, β and the Nambu spinor �̂k

are given by α = 1, β = −1, �̂k := (ĉk↑, ĉ†
−k↓)T for spinful

electrons, and α = 1/2, β = 1, �̂k := (ĉk, ĉ†
−k )T for spinless

electrons. The particle-hole symmetry P satisfies P2 = β1
(see Appendix D). Note that the BdG Hamiltonian is not
invariant under U(1) gauge transformation (ĉkσ → eiθ ĉkσ ),
unlike the microscopic Hamiltonian, because the off-diagonal
terms change under this transformation.

To examine the electromagnetic response of the super-
conductor, it is customary to introduce the gauge field A by
replacing HBdG

k with (see, for example, Refs. [3–5])

HBdG
k (A)

(?)=
(

Hk+A �k

�
†
k −HT

−k+A

)
, (2)

and define the paramagnetic current operator and the kinetic
energy operator by derivatives with respect to A,

ĴBdG
i := ∂Ai Ĥ

BdG
k (A)|A=0, (3)

K̂BdG
i j := ∂Ai∂Aj Ĥ

BdG
k (A)|A=0. (4)

However, the A dependence of HBdG
k (A) in Eq. (2) is puzzling

in two ways: A does not entirely appear in the form of k + A,
which normally follows by the minimum coupling, and �k

does not depend on A, even though it may have a nontrivial k
dependence.
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FIG. 1. Schematic illustrations of (a) one-to-many relation-
ship between microscopic model and mean-field Hamiltonian,
(b) many-to-one relationship between microscopic models and BdG
Hamiltonian, and (c) electromagnetic response of superconductors.
Given the U(1) symmetric Hamiltonian Ĥ , one can unambiguously
introduce the gauge field A and derive the electromagnetic response
with or without the mean-field approximation. In contrast, given
the BdG Hamiltonian ĤBdG alone, one cannot uniquely determine
ĤBdG(A) and cannot discuss its electromagnetic response without
ambiguities.

The purpose of this work is to revisit these points and
clarify the subtlety behind the BdG Hamiltonian. We argue
that the gap function �k and the constant C may depend on A
and contribute to the paramagnetic current operator and the
kinetic operator whenever the electron-electron interactions
are not solely given in terms of the electron density n̂xσ :=
ĉ†

xσ ĉxσ . As a consequence of these contributions, we find that
the Meissner weight and the optical conductivity get modified
from the standard results.

Furthermore, the BdG Hamiltonian for A = 0 is not suf-
ficient to determine the A dependence of �k and C unless
the Hamiltonian before the mean-field approximation is pro-
vided. This means that the electromagnetic response of the
superconductor described by a BdG Hamiltonian alone is not
completely well defined. We clarify these points through the
discussion of two illuminating examples at zero temperature,
T = 0.

s-wave superconductor with pair hopping. As the sim-
plest example, let us consider a BCS-type superconductor for
single-band spinful electrons on a d-dimensional hypercubic
lattice,

Ĥ (A) := −
∑

x

∑
σ=↑,↓

d∑
i=1

t (e−iAi ĉ†
x+eiσ

ĉxσ + H.c.)

−
∑

x

d∑
i=1

J

2
(e−2iAi ĉ†

x+ei↑ĉ†
x+ei↓ĉx↓ĉx↑ + H.c.)

−
∑

x

∑
σ=↑,↓

μn̂xσ −
∑

x

U0n̂x↑n̂x↓, (5)

where ĉkσ ’s are the annihilation operators of electrons satis-
fying {ĉkσ , ĉ†

k′σ ′ } = δk,k′δσ,σ ′ , t (t > 0) is the nearest-neighbor
hopping, μ (|μ| < 2td) is the chemical potential that might
be seen as the ν = 0 component of the gauge field Aν , U0 is
the on-site density-density interaction, and J is the nearest-
neighbor pair-hopping interaction. This model for the U0 =
Ai = 0 case is called the Penson-Kolb model [6,7] and its
electromagnetic response is studied in Refs. [8,9]. We assume
the periodic boundary condition with the length Li in the ith
direction. The continuum version of this model is included in
Appendix A.

The Hamiltonian has the U(1) symmetry associated with
the electron density n̂x := ∑

σ=↑,↓ n̂xσ , which is necessary to
fix the A dependence. The local current operator for the link
between x and x + ei is given by

ĵx,x+ei
:=

∑
σ=↑,↓

t (ie−iAi ĉ†
x+eiσ

ĉxσ + H.c.)

+ J (ie−2iAi ĉ†
x+ei↑ĉ†

x+ei↓ĉx↓ĉx↑ + H.c.), (6)

and satisfies the continuity equation i[n̂x, Ĥ (A)] =∑d
i=1 ( ĵx,x+ei − ĵx−ei,x). The second term in the current

operator originates from the pair-hopping interaction. The
model also possesses the spin rotation symmetry and,
when Ai = 0, the time-reversal symmetry and the inversion
symmetry.

The superconducting order can be characterized by

φ := 〈ĉx↓ĉx↑〉. (7)

In this work, φ is assumed to be position independent, at least
when A = 0. However, φ may depend on x when Ai �= 0.
In fact, the large gauge transformation Û = e−2π i

∑d
i=1 min̂xxi/Li

(mi ∈ Z) maps φ to e−4π i
∑d

i=1 mixi/Liφ and Ai to Ai + 2πmi/Li.
This means that even if φ for Ai = 0 is position independent,
φ for Ai = 2πmi/Li ∝ L−1

i must depend on x and have the
winding mi = (2π )−1i

∫ Li

0 dxi(φ′/|φ′|)∗∂i(φ′/|φ′|). As we are
interested in the large-Li limit, for the consistency of our
assumption we will keep |Ai| much smaller than 2π/Li and
will set Ai = 0 at the end of the calculation.

The Hamiltonian Ĥ (A) in Eq. (5) can be converted to the
BdG form in Eq. (2) by the mean-field approximation fol-
lowed by the Fourier transformation ĉxσ := V −1/2 ∑

k ĉkσ eik·x.
We find that HBdG

k (A) is given by the band dispersion ξk :=
−∑d

i=1 2t cos ki − μ and the gap function �k is given by
�(A) := −U (A)φ with U (A) := U0 + J

∑d
i=1 cos(2Ai ). The

constant C(A) = ∑
k ξk+A + VU (A)|φ|2 also depends on A

whenever J �= 0.
When A = 0, the self-consistent equation for φ at T = 0

reads

Utot

2V

∑
k

1

Ek
= 1, (8)

where Utot := U0 + Jd is the renormalized interaction
strength, Ek :=

√
ξ 2

k + |�|2 is the excitation energy of the Bo-
goliubov quasiparticle, and � := −Utotφ is the gap function
for A = 0. The self-consistent equation contains only Utot,
not U0 or J separately. Hence, if only ĤBdG is given without
Ĥ , one cannot judge if Utot comes from the density-density
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interaction U0 or the pair-hopping interaction J , as shown in
Fig. 1(a).

p + ip topological superconductor in two dimensions.
The above discussions are not restricted to s-wave super-
conductors. As a more nontrivial example, let us discuss a
single-band model of a spinless electron,

Ĥ (A) := −
∑

x

∑
i=1,2

t (e−iAi ĉ†
x+ei

ĉx + H.c.)

−
∑

x

J

4
[(iei(A2−A1 )n̂xĉ†

x+e1
ĉx+e2 + H.c.)

+ (ie−i(A1+A2 )n̂xĉ†
x+e2

ĉx−e1 + H.c.)

+ (iei(A1−A2 )n̂xĉ†
x−e1

ĉx−e2 + H.c.)

+ (iei(A1+A2 )n̂xĉ†
x−e2

ĉx+e1 + H.c.)]

−
∑

x

μn̂x −
∑

x

∑
i=1,2

U0

2
n̂xn̂x+ei , (9)

where U0 describes the density-density interaction and J is
a correlated hopping term that favors the p + ip order. The
model has both U(1) symmetry and the fourfold rotation sym-
metry. The band dispersion is still given by ξk above. The
current operator and its continuity equation are summarized
in Appendix B.

Suppose that φi := 〈ĉx+ei ĉx〉 is nonzero and position inde-
pendent. The constant C for this model is given by C(A) =
(1/2)

∑
k ξk+A − VE0(A), with

E0(A) := − U0

2
(|φ1|2 + |φ2|2)

− J cos A1 cos A2 i(φ∗
1φ2 − φ∗

2φ1). (10)

When J = 0, the relative phase between φ1 and φ2 is arbitrary,
while J > 0 favors (φ1, φ2) = (iφ, φ) with nonzero φ. This
form of the gap function corresponds to the topological
superconductor with the half-quantized thermal Hall
conductance [10]. Hence, the correlated hopping term
(or some equivalent interaction) is necessary for the desired
nontrivial topology. Assuming this type of order, we find
Eq. (2) with �k(A) = (sin k1 − i sin k2)U (A)φ and U (A) =
U0 + 2J cos A1 cos A2. The self-consistent equation is
modified to

Utot

2V

∑
k

1

Ek

sin2 k1 + sin2 k2

2
= 1. (11)

We stress that A does not enter these quantities through
the replacement of k with k + A, even though it is in-
troduced by the minimal coupling in the U(1) symmetric
Hamiltonian.

Electromagnetic response. As we have seen, when the start-
ing Hamiltonian with U(1) symmetry contains interactions not
solely written in terms of density operators, the supercon-
ducting gap �k and the constant C in the BdG Hamiltonian
generally depend on the gauge field A. Such dependence gives
rise to additional terms in the current operator and the kinetic
energy operator. For example, the current operator with a

finite momentum q is given by

ĴBdG
i,q =

∑
x

e−iq·(x+ 1
2 ei ) ĵx,x+ei

=
∑

k

�̂
†
kγi,k+q,k�̂k+q + δq,0∂AiC(A)|A=0, (12)

with γi,k+q,k := vi,k+ q
2
σ0 − 2Jφ sin qi

2 iσ2, which contains the
contribution from the pair-hopping interaction in the off-
diagonal part, in addition to the standard band velocity term
vi,k := ∂kiξk in the diagonal part. On the other hand, the charge
density operator

ĴBdG
0,q =

∑
x

e−iq·xn̂x =
∑

k

�̂
†
kγ0,k+q,k�̂k+q + δq,0V (13)

with γ0,k+q,k := σ3 is not affected by J . In the remainder of
this work, we discuss the physical consequences of these
additional terms using the spinful electron model in Eq. (5).
Without loss of generality, we set � to be real using the U(1)
symmetry.

Meissner weight. Let us consider the linear response kernel
of the current operator toward the gauge field with a frequency
ω = q0 and a momentum q,

jμ(q) =
d∑

ν=0

Kμν (q)Aν (q). (14)

Here and hereafter, we write q = (q0, q) for short. According
to the linear response theory, the response kernel is given by

KBdG
μν (q) = MBdG

μν + RBdG
μν (q), (15)

where

RBdG
μν (q) := − i

V

∫
dteiωtθ (t )

〈[
ĴBdG
μ,q (t ), ĴBdG

ν,−q(0)
]〉

(16)

is the retarded current correlation function in the mean-field
approximation and

MBdG
i j := 1

V

〈
K̂BdG

i j

〉
(17)

is the diamagnetic contribution giving the Meissner weight.
We find

MBdG
i j = 1

V

∑
k

〈n̂k〉∂ki∂k j ξk − |φ|2∂Ai∂AjU (A)|A=0 (18)

and MBdG
μν = 0 if μ or ν is 0. This result also applies to the

spinless model and hence generalizes the result in Refs. [8,9].
In addition to the usual term associated with the electron
density 〈n̂k〉 = α(1 − ξk/Ek) and the band curvature ∂ki∂k j ξk,
the second term arises from the A dependence of �k and C. If
the standard form in Eq. (2) were assumed instead, this term
would be missed. This effect might be measured through the
penetration depth λ of an external magnetic field.

Response kernel with vertex correction. As is well
known, the kernel KBdG

μν (q) in Eq. (15) in the mean-
field treatment does not respect the gauge invariance. That
is, the induced current

∑d
ν=0 KBdG

μν (q)Aν (q) is not invari-
ant under the gauge transformation A0(q) → A0(q) − ωχ (q)
and Ai(q) → Ai(q) + 2 sin qi

2 χ (q). To obtain the gauge-
invariant optical conductivity σi j (q) towards the electric field
Ej (q) = −iωAj (q), let us take into account the vertex correc-
tion following the steps in Refs. [1,2].
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First, we define the vertex function �μ by

〈T n̂z(tz )�̂x(tx )�̂†
y (ty)〉

= −
∑
x′,y′

∫
dt ′

xdt ′
yG(x, x′)�0(x′, y′, z, tz )G(y′, y) (19)

and

〈T ĵz,z+ei (tz )�̂x(tx )�̂†
y (ty)〉

= −
∑
x′,y′

∫
dt ′

xdt ′
yG(x, x′)�i

(
x′, y′, z + 1

2
ei, tz

)
G(y′, y).

(20)

Here,

Gq :=
∫

dteiωt (−i)〈T �̂q(t )�̂†
q 〉 = ωσ0 + ξqσ3 + �σ1

ω2 − E2
q + iδ

(21)

is the time-ordered Green function. The continuity equa-
tion for the current operator [1,2] implies the generalized
Ward identity (GWI),

d∑
i=1

2 sin
qi

2
�i,k+q,k − ω�0,k+q,k = σ3G−1

k − G−1
k+qσ3. (22)

For the reader’s convenience, we review the derivation from
Refs. [1,2] in Appendix A. The vertex function can be ob-
tained by solving the Bethe-Salpeter equation,

�μ,k+q,k = γ
(0)
μ,k+q,k + Cμ,q, (23)

Cμ,q := Utot

∫
dk0

2π i

1

V

∑
k

σ3Gk+q�μ,k+q,kGkσ3, (24)

with γ
(0)

0,k+q,k = σ3, γ
(0)

i,k+q,k := vi,k+ q
2
σ0, and vi,k := ∂kiξk.

Once �μ is obtained, the time-ordered current correlation
function Pμν (q) can be expressed as

Pμν (q) := − i

V

∫
dteiωt 〈T Ĵμ,q(t )Ĵν,−q(0)〉

=
∫

dk0

2π i

1

V

∑
k

tr[γμ,k+q,kGk+q�ν,k+q,kGk]eik0δ.

(25)

Then the retarded correlation function Rμν (q) is given
by ReRμν (q) = RePμν (q) and ImRμν (q) = sgn ω ImPμν (q)
(see Appendix C). The optical conductivity σi j (q) including
the vertex correction is then given by

σi j (q) = i

ω
Ki j (q) = i

ω

[
MBdG

i j + Ri j (q)
]
. (26)

Using the GWI (22) and the self-consistent equation (8),
we have

d∑
j=1

Pi j (q)

(
2 sin

q j

2

)
− Pi0(q)ω

=
∫

dk0

2π i

1

V

∑
k

tr[(σ3γi,k−q,k − γi,k,k+qσ3)Gk]

= −
d∑

j=1

MBdG
i j

(
2 sin

q j

2

)
, (27)

FIG. 2. (a) The optical conductivities Re[σ11(ω, q1)] towards
nonuniform field with the vertex correction for various J . Here, we
used t = 0.6, μ = 0, � = 1. We expand Re[σ11(ω, q1)] in the Taylor
series of q2

1 and here we show the coefficient of the q2
1 term. Red,

green, and blue markers represent J = Utot, J = 0.5Utot, and J = 0.
(b) The ratio of the difference of conductivity between J = Utot and
J = 0 as a function of t at ω = 2.1.

implying that the gauge invariance is restored:∑d
j=1 Ki j (q)(2 sin q j

2 ) − Ki0(q)ω = 0.
Figures 2 and 3 show our numerical results for the opti-

cal conductivity σi j (q) in Eq. (26) for q2 = · · · = qd = 0. In
single-band models with inversion and time-reversal symme-
try, the optical conductivity vanishes when q = 0 [3]. Hence,
here we assume a spatially modulating field with q1 �= 0
and focus on the coefficient of q2

1 in the Taylor series of
Re[σ11(ω, q1)] with respect to q1. We fix � = 1, and Utot is
fixed by the self-consistent equation.

We found that nonzero J have a significant impact on the
conductivity when the normal velocity vi,k is small, indicating
that the band width of the normal state or t is small compared
to J . In Fig. 2(a), we present a comparison of the results
for three cases: J = 0, J = 0.5Utot, and J = Utot, while keep-
ing Utot, t , and � constant. Additionally, we examine the t
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FIG. 3. The optical conductivities Re[σ11(ω, q1)] towards a nonuniform field (c) with or (a) without the vertex correction (b) for t = 1.5,
μ = 0, � = 1 (Utot is fixed by the self-consistent equation) in a two-dimensional system. We expand Re[σ11(ω, q1)] in the Taylor series of q2

1

and show the coefficient of the q2
1 term. Red squares, green triangles, and blue circles are for J = Utot, J = 0.5Utot, and J = 0, respectively.

The insets in panels (a) and (b) are the log-log plots of the absolute value |Re[σ11(ω, q1)/q2
1]|. Gray lines are obtained by fitting to determine

the power of the decay Re[σ11(ω, q1)/q2
1] ∝ ω−n.

dependence of the ratio of the conductivity difference between
J = Utot and J = 0 at ω = 2.1 in Fig. 2(b). The results show
that when the normal state band is relatively flat in comparison
to �, the nonzero J have a pronounced impact on conductivity.
Recently, there has been a growing interest in models featur-
ing flat- or quasiflat-band superconductors [11–13]. This find-
ing underscores the need for caution when applying standard
practices to address electromagnetic response in such models.

Figure 3 shows the results for the J = 0.5Utot case (red
squares) and the J = 0 case (blue circles) with the large
band width of the normal state compared to J in two and
three dimensions. We found that nonzero J significantly affect
the bare conductivities [Figs. 3(a) and 3(d)] and the vertex
corrections [Figs. 3(b) and 3(e)] separately, although such dif-
ferences are mostly suppressed in the sum σi j (q) := σ

(0)
i j (q) +

σ VC
i j (q) [Figs. 3(c) and 3(f)]. In particular, the contributions

from J usually decay with smaller power of ω, as shown in
the insets. However, the cancellation is not perfect and there
are still finite differences originating from nonzero J .

Conclusion. In this work, we revisited the electromagnetic
response of superconductors. In general, the correspondence
of the microscopic models and the BdG Hamiltonians after
the mean-field approximation is “many to one”: in the
case of the spinful electron model in Eq. (5), as far as the
renormalized parameter Utot = U0 + Jd is fixed, models with
different choices of on-site Coulomb interaction U0 and the
pair-hopping interaction J lead to the same BdG Hamiltonian.
However, we found that the Meissner weight and optical
conductivities are sensitive to the specific value of J , as
shown in Eq. (18) and in Figs. 2 and 3. This means that the
response toward the U(1) gauge field has ambiguities unless
the microscopic model with U(1) symmetry is provided. Our
results call for caution in the standard practice of introducing
the gauge field A to the BdG Hamiltonian as in Eq. (2).
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APPENDIX A: SPINFUL MODEL

1. Model

The Hamiltonian is defined as

Ĥ (A) := −
∑

x

∑
σ=↑,↓

d∑
i=1

t (e−iAi ĉ†
x+eiσ

ĉxσ + H.c.) −
∑

x

∑
σ=↑,↓

μn̂xσ −
∑

x

U0n̂x↑n̂x↓

−
∑

x

d∑
i=1

J

2
(e−2iAi ĉ†

x+ei↑ĉ†
x+ei↓ĉx↓ĉx↑ + H.c.). (A1)

In terms of Fourier components, the interaction term of the Hamiltonian can be written as

−
∑

x

U0n̂x↑n̂x↓ −
∑

x

d∑
i=1

J

2
(e−2iAi ĉ†

x+ei↑ĉ†
x+ei↓ĉx↓ĉx↑ + H.c.)

= − 1

V

∑
q

[
U0 + J

d∑
i=1

cos(qi + 2Ai )

]⎛
⎝∑

k′
ĉ†

k′+q↑ĉ†
−k′↓

⎞
⎠(∑

k

ĉ−k↓ĉk+q↑

)
. (A2)
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To obtain the continuum limit of the model, one can replace ĉx+eiσ by ĉx+aeiσ and Ai by aAi and perform the Taylor expansion
with respect to the lattice constant a. One finds

ad Ĥ 

∫

dd x
∑

σ=↑,↓
[ta2(∇ − iA)ĉ†

xσ · (∇ + iA)ĉxσ − (μ + 2t )n̂xσ ]

−
∫

dd x(U0 + J )n̂x↑n̂x↓ +
∫

dd x
Ja2

2
(∇ − 2iA)(ĉ†

x↑ĉ†
x↓) · (∇ + 2iA)(ĉx↓ĉx↑). (A3)

This model is fully rotation symmetric and might be easier to deal with. However, in this work, we discuss only the lattice model
for consistency.

2. Fourier transformation of the current operator

The current operator with a finite momentum q is defined
by

Ĵ0,q := N̂q =
∑

x

∑
σ=↑,↓

e−iq·xn̂xσ , (A4)

Ĵi,q :=
∑

x

e−iq·(x+ 1
2 ei ) ĵx,x+ei . (A5)

The continuity equation becomes

[N̂q, Ĥ ] =
d∑

i=1

2 sin qi

2 Ĵi,q. (A6)

If one performs a Fourier transformation with respect to t as

N̂q :=
∫

dteiωt eiĤt N̂qe−iĤt , (A7)

then [N̂q, Ĥ ] should be replaced with ωN̂q. After the mean-
field approximation, we find

Ĵμ,q =
∑

p

�̂†
pγμ,p+q,p�̂p+q, (A8)

γ0,k+q,k := σ3, γi,k+q,k := vi,k+ q
2
σ0 − 2Jφ sin qi

2 iσ2. (A9)

3. BdG Hamiltonian

The BdG Hamiltonian can be diagonalized as

ĤBdG =
∑

k

Ek(γ̂ †
k↑ γ̂−k↓)σ3

(
γ̂k↑
γ̂

†
−k↓

)
+ C, (A10)

where (
γ̂k↑
γ̂

†
−k↓

)
:= u†

k�̂k, (A11)

uk := 1√
|�|2 + (Ek + ξk)2

(
Ek + ξk −�

� Ek + ξk

)
. (A12)

It follows that γ̂
†
kσ

(t ) = γ̂
†
kσ

eiEkt in the Heisenberg picture.
The annihilation operators of electrons can be expressed in

terms of operators for Bogoliubov quasiparticles,

ĉk↑ = (Ek + ξk)γ̂k↑ − �γ̂
†
−k↓√

|�|2 + (Ek + ξk)2
, (A13)

ĉk↓ = (Ek + ξk)γ̂k↓ + �γ̂
†
−k↑√

|�|2 + (Ek + ξk)2
. (A14)

From these expressions, we find

〈ĉ−k↓ĉk↑〉 = − �

2Ek
,

〈ĉ†
kσ

ĉkσ 〉 = |�|2
|�|2 + (Ek + ξk)2

= Ek − ξk

2Ek
. (A15)

In the derivation, we used

Ek + ξk

|�|2 + (Ek + ξk)2
= 1

2Ek
,

|�|2
|�|2 + (Ek + ξk)2

= Ek − ξk

2Ek
.

(A16)

4. Green function

Let us define the (matrix-valued) Green function,

G(x, x′) := − i〈T �̂x(t )�̂†
x′ (t ′)〉

= 1

V

∑
q

∫
dω

2π
eiq·(x−x′ )−iω(t−t ′ )Gq, (A17)

for the Nambu spinor

�̂x :=
(

ĉx↑
ĉ†
−x↓

)
. (A18)

In the Fourier space, it reads

Gq(t ) :=−i〈T �̂q(t )�̂†
q 〉 = −iθ (t )

e−iEqt

2Eq

(
Eq + ξq �

� Eq − ξq

)

+ iθ (−t )
eiEqt

2Eq

(
Eq − ξq −�

−� Eq + ξq

)

= −iθ (t )e−iEqt Eqσ0 + ξqσ3 + �σ1

2Eq

+ iθ (−t )eiEqt Eqσ0 − ξqσ3 − �σ1

2Eq
(A19)

and

Gq :=
∫

dteiωt Gq(t ) = 1

ω − Eq + iδ

Eqσ0 + ξqσ3 + �σ1

2Eq

+ 1

ω + Eq − iδ

Eqσ0 − ξqσ3 − �σ1

2Eq

= ωσ0 + ξqσ3 + �σ1

ω2 − E2
q + iδ

. (A20)
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We have

Gq(±η) =
∫

dω

2π
Gqe∓iωη = −i

±Eqσ0 + ξqσ3 + �σ1

2Eq
, (A21)

G−1
0q = ωσ0 − ξqσ3, (A22)

G−1
q = ωσ0 − ξqσ3 − �σ1, (A23)

�(q) = G−1
0q − G−1

q = �σ1. (A24)

5. Generalized Ward identity

We define the vertex functions �0 and �i by

�0(x, y, z, tz ) := 〈
T n̂z(tz )�̂x(tx )�̂†

y (ty)
〉 = −

∑
x′,y′

∫
dt ′

xdt ′
yG(x, x′)�0(x′, y′, z, tz )G(y′, y), (A25)

�i

(
x, y, z + 1

2
ei, tz

)
:= 〈T ĵz,z+ei (tz )�̂x(tx )�̂†

y (ty)〉 = −
∑
x′,y′

∫
dt ′

xdt ′
yG(x, x′)�i

(
x′, y′, z + 1

2
ei, tz

)
G(y′, y). (A26)

Using the continuity equation, we find

∂tz�0(x, y, z, tz ) +
d∑

i=1

[
�i

(
x, y, z + 1

2
ei, tz

)
− �i

(
x, y, z − 1

2
ei, tz

)]

= δ(tz − ty)δz,yG(x, z)iσ3 − δ(tz − tx )δz,xiσ3G(z, y)

= −
∑
x′,y′

∫
dtxdtyG(x, x′)

[
∂tz�0(x′, y′, z, tz ) + �i

(
x′, y′, z + 1

2
ei, tz

)
− �i

(
x′, y′, z − 1

2
ei, tz

)]
G(y′, y). (A27)

In the derivation, we used

δ(tz − tx )〈T [n̂z(tx ), �̂x(tx )]�̂†
y (ty)〉 + δ(tz − ty)〈T �̂x(tx )[n̂z(ty), �̂†

y (ty)]〉
= −δ(tz − tx )δz,xσ3〈T �̂x(tx )�̂†

y (ty)〉 + δ(tz − ty)δz,y〈T �̂x(tx )�̂†
y (ty)〉σ3

= −δ(tz − tx )δz,xiσ3G(x, y) + δ(tz − ty)δz,yG(x, y)iσ3. (A28)

Introducing the Fourier transformation by

�0(x′, y′, z, tz ) =
∫

dω′

2π

∫
dω

2π

1

V 2

∑
p,q

�0,p+q,peip·(x′−y′ )+iq·(x′−z)−iω′(t ′
x−t ′

y )−iω(t ′
x−tz ), (A29)

�i

(
x′, y′, z + 1

2
ei, tz

)
=

∫
dω′

2π

∫
dω

2π

1

V 2

∑
p,q

�i,p+q,peip·(x′−y′ )+iq·(x′−z− 1
2 ei )−iω′(t ′

x−t ′
y )−iω(t ′

x−tz ), (A30)

we find

〈T n̂z(tz )�̂x(tx )�̂†
y (ty)〉 = −

∫
dω′

2π

∫
dω

2π

1

V 2

∑
p,q

Gp+q�0,p+q,pGpei(p+q)·x−i(ω′+ω)(tx−tz )eip·(z−y)−iω′(tz−ty ) (A31)

and

〈T ĵz,z+ei (tz )�̂x(tx )�̂†
y (ty)〉 = −

∫
dω′

2π

∫
dω

2π

1

V 2

∑
p,q

Gp+q�i,p+q,pGpei(p+q)·(x−z− 1
2 ei )−i(ω′+ω)(tx−tz )eip·(z+ 1

2 ei−y)−iω′(tz−ty ). (A32)

Here, p = (ω′, p). Using these expressions, we arrive at the generalized Ward identity,

d∑
i=1

2 sin
qi

2
�i,p+q,p − ω�0,p+q,p = σ3G−1

p − G−1
p+qσ3. (A33)

Writing

γ
(0)

i,k+q,k := vi,k+ q
2
σ0, γ

(0)
0,p+q,p = σ3, (A34)
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we find
d∑

i=1

2 sin
qi

2
γ

(0)
i,p+q,p − ωγ

(0)
0,p+q,p = σ3G−1

0p − G−1
0p+qσ3. (A35)

6. Current correlation function

We define the time-ordered current correlation function by

Pμν (q, t ) := −i〈T Ĵμ,q(t )Ĵν,−q〉. (A36)

We find

Pi j (q) := − i

V

∫
dteiωt 〈T Ĵi,q(t )Ĵ j,−q(0)〉

= − i

V

∫
dteiωt

∑
p

〈T (�̂p)†
l (t + η)(γi,p+q,p)lm(�̂p+q)m(t )Ĵ j,−q(0)〉

= i

V

∫
dteiωt

∑
p

(γi,p+q,p)lm〈T Ĵ j,−q(0)(�̂p+q)m(t )(�̂p)†
l (t + η)〉

= i

V

∫
dteiωt

∑
p

1

V

∑
x,y,z

tr[γi,p+q,p〈T ĵz,z+e j (0)�̂x(t )�̂†
y (t + η)〉]e−i(p+q)·xeip·yeiq·(z+ 1

2 e j )

= −
∫

dω′

2π

i

V

∑
p

tr[γi,p+q,pGp+q� j,p+q,pGp]eiω′η, (A37)

where we used

〈T ĵz,z+e j (0)�̂x(t )�̂†
y (t + η)〉 = −

∫
dω′

2π

∫
dω

2π

1

V 2

∑
p,q

Gp+q� j,p+q,pGpei(p+q)·(x−z− 1
2 e j )−iωt eip·(z+ 1

2 e j−y)+iω′η, (A38)

d∑
j=1

P0 j (q)2 sin
q j

2
− P00(q)ω = −

∫
dω′

2π

i

V

∑
p

tr[σ3(Gp+qσ3 − σ3Gp)]eiω′η = −
∫

dω′

2π

i

V

∑
p

tr[Gp+q − Gp]eiω′η = 0,

(A39)
d∑

j=1

Pi j (q)2 sin
q j

2
− Pi0(q)ω = −

∫
dω′

2π

i

V

∑
p

tr[γi,p+q,p(Gp+qσ3 − σ3Gp)]eiω′η

= −
∫

dω′

2π

i

V

∑
p

tr[(σ3γi,p,p−qe−iωη − γi,p+q,pσ3)Gp]eiω′η

= − 1

V

∑
p

tr

[[(
vi,p− q

2
− vi,p+ q

2

)
σ3 − 4Jφ sin qi

2 σ1
]
(−Eqσ0 + ξqσ3 − φUtotσ1)

2Eq

]

= −2 sin
qi

2

1

V

∑
p

−4t cos piξq + 4UtotJ|φ|2
2Eq

= −2 sin
qi

2

⎛
⎝ 1

V

∑
p

2t cos pi〈n̂p〉 + 4J|φ|2
⎞
⎠.

(A40)

7. Bethe-Salpeter equation

The Bethe-Salpeter equation

�μ,p+q,p = γ
(0)
μ,p+q,p − Utot

∫
dk0

2π i

1

V

∑
k

σ3Gk+q�μ,k+q,kGkσ3 (A41)

is consistent with Ward identities

d∑
i=1

2 sin
qi

2
�i,p+q,p − ω�0,p+q,p = σ3G−1

p − G−1
p+qσ3, (A42)

d∑
i=1

2 sin
qi

2
γ

(0)
i,p+q,p − ωγ

(0)
0,p+q,p = σ3G−1

0p − G−1
0p+qσ3. (A43)
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Indeed, we have

σ3G−1
p − G−1

p+qσ3 =
d∑

i=1

2 sin
qi

2
γ

(0)
i,p+q,p − ωγ

(0)
0,p+q,p − Utot

∫
dk0

2π i

1

V

∑
k

σ3Gk+q

[
d∑

i=1

2 sin
qi

2
�i,k+q,k − ω�0,k+q,k

]
Gkσ3

= σ3G−1
0p − G−1

0p+qσ3 − Utot

∫
dk0

2π i

1

V

∑
k

σ3Gk+q
[
σ3G−1

k − G−1
k+qσ3

]
Gkσ3

= σ3G−1
0p − G−1

0p+qσ3 − Utot

∫
dk0

2π i

1

V

∑
k

[σ3Gk+q − Gkσ3]

= σ3G−1
0p − G−1

0p+qσ3 − Utot
1

V

∑
k

[±Ekσ3 + ξkσ0 + �iσ2

2Ek
− ±Ekσ3 + ξkσ0 − �iσ2

2Ek

]

= σ3G−1
0p − G−1

0p+qσ3 − 2iσ2Utot
1

V

∑
k

�

2Ek
= σ3G−1

0p − G−1
0p+qσ3 − 2iσ2�. (A44)

In the derivation, we used ∫
dω

2π i
Gqe∓iωη = ±Eqσ0 + ξqσ3 + �σ1

2Eq
. (A45)

APPENDIX B: SPINLESS MODEL

Here let us summarize the symmetry and conserved current in the spinless model. The Hamiltonian is given by

Ĥ := −
∑

x

⎡
⎣∑

i=1,2

t (e−iAi ĉ†
x+ei

ĉx + eiAi ĉ†
xĉx+ei ) + μn̂x

⎤
⎦ − U0

2

∑
x

∑
i=1,2

n̂xn̂x+ei

− J

8

∑
x

in̂x
[(

ei(θ2−θ1 )ĉ†
x+e1

ĉx+e2 − e−i(θ2−θ1 )ĉ†
x+e2

ĉx+e1

) + (
e−i(θ1+θ2 )ĉ†

x+e2
ĉx−e1 − ei(θ1+θ2 )ĉ†

x−e1
ĉx+e2

)
+ (

ei(θ1−θ2 )ĉ†
x−e1

ĉx−e2 − e−i(θ1−θ2 )ĉ†
x−e2

ĉx−e1

) + (
ei(θ1+θ2 )ĉ†

x−e2
ĉx+e1 − e−i(θ1+θ2 )ĉ†

x+e1
ĉx−e2

)]
. (B1)

The local current operators for the U(1) charge N̂ := ∑
x n̂x are given by

ĵx,x+ei
:= it

(
e−iAi ĉ†

x+ei
ĉx − eiAi ĉ†

xĉx+ei

)
, (B2)

ĵx,x+e1+e2
:= J

8

(
n̂x+e2 − n̂x+e1

)(
e−i(θ1+θ2 )ĉ†

x+e1+e2
ĉx + ei(θ1+θ2 )ĉ†

xĉx+e1+e2

)
, (B3)

ĵx,x+e1−e2
:= J

8

(
n̂x+e1 − n̂x−e2

)(
ei(θ2−θ1 )ĉ†

x+e1−e2
ĉx + e−i(θ2−θ1 )ĉ†

xĉx+e1−e2

)
. (B4)

The continuity equation is

∂t n̂x = −i[n̂x, Ĥ ] = −
∑
i=1,2

(
ĵx,x+ei − ĵx−ei,x

) − (
ĵx,x+e1+e2 − ĵx−e1−e2,x

) − (
ĵx,x+e1−e2 − ĵx−e1+e2,x

)
. (B5)

We introduce the Fourier transformation by

N̂q :=
∑

x

e−iq·xn̂x, (B6)

Ĵq,ei
:=

∑
x

e−iq·(x+ 1
2 ei ) ĵx,x+ei , (B7)

Ĵq,e1+e2
:=

∑
x

e−iq·(x+ 1
2 (e1+e2 )) ĵx,x+e1+e2 , (B8)

Ĵq,e1−e2
:=

∑
x

e−iq·(x+ 1
2 (e1−e2 )) ĵx,x+e1−e2 . (B9)

Then the continuity equation becomes

[N̂q, Ĥ ] =
∑
i=1,2

2 sin
qi

2
Ĵq,ei + 2 sin

q1 + q2

2
Ĵq,e1+e2 + 2 sin

q1 − q2

2
Ĵq,e1−e2 . (B10)
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In the |q| → 0 limit,

[N̂q, Ĥ ] =
∑
i=1,2

qiĴi,q, (B11)

where

Ĵ1,q := Ĵq,e1 + Ĵq,e1+e2 + Ĵq,e1−e2 , (B12)

Ĵ2,q := Ĵq,e1 + Ĵq,e1+e2 − Ĵq,e1−e2 . (B13)

APPENDIX C: CORRELATION FUNCTIONS

The time-ordered current correlation is defined as

Pμν (q) := − i

V

∫
dteiωt 〈T Ĵμ,q(t )Ĵν,−q(0)〉

= − i

V

∫
dt[θ (t )〈Ĵμ,q(t )Ĵν,−q(0)〉 + θ (−t )〈Ĵν,−q(0)Ĵμ,q(t )〉]

= − i

V

∑
n

∫
dt

[
θ (t )〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉ei(ω−En+E0 )t + θ (−t )〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉ei(ω+En−E0 )t

]

= 1

V

∑
n

(
〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉
ω − En + E0 + iδ

− 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉
ω + En − E0 − iδ

)

= 1

V

∑
n

P

(
〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉

ω − En + E0
− 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉

ω + En − E0

)

− iπ

V

∑
n

[〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉δ(ω − En + E0) + 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉δ(ω + En − E0)]. (C1)

The retarded current correlation is defined as

Rμν (q) := − i

V

∫
dteiωtθ (t )〈[Ĵμ,q(t ), Ĵν,−q(0)]〉

= − i

V

∫
dtθ (t )[〈Ĵμ,q(t )Ĵν,−q(0)〉 − 〈Ĵν,−q(0)Ĵμ,q(t )〉]

= − i

V

∑
n

∫
dtθ (t )

(〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉ei(ω−En+E0 )t − 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉ei(ω+En−E0 )t
)

= 1

V

∑
n

(
〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉
ω − En + E0 + iδ

− 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉
ω + En − E0 + iδ

)

= 1

V

∑
n

P

(
〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉

ω − En + E0
− 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉

ω + En − E0

)

− iπ

V

∑
n

[〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉δ(ω − En + E0) − 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉δ(ω + En − E0)]. (C2)

Therefore,

ReRμν (q) = RePμν (q) = 1

V

∑
n

P

(
〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉

ω − En + E0
− 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉

ω + En − E0

)
, (C3)

ImRμν (q) = sign(ω)ImPμν (q) = −π

V
[〈0|Ĵμ,q|n〉〈n|Ĵν,−q|0〉δ(ω − En + E0) − 〈0|Ĵν,−q|n〉〈n|Ĵμ,q|0〉δ(ω + En − E0)]. (C4)
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APPENDIX D: NAMBU BASIS AND PARTICLE-HOLE
SYMMETRY

1. Four-component Nambu spinor

To fully accommodate the particle-hole and spin-up/-down
degrees of freedom, we use the following four-component
Nambu spinor:

(
ckσ

c†
−kσ

)
=

⎛
⎜⎜⎜⎜⎜⎝

ck↑
ck↓

c†
−k↑

c†
−k↓

⎞
⎟⎟⎟⎟⎟⎠. (D1)

Under this basis, the BdG Hamiltonian is given by

H = 1

2

∑
k

(c†
kσ

, c−kσ )HBdG
4×4

(
ckσ

c†
−kσ

)
+ C, (D2)

where

HBdG
4×4 =

(
ξkτ0 �k

�
†
k ξkτ0

)
, (D3)

with �k = (�11,k �12,k
�21,k �22,k

). In this formulation, the supercon-

ducting gap is always antisymmetric �k = −�T
−k, irrespec-

tive of the pairing symmetry. Our s-wave superconductor in
the main text corresponds to �12,k = −�21,k = �.

2. Two-component Nambu spinor for spinful electrons

For the s-wave superconductor in the main text, we use the
two-component Nambu spinor for spinful electrons,(

ck↑

c†
−k↓

)
, (D4)

assuming the spin-singlet pairing. The BdG Hamiltonian is
given by

H =
∑

k

(c†
k↑, c−k↓)HBdG

2×2

(
ck↑

c†
−k↓

)
+ C, (D5)

HBdG
2×2 =

(
ξk �k

�∗
k −ξ−k

)
. (D6)

In this basis, the superconducting gap is symmetric �k =
�−k = �. This gap symmetry leads to the electron-hole
symmetry operator P = −iσyK , where K is the complex con-
jugation. One can verify PHBdG

k P−1 = −HBdG
−k and P2 = −1.

3. Two-component Nambu spinor for spinless electrons

For the p-wave superconductor in the main text, we use the
two-component Nambu spinor for spinless electrons,(

ck

c†
−k

)
. (D7)

The BdG Hamiltonian is given by

H = 1

2

∑
k

(c†
k, c−k)HBdG

2×2

(
ck

c†
−k

)
+ C, (D8)

HBdG
2×2 =

(
ξk �k

�∗
k −ξ−k

)
. (D9)

In this basis, the superconducting gap is antisymmetric, �k =
−�−k. This gap symmetry leads to the electron-hole symme-
try operator P = σxK , where K is the complex conjugation.
One can verify PHBdG

k P−1 = −HBdG
−k and P2 = 1.
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