
PHYSICAL REVIEW RESEARCH 6, 013057 (2024)

Investigation of Floquet engineered non-Abelian geometric phase
for holonomic quantum computing

Logan W. Cooke ,1,* Arina Tashchilina ,1 Mason Protter ,1 Joseph Lindon ,1 Tian Ooi ,1

Frank Marsiglio ,1,2 Joseph Maciejko ,1,2 and Lindsay J. LeBlanc 1

1Department of Physics, University of Alberta, Edmonton, Alberta, Canada
2Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada

(Received 24 July 2023; accepted 18 December 2023; published 16 January 2024)

Holonomic quantum computing functions by transporting an adiabatically degenerate manifold of computa-
tional states around a closed loop in a control-parameter space; this cyclic evolution results in a non-Abelian
geometric phase which may couple states within the manifold. Realizing the required degeneracy is challenging
and typically requires auxiliary levels or intermediate-level couplings. One potential way to circumvent this is
through Floquet engineering, where the periodic driving of a nondegenerate Hamiltonian leads to degenerate
Floquet bands, and subsequently non-Abelian gauge structures may emerge. Here we present an experiment in
ultracold 87Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving
of a family of Hamiltonians linked through a fully tuneable parameter space. The adiabatic motion through
this parameter space leads to the holonomic evolution of the degenerate spin states in SU (2), characterized by
a non-Abelian connection. We study the holonomic transformations of spin eigenstates in the presence of a
background magnetic field, characterizing the fidelity of these single-qubit gate operations. Results indicate that
while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same
limitations present in degenerate systems.

DOI: 10.1103/PhysRevResearch.6.013057

I. INTRODUCTION

Quantum computing promises to solve some classically
hard problems more efficiently than conventional (classical)
methods, but both coherent and incoherent noise pose real
barriers to practical deployment and use [1]. Designing bet-
ter qubits or error-correcting codes is a significant area of
research [2], as is the search for new fault-tolerant quantum
control techniques.

Holonomic quantum computing (HQC) [3–5] is a promis-
ing approach that uses geometric phase in contrast to the more
conventional gates that rely on dynamical phase. Geometric
phases are independent of any details in the control Hamil-
tonian, instead depending only on the curvature in a state’s
Hilbert space as it varies with a set of control parameters.
Geometric gates have long been thought to host intrinsic fault-
tolerance when compared to dynamical gates, though recent
work suggests that fault-tolerance does not depend on the type
of phase, but rather on the details of the control Hamiltonian
itself [7].

In HQC, computational states are encoded into a degen-
erate subspace of the control Hamiltonian. The Hamiltonian
is varied adiabatically in a cyclic manner; states evolve and
mix according to a non-Abelian connection in the parameter
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space. The evolution operator is referred to as a holonomy,1

due to its geometric interpretation [3–6]. This protocol ne-
cessitates robust degeneracies, which are typically acquired
through coupling to auxiliary levels [8]. HQC protocols are
also generally seen as slow due to the adiabatic criterion
[8]. As such, there are nonadiabatic generalizations [9] in
which the role of degeneracy is relaxed, but the dynamical
contributions to the phase that arise from this and the breaking
of the adiabaticity impose strict conditions on the details of
each gate. There have been several experimental demonstra-
tions of both conventional and nonadiabatic HQC in trapped
ions [10,11], neutral atoms [12,13], liquid nuclear-magnetic
resonance systems [14,15], Rydberg atoms [16], solid-state
systems [17–20], photonics devices [21,22], and nitrogen-
vacancy centers [23–26].

Topological quantum computing (TQC) also relies on non-
Abelian holonomies, but differs from HQC. In TQC, quantum
information is encoded in the phase of non-Abelian anyons
[27,28]; these are particles that obtain a non-Abelian geomet-
ric phase under exchange, in contrast to fermions and bosons
which only obtain Abelian phases of π and 0 under exchange,
respectively. Qubits may be encoded onto a degenerate mani-
fold of multianyon states, and gates are performed by moving
anyons around each other, called braiding. In this case, the
unitary transformation within this manifold depends only on
the topological character of the path, that is, whether the
anyon’s path encapsulates another anyon or not. In this way

1Also referred to as an anholonomy in earlier work on geometric
phase.
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the phase is still described by a non-Abelian holonomy, but
is less sensitive to the detailed geometry of the adiabatic path
than in HQC.

Recently, Floquet engineering was proposed as a path
to produce robust degeneracies in systems which are oth-
erwise nondegenerate [27,28]. Through periodic modulation
of a control Hamiltonian, degeneracies occur regardless of
the underlying energetic structure. As such, this method may
be readily applied as an HQC scheme without the need for
any auxiliary levels or excited state couplings, with proposed
implementations in ultracold neutral atoms [29] and Ryd-
berg atoms [30]. Additionally, for quantum simulation, this
technique provides a path forwards to realizing interesting
non-Abelian artificial gauge fields [31,32].

Here, we present a proof-of-concept experimental inves-
tigation of Floquet engineered single-qubit holonomic gates
in an optically trapped ensemble of 87Rb. The holonomies
investigated here may be readily implemented in other plat-
forms. We perform several primitive gates and, through the
tomographic reconstruction of the holonomies, we report their
fidelities. Measurements are made in the presence of drift-
ing background magnetic fields, the impact of which would
normally be negligible over the time scales of each gate; how-
ever, due to the dynamics introduced by the Floquet driving
this uncontrolled background has a substantial impact on the
holonomy and its geometric nature. We quantify this impact
and discuss the implications it has on the practicality of this
protocol and its fault-tolerance, both in the cold-atom context
and more generally for generic Floquet-driven platforms.

II. THEORY OF FLOQUET-ENGINEERED DEGENERACY

In this work, we consider a system of N = 2F + 1 spin
levels, coupled by an external field [29], which applies to
any platform with quantized spin or pseudospin levels. Cou-
pling is only between levels adjacent in energy, and thus the
Hamiltonian is expressed in terms of the vector of N × N
spin matrices, F̂. The driving field’s amplitude, frequency,
and phase are periodically modulated, such that we obtain the
Hamiltonian (in units where h̄ = 1),

Ĥ (t ) = V̂ (t ) cos ωt, (1)

V̂ (t ) = �0 q(t ) · F̂. (2)

Equation (2) is the Hamiltonian for a spin in a magnetic field
with magnitude �0, where the direction of the field is defined
by the unit vector q = (sin � cos �, sin � sin �, cos �)ᵀ.
This fictitious field is controlled through the phase of the
driving field �(t ) and control parameter �(t ), which relates
to the amplitude/frequency modulation envelope. Hence, the
control parameter space is the unit sphere spanned by the
angles {�(t ),�(t )}. For a full derivation of this Hamiltonian,
see Appendix A. The entire Hamiltonian V̂ (t ) is periodically
driven with Floquet frequency ω.

Assuming that the timescales over which q(t ) changes
are very long compared to 2π/ω, we treat Ĥ (t ) as nearly
periodic and transform into the Floquet basis via the unitary
operator Û = exp[iV̂ (t ) sin(ωt )/ω], usually called the micro-
motion operator. Following this we restrict our attention to the

TABLE I. The various loops considered here parameterized by
� and �, and the corresponding holonomies. Evolution occurs over
a single period of � = �0/10. The appearance of all three spin
matrices in the phase demonstrates how these loops generate trans-
formations in SU (2). The measured average fidelities [Eq. (10)]
without (F̄ ) and with (F̄�) detuning [Eq. (7)] included in the fitting
model are given below. For the ratio �0/ω = 1 used in the exper-
iment, g = 1 − J0(�0/ω) ≈ 0.23. Note that a closed-form solution
for the holonomies �̂A(	5) and �̂A(	6) are unknown because Â does
not commute at different points on these paths.

Loop �(t ) �(t ) �̂A(	) F̄ F̄�

	1 �t 0 exp(−i2πgF̂y ) 0.43 0.75

	2 �t π/2 exp(i2πgF̂x ) 0.51 0.82

	3 π/2 �t exp(−i2πgF̂z ) 0.34 0.82

	4 �t π/4 exp[i
√

2πg(F̂x − F̂y )] 0.62 0.90

	5 π/4 �t – 0.47 0.87

	6 �t �t – 0.53 0.79

zeroth Floquet band [27–29], where the Hamiltonian becomes
(see Appendix B),

ĤFloq. = ∂q
∂t

· Â, (3)

Â = gF̂ × q, (4)

where g = 1 − J0(�0/ω), and J0 is the zeroth-order Bessel
function of the first kind. This Hamiltonian only depends on
changes to q; for any static choice of q (point in parameter
space) the Hamiltonian is zero, hence the Floquet states are
trivially degenerate. The Schrödinger equation for Eq. (3) can
be written as

∇q|ψ〉 = −iÂ(q)|ψ〉, (5)

where ∇q is the gradient in the parameter space of q. Equa-
tion (5) is a purely geometric equation describing the parallel
transport of a state |ψ〉 in the parameter space of q with non-
Abelian connection Â(q) [33]. Changing q along some path
in parameter space results in the accumulation of a fully ge-
ometric phase determined by the connection Â. As q changes
in time, the Hamiltonian takes on instantaneous eigenvalues
proportional to, but smaller than, the rate of change. As such,
the system remains adiabatically degenerate, and its evolution
will depend only on the geometry of the path traced out, and
not on any dynamical details.

As is typical in HQC, we restrict our attention to the
evolution of the system over loops in parameter space; we
thus assume that q(t ) varies over a cyclic path, 	 in a period
T = 2π/�. According to Eq. (5) the evolution operator over
a path 	 is the holonomy [3,4],

�̂A(	) = P exp

[
−i

∮
	

dq · Â(q)

]
, (6)

where P is the path-ordering operator. Several loops are ex-
plored here, summarized in Table I. Regardless of the spin
manifold F , these loops generate transformations in SU (2);
as shown in Table I, the loops 	1−3 produce spin rotations
by angle 2πg about the x, y, or z axes. As such, the results
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shown here easily generalize to universal single qubit gate
operations. The loops 	4−6 demonstrate how other phases may
be generated.

The rate at which loops are traversed, �, is constrained by
the adiabatic condition [27], � � ω. If we choose � to be
a subharmonic of ω, then, at the end of a loop (and every
half-integer period of ω), the Floquet basis and spin basis
coincide [29]. If the control fields are switched off precisely
at this time, then the projective measurements of the spins are
equivalent to those of the Floquet basis states. For this reason
the spins may be treated as the computational basis, despite
the fact that the geometric phase is acquired by the Floquet
states. For the experiments performed here, �0/ω = 1 setting
the magnitude of the phase accumulated g, and the loop dura-
tion is T = 2π/� with � = �0/10.

The key feature of Eq. (1) is that the entire Hamiltonian
[Eq. (2)] is modulated by a function with zero time-average,
leading to the adiabatic degeneracy of the Floquet states. In
any realistic attempt, this condition may be challenged; in our
case the presence of stray fields either perturb the spin state
energies or couple them, adding terms which do not average
to zero over a Floquet period. A fairly general description of
stray fields in this system requires only a minor modification
of the Hamiltonian [Eq. (1)]. We consider the case where
stray fields are time-independent, since the fields affecting
our experiment are stable over several tens of minutes. While
the time-dependent case would follow a similar derivation
the transformation to the Floquet basis may not be easily
performed analytically depending on the specific functional
dependence. Equation (1) is modified with an extra term,

Ĥ� = � · F̂, (7)

where we refer to � as the detuning from resonance.
The �z component is equivalent to a mismatch between
the driving field’s carrier frequency and the level-splitting
(see Appendix A). Other stray fields or a leaked control field
would, in general, correspond to some combination of all three
components. In our experiment there is sufficient extinction of
the control field, and no other stray fields near resonance, so a
�z term was sufficient to describe the data.

Given that the detuning term in Eq. (7) is not modulated by
the Floquet envelope, it will result in a new dynamical phase
in the Floquet basis despite its lack of time-dependence; this
is due to the fact that the Floquet basis transformation is itself
time-dependent. If we transform the detuning term into the
Floquet basis, then we obtain (see Appendix D)

Ĥ�
Floq.(t ) = (1 − g)� · F̂ + g(q · �)(q · F̂ ). (8)

The extra detuning breaks the adiabatic degeneracy in the Flo-
quet basis and produces dynamical coupling between states.
As in the case of conventional HQC where small perturbations
of the energetics break the degeneracy, the presence of any
unmodulated term in the Hamiltonian produce similar effects
here. While it may seem that the Floquet driving gives an
easy and robust path to degeneracy, the challenges inherent
with eliminating terms that do not average to zero are highly
analogous to those with maintaining degeneracy in traditional
systems [4]. Furthermore, due to the Floquet basis being a
time-dependent mixture of the bare spins, a miscalibration

FIG. 1. Spin-1/2 simulations of state trajectories on the Bloch
sphere (see Appendix G for details), with axes indicted by the −1,
−1, and +1 eigenstates of σ̂x , σ̂y, and σ̂z respectively. In both (a) and
(b), �0/ω = 1, and � = �0/10. Trajectories are shown for loop 	1

(see Table I), with detuning [Eq. (7)] �z = 0 (a), and �z = �0/20
(b). Colored lines show trajectories calculated in the rotating frame
[Eq. (2)] with colors denoting progress through the loop, and points
(circles) sampled stroboscopically, at each half-integer period of the
Floquet driving frequency ω. The solid (red) line is simulated in the
Floquet basis. The disagreement between the stroboscopic points and
Floquet-basis simulations are due to nonadiabatic corrections, which
for the parameters chosen here amounts to about a 3% error, in terms
of the fidelity [Eq. (10)]; as �/ω → 0 the evolution becomes more
adiabatic.

in resonance (which would normally result in a different
phase accumulation rate and imperfect population transfer)
now results in nontrivial coupling between states. Hence, any
undriven term in the laboratory frame has nontrivial results in
the computational basis.

Due to this nongeometric term, we also consider the nona-
diabatic generalization [34] of the holonomy,

�̂�
A (t ) = T exp

{
i
∫ T

0
dt

[
∂q
∂t

· Â(t ) − Ĥ�
Floq.(t )

]}
, (9)

which is represented in time-ordered form, with T the time-
ordering operator. The terms ∂t q · Â(t ) and Ĥ�

Floq.(t ) represent
the geometric and dynamical contributions to the phase, re-
spectively. While we may write the two sources of phase
separately in this way, their impact on the evolution is fun-
damentally inseparable due to the time-ordering [35]. If we
expand this operator, then we would find an infinite sum of
terms that depend on the nested commutators of the two terms.
In certain similar circumstances, there are paths that result in
net zero contribution from the dynamical term, which forms
the foundation of nonadiabatic HQC [9]. In our context, since
� is considered here to be outside of our control, the impact
of the detuning given in Eq. (8) is unlikely to be avoidable. It
may be possible through other means, such as dynamical de-
coupling [36–41], to suppress the effects of the detuning, but
this requires further investigation. We will apply the detuned
Hamiltonian [Eq. (7)] to the results that follow, demonstrating
that even for relatively small detunings, the impact on state
evolution is considerable (Fig. 1).
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III. EXPERIMENTAL RESULTS

We describe the details of an experiment in which we
realize the spin Hamiltonian [Eq. (2)] on a specific platform:
a noninteracting gas of ultracold 87Rb atoms, which is similar
to that in the proposal of Chen et al. [29]. We explore both of
the available stable hyperfine ground states, with total angular
momentum quantum numbers F = 1 and F = 2; these mani-
folds have N = 3 and N = 5 magnetic sublevels, respectively,
with magnetic quantum numbers mF = 0,±1, . . . ± F . We
apply a background magnetic field to split the mF states by
ωZ/2π = 1.25 MHz through the linear Zeeman effect; this
field remains fixed for the duration of the experiment.

After initial laser cooling, forced radio-frequency (RF)
evaporation in a magnetic trap, and further evaporation in
an optical dipole trap (ODT), we obtain a 87Rb Bose-
Einstein condensate (BEC) of about 105 atoms in the |F = 2,

mF = +2〉 state. To prepare atoms in either of the F = 1
hyperfine states we use a microwave horn-antenna to couple
the F = 1, 2 manifolds through a magnetic dipole transition
centered at ≈6.8 GHz, in addition to RF pulses. For the
best population-transfer efficiency and long-term stability, we
use 1-ms chirped microwave pulses to effect adiabatic rapid
passage (ARP). In all state preparation sequences, state purity
is ensured by intermediate resonant laser pulses that remove
atoms remaining in the other hyperfine manifold following the
microwave ARP pulse, at the expense of slightly reduced atom
numbers.

To produce the spin Hamiltonian [Eq. (2)], we use an
RF field that couples mF levels through a magnetic dipole
transition on resonance with the ωZ splitting. The amplitude,
frequency, and phase of this field are periodically modulated
with an arbitrary waveform generator (AWG), (details in Ap-
pendix A). Each of the loops shown in Table I is implemented
by the appropriate simultaneous variations of �(t ) and �(t ).

Following each gate operation, we perform state tomog-
raphy. This is done using Stern-Gerlach (SG) imaging [42],
in which atoms are spatially separated by a magnetic field
gradient after the ODT is turned off, and subsequently ab-
sorption imaged to infer the relative spin populations. This
constitutes a projective measurement in the spin basis. To gain
information about the phase of the spin states, we precede SG
measurements with resonant RF pulses of varied phase and
pulse areas, which changes the measurement basis, permitting
the full tomographic reconstruction of the prepared states.
Combined with our ability to initially prepare atoms in each
spin basis state, we measure the holonomies in full through
a series of informationally complete projections and state-
preparation pulses. Given that the absorption imaging process
is destructive, each measurement represents the production
of a new BEC, a process which takes about 25 s; as such,
scans take upwards of 10 minutes depending on how many
projections are being taken.

A. Results

Using the tomographic measurement techniques described
above (Sec. III) we confirm several aspects of the expected
holonomic evolution. The time evolution of the spins during
each of the loops was verified by abruptly turning off the
control fields, thus interrupting the loop. In changing the time

of interruption we map the spin evolution and compare with
theory calculations, as shown for �̂A(	1) in F = 1 and F = 2
[Figs. 2(a) and 2(b)]. We see that the evolution over loops
results in coupling between states in a way that depends on
the loop, as expected with non-Abelian geometric phases.

Additionally, we observe that the phase of the final state
also depends on the path taken. We scan a readout RF π/2-
pulse’s phase, comparing two different holonomies, �̂A(	1)
and �̂A(	2) with F = 1 and F = 2 [Figs. 2(c) and 2(d)].
These holonomies produce the same time evolution and final
populations in the spin-basis, but the final states differ only in
the relative phases between spin components.

Throughout the measurements presented here, background
magnetic fields result in a detuning from resonance, as de-
scribed by Eq. (7). Specifically, the system is susceptible to a
�z component to the detuning, while both other components
were negligible. The typical detuning was �z/2π � 0.8 kHz,
or when compared to the RF coupling strength, �z/�0 �
0.08. In the absence of magnetic shielding or feedback stabi-
lization of magnetic fields, our ability to control or even detect
a detuning of this magnitude is limited; hence, this effect
represents a realistic complication in obtaining high-fidelity
quantum control (Sec. III B).

B. Gate fidelity

For a comprehensive analysis of the holonomic gates,
we measured each holonomy in full, focusing on F = 1 for
demonstration. This entailed preparing atoms in each of the
spin basis states, applying a holonomy, and performing in-
formationally complete projective measurements, as detailed
above. This was done for each of the holonomies in Table I.

We scanned through a series of state-preparation pulses
and measurement pulses for a given gate; the ordering was
randomized to prevent any bias coming from a predetermined
measurement sequence. The resulting set of projections was
then fit for residual detuning, and for the holonomy itself
(Appendix G). We repeated these scans for each holonomy
multiple times to account for the randomized detuning which
was present in each scan. After each scan we repeated the
resonance calibration (Appendix E) in an attempt to detect any
drift in the resonance during the measurement.

From holonomy measurements, we computed the gate
fidelities. For a target holonomy �̂A(	), we compute the pure-
state fidelity of the measured holonomy L̂A(	) from the inner
product,

F (	) = |tr(L̂†
A�̂A)|

2F + 1
. (10)

If the two matrices are the same, then F = 1. Our results are
compiled in Fig. 3, where we compare our measurements to
the target holonomy. Without considering detuning, the fideli-
ties are low, with the average for each loop given in Table I.

The detuning accurately captures the most significant
source of error in our experiment, which we demonstrate by
fitting each holonomy measurement scan for detuning �z.
Comparing our measured holonomy to a target which in-
cludes this detuning in the model [Eq. (9)] results in much
higher fidelities (Fig. 3), which are more narrowly distributed,
indicating the most significant error mechanism in our appa-
ratus. The average measured fidelities with detuning are also
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FIG. 2. Measured spin populations (points) superimposed onto theory calculations (lines), with F = 1 (a), (c) and F = 2 (b), (d). For
all measurements, �0/ω = 1, and � = �0/10. (a), (b) Time evolution throughout the �̂A(	1) gate, where �0/2π = 14.27 kHz. (c), (d)
Comparison of RF-phase scans between �̂A(	1) (left) and �̂A(	2) (right), which have identical evolution in the F̂z basis but clearly differ
in the final phase of the state. The field amplitude was �0/2π = 10.64 kHz and �0/2π = 14.27 kHz for panels (c) and (d), respectively. The
shaded bands in panels (a)–(d) show the effect of the extra detuning term [Eq. (7)]; for detunings sampled from a Gaussian distribution with
mean �fit (the result of a numerical fit for the detuning �z) and standard deviation 2π × 0.2 kHz, they display the interquartile range of
resulting populations. The quadratic Zeeman shift, as described in Appendix F, was included in the numerics (see Sec. IV for discussion).

summarized in Table I. Despite having higher fidelities when
detuning is included, the results are still far from unity, with an
average of 0.84(7). This distribution of fidelities is consistent
with our models of shot-to-shot fluctuations in detuning for
each measurement of 0.2 kHz; therefore, we find that our
infidelity is dominated by detuning fluctuations. The next
largest source of error, on the order of about 2%, is due to
extracting population data from TOF images, which is most
significant when the number of atoms in a spin component is
low, resulting in an inability to accurately fit for the atomic
density distribution.

C. Wilson loops

Another important consideration, in addition to the more
practical one of gate fidelity, is to verify the non-Abelian
nature of the connection Â. To do this, one needs to measure
a gauge-invariant manifestation of the noncommutativity be-
tween the connection’s vector components; in the absence of
additional dynamical effects the Wilson loop is appropriate
[22,32,43], which is defined as

W = tr[�̂A(	)]. (11)

The Wilson loop W is a gauge-invariant measure of the distor-
tions experienced by an eigenbasis through a transformation,

�̂A(	). A familiar use of the Wilson loop is in the definition
of gate fidelity, as implemented above (Sec. III B). In this
framework, if the measured gate L̂A(	) is the same as the
target gate �̂A(	), then the net distortion over the loop L̂†

A�̂A is
identity, that is, W = tr(1̂). To show the non-Abelian char-
acter of Â, one must demonstrate that the Wilson loop is
path-dependent, meaning it depends on the ordering of a se-
ries of holonomies [43]. Due to the cyclic invariance of the
trace, three distinct loops must be measured in two differ-
ent orders, which are noncyclic permutations of each other.
More precisely, for the Wilson loop Wi jk with loop order
	i, 	 j , 	k , if Wi jk − W jik �= 0, then the transformations are
path-dependent, and therefore the connection is non-Abelian.
A detailed discussion of this may be found in Appendix C.

Given the significant dynamical contributions arising from
detuning in our measured holonomies, as shown in Sec. III B,
we are unable to implement the Wilson loop in this way. The
Wilson loop indicates whether the transformations being gen-
erated are Abelian or not, but says nothing about the geometric
versus dynamical nature of them. Therefore, in a scenario such
as this where the dynamical effects are too difficult to isolate,
we would be unable to make any strong conclusions on the
geometric phase alone. Furthermore, the detuning [Eq. (7)]
drastically reduces the visibility of the non-Abelian signature
Wi jk − W jik , as its numerical value varies drastically with
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FIG. 3. Measured gate fidelities [Eq. (10)] for each of the loops
in Table I, plotted as density distributions with individual measure-
ments shown scattered beneath. Black vertical bars represent the
mean fidelities. A fidelity of one indicates that two transforma-
tions are equal. Purple (dark) color show fidelities when detuning
is not considered. Yellow (light) color show results when detunings
fit to each data set are considered. The quadratic Zeeman shift
(Appendix F) was also considered in both measured and predicted
holonomies.

small values of detuning as shown in Fig. 4(a), even con-
verging to zero for certain detunings (which would otherwise
indicate an Abelian transformation).Therefore, not only is it
difficult to accurately measure the path dependence of the
Wilson loop, but such a demonstration of path dependence can
not be attributed to the geometric nature of the transformation
due to the dynamical contributions.

IV. DISCUSSION

Our results demonstrate that Floquet-engineering may be
used to produce non-Abelian geometric phases in systems
which are otherwise nondegenerate. Furthermore, in the con-
text of HQC, the computational basis is conveniently the
same as the spin basis due to the stroboscopic nature of the
Hamiltonian, without the need for any auxiliary levels or
intermediate-state couplings. This technique therefore holds
significant potential as an alternative approach to performing
holonomic gates, as well as in the generation of interesting
artificial gauge fields [31,44].

Despite these successes, the Floquet-engineering approach
to HQC is not without its limitations. The magnetic field
instability present in a typical setup like ours demonstrates
a realistic complication in achieving high-fidelity quan-
tum gates, in the form of small miscalibrations in the RF
resonances. While Floquet engineering provides a fully de-
generate computational basis regardless of the underlying
Hamiltonian’s energetics, we find that one simply inherits
many of the same issues in working with degenerate quantum
systems. In fact, it is possible that the degeneracies obtained

FIG. 4. (a) Numerical calculation of difference between Wilson
loops for two different path orderings (Appendix C), which are
noncyclic permutations of each other, as they vary with the detuning
�z. Wi jk corresponds to consecutive application of loops 	i, 	 j , and
	k , respectively. The results vary with the spin manifold F in which
the gates are performed. If the Wilson loops depend on the path order,
then their difference is nonzero, indicating a non-Abelian generator
of the transformation. With detuning, there is reduced visibility, and
one is unable to separate the impact of non-Abelian dynamical and
geometric contributions. (b) Numerical integration of Eq. (9) with
F = 1 showing dependence of the fidelity for each loop (Table I) on
a z component of the detuning, �z. The fidelities approach zero for
relatively small detuning values, but also exhibit periodic revivals.

here are less robust than those in other schemes, such as the
dressed-state basis of a tripod scheme [8].

Our analysis of the effect of detuning also reveals a prob-
lem that is more general to all HQC. In the presence of a
degeneracy-breaking term like in Eq. (8), the traditional form
of the holonomy in terms of the Wilczek-Zee non-Abelian
phase [33,45] must be replaced by that in Eq. (9) [9,34]. In this
representation, modeling or isolating the effects of dynamical
noise sources quickly becomes nontrivial, especially in the
case of time-dependent noise; this is not just an issue with
the Floquet-engineering approach discussed here.

To further characterize the effects of detuning we simu-
late the gate fidelity for a spin-1 system as it varies with
detuning �z [Fig. 4(b)]. The fidelities fall off quickly with
�z, but also exhibit periodic revivals. For the loops 	1, 	2,
	4, and 	6 the revivals never reach unity for finite �z due to
the dynamical coupling the detuning produces in the Floquet
basis. For 	3, the detuning term is ∝ F̂z in the Floquet basis
[Eq. (8)], and therefore commutes with the geometric portion
of the phase. The detuning therefore only changes the relative
phase between states, but at certain detunings this net relative
phase is 2π so the fidelity is one. Last, for 	5, the fidelity
also approaches one at a particular detuning; however, due the
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geometric phase not commuting with itself at different times
in this loop, a closed-form solution of the holonomy �̂�

A (	5)
[Eq. (9)] is unknown. As such, this was verified numerically.

Given the effects of the detuning it is essential in future
implementations to reduce the relative detunings. It should
be noted, however, that simply increasing the Rabi-frequency
�0 would be insufficient on its own: while this would per-
mit faster gate operations (scaling the Floquet drive ω and
gate frequency � = 2π/T accordingly), the ability to de-
tect detuning as outlined in Appendix E decreases with �0.
Therefore, calibrating the gates in this way would result in
similar detunings relative to the Rabi frequency. To avoid
this issue, one also needs to adopt a different detection tech-
nique. There are many magnetometry techniques that could
be readily implemented [46], but they may require additional
hardware outside of the gate control-scheme itself (such as
an external laser for Faraday magnetometry). Therefore, for a
more scalable quantum computing setup one should calibrate
the resonance with the gate-control scheme itself, as in our
experiment. For instance, measuring populations after an RF-
pulse with pulse area �0t = nπ with n an odd integer. For
large values of n the detuning sensitivity increases. Ideally,
one would apply pulses with much longer durations than their
gates. This change, coupled with the more obvious additions
of magnetic shielding and/or stabilization should be sufficient
to realize Floquet-engineered gates with competitive fidelities,
in addition to a proper characterization of the Wilson loop as
outlined in Sec. III C. For instance, with the magnetic field
stability reported in similar ultracold atom systems [32], we
expect the fidelities of the gates shown here would exceed
0.99. The gate fidelity expected in other quantum computing
platforms would require detailed analysis, but would follow
from the detuning calculations provided here [Eq. (9)].

It is also important in principle to consider the effects
of the quadratic Zeeman shift, which is a second-order cor-
rection to the spin-state energies proportional to the linear
Zeeman splitting, ωZ (Appendix F). Like the detuning, this
term is unmodulated by the Floquet envelope and therefore
leads to dynamical degeneracy-breaking terms in the Floquet
Hamiltonian; however, unlike the detuning, the magnitude
of this additional shift is approximately constant across all
measurements, and can therefore be treated as a systematic
effect rather than a transient miscalibration (as in the case of
detuning). This effect was included in the analyses presented
here, however, since this term only appears in higher-spin
systems and thus does not generalize to qubits, in the generic
context of HQC it is irrelevant. The generalized detuning
described in Eq. (7) and Appendix D are sufficient to describe
time-independent calibration errors that may occur in tradi-
tional qubit implementations.

Despite these limitations, Floquet-engineered gates may
still have an important place in the quantum-control engineer’s
toolbox. There are many examples of experimental systems
with excellent isolation of background magnetic fields and
qubit-resonances [32,47,48]. This is typically a necessary step
in precise quantum control regardless of what gate architec-
ture is used. It is unlikely that any gates are tolerant to all
faults (even in the case of topological gates [49,50]), and
so eliminating their shortcomings will always be required.
Gates that exhibit some level of fault-tolerance are therefore

welcome in reducing the complexities of quantum computers.
In the case of the Floquet-engineered gate demonstrated here,
more work must be done to overcome coherent and decoher-
ent noise sources [51–56], to achieve proposed performance
that is tolerant to high-frequency fluctuations, as is typical for
geometric gates [29,30].

Compared to alternate approaches to HQC [8], Floquet
engineering offers the significant advantage of choosing a
convenient computational basis without the need for auxiliary
levels or intermediate-state couplings. While the degeneracies
and phases are best represented in the Floquet basis, its stro-
boscopic coincidence with the bare states (spin basis in this
case) provides experimental simplicity in state preparation
and measurement. This scheme has already been generalized
to multiqubit control in Rydberg atoms [30], and could be sim-
ilarly extended to other popular quantum computing platforms
which host sufficient control mechanisms.

V. CONCLUSION

We demonstrated and characterized an approach to HQC in
an ultracold ensemble of 87Rb. Through periodic modulations
of a control Hamiltonian, the resulting Floquet-engineered
system behaves as though it is fully degenerate regardless
of the underlying level structure. Using adiabatic evolution
of control parameters, we generated non-Abelian geometric
phases for the purpose of universal single-qubit quantum
gates. While our demonstration used the entire F = 1 or
F = 2 ground state manifolds containing three and five spin
states respectively, the control Hamiltonian generates trans-
formations in SU (2), and is therefore readily applicable to
any two-level system. Our demonstration was limited to the
context of single-qubit gates, but the approach, including the
detuning analysis, may be readily generalized to two-qubit
gates in a similar manner [30].

Further study could also illuminate how the scheme might
generalize to arbitrary SU (2F + 1) state transformations: ad-
ditional coupling fields and a nonlinear splitting between
levels, such as through the quadratic Zeeman effect, could
yield connections with such a symmetry. Such schemes are
of interest to the control of qudits, or in the generation of new
artificial gauge fields.

In our experimental demonstration, the existence of am-
bient magnetic field fluctuations revealed the limits of the
approach. While Floquet engineering quite easily produces
degeneracies in systems which would otherwise not support
them, the technique inherits many of the same difficulties that
come with maintaining them. This resulted in limited gate
fidelity. Despite this, these gates offer the freedom to encode
information on any readily applicable basis, without the need
for auxiliary levels, removing a level of difficulty in state
readout and preparation. Furthermore, the degree of fault-
tolerance from sources other than static-detuning has not been
investigated in great detail. Clearly, the Floquet-engineering
approach deserves ongoing attention.

ACKNOWLEDGMENTS

This work was supported by the University of Alberta;
the Natural Sciences and Engineering Research Council

013057-7



LOGAN W. COOKE et al. PHYSICAL REVIEW RESEARCH 6, 013057 (2024)

FIG. 5. Spin manifold F with N = 2F + 1 magnetic sublevels,
denoted mF , that are separated in energy by ωZ through the Zee-
man effect. Adjacent levels are coupled by an RF magnetic field
[Eq. (A1)] with Rabi frequency �̃(t ) and phase φ̃(t ), both of
which are modulated in time to trace out loops in parameter space
[Eqs. (A9) and (A13)]. The frequency of the driving RF field ωRF is
modulated close to resonance with the level splitting, δ ≈ ωZ − ωRF

[Eq. (A8)].
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APPENDIX A: RF DRESSING

Here we detail the derivation of the Hamiltonian [Eq. (2)].
We begin with N = 2F + 1 spin levels subjected to a static
magnetic field along the z direction that splits, through the
Zeeman effect, adjacent levels by ωZ, as shown in Fig. 5.
These spins are subject to an RF magnetic field in the x
direction,

BRF(t ) = B̃(t ) sin[ωRFt + φ̃(t )], (A1)

which couples adjacent spin levels, where ωRF is the RF-
carrier frequency, and φ̃(t ) the phase. In the dressed-states
basis, the Hamiltonian in manifold F (in units of h̄ = 1) in
the lab-frame, is

ĤRF = �̃(t ) sin[ωRFt + φ̃(t )]F̂x + ωZF̂z, (A2)

where �̃(t ) = 〈mF |gF μBB̃(t )|mF ± 1〉 is the Rabi frequency
associated with the coupling matrix element for any adja-
cent levels, with gF the hyperfine g factor, and μB the Bohr

magneton. Both the phase of the driving field φ̃(t ) and the
amplitude �̃(t ) are modulated in time.

Next, we transform this Hamiltonian [Eq. (A2)] into
the frame rotating with the RF carrier frequency ωRF

(with frequency modulation). The Hamiltonian transforms
according to

ĤR = Û ĤRFÛ † − iÛ †∂tÛ , (A3)

with the unitary Û (t ) = exp{−i[ωRFt + γ (t )]F̂z}. Here we
have transformed with an arbitrary phase of rotation γ (t ),
which will be determined by the frequency modulations com-
puted later. We may compute the transformation [Eq. (A3)]
by rewriting in terms of the raising and lowering operators,
F̂x = (F̂+ + F̂−)/2, and using

Û F̂zÛ
† = F̂z, (A4)

Û F̂±Û † = e±i(ωRFt+γ )F̂±. (A5)

We find that

ĤR = i�̃

4
{[ei(γ−φ̃) − ei(2ωRFt+φ̃+γ )]F̂+

+ [e−i(2ωRFt+φ̃+γ ) − e−i(γ−φ̃)]F̂−}
+ [ωZ − (ωRF + ∂tγ )]F̂z. (A6)

Since the RF carrier frequency ωRF/2π = 1.25 MHz is large
compared to the Rabi frequency |�̃|/2π ≈ 10 kHz then we
may apply the rotating wave approximation by ignoring the
terms which rotate at 2ωRF. Simplifying what remains in terms
of the spin operators we have

ĤR(t ) = �̃(t )

2
{sin[φ̃(t ) − γ (t )]F̂x

− cos[φ̃(t ) − γ (t )]F̂y} + δ(t )F̂z, (A7)

δ(t ) = ωZ − ωRF − ∂tγ (t ). (A8)

Looking at the form of the target Hamiltonian [Eq. (2)] we
determine the form of the required amplitude and phase mod-
ulations, �̃(t ), and φ̃(t ) respectively. First, by inspection, we
can see that

�̃(t ) = 2�0 sin [�(t )] cos ωt, (A9)

with �(t ) the polar angle for paths in parameter space. Look-
ing then at the F̂z term, we require that

δ(t ) = �0 cos [�(t )] cos ωt . (A10)

Ideally, the driving RF field is resonant with the level splitting,
ωRF = ωZ; when this condition is not properly met, an extra
detuning term [Eq. (7)] must be considered (see Secs. III A
and IV). Assuming we meet this resonance condition, we
obtain

∂tγ (t ) = −�0 cos [�(t )] cos ωt, (A11)

so then

γ (t ) = −�0

∫ t

0
dt ′ cos[�(t ′)] cos ωt ′. (A12)
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Altogether, we obtain for the phase modulation term,

φ̃(t ) = �(t ) + π

2
− �0

∫ t

0
dt ′ cos[�(t ′)] cos ωt ′, (A13)

where �(t ) is the azimuthal angle for paths in parameter
space, and the π/2 term is a phase shift necessary to obtain
the desired phase reference in the Hamiltonian [Eq. (2)]. From
this we can see how one generates the required RF wave-
forms in the lab-frame, complete with phase and amplitude
modulations, φ̃(t ), and �̃(t ), in terms of an arbitrary path 	

parameterized by �(t ) and �(t ).

APPENDIX B: FLOQUET HAMILTONIAN

To derive the Floquet Hamiltonian Eq. (3) from the rotating
basis Hamiltonian Ĥ = V̂ (t ) cos ωt (as laid out in Ref. [27]),
we first define a micromotion operator

Û = exp[−iV̂ (t ) sin(ωt )/ω], (B1)

where the sin(ωt )/ω is chosen such that it averages to zero,
and its derivative is equal to the Floquet drive cos(ωt ). Every
t = 2nπ/ω we have that Û (t ) = 1̂ so that the basis induced
by Û coincides with the original basis, meaning they are stro-
boscopically equivalent. Transforming to the basis induced by

Eq. (B1) gives

i∂t |φ〉 = Ĥ |φ〉,
i∂t (ÛÛ †|φ〉) = ĤÛÛ †|φ〉,

Û †i∂t (ÛÛ †|φ〉) = Û †ĤÛÛ †|φ〉.
Defining |ψ〉 = Û †|φ〉 and applying the chain rule to the ∂t

term,

i∂t |ψ〉 =
(

Û †ĤÛ − iÛ † ∂tÛ

∂t

)
|ψ〉, (B2)

such that the Hamiltonian in the basis of the micromotion
operator Eq. (B1) becomes

ĤU (t ) = Û †(Ĥ − i∂t )Û ,

= Ĥ − iÛ † ∂Û

∂t
, (B3)

where we have used the relationship that Ĥ ∝ V̂ , such that
[Ĥ , Û ] = 0. We can then use a version of the Baker-Hausdorff
lemma for differential operators

−eX̂ ∂e−X̂

∂t
= ∂X̂

∂t
+ 1

2!

[
X̂ ,

∂X̂

∂t

]
+ 1

3!

[
X̂ ,

[
X̂ ,

∂X̂

∂t

]]
+ · · · ,

(B4)

and define c = sin(ωt )/ω to write

ĤU (t ) = V̂ cos(ωt ) − iÛ † ∂tÛ

∂t

= V̂ cos(ωt ) + i

(
i
∂V̂ c

∂t
+ i2c

2!

[
V̂ ,

∂V̂ c

∂t

]
+ i3c2

3!

[
V̂ ,

[
V̂ ,

∂V̂ c

∂t

]]
+ · · ·

)

= V̂ cos(ωt ) − V̂ cos(ωt ) + i

(
ic ∂tV̂ − (ic)2

2!
[V̂ , ∂tV̂ ] + (ic)3

3!
[V̂ , [V̂ , ∂tV̂ ]] + · · ·

)

= i

(
ic ∂tV̂ + (ic)2

2!
[V̂ , ∂tV̂ ] + (ic)3

3!
[V̂ , [V̂ , ∂tV̂ ]] + · · ·

)
, (B5)

where we have used that [V̂ , V̂ ∂t c] = 0 to only consider the derivatives with respect to V̂ for the terms involving commutators.
We now notice that the iterated commutators between V̂ and ∂tV̂ form a recurrence relation

[V̂ , ∂tV̂ ] = i�2
0 (q × ∂t q) · F̂, (B6)

[V̂ , [V̂ , ∂tV̂ ]] = �3
0 ∂t q · F̂, (B7)

[V̂ , [V̂ , [V̂ , ∂tV̂ ]]] = �2
0 [V̂ , ∂tV̂ ], (B8)

so that

ĤU (t ) = i

[
(∂t q) · F̂

i�0c

1!
+ i(q × ∂t q) · F̂

(i�0c)2

2!
+ ∂t q · F̂

(i�0c)3

3!
+ · · ·

]

= i

[
(∂t q) · F̂

∞∑
n=1

(ic�0)2n−1

(2n − 1)!
+ i(q × ∂t q) · F̂

∞∑
n=1

(ic�0)2n

(2n)!

]

= −(∂t q) · F̂ sin

(
�0

sin ωt

ω

)
− (q × ∂t q) · F̂

[
cos

(
�0

sin ωt

ω

)
− 1

]
. (B9)
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Now, we expand ĤU (t ) in a quasistatic Fourier series in ωt ,
essentially assuming that V̂ (t ) is approximately constant over
a 2π/ω period:

f (t ) =
∞∑

n=−∞
f (n)(t )einωt , (B10)

f (n)(t ) = ω

2π

∫ 2π/ω

0
dt ′ f (t + t ′)e−inωt , (B11)

so that the Schrödinger equation

i∂t |ψ (t )〉 = ĤU (t )|ψ (t )〉
transforms into

(i∂t − nωt )|ψ (n)(t )〉 =
∑
nm

Ŵ (n−m)
∣∣ψ (m)(t )

〉
,

or

i∂t |ψ (n)(t )〉 =
∑
nm

(nωδn,m + Ĥ (n−m)
U )|ψ (m)(t )〉. (B12)

We call

Ĥ (n−m)
Floq (t ) = n ωδn,m + Ĥ (n−m)

U (t ) (B13)

the Floquet Hamiltonian, where the fast oscillations in the
original Hamiltonian have been factored out and replaced with
a new set of quantum numbers (n) which are analogous to
band indices from materials with periodic spatial structure.

To perform the quasistatic Fourier transform on Ĥ (n)
Floq, we

use the identities

1

2π

∫ 2π

0
dθ einθ sin (a sin(θ )) = i

(
1 − (−1)n

2

)
Jn(a),

(B14)

1

2π

∫ 2π

0
dθ einθ cos (a sin(θ )) =

(
1 − (−1)n+1

2

)
Jn(|a|).

(B15)

Now, noting that since |Jn(x)| � 0, the matrix elements of
Ĥ (n)

U are strictly bounded,

〈α|Ĥ (n)
U |β〉 � F |∂t q|, (B16)

where F is the spin quantum number corresponding to F̂.
In the slow limit where F |∂t q| � ω, we may then neglect
couplings between different Floquet bands, since the energetic
gap between different bands will be very large relative to the
off-diagonal terms. With transitions between states in different
Floquet bands suppressed, we may focus on the evolution
of a state solely within a given band. Therefore, we choose
to restrict all attention to the n = 0 Floquet band, where the
Floquet Hamiltonian becomes

ĤFloq(t ) = ω

2π

∫ 2π/ω

0
dt ′ HU (t + t ′)

=
[

1 − J0

(
�0

ω

)]
[q(t ) × ∂t q(t )] · F̂

= ∂q
∂t

·
{[

1 − J0

(
�0

ω

)]
F̂ × q(t )

}

= ∂q
∂t

· Â(t ), (B17)

and we have defined

Â(t ) =
[

1 − J0

(
�0

ω

)]
F̂ × q(t ), (B18)

the non-Abelian connection. This agrees with the derivation
in Ref. [27] for the special case where q is of constant unit
length.

In the Floquet basis, the time-ordered evolution operator
generated by ĤFloq. is given by

Û (t − t0) = T exp

(
−i

∫ t

t0

dt ′ ĤFloq.(t
′)
)

= T exp

(
−i

∫ t

t0

dt ′ ∂q(t ′)
∂t ′ · Â(t ′)

)
. (B19)

Now, we may perform a change of variables to replace the
explicit time-ordering and an integral over dt ′ to an integral
over dq itself with path-ordering,

Û (	) = P exp

(
−i

∫
	

dq · Â
)

, (B20)

where 	 is the path traced out by q from times t0 to t . In this
way, due to the special structure of ĤFloq., the evolution of
the system may be interpreted fully geometrically, depending
only on the path traced out by q so long as the system is in the
adiabatic limit.

For a closed path 	, U (	) is known as a holonomy which
encodes geometric and topological information about the
Hilbert space and the group generated by Â. We typically
denote holonomies with the symbol �A,

�̂A(	) = P exp

(
−i

∮
	

dq · Â
)

. (B21)

The trace of a holonomy is a gauge and basis invariant quan-
tity known as a Wilson loop:

W (	) = tr[�̂A(	)]. (B22)

APPENDIX C: TRACE COMMUTATOR

As demonstrated in Ref. [43], showing that the evolution
operators for two distinct loops do not commute is insufficient
to prove that a system has truly path-dependent evolution.
The authors describe situations where basis-dependent effects
can cause two evolution operators from an Abelian gauge
theory to fail to commute. They then argue that to properly
determine that an atomic gas hosts a non-Abelian geometric
phase, one should measure basis-independent quantities, such
as the difference between two Wilson loops with different
orders:

I = tr(�̂A(p3)[�̂A(p2), �̂A(p1)]) (C1)

= W123 − W213, (C2)

for three independent loops p1, p2, p3. If I �= 0, then the
connection �̂A is truly non-Abelian regardless of any gauge
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or basis dependent effects. One choice of the paths pi which
are useful to work with are the set of unit-radius great circles:

p1 = {�(t ) = −π/2, �(t ) = �t}, (C3)

p2 = {�(t ) = 0, �(t ) = �t}, (C4)

p3 = {�(t ) = �t, �(t ) = π/2}, (C5)

which are chosen such that for q along these paths, F̂ × q
is constant along the q direction. Note that this set of loops
produce nearly equivalent transformations as the loops con-
sidered in the experiment (Table I), with 	1 identical to p2,
	2 being the reverse of p1, and 	3 identical to p3. The path-
ordered evolution operator in Floquet basis can be written as

�̂A(pi ) = P exp

(
−i

∮
pi

dq · Â
)

= P exp

[
−i g

∮
pi

dq · (F̂ × q)

]
, (C6)

but if F̂ × q is constant along pi, then the path ordering
becomes unnecessary and the evolution operator becomes

�̂A(pi ) = exp

[
−i g

∮
pi

dq · (F̂ × q)

]

= exp(−i 2π g F̂ i ). (C7)

Via Stokes’ theorem, this can be interpreted as a non-Abelian
flux of 2π g F̂ i through the loop pi.

Noticing that the operators �̂A(pi ) are SU (2) rotation op-
erators, we decompose them in terms of Euler angles in the
Z − Y − Z convention:

�̂A(p1) = ei π
2 F̂3 e−i g F̂2 e−i π

2 F̂3 = R̂
(

−π

2
, 2π g,

π

2

)
, (C8)

�̂A(p2) = e−i0F̂3 e−i 2πgF̂2 e−i0F̂3 = R̂(0, 2π g , 0), (C9)

�̂A(p3) = e−i 2π gF̂3 e−i0F̂2 e−i0F̂3 = R̂(2π g , 0, 0). (C10)

The matrix elements of a rotation operator can be found in
terms of Wigner’s d-matrix [57] as

〈F, m|R̂(α, β, γ )|F, m′〉 = e−iαmdF
m,m′ (β )e−iγ m′, (C11)

where F is the total spin quantum number corresponding to
F̂, and

dF
m,m′ (β ) = 〈F, m|e−iβF̂2 |F, m′〉

=
√

(F + m′)! (F − m′)! (F + m)! (F − m)!
kmax∑

k=kmin

⎡
⎣ (−1)m′−m+k

(
cos β

2

)2F+m−m′−2k(
sin β

2

)m′−m+2k

(F + m − k)! (F − m′ − k)! (m′ − m + k)! k!

⎤
⎦, (C12)

and kmin = max(0, m − m′), kmax = min(F + m, F − m). These matrices have the properties

dF
m,m′ (0) = δm,m′ , (C13)

dF
m,m′ (β ) = (−1)m−m′

dF
m′,m = dF

−m′,−m, (C14)

and are manifestly real in this basis. Thus, using the d-matrices, we can write

tr(�̂A(p3)�̂A(p2)�̂A(p1)) =
∑

m

〈F, m|R̂(2π, g, 0, 0)R̂(0, 2π, g, 0)R̂
(

−π

2
, 2π, g,

π

2

)
|F, m〉

=
∑

mm′m′′
〈F, m|R̂(2π, g, 0, 0)|F, m′〉〈F, m′|R̂(0, 2π, g, 0)|F, m′′〉〈F, m′′|R̂

(
−π

2
, 2π, g,

π

2

)
|F, m〉

=
∑

mm′m′′
e−2π i m gdF

m,m′ (0) dF
m′,m′′ (2π g) eim′′π/2dF

m′′,m(2π g) e−imπ/2

=
∑
m,m′

ei π
2 (m′−m)e−2π i m gdF

m,m′ (2π g) dF
m′,m(2π g), (C15)

where the sums of m and m′ run from −F to F . Similarly,

tr(�̂A(p3)�̂A(p1)�̂A(p2)) =
∑
m,m′

e−i π
2 (m′−m)e−2π i m gdF

m,m′ (2πg) dF
m′,m(2π g), (C16)
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so that

I = tr(�̂A(p3)[�̂A(p2), �̂A(p1)])

=
∑
m,m′

[ei π
2 (m′−m) − e−i π

2 (m′−m)]e−2π i m gdF
m,m′ (2π g) dF

m′,m(2π g)

= 2i
F∑

m,m′=−F

sin

(
π

2
(m′ − m)

)
e−2π i m gdF

m,m′ (2π g) dF
m′,m(2π g)

=
F∑

m=−F

Im. (C17)

Now, we can observe that

I−m = 2i
∑

m′
sin

(
π

2
(m′ + m)

)
e2π im gdF

−m,m′ (2π g) dF
m′,−m(2π g)

= 2i
∑

m′
sin

(
π

2
(−m′ + m)

)
e2π im gdF

−m,−m′ (2π g) dF
−m′,−m(2π g)

= −2i
∑

m′
sin

(
π

2
(m′ − m)

)
e2π im gdF

m,m′ (2π g) dF
m′,m(2π g)

= I∗
m, (C18)

and that (if it exists) I0 is purely imaginary, and so must vanish. Hence, we have

I =
F∑

m>0

(Im + I−m)

=
F∑

m>0

(Im + I∗
m)

= 2i
F∑

m>0

F∑
m′=−F

sin

(
π

2
(m′ − m)

)
(e−2π i m g − e2π i m g)dF

m,m′ (2π g) dF
m′,m(2π g)

= 4
F∑

m>0

F∑
m′=−F

sin

(
π

2
(m′ − m)

)
sin(2π m g) dF

m,m′ (G) dF
m′,m(2π g)

= 4
F∑

m>0

F∑
m′=−F

(−1)m−m′
sin

(
π

2
(m′ − m)

)
sin(2π m g)

(
dF

m,m′ (2π g)
)2

, (C19)

a manifestly real quantity which can be experimentally measured. In the absence of dynamical effects, this quantity being
nonzero would demonstrate a non-Abelian geometric phase, but more generally signals path-dependent evolution.

APPENDIX D: GENERALIZED DETUNING

As described in the main text, uncontrolled environmental factors may contribute to unknown shifts in the experimental
parameters, such as the detuning. In our case, for example, unknown ambient magnetic fields that change between calibrations
may result in shifts to this detuning, �z = ωRF − ωZ.

Given a general, static detuning term in the lab frame Hamiltonian,

Ĥ� = � · F̂, (D1)

we can transform Ĥ� to the Floquet basis with the micromotion operator:

Û = exp

[
i�0q(t ) · F̂

sin(ωt )

ω

]
, (D2)

using the Baker-Hausdorff lemma:

eX̂Ŷ e−X̂ = 1

0!
Ŷ + 1

1!
[X̂ , Ŷ ] + 1

2!
[X̂ , [X̂ , Ŷ ]] + · · · .

013057-12



INVESTIGATION OF FLOQUET ENGINEERED … PHYSICAL REVIEW RESEARCH 6, 013057 (2024)

The commutators between Ĥ� and the terms in the power series representation of Û form a recurrence relation:

[q(t ) · F̂,� · F̂] = i(q(t ) × �) · F̂,

[q(t ) · F̂, [q(t ) · F̂,� · F̂]] = � · F̂ − (� · q)(q · F̂ ),

[q(t ) · F̂, [q(t ) · F̂, [q(t ) · F̂,� · F̂]]] = [q(t ) · F̂,� · F̂],

where we have assumed that q · q = 1, so that we may write

Û †Ĥ�Û = � · F + i(q × �) · F̂
(

i�0
sin ωt

ω

)
+ 1

2
[� · F̂ − (� · q)(q · F̂ )]

(
i�0

sin ωt

ω

)2

+ i

3!
(q × �) · F̂

(
i�0

sin ωt

ω

)3

+ 1

4!
[� · F̂ − (� · q)(q · F̂ )]

(
i�0

sin ωt

ω

)4

+ i

5!
(q × �) · F̂

(
i�0

sin ωt

ω

)5

+ 1

6!
[� · F̂ − (� · q)(q · F̂ )]

(
i�0

sin ωt

ω

)6

+ · · ·

= � · F̂ + (q × �) · F̂
∞∑

n=1

(−1)n

(2n − 1)!

(
i�0

sin ωt

ω

)2n−1

+ [� · F̂ − (� · q)(q · F̂ )]
∞∑

n=1

(−1)n

(2n)!

(
i�0

sin ωt

ω

)2n

= � · F̂ + (q × �) · F̂ sin

(
�0

sin ωt

ω

)
+ [� · F̂ − (� · q)(q · F̂ )]

[
cos

(
�0

sin ωt

ω

)
− 1

]
. (D3)

As in Refs. [27,28], we restrict our attention to the zeroth
Floquet band:

Ĥ�
Floq.(t ) = ω

2π

∫ 2π/ω

0
dt ′ (Û †Ĥ�Û )(t + t ′), (D4)

where we take q and � to be approximately static over the
course of the integral. Noting that

1

2π

∫ 2π

0
dθ cos (a sin θ ) = J0(|a|), (D5)

1

2π

∫ 2π

0
dθ sin (a sin θ ) = 0, (D6)

we find that in our approximation scheme, the Floquet-
transformed detuning term becomes

Ĥ�
Floq(t ) = (1 − g)� · F̂ + g(q · �)(q · F̂ ), (D7)

where g = 1 − J0(�0/ω).

APPENDIX E: EXPERIMENTAL METHODS

Our experiment uses an ensemble of ultracold neutral
87Rb atoms in a Bose-Einstein condensate (BEC), where we
prepare and manipulate a new BEC for each measurement,
treating each BEC as a single quantum object (with all atoms
acting in unison). To create these ultracold ensembles, we
use standard laser cooling in a magneto-optical trap (MOT),
and then perform forced RF-evaporative cooling in a mag-
netic trap, leaving atoms in the |F = 2, mF = +2〉 ground
state. Atoms are then loaded into a crossed optical dipole trap
(ODT) and evaporated further, until we obtain a nearly pure
BEC of about 105 atoms. Atoms are held in the ODT for the
remaining duration of the experiment, and only released in
time of flight (TOF) prior to projective measurement.

State preparation used magnetic-dipole transitions, with
microwave-frequency fields to couple the F = 1 and F = 2
hyperfine manifolds, and/or RF fields to couple mF levels
within a manifold. A static magnetic bias field is applied
to control the Zeeman splitting ωZ between mF levels, and
was adjusted so that the RF driving field was resonant when
ωRF/2π = 1.25 MHz. The microwave field is produced by
mixing the output of a microwave function generator, which
is detuned from the hyperfine clock transition by about
100 MHz, and an RF signal from an arbitrary waveform
generator (AWG); these signals are amplified together, and
transmitted through a horn antenna towards the BEC. Each
of the microwave source’s polarization components address
different |F, mF 〉 → |F ′, m′

F 〉 transitions, which are frequency
dependent in the presence of Zeeman splitting. By adjusting
the microwave carrier frequency, the mixed RF signal can be
tuned to independently address the desired transitions [42].

Through the combination of these fields, we prepare atoms
in any of the three mF levels in the F = 1 manifold with
near purity (See Sec. III). Preparing atoms in the |F =
1, mF = ±1〉 states can be achieved by a single microwave
pulse, followed by a resonant RF π -pulse, in the case of the
mF = −1 state. For the |F = 1, mF = 0〉 state, we use three
separate microwave pulses transferring atoms from |F = 2,

mF = +2〉 → |F = 1, mF = +1〉, then |F = 1, mF = +1〉 →
|F = 2, mF = 0〉, and finally |F = 2, mF = 0〉 → |F = 1,

mF = 0〉.
In addition to the RF channel that mixes with the mi-

crowave carrier pulses, another AWG channel is used to
generate the RF pulses for state preparation, generating
holonomies, and state readout. The output from this AWG
channel is amplified and sent through a pair of coils located
near the BEC vacuum chamber; the oscillating current in the
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coils produces an RF oscillating magnetic field [Eq. (A1)],
which couples internal mF states. To achieve stronger fields
after amplification, the signal is sent through a home-built cir-
cuit to match the impedance of the source to the transmission
line and coils.

Following state preparation and the application of a holon-
omy [Eq. (6)], we perform state readout. The ODT beams are
turned off, allowing atoms to fall in TOF. During this time,
a small magnetic field gradient is applied that, through the
Stern-Gerlach effect, spatially separates atoms according to
their mF levels. This is a projective measurement in the F̂z

basis, where we obtain ensemble statistics by looking at the
relative populations in each spin component through absorp-
tion imaging. To measure in other bases, we precede the TOF
measurement with a short RF “readout” pulse with varied
pulse area and phase. From a set of measurements with varied
RF readout pulses we can tomographically reconstruct the
prepared state.

Prior to each set of measurements, and intermittently
throughout data collection, we calibrate the RF-resonance
against the background detuning by applying an RF π -pulse to
a pure initial state. By measuring the final state, we can detect
large scale detunings, which would result in imperfect pop-
ulation transfer. The bias static magnetic field was adjusted
to match the ωRF/2π = 1.25 MHz RF carrier frequency of
the driving field. This technique is limited by our ability to
image the small number of atoms remaining in the initial mF

state, and the short duration of a single π -pulse. To further
zero the detuning we would then use the holonomy �̂A(	1)
in a similar way, looking for the expected state populations.
This gate is more sensitive to detuning than an RF π -pulse
of the same duration due to its multispectral decomposition.
In the absence of other more sophisticated magnetometry
techniques, this provided an excellent resonance calibration.

APPENDIX F: QUADRATIC ZEEMAN EFFECT

The quadratic Zeeman shift is a correction to the atomic
spin energies, second order in magnetic field. In the bare spin
basis (lab frame) we may write it as [58]

Ĥε = ε
(
1̂ − F̂ 2

z

)
. (F1)

In the case of F = 1/2, F̂ 2
z = 1̂, hence this term can be

neglected. For all other spins F > 1/2, Ĥε breaks the SU (2)
symmetry of the transformations.

The magnitude of the shift ε varies with the square of the
applied magnetic field, Bz [59]. In terms of the linear Zeeman
splitting, ωZ = ωBBz with ωB/2π ≈ 0.7 MHz/G (in 87Rb),
the quadratic shift is

|ε| = (gsμB − gIμN)2

EHFω
2
B(1 − 2I )2 ω2

Z, (F2)

where gs is the g factor of the electron, and gIμN/h̄ is the
nuclear gyromagnetic ratio. For 87Rb, EHF/h ≈ 6.835 GHz
is the ground state hyperfine splitting, I = 3/2 is the nuclear
spin. For the Zeeman splitting used here, ωZ/2π = 1.25 MHz,
we find ε/2π ≈ 0.228 kHz. The detunings [Eq. (7)] observed
here are of the order �z/2π � 0.8 kHz, so we assume that ε

is constant across all measurements.

APPENDIX G: NUMERICS

All data processing and theory calculations were done in
Julia [60]. For comparisons of data to theory, we rewrite the
Schrödinger equation in terms of the evolution operator Û ,

∂tÛ (t ) = −iĤ (t )Û (t ), (G1)

where Ĥ is the Hamiltonian of interest, and the initial condi-
tion is Û (t = 0) = 1̂; this is numerically integrated using the
OrdinaryDiffEq.jl package [61]. All parameters used in
simulation were fixed to the values measured in experiment,
with only the detuning �z [Eq. (7)] permitted to vary; these
fits were performed using the Nelder-Mead nonlinear opti-
mization algorithm with the norm-squared difference as the
objective function, using Optim.jl [62].

To fit the holonomies [Eq. (6)] to a set of tomographic
measurements (see Fig. 3), we decomposed the holonomy
into a general operator in SU (3), parameterized through the
Gell-Mann matrices,

�̂A(	) = exp

(
−i

8∑
n=1

cnλ̂n

)
. (G2)

For each set of tomographic measurements, the coefficients
cn of each generator λ̂n were fit to the data; therefore, these
fits have no information about the Hamiltonian which pro-
duced the transformation, only the resulting set of projections.
These measured holonomies could then be compared to theo-
retical predictions, computed by the numerical integration of
Eq. (G1), to produce the fidelities shown in Fig. 3.
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