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Semantic segmentation of anomalous diffusion using deep convolutional networks
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Heterogeneous dynamics commonly emerges in anomalous diffusion with intermittent transitions of diffusion
states but proves challenging to identify using conventional statistical methods. To effectively capture these
transient changes of diffusion states, we propose a deep learning model (U-AnDi) for the semantic segmentation
of anomalous diffusion trajectories. This model is developed with the dilated causal convolution (DCC), gated
activation unit (GAU), and U-Net architecture. The study addresses two key subtasks related to trajectory
segmentation and changepoint detection, concentrating on variations in diffusion exponents and dynamic models.
Additionally, extended analyses are conducted on the segmentation of single-model trajectories, multistate
biological trajectories, and anomalous diffusion with added correlation functions. By rationally designing
comparative models and evaluating the performance of U-AnDi against these models, we discover that U-AnDi
consistently outperforms other models across all segmentation tasks, thereby affirming its superiority in the
field. This performance edge also sheds light on the interpretability of U-AnDi’s core components: DCC,
GAU, and U-Net. The clarity with which these components contribute to U-AnDi’s success underscores their
congruence with the intrinsic physics underlying anomalous diffusion. Furthermore, our model is examined
using real-world anomalous diffusion data: the diffusion of transmembrane proteins on cell membrane surfaces,
and the segmentation results are highly consistent with experimental observations. Our findings could offer a
heuristic deep learning solution for the detection of heterogeneous dynamics in single-molecule/particle tracking
experiments, and have the potential to be generalized as a universal scheme for time-series segmentation.
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I. INTRODUCTION

Anomalous diffusion [1,2], characterized by the nonlinear
transport phenomena that deviate from standard Brownian
motion, has drawn significant attention due to its widespread
occurrence in various scientific fields, such as physics [3–7],
chemistry [8–11], biology [12–16], and finance [17–19].
Since anomalous diffusion can provide valuable insights into
the underlying mechanisms of complex systems, it is of
great importance to perform accurate and reliable analysis
of this phenomenon [20–43]. However, due to the hetero-
geneous dynamics with intermittent transitions of diffusion
states [44–47], conventional statistical methods usually fail
to precisely describe the anomalous diffusion processes in
real-world experimental environments. This emphasizes the
necessity of exploring effective techniques for the seman-
tic segmentation of anomalous diffusion trajectories, which
could offer a more fine-grained approach to detect state tran-
sitions and distinguish heterogeneous behaviors in diffusion
dynamics.
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On the other hand, as a pivotal technique in computer
vision, semantic segmentation makes pixelwise predictions
in an image to enable the identification and delineation of
distinct regions [48]. With the advent of deep learning tech-
niques, semantic segmentation methods have experienced a
rapid development in recent years, significantly outperform-
ing traditional approaches that rely on handcrafted features
[49–56]. These deep-learning-based methods have demon-
strated remarkable success in a wide array of applications,
including object recognition [49–52], scene understanding
[53], and medical image analysis [54–56]. In particular, con-
volutional neural networks (CNNs) have shown unparalleled
capabilities in capturing complex patterns and hierarchical
representations from raw data, leading to state-of-the-art
results in various semantic segmentation tasks [48]. One rep-
resentative example is the U-Net architecture [54], which is
built on the basis of an encoder-decoder structure and the
rational use of skip connections. U-Net has emerged as one
of the most popular and effective frameworks for semantic
segmentation and proven to be highly effective in diverse
segmentation tasks [56].

In this paper, motivated by the successful applications of
CNNs in semantic segmentation, we explore the potential
of employing deep convolutional networks for the semantic
segmentation of anomalous diffusion. We introduce a deep
learning model, U-AnDi, which synergizes the dilated causal
convolution (DCC), gated activation unit (GAU), and U-Net
architecture. The model’s capabilities are validated across two

2643-1564/2024/6(1)/013054(25) 013054-1 Published by the American Physical Society

https://orcid.org/0009-0000-6391-0691
https://orcid.org/0009-0004-5979-0710
https://orcid.org/0000-0003-3094-9017
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013054&domain=pdf&date_stamp=2024-01-16
https://doi.org/10.1103/PhysRevResearch.6.013054
https://creativecommons.org/licenses/by/4.0/


QU, HU, CAI, XU, KE, ZHU, AND HUANG PHYSICAL REVIEW RESEARCH 6, 013054 (2024)

pivotal subtasks of trajectory segmentation, based on variable
diffusion exponents and different dynamic models, respec-
tively. Moreover, the adaptability of U-AnDi is demonstrated
by thoroughly analyzing both single-model trajectories and
multistate biological trajectories, as well as diffusion exhibit-
ing extended correlations. The results manifest that U-AnDi
excels in all these segmentation tasks, outperforming other
comparative models. The superior performance of U-AnDi
underscores its effectiveness and the interpretability of its
core components: DCC, GAU, and U-Net, in reflecting the
model’s alignment with the nature of anomalous diffusion.
Furthermore, the generalization ability of U-AnDi for real-
world data is evaluated through experimental observations of
the diffusion of transmembrane proteins on cell membrane
surfaces [57]. The segmentation results exhibit a high degree
of consistency with experimental observations, highlighting
the applicability of our approach to characterizing anomalous
diffusion in real complex systems.

The rest of this paper is organized as follows. Section II
describes the segmentation tasks for anomalous diffusion,
methods for generating simulated trajectories, and main eval-
uation metrics used in this work. Section III presents the
architecture and core components of U-AnDi and its design
principles. Section IV provides an analysis of U-AnDi’s effi-
cacy on simulated trajectories and compares its performance
with that of other models. The interpretability of U-AnDi’s
core components is consolidated in Sec. V. In Sec. VI, we
showcase the implementation of our method on experimental
trajectories of transmembrane protein on membrane surfaces.
Finally, we engage in a discussion and draw our conclusions
in Sec. VII.

II. TASKS AND DATASETS

In this section, we present the details of two subtasks for
the semantic segmentation of anomalous diffusion and cor-
responding simulated datasets used for model training and
evaluation. These tasks aim to effectively address the chal-
lenge of capturing the intermittent transitions among different
diffusion states. Data generation for both tasks is facilitated
by utilizing the open-source Python package, andi-datasets,
which is specifically designed for generating, managing, and
analyzing anomalous diffusion trajectories [25,58]. In partic-
ular, we primarily focus on 2D trajectory data in this paper,
as most experimental observations of anomalous diffusion are
performed in 2D or quasi-2D environments.

A. Subtask 1: Segmentation of trajectories
with varying diffusion exponents

The first subtask focuses on the segmentation of trajec-
tories in which the subtrajectories exhibit varying diffusion
exponents. Here, the diffusion exponent α quantifies the rela-
tion between mean squared displacement (MSD) and time t ,
written as

MSD ∼ tα. (1)

This exponent equals 1 in the description of standard Brown-
ian motion. For anomalous diffusion, it can be either less than
or greater than 1, corresponding to subdiffusion and superdif-

fusion, respectively. In real-world scenarios, the diffusion
exponent may not remain constant due to inevitable changes
of interactions between the random walker and its surround-
ings [45]. However, traditional statistical methods, which are
based on the calculation of MSD, require sufficiently long
trajectories to accurately determine the diffusion exponent.
As a result, for anomalous diffusion trajectories with limited
length scales, these conventional approaches face substantial
difficulties when attempting to distinguish segments with dif-
ferent diffusion exponents.

To address this challenge, subtask 1 is designed to
empower our model with the capability to identify these seg-
ments and predict their corresponding diffusion exponents. In
detail, simulated segments are generated by the andi-datasets
package within the theoretical framework of fractional Brow-
nian motion (FBM) [59]. This diffusion model describes an
ergodic diffusion process that is driven by a fractional Gaus-
sian noise, where the diffusion exponent α satisfies 0 < α <

2. When generating segments, their diffusion coefficients are
fixed at 1.0, while diffusion exponents α are drawn uniformly
from the interval [0.05, 2). Here, to quantify the difference
in diffusion exponents between two adjacent segments, we
introduce δα = α2 − α1, where α1 and α2 represent the ex-
ponents of front and rear segments, respectively. In particular,
a minimum value for |δα| is set as δαmin to ensure a distinct
transition between diffusion states. The default value of δαmin

is 0.5 in this paper.
After that, M segments are combined to form a trajectory

of length L. Here, M is randomly selected from the values
2, 3, 4, and 5. The length of each segment T is determined
from a uniform distribution, with its bounds set between a
minimum length Tmin = 10 and a maximum length Tmax =
L − (M − 1)Tmin. Representative example of a single sim-
ulated trajectory with L = 500 and M = 5 is illustrated in
Fig. 1(a), where different segments are marked in distinct
colors. Time evolution of this trajectory is depicted in Fig. 1(b)
for both the x and y dimensions, indicating that the trajectory
data exhibits typical time-series characteristics. We assign the
diffusion exponents of segments to each point as pointwise la-
bels, leading to a pointwise regression task for our model. As
shown in Fig. 1(c), these labels enable the clear identification
of transition points (changepoints) among different diffusion
states.

B. Subtask 2: Segmentation of trajectories
with different dynamics models

The second subtask aims to segment trajectories composed
of segments, each with dynamics originating from a distinct
diffusion model. It has been proven that the dynamics of
anomalous diffusion is multifaceted and can be described by
a variety of theoretical stochastic process models. Similar
to the varying diffusion exponents in subtask 1, the anoma-
lous diffusion dynamics observed in the real world often
undergoes transitions due to changes or fluctuations in the
surrounding media [44,57]. For instance, the diffusion of
transmembrane proteins on the cell membrane surface [57,60]
exhibits a duality of dynamics, encompassing both FBM and
continuous-time random walk [61]. However, traditional sta-
tistical methods are not particularly adept at identifying the
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FIG. 1. [(a), (d)] Representative examples of trajectories with varying diffusion exponents (a) and different dynamics models (d). Different
segments are marked in distinct colors. [(b), (e)] Time evolutions of trajectories in (a) and (d) for both x and y dimensions, respectively.
Changepoints of diffusion states are indicated by dashed lines. [(c), (f)] Pointwise labels of trajectories in (a) and (d), respectively.

dynamics model from raw trajectory data, and the detection
of transitions among these dynamics proves even more chal-
lenging. Therefore, developing effective methods to address
this issue bears considerable significance for the analysis of
anomalous diffusion behaviors and the elucidation of under-
lying physical mechanisms.

For that purpose, we design the subtask 2 with the goal of
enabling our model to detect state changepoints in the diffu-
sion process and accurately identify the dynamics models of
segments. Five theoretical diffusion models are considered:

(1) Annealed transient time motion (ATTM) [62]. Brown-
ian motion with a diffusion coefficient that varies randomly in
either time or space (0.05 � α � 1).

(2) Continuous-time random walk (CTRW) [61]. The
waiting time between two consecutive steps is irregular and
randomly chosen (0.05 � α � 1).

(3) Fractional Brownian motion (FBM) [59]. Diffusion
process driven by a power-law correlated fractional Gaussian
noise (0.05 � α < 2).

(4) Lévy walk (LW) [63]. The waiting time between sub-
sequent steps is irregular, while the step length is not Gaussian
distributed (1 � α � 2).

(5) Scaled Brownian motion (SBM) [64]. Brownian mo-
tion with a deterministically time-dependent diffusion coeffi-
cient (0.05 � α � 2).

Under the guidance of these five models, segments are
generated using the andi-datasets package. The procedure for

forming a trajectory in this subtask is the same as in subtask
1, i.e., M segments are joined to form a trajectory of length L.
The parameter values are also consistent with those in subtask
1. As an illustrative example, we present a typical sample
of a trajectory with L = 500 and M = 5 in Fig. 1(d) and its
corresponding time evolution for both x and y dimensions in
Fig. 1(e). This trajectory with different dynamics models is
also labeled in a pointwise manner, as depicted in Fig. 1(f).

C. Evaluation metrics

The main evaluation metric for subtask 1 is the mean abso-
lute error (MAE),

MAE = 1

NL

N∑
i=1

L∑
t=1

∣∣αPred
i,t − αGT

i,t

∣∣. (2)

Here, N is the number of trajectories to be evaluated. For
the ith trajectory at time step t , αPred

i,t and αGT
i,t denote the

predicted and ground truth values of the diffusion exponent,
respectively.

For subtask 2, we select the mean Dice coefficient (mDice)
as the main evaluation metric. The Dice coefficient, also
known as the Sørensen-Dice coefficient, can measure the
similarity of two samples and is commonly utilized in seg-
mentation tasks [65]. This metric can be calculated in subtask
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2 as

mDice = 1

N

N∑
i=1

2
∑(

XPred
i ⊗ XGT

i

)
∑

XPred
i + ∑

XGT
i

. (3)

Here, XPred
i is the predicted pointwise label and XGT

i refers
to the ground truth of the ith trajectory. Both are converted
into matrices of dimensions [L, nc] by one-hot encoding for
the Dice coefficient calculation. This encoding means each
category is represented by a vector where a specific position
is marked as 1 to indicate the presence of that category, and
all other positions are set to 0. Here, nc is the total number
of diffusion-model types. The symbol ⊗ denotes the elemen-
twise multiplication operator, and the small

∑
in the fraction

represents the summation of all elements in the matrix. The
value of the mean Dice coefficient ranges from 0 to 1, with a
higher value indicating a better segmentation performance.

On the other hand, pinpointing the changepoints among
diffusion states is of significant importance with respect to
the segmentation of anomalous diffusion. However, when
performing the changepoint detection, the model may gen-
erate some nonexistent changepoints (false positives, FPs),
while potentially missing genuine changepoints (false nega-
tives, FNs). This inevitably leads to errors in the identification
of state transitions. Hence, to systematically quantify the
model’s performance in detecting these transitions, we define
δc as

δc = cPred − cGT, (4)

where cPred and cGT are the predicted and ground truth change-
points, respectively. For the model-predicted changepoints,
we categorize those with |δc| < Tmin as true positives (TPs)
and those with |δc| � Tmin as false positives (FPs). The num-
ber of FNs can be obtained by subtracting the count of true
positives (TPs) from the total number of actual changepoints.
After that, we employ the metrics below to further evaluate
model’s performance in changepoint detection for both sub-
tasks [34],

precision = TP

TP + FP
, (5)

recall = TP

TP + FN
, (6)

F1-score = 2 · Precision · Recall

Precision + Recall
. (7)

III. MODEL STRUCTURE AND DESIGN PRINCIPLES

The U-AnDi model proposed in this work is constructed
by integrating the WADNet encoder [34] into the U-Net ar-
chitecture. This integration is primarily driven by the aim
to effectively capture the intrinsic dynamics of anomalous
diffusion, particularly the long-time correlations, with the
help of dilated causal convolution (DCC) and gated activation
unit (GAU). Another motivation is the utilization of U-Net’s
adeptness at capturing local features and nuances for semantic
segmentation tasks, which complements the WADNet en-
coder’s focus on long-range dependencies. In the following
parts, we will introduce the design principles of U-AnDi
in detail, and outline their connections with the underlying

physics of anomalous diffusion. The detailed implementation
of U-AnDi can be found in Appendix A, while the associated
training scheme is outlined in Appendix B.

A. Dilated causal convolution

Considering that the motion of a random walker is solely
determined by its current and past states, preserving causal-
ity to prevent using future information when processing the
anomalous diffusion data is not just a technical requirement
but a fundamental necessity. This crucial aspect is highlighted
by Verdier et al. in their recent paper [35], where the causality
is maintained by selecting incoming edges of each node orig-
inate only from nodes in the past in a graph neural network
(GNN). Unlike the specific wiring scheme used in the GNN
model, U-AnDi employs causal convolution to preserve the
causality inherent in anomalous diffusion. Specifically, when
applying the causal convolution to calculate the output at time
step t , only the data from the preceding t steps in the previous
layer will be used. This can be achieved by applying padding
on both sides of the sequence.

On the other hand, as the long-time correlation is one
of the essential properties of anomalous diffusion, our de-
sign should empower U-AnDi with the capability to capture
these extended dependencies in trajectory data. However, the
receptive field of a standard causal convolution is limited,
posing challenges in capturing the long-range dependencies in
longer trajectories. To address this issue, dilated convolution
is concurrently employed with causal convolution within the
WADNet encoder. As highlighted in Ref. [49], dilated con-
volutions can systematically aggregate multiscale contextual
information without compromising resolution by harnessing
the exponentially expanding receptive fields. This is partic-
ularly crucial when dealing with anomalous diffusion data,
where discerning long-time tails and correlations is of utmost
importance. A schematic representation of a dilated causal 1D
convolution is given in Fig. 2(a), where the kernel size (ks)
is set as 3. Notably, by doubling the dilation factor layer by
layer, after applying convolutions for d (dilation depth) times,
a single node can cover the information of 2d+1 − 1 nodes in
the input layer. The exponentially expanding receptive fields
enable our model to encapsulate more long-range correlation
information within the feature map. Consequently, this power-
law expansion assists the model in appropriately balancing
the sampling for measurements associated with long-time
tails, characteristic of anomalous diffusion, where power-law
correlation rather than simple exponential behavior is often
observed.

B. Gated activation unit

While the exponentially expanding receptive field en-
hances U-AnDi’s ability in collecting long-range correlation
information, effectively processing this information and sub-
sequently inferring the intrinsic properties of anomalous
diffusion remains a challenge. Recognizing that anomalous
diffusion often exhibits correlations where the influence of a
past event decays slowly over time, the gated activation unit
[66,67,69], with its capacity to maintain memory and man-
age information flow, is well suited to capture these slowly
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FIG. 2. (a) Schematic diagram of the dilated causal 1D convolution with a kernel size of 3. The dilation factor of convolution is doubled
layer by layer. (b) Detailed structure of the WADNet encoder. (c) The architecture of our U-AnDi model. Skip connections are highlighted by
the dashed lines.

decaying dependencies. Here, the gating mechanism within
the GAU plays a pivotal role. Essentially, it acts as a regulatory
system, determining which information should be allowed
to pass through and which should be retained or discarded.
Given the nature of anomalous diffusion, where certain events
or states have prolonged effects, it is crucial for a model
to discern which pieces of information are pertinent over
extended periods. The gating mechanism allows the model
to “remember” significant events from the past and “forget”
or downplay less relevant ones. This selective retention on
certain data points aligns perfectly with the characteristics of
anomalous diffusion, ensuring that the model remains sensi-
tive to long-time correlations. Therefore, to adeptly process
the long-range information gathered by the dilated causal con-

volution, we integrate the GAU into our network encoder. The
detailed structure of this encoder is depicted in Fig. 2(b), with
a comprehensive description in a mathematical form provided
in Appendix A.

C. U-Net architecture

For semantic segmentation tasks, the precise delineation
of boundaries between distinct objects or states necessitates a
model’s capability to effectively capture local variations. This
aspect is as crucial as apprehending long-time correlations
when it comes to the semantic segmentation and transition
detection in anomalous diffusion. The reason is that transi-
tions in diffusion states typically do not manifest as slow
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TABLE I. Overview of comparative models, their respective ab-
breviations, and the presence (highlighted by �) or absence of key
components: dilated causal convolution (DCC), gated activation unit
(GAU), and U-Net architecture.

Model Abbr. DCC GAU U-Net

Long short-term memory [66] LSTM �
Gated recurrent unit [67] GRU �
Transformer [68] TFM
WADNet encoder [34] WE � �
U-CNN U-CNN � �

and continuous processes but rather occur within short-time
intervals.

Therefore, to enhance the model’s ability in detecting these
local changes, we integrate the WADNet encoder into the
U-Net architecture. Such an architecture, originally designed
for biomedical image segmentation, has garnered significant
attention due to its exceptional performance in various seg-
mentation tasks. As illustrated in Fig. 2(c), U-Net utilizes a
symmetric encoder-decoder architecture, ensuring that spatial
information diminished during encoding is effectively rein-
stated during decoding. Moreover, skip connections in U-Net
transfer fine-grained details from the encoder directly to the
decoder, ensuring that local features and nuances are pre-
served and enhanced in the output. That is, U-Net captures
fine details through skip connections and grasps the broader
context with its encoder-decoder structure. This dual capabil-
ity makes it well suited for pinpointing state transition points
in anomalous diffusion trajectories, where subtle local vari-
ations and long-range dependencies are closely interwoven.
Details of constructing the U-Net architecture in this work are
also provided in Appendix A.

IV. ANALYSIS OF MODEL PERFORMANCE
ON SIMULATED TRAJECTORIES

In this section, we present the performance of the U-
AnDi model in segmenting simulated trajectories of varying
lengths. The results are based on evaluations conducted on
the validation sets for both subtasks, each comprising 200 000
trajectories. Considering the “black box” nature of machine
learning models, it is imperative to provide controls and cal-
ibrations analogous to standard tests in traditional analytical
methods. For this reason, and to gain a deeper understanding
of the individual contributions of U-AnDi’s core components:
DCC, GAU, and U-Net architecture, we also evaluate the
performance of several comparative models. Our choice of
comparative models is both strategic and comprehensive, en-
compassing the models outlined in Table I, with detailed
specifications provided in Appendix C. By contrasting U-
AnDi with these baseline models, we can distinctly discern the
individual and synergistic contributions of DCC, GAU, and
U-Net to the semantic segmentation of anomalous diffusion.

A. Performance of U-AnDi on subtask 1

To provide a more intuitive demonstration of U-AnDi’s
performance on subtask 1, we present four representative

FIG. 3. Representative examples with L = 500 demonstrating U-
AnDi’s performance on subtask 1 for various number of segments M:
(a)–(b) M = 2, (c)–(d) M = 3, (e)–(f) M = 4, (g)–(h) M = 5. Left
panel: Trajectory visualizations, with segments of different diffu-
sion exponents marked in distinct colors. Right panel: Comparisons
between the predicted (blue) and ground truth (orange) diffusion
exponents.

trajectories of length L = 500 and number of segments
M = 2, 3, 4, 5 in the left panel of Fig. 3. The right panel
compares their predicted values with the ground truth
values. It can be observed that the predicted diffusion ex-
ponents are quite close to the ground truth values, with
only minor differences noticeable in a few short intervals.
Quantitatively, we show the MAE scores of U-AnDi on
the validation set for various trajectory lengths spanning
from 50 to 900 in Fig. 4(a). The performances of other
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FIG. 4. (a) MAE scores of U-AnDi on the validation set for various trajectory lengths from 50 to 900, with performances of other
comparative models presented for reference. (b) 2D histogram of prediction αPred vs ground truth αGT. (c) Distribution of MAE for αGT

values ranging from 0.05 to 2. (Inset) Higher-resolution 2D histogram of αPred versus αGT spanning from 0.8 to 1.2. (d) MAE variations
corresponding to different δα for three scenarios: δαmin = 0.1, 0.5, and 0.8. (e) Model performance, as characterized by MAE, across various
values of δαmin. Here, (b)–(e) display the results for trajectories of length 500.

comparative models are also presented for reference. Ev-
idently, across all trajectory lengths, U-AnDi consistently
achieves the lowest MAE. This result underscores U-AnDi’s
robust capability, which is augmented by the synergistic ef-
fects of DCC, GAU, and U-Net, in discerning segments with
different diffusion exponents. Interestingly, as the trajectory
length increases, the MAE for all models, with the excep-
tion of U-CNN, consistently decreases. This enhancement
in segmentation performance with longer trajectories can be
attributed to the extended average length of individual seg-
ments. Such elongation offers the model a richer feature
information for analysis.

Upon further analysis, models that integrate the GAU
(U-AnDi, WE, LSTM, and GRU) outperform those without
it (TFM and U-CNN). This pronounced difference highlights
the pivotal role and efficacy of GAU in dealing with long-
time correlations inherent in anomalous diffusion. Moreover,
models equipped with DCC (U-AnDi and WE) exhibit an
additional boost in performance, emphasizing the significance
of DCC in capturing long-range dependence information for
anomalous diffusion segmentation. However, the U-CNN,
which integrates DCC but lacks GAU, experiences a decline in
segmentation performance as trajectory length increases. This
suggests that, in the absence of GAU, the DCC’s ability to
process long-time correlations is somewhat lacking. Addition-
ally, it implies that the U-Net architecture, being more attuned

to local variations, might misinterpret features without the
ability to effectively handle long-time correlations, especially
as trajectory lengths grow.

Next, we use trajectories of length 500 to provide a detailed
analysis of U-AnDi’s segmentation performance on subtask
1. For a fine-grained comparison between predictions and
ground truths of diffusion exponents, we present the 2D his-
togram of αPred versus αGT in Fig. 4(b). As expected, the
high-frequency pairs are predominantly located near the line
αPred = αGT, suggesting that the prediction errors of are small
for all αGT values ranging from 0.05 to 2. However, it should
be noted that the prediction errors are not entirely uniform
across different αGT values. As displayed in Fig. 4(c), for
αGT values close to 0 or 2, the errors are relatively smaller,
while for values around 1, the errors tend to be slightly
larger. This result can be attributed to the characteristics of
FBM, which approaches standard Brownian motion without
long-time correlations when α ≈ 1 [25]. Compared to sce-
narios with pronounced long-range dependencies (where α

is close to 0 or 2), its identification becomes relatively more
challenging. Considering that α ≈ 1 might typify many exper-
imental situations, we provide a higher-resolution histogram
of αPred versus αGT for αGT ranging from 0.8 to 1.2 in the
inset of Fig. 4(c). As observed, even though the MAE is
generally larger around αGT ≈ 1, the error distribution of
U-AnDi’s predictions remains relatively uniform without any
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FIG. 5. (a) Representative example of the postprocessing technique in subtask 1, which converts the continuous pointwise predictions into
discrete segmented predictions. The dashed lines denote the predicted locations of changepoints. (b) Distribution of δc as a percentage of TNC,
spanning from –9 to 9. (c) Mean values of δc (δc) corresponding to various lengths of the front and rear segments adjacent to changepoints.
(d) Distribution of TP, FP, and FN as a percentage of TNC, juxtaposed with results from WE and U-CNN. Here, (b)–(d) show the results for
trajectories of length 500. (e) Plots of recall versus precision for U-AnDi, WE, and U-CNN across different trajectory lengths, with arrows
indicating the direction of increasing trajectory length. (f) F1-score variations across trajectory lengths for the three models.

pronounced bias, highlighting the stability of model’s predic-
tion for α ≈ 1.

Given that the variation in diffusion states between two
adjacent segments can be characterized by the difference in
their diffusion exponents, denoted as δα, we investigate the
influences of δα on U-AnDi’s segmentation performance to
quantify the effects of state variations. MAEs corresponding
to different values of δα are presented in Fig. 4(d) for three
scenarios: δαmin = 0.1, 0.5, and 0.8. A conspicuous feature of
the MAE versus δα plots is their clear symmetry, indicating
that whether the exponent α increases or decreases does not
significantly affect U-AnDi’s predictions. Moreover, in most
cases, a larger magnitude of |δα| correlates with a lower
MAE, suggesting that more pronounced differences in diffu-
sion states facilitate the model’s ability to discern transitions.
However, an exception arises when |δα| ≈ 0, where this trend
reverses. This is because a negligible |δα| might result in
indistinct changes in diffusion states, prompting the model to
treat two adjacent segments as a single diffusion state, thereby
yielding errors commensurate with the magnitude of |δα|. In
addition, we showcase the model’s overall performance across
different δαmin values in Fig. 4(e). Notably, a larger δαmin,
which guarantees more significant diffusion state variations,
results in a smaller MAE, aligning well with our expectations.

Besides the accuracy of predicting diffusion exponents,
another crucial aspect is the identification of changepoints
among different diffusion states. As shown in the right panel
of Fig. 3, the U-AnDi model, which generates continuous
pointwise values as its output, enables an approximate visual
determination of the changepoint ranges. However, this out-
put cannot provide precise demarcations between successive
distinct diffusion states. To address this issue, we introduce a
postprocessing technique that converts the continuous point-
wise predictions into discrete segmented predictions (see
Appendix D for details). An example of this process is il-
lustrated in Fig. 5(a). After applying the post-processing, the
predictions for all points within each segment become consis-
tent, allowing for the identification of changepoints through
the abrupt changes in diffusion exponents, as denoted by the
dashed lines in Fig. 5(a). Based on this technique, we can
further quantitatively investigate U-AnDi’s performance on
the detection of changepoints.

We define the total number of changepoints in the val-
idation set as TNC and display the distribution of δc as a
percentage of TNC in Fig. 5(b), spanning from –9 to 9. The
majority of δc values are clustered around 0, signifying a
relatively small error in the prediction of changepoints. Inter-
estingly, the distribution demonstrates a mild leftward skew,
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FIG. 6. Visualization of U-AnDi’s performance on the segmentation task with different diffusion models. [(a1)–(a4)] Illustrations of four
representative trajectories of length 500 with varying number of segments (M = 2, 3, 4, 5), where segments with different diffusion models are
marked in distinct colors. [(b1)–(b4)] Comparisons of predictions (blue dashed lines) and ground truths (orange solid lines) for each trajectory.
[(c1)–(c4)] Heatmaps of pointwise probability distribution for each trajectory, with darker colors indicating higher probabilities.

suggesting that the model has a slight inclination towards
predicting changepoints earlier than their true positions. In
addition, the relationship between δc and segment length T
is also examined. As demonstrated in Fig. 5(c), we present
the mean values of δc, denoted as δc, corresponding to var-
ious lengths of the front and rear segments adjacent to the
changepoints. It is evident that for the vast majority of seg-
ment lengths, δc consistently aligns close to –1. This trend
reinforces our previous observation that U-AnDi has a propen-
sity to slightly anticipate changepoints. In particular, when
the segment length approaches the trajectory length, the pre-
diction error increases significantly. Such an increase occurs
when one segment dominates the majority of the trajectory,
relegating other segments to near-minimal lengths. These
short segments provide limited feature information, leading
the model to yield less accurate predictions.

Expanding our analysis on the changepoint detection, we
probe the distribution of TP, FP, and FN as a percentage of
TNC and compare these metrics with the results from WE
and U-CNN, as illustrated in Fig. 5(d). Obviously, U-AnDi
demonstrates a higher count of TP while exhibiting fewer
instances of FP and FN, highlighting its superior precision
and recall. To validate the generality of this observation, we
explore the distribution of precision and recall for the three
models across different trajectory lengths, with results sum-
marized in Fig. 5(e). Unsurprisingly, U-AnDi consistently
outperforms both WE and U-CNN in terms of precision and

recall across all lengths. Moreover, as indicated by the arrows,
which denote the direction of increasing trajectory length,
U-AnDi exhibits remarkably consistent changepoint detection
performance, maintaining stable precision and recall across
varying lengths. In contrast, as trajectory length increases, WE
shows a slight decline in precision while its recall remains
stable; U-CNN, devoid of GAU, witnesses a more pronounced
drop in both precision and recall. The F1-score variations
across trajectory lengths for the three models are illustrated in
Fig. 5(f). Mirroring the MAE trends seen in Fig. 4(a), U-CNN,
without GAU, significantly underperforms in changepoint de-
tection for longer trajectories compared to GAU-equipped
U-AnDi and WE. These findings reemphasize the pivotal role
of GAU in effectively managing the long-time correlations
inherent in anomalous diffusion.

B. Performance of U-AnDi on subtask 2

In a manner consistent with subtask 1, we initially seek
to visually demonstrate U-AnDi’s performance on the seg-
mentation of trajectories with different dynamics models. For
this purpose, the segmentation results of four representative
trajectories of length 500 with number of segments M =
2, 3, 4, 5 are summarized in Fig. 6. In more detail, Fig. 6 is
organized into three rows for a coherent presentation. The first
row [Figs. 6(a1)–6(a4)] presents the visualizations of these
four trajectories, using unique colors to differentiate segments
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FIG. 7. (a) mDice scores on the validation set of U-AnDi and comparative models across trajectory lengths from 50 to 900. (b) Confusion
matrix of the pointwise classification results of U-AnDi, where horizontal and vertical coordinates denote predicted and ground truth labels,
respectively. (c) Distribution of δc spanning from –9 to 9 as a percentage of TNC, which is plotted on a logarithmic scale. (d) δc as a function
of the lengths of the front and rear segments adjacent to changepoints. (e) Comparative distribution of TP, FP, and FN values for U-AnDi,
WE, and U-CNN, expressed as a percentage of TNC. Here, (b)–(e) illustrate the findings for trajectories of length 500. (f) Recall against
precision for U-AnDi, WE, and U-CNN across varying trajectory lengths, where arrows denote the direction of increasing trajectory length.
(g) Dependence of F1-score on trajectory length for the three models.

associated with distinct diffusion models. Subsequently, com-
parisons of predictions with ground truths for each of the
four trajectories are displayed in the second row [Figs. 6(b1)–
6(b4)]. It is evident that the lines depicting the predicted values
(blue) closely align with those representing the ground truth
values (orange). This highlights the robust performance of
U-AnDi in segmenting trajectories with different diffusion
models. Moreover, to provide a more comprehensive under-
standing of the model predictions, we show the heatmaps of
predicted pointwise probability distribution in the third row
[Figs. 6(c1)–6(c4)], with darker colors representing values
closer to 1. As illustrated, in the majority of instances, the
model is capable of predicting the specific model at a given
step with a high degree of confidence (probability).

Building on the insights from subtask 1, we further quan-
titatively evaluate U-AnDi’s performance on subtask 2. As
depicted in Fig. 7(a), the mDice scores of U-AnDi and other
comparative models across different trajectory lengths rang-
ing from 50 to 900 align with the findings from subtask 1.
This consistency not only underscores U-AnDi’s robustness
across different segmentation tasks of anomalous diffusion,
but also reinforces our prior analysis about the functionali-
ties of U-AnDi’s core components: DCC, GAU, and U-Net.
Further, we continue to use trajectories of length 500 as our
primary example. To gain a deep insight into the error ori-
gins regarding this pointwise classification task, the confusion
matrix of classification results is displayed in Fig. 7(b). As
observed, while the classification accuracy for the CTRW,
FBM, LW, and SBM models exceeds 97%, the accuracy for
the ATTM model is merely around 86%. This discrepancy
can be attributed to the machine-learning features of ATTM
extracted by the WADNet encoder, which bear resemblance

to CTRW, FBM, or SBM, as elucidated in Ref. [34]. Conse-
quently, this leads U-AnDi to occasionally misclassify ATTM
steps as CTRW (5.62%), FBM (3.68%), or SBM (4.55%).

On the other hand, detecting changepoints among diffusion
states holds significant importance in subtask 2 as well. In
contrast to subtask 1, no additional postprocessing techniques
are required for the detection in this task. We can efficiently
determine the positions of changepoints by examining abrupt
changes in the predicted labels. In Fig. 7(c), the distribution
of δc values ranging from –9 to 9 is presented as a percentage
of TNC. A distinction from subtask 1 is that 91.1% of the
cases have δc values of 0, indicating a significant portion of
the predicted changepoints aligning perfectly with the ground
truths. Given the highly imbalanced distribution of δc val-
ues, a logarithmic scale is employed in Fig. 7(c) to enhance
visualization. Moreover, δc as a function of the lengths of seg-
ments adjacent to changepoints is explored, with the results
depicted in Fig. 7(d). Differing from subtask 1, the majority of
data points for both front and rear segments are concentrated
around 0. Even as the segment length nears the trajectory
length, there is no significant escalation in error. This suggests
that U-AnDi exhibits commendable stability in segmenting
trajectories with varying diffusion models, even when dealing
with very short segments.

Similar to subtask 1, regarding U-AnDi, WE, and U-CNN,
the distribution of TP, FP, FN for L = 500, along with the plots
of recall versus precision across varying lengths and the F1-
scores for different lengths are illustrated in Figs. 7(e), 7(f),
and 7(g) respectively. While the results largely mirror those
from subtask 1, a stark deviation is observed in the FP count of
WE, which have increased dramatically [Fig. 7(f)]. This surge
adversely impacts the WE’s precision, rendering its F1-score

013054-10



SEMANTIC SEGMENTATION OF ANOMALOUS DIFFUSION … PHYSICAL REVIEW RESEARCH 6, 013054 (2024)

lower than both U-AnDi and U-CNN [Fig. 7(g)]. Considering
that WE lacks the U-Net architecture, it can be deduced that
such an architecture plays a crucial role in adeptly processing
intricate local fluctuations intertwined with long-time correla-
tions for the segmentation of anomalous diffusion.

Building on insights from both subtasks, we further inves-
tigate the case where the diffusion exponent and the dynamic
model concurrently vary within a single trajectory. Detailed
findings of this analysis are presented in Appendix E, which
confirms U-AnDi’s adaptability and robustness in the face of
such complex conditions.

C. Extended analysis on the segmentation
of anomalous diffusion

While U-AnDi has demonstrated commendable segmenta-
tion performance in discerning changes in diffusion exponents
and transitions among diffusion models, it remains imperative
to assess its capabilities in more intricate and broadly relevant
anomalous diffusion or single-particle tracking scenarios. The
robustness and widespread applicability of U-AnDi in diverse
contexts are pivotal for its integration into practical applica-
tions, offering significant utility to potential researchers in
the anomalous diffusion field who may not be well versed in
machine learning.

For that purpose, we expand our analysis to encompass
three other distinct segmentation tasks in this section. Each
task is designed to mirror the complexities often encountered
in the domain of anomalous diffusion, serving as a basis for
a rigorous examination of U-AnDi’s versatility in handling
complex anomalous diffusion scenarios.

1. Semantic segmentation of single-model trajectories
with constant parameters

In the landscape of anomalous diffusion research, while
transitions between diffusion states are frequently observed,
it is equally common to encounter scenarios where a random
walker moves exclusively within a framework of a single
diffusion model [1]. These single-model trajectories, devoid
of state transitions, represent a fundamental and ubiquitous
aspect of experimental studies. In our previous discussions,
we center on trajectories that exhibit state transitions (with
M � 2). This emphasis naturally leads to considerations about
U-AnDi’s performance on single-model trajectories. Such an
evaluation is crucial as it offers potential users insights into
U-AnDi’s stability and reliability across an expansive range
of diffusion scenarios.

For this investigation, we generate trajectories of length
500 using six diffusion models: ATTM, CTRW, FBM, LW,
SBM, and the Brownian diffusion (BD). BD is included
because it represents the most fundamental diffusion phe-
nomenon in experimental observations. Here, it should be
noted that BD is equivalent to the scenario of FBM and SBM
when the diffusion exponent α = 1. To ensure the generality
of our results, we extensively evaluate U-AnDi across a broad
range of core parameters for the diffusion models. For the
first five models, the selected parameter is α, with its range
consistent with the description in Sec. II B for each model.
For BD, the parameter is the diffusion coefficient D, which
spans a range from 0.5 to 10. Further, to guarantee statistical

FIG. 8. [(a)–(c)] Predictions of U-AnDi-Exponent for FBM tra-
jectories with diffusion exponents α = 0.3, 1.0, and 1.7, representing
subdiffusion, Brownian diffusion, and superdiffusion, respectively.
(d) MAE scores for various α values. (e) Distributions of the mFP
for different α with threshold ε = 0.028 and 0.1, respectively.

robustness, we generate 10 000 trajectories for each param-
eter value for testing. For convenience, we introduce two
nomenclatures in this section: “U-AnDi-Exponent” refers to
the model from subtask 1 that segments based on diffusion
exponent, while “U-AnDi-Model” pertains to the model from
subtask 2 that segments based on the diffusion model.

We first assess the performance of U-AnDi-Exponent on
FBM trajectories with fixed diffusion exponents α. To visual-
ize the variation between the predicted values and the fixed
exponent, we display the predictions of U-AnDi-Exponent
for three representative trajectories with α = 0.3 (subdif-
fusion), 1.0 (Brownian diffusion), and 1.7 (superdiffusion)
in Figs. 8(a)–8(c), respectively. Across these scenarios, the
model’s predictions closely cluster around the true values,
indicating only slight variation. Quantitatively, we present the
MAE scores for various α values in Fig. 8(d). It is evident that
MAE values are all approximately around 0.07, suggesting
consistently minor fluctuations.

Furthermore, we apply the postprocessing technique de-
scribed in Appendix D to identify changepoints. Given that
these trajectories inherently lack changepoints, our analysis
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FIG. 9. (a1)–(a6) Distribution of mFP predicted by U-AnDi-Model for trajectories generated by six different diffusion models: ATTM,
CTRW, FBM, LW, SBM, and BD, respectively. The performance of U-AnDi-Exponent is also given in (a6) for BD trajectories for comparison.
(b1)–(b6) The mean proportion of predicted diffusion models within each individual trajectory for ATTM, CTRW, FBM, LW, SBM, and BD,
respectively.

concentrates on the FPs in the predictions. We define the mean
number of FPs per trajectory within the dataset as mFP and
illustrate the distribution of mFP for different α in Fig. 8(e).
Despite the fluctuation of mFP in response to changes in α,
the values consistently remain low. Notably, by increasing
the threshold ε in the postprocessing technique, the model’s
precision can be further improved, as evidenced by a reduction
in mFP [Fig. 8(e)]. Overall, U-AnDi-Exponent demonstrates
a remarkable stability in dealing with FBM trajectories with
constant parameters. In particular, the flexibility of our ap-
proach allows users to refine the precision of changepoint
detection through threshold customization, thereby tailoring
the model to their specific needs.

On the other hand, we employ U-AnDi-Model to test
single-model trajectories generated by the six diffusion mod-
els. In addition to utilizing mFP as the evaluation metric
[Figs. 9(a1)–9(a6)], the mean proportion of predicted diffusion
models within each individual trajectory, denoted as r, is dis-
played in Figs. 9(b1)–9(b6) to manifest the variation between
predicted and true values. It is noteworthy that for ATTM,
CTRW, FBM, LW, and SBM, the true model accounts for
at least 87% of the predicted composition, underscoring the
robustness of our method in this task. Since U-AnDi-Model
primarily relies on the distinctive features of diffusion models
to determine changepoints, the magnitude of mFP on single-
model trajectories is largely influenced by the uniqueness of
the diffusion model relative to others. For instance, the charac-
teristics of LW are notably distinct from the other five models
(Ref. [34]), allowing for a stable identification of LW without
predicting state transitions, i.e., mFP = 0 for all α [Fig. 9(a4)].
Conversely, for FBM and SBM, as α approaches 1, the
trajectories of these two models converge towards the char-
acteristics of Brownian diffusion. This convergence results in
an overlap that challenges U-AnDi’s discriminative power,
leading to an increased incidence of FPs [Figs. 9(a3) and
9(a5)]. This phenomenon is also evident when U-AnDi-Model
is tasked with analyzing BD trajectories, where the mFPs
closely mirror those observed for FBM and SBM with α = 1

and are considerably higher than the forecasts by U-AnDi-
Exponent [Fig. 9(a6)]. As shown in Fig. 9(b6), predictions
for BD trajectories show a significant proportion attributed
to both FBM and SBM, emphasizing the indistinguishability
between these two at α = 1.

2. Segmentation of simulated multistate trajectories
in biological experiment scenarios

In the realm of single-particle tracking experiments within
biological systems [70–75], the microdynamics of the ob-
served entities are prone to transitions due to environmental
influences, necessitating effective methods for segmenting the
trajectory data. However, in such experimental systems, the
diffusion dynamics often observed are not limited to specific
anomalous diffusion models but include transitions among
Brownian, confined, directed, and immobile states. These
states correspond to

(1) Brownian diffusion (BD): Free movement character-
ized by random walks, reflecting the absence of constraints in
an open environment.

(2) Confined diffusion (CD): Restricted movement within
certain boundaries, such as within cellular compartments or
membranes.

(3) Directed Motion (DM): Motion driven by the external
force or energy, such as bacteria propelled by flagellar motion
or cells migrating in response to chemical signals.

(4) Immobile state (IS): A state where particles are trapped
or bound to structures within the cell, exhibiting little to no
movement over time.

For instance, as described in Ref. [38], molecules like
CD44 in macrophages can exhibit these states. CD44
molecules display confined diffusion when interacting with
the actin cortex, free diffusion when such interactions are in-
hibited, and immobility possibly when tethered to the cortex.

Hence, to validate the effectiveness of U-AnDi in such
biological experimental scenarios, we primarily adopt the
simulation methods from Ref. [38] to generate segments
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FIG. 10. (a) Representative example of a simulated composite
trajectory of length 500, containing the four dynamic states in bi-
ological experiment scenarios: Brownian diffusion (BD), confined
diffusion (CD), directed motion (DM), and immobile state (IS).
(b) Comparative segmentation results of U-AnDi and DC-MSS on
the composite trajectory in (a). (c) mDice score comparisons be-
tween U-AnDi and DC-MSS for trajectories of varying lengths.
[(d)–(f)] Analysis of changepoint detection for U-AnDi and DC-
MSS. (d) Distribution of TP, FP, and FN as a percentage of TNC
where L = 500. (e) Recall vs precision for different trajectory
lengths. (f) The variation of the F1-score with trajectory length.

representing these four dynamic states. We then combine
these segments using the same approach as in subtask 2 to
create composite trajectories for the validation, with a repre-
sentative example of length L = 500 illustrated in Fig. 10(a).
The simulation methods for these segments are detailed in
Appendix F. The training of U-AnDi follows the same pro-
tocol as in subtask 2.

Furthermore, to observe the potential advancements of
our model over conventional approaches, we benchmark
the performance of U-AnDi against the traditional divide-
and-conquer moment scaling spectrum (DC-MSS) analysis
method [38]. A brief introduction to DC-MSS is provided in
Appendix C. As displayed in Fig. 10(b), we present the seg-
mentation results of both methods on the trajectory shown in
Fig. 10(a). It is evident that U-AnDi’s predictions align almost
perfectly with the ground truth, whereas DC-MSS exhibits

numerous misjudgments, including incorrect state identifi-
cation and changepoint detection errors. Quantitatively, we
compare the mDice scores of both models for trajectories of
varying lengths, ranging from 50 to 900, and summarize the
results in Fig. 10(c). Notably, U-AnDi decisively outperforms
DC-MSS across all lengths with mDice close to 1, indicating
a significantly higher accuracy in state identification.

Similarly, U-AnDi’s performance in detecting state tran-
sitions is markedly superior to that of DC-MSS. As with
subtask 2, Figs. 10(d)–10(f) detail the distribution of TP, FP,
and FN as a percentage of TNC for L = 500, plots of re-
call versus precision for different trajectory lengths, and the
variation of the F1-score with trajectory length, respectively.
Across various lengths, U-AnDi demonstrates high precision,
recall, and F1-scores, while DC-MSS lags in performance.
Additionally, as trajectory length increases, DC-MSS shows a
gradual increase in recall but a decrease in precision, revealing
a trade-off between the two metrics [Fig. 10(e)]. This trade-off
results in uniformly low F1-scores for all lengths, which is
evident from Fig. 10(f).

These findings underscore U-AnDi’s exceptional segmen-
tation capabilities for anomalous diffusion trajectories in
biological experimental scenarios. They also highlight the
significant performance gap between unsupervised algorithms
trained with unlabeled data like DC-MSS and supervised ap-
proaches dealing with labeled data, reinforcing the superiority
of the latter in trajectory segmentation tasks.

3. Evaluating U-AnDi with other correlations

Considering that long-time correlations are a fundamental
property inherent to anomalous diffusion behaviors, we aim
to further validate the versatility and adaptability of U-AnDi
in segmenting trajectories characterized by more correlations.
To achieve this, we generate trajectories where the velocity
autocorrelation functions (VACFs) conform to four distinct
correlations. Subsequently, U-AnDi is employed to segment
these trajectories. The chosen correlation functions for this
evaluation are listed in the following paragraph. To maintain
clarity and without loss of generality, we present the mathe-
matical expressions in a one-dimensional framework in this
section.

We denote C(t ) = 〈v(0)v(t )〉 as the VACF. Four correla-
tion functions are detailed below:

(1) Exponential decay (exp):

C(t ) = Ae−t/τ , (8)

where A is the amplitude and τ is the time constant.
(2) Multi-exponential decay (multi-exp):

C(t ) = A[φe−t/τ1 + (1 − φ)e−t/τ2 ]. (9)

Here, A is the amplitude, φ is the weighting factor. τ1 and τ2

are the time constants of two exponential decays, respectively.
(3) Exponentially damped cosine wave (exp-cos):

C(t ) = Ae−t/τ cos ωt, (10)

where A is the amplitude, τ is the time constant, and ω is the
angular frequency.
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TABLE II. Summary of parameters, labels, and corresponding equations to calculate labels for segmentation tasks associated with the four
correlation functions.

Correlation type Parameter Label Label range Label calculation

exp change A, set τ = 10 D [0.05,2) D = Aτ

multi-exp change A, set τ1 = 10, τ2 = 20, φ = 0.5 D [0.05,2) D = A[φτ1 + (1 − φ)τ2]
exp-cos change A, set τ = 10, ω = 0.1 D [0.05,2) D = Aτ/(1 + τ 2ω2)
M-L change λ, set τ = 10, A = 1 α [0.05,2) α = 2 − λ

(4) Mittag-Leffler decay (M-L) [76]:

C(t ) = A

τλ
Eλ[−(t/τ )λ], (11)

where

Eλ(z) =
∞∑

k=0

zk

	(λk + 1)
. (12)

Here, τ acts as a characteristic memory time and A is the
amplitude coefficient. λ is the exponent satisfying λ > 0. 	(·)
denotes the Gamma function.

We generate these trajectories using a modified version
of the “fbm” Python package [77,78], which employs the
Davies-Harte algorithm [79]. Associated codes are available
in our GitHub repository [80]. The effectiveness of this gen-
eration method is validated in Appendix G.

Labels for the trajectory segmentation are determined
based on the diffusion behaviors corresponding to their cor-
relation functions. Using the equation below [81]

MSD = 2
∫ t

0
(t − s)C(s)ds, (13)

it is evident that trajectories exhibiting exp, multi-exp, and
exp-cos correlations manifest long-time Fickian behaviors
(see Appendix G), i.e., MSD ∼ t . Consequently, for these
three types of correlations, we utilize the long-time diffusion
coefficient D as the target for trajectory segmentation. On the
other hand, as outlined in Ref. [82], the diffusion exponent
α of trajectories characterized by the M-L correlation equals
2 − λ. Therefore, for trajectories with the M-L correlation,
we choose α as the segmentation label. In Table II, we pro-
vide a summary of the parameters, labels, and corresponding
equations to calculate segmentation labels (see Appendix G
for details) with respect to the four correlations.

Trajectory segments are combined to form a composite
trajectory using the same method as in subtask 1. Additionally,
the model and training approach remain consistent with those
applied in that subtask. We evaluate U-AnDi’s segmentation
performance using MAE and F1-score, and compare it with
WE and U-CNN. The results, illustrated in Fig. 11, encompass
not only the performance of U-AnDi for the four distinct
correlations but also its evaluation scores in subtask 1, which
pertains to the power-law correlation. A clear observation
from the results is the superior performance of U-AnDi in
comparison to both WE and U-CNN across all five types
of correlations, whether evaluated based on MAE or F1-
score. Such consistent superiority across diverse correlation
types highlights U-AnDi’s robust adaptability, emphasizing its

potential to serve as a universal scheme for the segmentation
of time-series data.

Interestingly, as quantified by the MAE, both U-AnDi
and WE exhibit a notably better performance in predicting
the diffusion exponent compared to the diffusion coeffi-
cient. However, this distinction is not evident in the case of
U-CNN. A potential reason for this difference can be at-
tributed to the inherent characteristics of diffusion coefficient
and diffusion exponent. While the diffusion coefficient pri-
marily captures the “speed” of diffusion, the diffusion expo-
nent provides deeper insights into the underlying mechanisms
of diffusion process, inherently reflecting the correlation in-
formation. Consequently, the diffusion exponent can be more
readily predicted by models like U-AnDi and WE, both of
which are adept at processing long-time correlations with the
help of GAU. In contrast, U-CNN, which lacks the GAU, does
not exhibit a similar advantage.

V. INTERPRETABILITY OF U-AnDi’S
CORE COMPONENTS

The quest for interpretability in machine learning, partic-
ularly within the realms of physical sciences, is not merely
a pursuit of operational transparency but a foundational

FIG. 11. Comparative evaluation of U-AnDi, WE, and U-CNN
using MAE and F1-score across five distinct correlations: (1) expo-
nential decay; (2) multi-exponential decay; (3) exponentially damped
cosine wave; (4) Mittag-Leffler decay; (5) power-law decay. The
dashed lines represent the best score for each correlation type, and
the numbers on the dots correspond to the aforementioned correlation
types.
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requirement for scientific validity. In this paper, the com-
parative evaluation of U-AnDi against other models partially
diminishes the “black box” associated with our machine learn-
ing model, shedding light on the inner working of U-AnDi’s
core components: DCC, GAU, and U-Net. As long-time cor-
relation is one of the fundamental properties of anomalous
diffusion, these components faithfully encapsulate this un-
derlying nature and are in strict accordance with our design
principles. Within this section, we consolidate the inter-
pretability insights that has been gained from the comparison
among the performance of U-AnDi and its comparative mod-
els in the aforementioned tasks.

(1) Dilated causal convolution: Capturing long-time cor-
relations. To effectively capture the pivotal long-time cor-
relations inherent in anomalous diffusion, DCC, with its
exponentially expanding receptive fields, is designed to en-
compass the full spectrum of these extensive dependencies.
This enables DCC to acquire a comprehensive integration
of temporal information across scales, ensuring that the
long-time correlations are accurately represented within the
model’s predictions. Such an advantage is reflected in the
enhanced performance of U-AnDi as well as WE’s compet-
itive superiority over other counterparts, where both models
incorporate the DCC.

(2) Gated activation unit: Processing long-range de-
pendencies. To adeptly navigate the intricate long-time
correlations in anomalous diffusion, the integration of GAU
is engineered to leverage its gating mechanism to selectively
emphasize salient temporal features. This selective filtration
and prioritization by GAU are not merely structural benefits
but are directly responsive to the characteristic memory ef-
fects and nonlocal interactions of anomalous diffusion. By
modulating the flow of information, the GAU ensures that
the model’s focus is attuned to the most critical aspects of
the data, which are indicative of the underlying long-time
correlations. The superior performance of models equipped
with GAU across all subtasks robustly demonstrates the profi-
ciency of GAU in effectively processing long-time correlation
information.

(3) U-Net architecture: Enhancing detection of local
changes. When segmenting the anomalous diffusion trajecto-
ries, the abrupt transitions and heterogeneous local dynamics
demand a model’s ability not only in emphasizing long-time
correlations but also in precisely delineating local variations.
The U-Net architecture excels in this regard, capturing fine
details through skip connections, while concurrently grasping
the broader context with its encoder-decoder framework. This
dual capability makes U-Net exceptionally well equipped to
identify state transition points in anomalous diffusion. In this
paper, the integration of WE within the U-Net framework
further refines the model’s segmentation performance, cov-
ering all metrics. This result reinforces the utility of U-Net
in the segmentation and changepoint detection of anomalous
diffusion.

The interpretability of U-AnDi’s core components is a tan-
gible reflection of the model’s alignment with the complex
nature of anomalous diffusion. By capturing long-time cor-
relations and enhancing the detection of local changes, these
core components collectively contribute to the model’s robust
performance across varied segmentation tasks, bridging the

gap between advanced machine learning techniques and the
fundamental principles of anomalous diffusion.

VI. IMPLEMENTATION OF U-AnDi ON REAL-WORLD
ANOMALOUS DIFFUSION DATA

In this section, we apply the U-AnDi model to real-world
anomalous diffusion data and examine its performance on
the semantic segmentation of experimental trajectories. The
selected real-world system is the diffusion of transmem-
brane proteins on cell membrane surfaces, as illustrated by
the schematic diagram in Fig. 12(a). The pertinent data are
obtained through single-particle tracking techniques [70–75]
from experimental observations, and are provided by N.
Granik et al. in Ref. [57]. The content of this section is
structured as follows. Section VI A provides an overview of
the raw experimental trajectory dataset, and describes the
segmentation tasks along with the approach for preparing the
validation set. The training strategy is outlined in Sec. VI B.
In Sec. VI C, we demonstrate and discuss the performance of
the U-AnDi model on interpreting the anomalous diffusion
dynamics of transmembrane proteins.

A. Dataset description and segmentation tasks

The dataset with respect to the diffusion of transmembrane
proteins on membrane surfaces comprises a total of 70 221
2D trajectories, in which the x and y pixel locations are pro-
vided. The distribution of trajectory lengths is displayed in
Fig. 12(b), with the counts plotted on a logarithmic scale to
enhance clarity in visualization. An evident long-tail distri-
bution can be identified. In detail, trajectories of lengths no
greater than 100 account for 98.6% (69 259) of the entire
dataset, while the maximum length in this dataset reaches
1406. Diffusion models of these trajectories have been previ-
ously assessed by machine learning approaches in Ref. [57],
with N. Granik et al. proposing that the predominant dynamics
consist of both CTRW and FBM. Therefore, this dataset offers
us an excellent opportunity to test the segmentation perfor-
mance of U-AnDi on experimental data.

Two specific segmentation tasks are addressed here: one
involving labeled data and the other utilizing unlabeled data.
In the task with labeled data, the validation set is prepared as
below. Trajectories to be evaluated are generated by combin-
ing short trajectories with lengths not exceeding 100 from the
experimental dataset. Diffusion-model labels of these short
trajectories are assigned by WADNet, a deep learning model
capable of providing the probability of the diffusion model to
which the input trajectory is most likely to belong. Further
details regarding WADNet can be found in our previous paper
[34]. Leveraging the model probabilities provided by WAD-
Net for these short trajectories, we carefully select CTRW
and FBM instances that exhibit high confidence levels (with
probabilities of CTRW or FBM exceeding 0.9) to generate
extended trajectories for further evaluation. Representative
samples of these selected short trajectories with different
lengths are illustrated in the inset of Fig. 12(b). The quanti-
ties of short CTRW and FBM trajectories spanning various
lengths from 10 to 100 are presented in Fig. 12(c). By setting
the overall trajectory length L and the number of segments
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FIG. 12. (a) Schematic diagram of the selected real-world anomalous diffusion system: Diffusion of transmembrane proteins on cell
membrane surfaces. (b) Logarithmically plotted distribution of trajectory lengths in the experimental dataset, with the dashed line denoting the
length at 100. (Inset) Representative instances of selected short trajectories of CTRW and FBM with different lengths, with labels assigned
by WADNet. (c) The quantity distribution of short CTRW and FBM trajectories spanning various lengths from 10 to 100. For clarity, the
FBM bars are measured from the top of the CTRW bars. (d) Segmentation performance of U-AnDi at different noise standard deviations σn.
(e) mDice scores of U-AnDi on validation sets under diverse L and M parameters. [(f), (g)] Trajectories from the validation sets with parameters
L = 100, M = 3 in (f) and L = 200, M = 5 in (g). (h) Comparisons between the predictions (blue) and ground truths (orange) for the trajectory
in (f) (left) and the trajectory in (g) (right), underscoring a high-level consistency.

M, we can utilize these short trajectories to create the val-
idation set, thereby facilitating the evaluation of U-AnDi’s
performance. In particular, we establish a rule specifying that
the average length of segments (L/M) should not exceed 50.
This constraint ensures the prevention of trajectory generation
errors or the dominance of overly long segments.

On the other hand, in the task concerning unlabeled data,
we employ the U-AnDi model to segment those long trajecto-
ries with lengths exceeding 100. To examine the performance
of our model, the segments distinguished by U-AnDi are clas-
sified by WADNet to identify their corresponding diffusion
models. Due to the absence of ground truth labels, we cannot
use a conventional evaluation metric like the mDice to assess

the segmentation results. Instead, we rely on the confidence
levels (probabilities) provided by WADNet to evaluate the
effectiveness of our model.

B. Training scheme

The architecture of the U-AnDi model and training meth-
ods in this section remain almost identical to those in subtask
2. One deviation is a reduction in the filter number of the
last 1D convolutional layer from 5 to 2. This modification is
due to the task at hand, which requires semantic segmenta-
tions of just two diffusion models, CTRW and FBM. Another
update is the initialization of model weights. To accelerate the
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training process, we adopt a transfer learning strategy where
the optimal model weights from subtask 2 are employed to
initialize the model. This strategy allows the model to reach
optimal performance within approximately 10 epochs, signif-
icantly reducing the training time.

In addition, taking the inevitable errors and noise during
experimental observations into account, Gaussian white noise
with a zero mean and a standard deviation of σn is added
when generating simulated trajectories for training. In order
to pinpoint the optimal σn and better mimic the circum-
stances of real experimental data, we select two validation sets
comprising of experimental trajectories to evaluate the perfor-
mance of U-AnDi at different σn. The parameters for these
two validation sets are L = 100, M = 3 and L = 200, M = 5,
respectively, with each set consisting of 1000 trajectories.
As demonstrated in Fig. 12(d), for both validation sets, U-
AnDi achieves the best performance (the highest mDice score)
when σn = 0.125. Consequently, simulated trajectories with
the standard deviation of noise σn = 0.125 are chosen to train
the U-AnDi model in this section.

C. Performance of U-AnDi on two tasks regarding
experimental trajectories

For the task involving labeled data, we investigate the
performance of U-AnDi on validation sets with different pa-
rameters, as quantified by the mDice scores. The results are
summarized in Fig. 12(e), where each validation set contains
1000 trajectories. It is observed that all mDice scores are
above 0.8 for trajectory lengths ranging from 100 to 300,
indicating an exceptional capability of U-AnDi in segmenting
experimental trajectories. We also observe that segmentation
performance decreases as trajectory length increases. This
trend may be due to the fact that trajectories with larger
L are composed of longer segments, which introduce more
noise and thus can mislead the model’s classification accuracy.
Moreover, to illustrate the segmentation results intuitively, we
present two representative samples from the validation sets,
along with their corresponding predicted labels, in Figs. 12(f)
and 12(g). Comparisons between the predictions and ground
truths of these two samples are presented in the left and
right panels of Fig. 12(h), respectively, with a high degree of
consistency being observed as expected.

Next, in the task with unlabeled data, we utilize the trained
U-AnDi model to segment natural trajectories in the exper-
imental dataset with lengths exceeding 100. In the absence
of ground truth labels, we leverage WADNet to obtain prob-
abilities of diffusion models for the segments identified by
U-AnDi. To provide a concrete illustration of the model’s
effectiveness, three representative trajectories and their cor-
responding results are displayed in Fig. 13. As distinguished
by the distinct colors, trajectories in Figs. 13(a)–13(c) are
segmented by U-AnDi into 2, 3, and 4 segments, respectively.
The corresponding probabilities of diffusion models for these
segments are presented in Figs. 13(d)–13(f). Observations
suggest that, for the majority of segments, the diffusion mod-
els with the highest confidence levels (probabilities) remain
CTRW and FBM. Nevertheless, for the second segment of
the trajectory in Fig. 13(c), SBM is identified by WADNet
as the most probable diffusion model. The result derived from

FIG. 13. [(a)–(c)] Representative natural trajectories from the ex-
perimental dataset with lengths surpassing 100. Segments identified
by U-AnDi are distinguished by distinct colors. [(d)–(f)] Proba-
bilities of diffusion models provided by WADNet for segments in
(a)–(c), respectively.

our analysis on the task involving unlabeled data affirms the
conclusion of N. Granik et al. that the diffusion of transmem-
brane proteins on cell membranes primarily exhibits CTRW
and FBM characteristics [57]. However, it also hints that this
conclusion may not be a comprehensive description of the en-
tire diffusion process, which could potentially entail a higher
degree of complexity.

VII. CONCLUSIONS

In summary, we have introduced U-AnDi, a deep learning
model for the semantic segmentation of anomalous diffu-
sion trajectories, which integrates the strengths of the dilated
causal convolution (DCC), gated activation unit (GAU), and
U-Net architecture. A variety of segmentation tasks have been
addressed, demonstrating a superior performance of U-AnDi
against other methods. Comparative evaluations underscore
the interpretability of U-AnDi’s core components and, to
a certain extent, mitigate the “black box” nature of deep
learning models, aligning them with the complex physics
of anomalous diffusion. Further, U-AnDi also exhibits an
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excellent capability in dealing with the real-world anomalous
diffusion data, which is examined using the experimental
dataset regarding the diffusion of transmembrane proteins on
cell membrane surfaces. The supporting codes in this paper
are accessible at our GitHub repository [80].

Despite the promising performance of our model, there
still exist opportunities for further refinements. The first is
optimizing the detection of changepoints among different
diffusion states, where reducing FP and FN can be a crit-
ical task for future training and finetuning. Secondly, the
implementation of U-AnDi is trained to recognize only five
diffusion models in this study. Extending the model’s ability
to identify a larger variety of diffusion models would enhance
the utility of U-AnDi in future research. Such an expansion
would enable researchers to apply U-AnDi more effectively
in the segmentation and property prediction of experimentally
observed heterogeneous diffusion dynamics.

Additionally, considering that U-AnDi does not require
specific prior knowledge about anomalous diffusion, this
model has the potential to be trained and perform segmenta-
tion tasks on other time-series datasets instead of anomalous
diffusion. In other words, our method not only provides a
powerful and versatile tool for better understanding the dy-
namics of anomalous diffusion, but it also holds promise to
be generalized as a universal scheme for the segmentation of
time-series data.
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APPENDIX A: IMPLEMENTATION DETAILS
OF THE U-AnDi MODEL

The U-AnDi model is constructed by integrating the WAD-
Net encoder into the U-Net architecture. The detailed structure
of the WADNet encoder is depicted in Fig. 2(b). The dilation
depth d within the encoder is 5, and the filter number f
is consistent across all convolutional layers within a single
encoder. The input tensor x initially passes through a standard
causal convolution with a kernel size (ks) of 3. After that, the
output x1 is processed by the subsequent layers, which consist
of the gated activation unit (GAU) and 1D convolutional layer
with ks = 1, as highlighted by the rectangular dashed box in
Fig. 2(b). Let xk represent the input of the kth layer where
k ranges from 1 to d . The output of the kth layer hk can be
written as

hk = W 1 ∗ [tanh(Wf ,k ∗ xk ) ⊗ σ (Wg,k ∗ xk )]. (A1)

Here, * denotes the convolution operation, tanh(·) and σ (·)
refer to the hyperbolic tangent function and sigmoid function,
respectively. W 1 represents the 1D convolution with ks = 1.
Wf ,k and Wg,k are independent dilated causal 1D convolutions
with ks = 3 and dilation = 2k−1. hk is directly used as the
input of next (k + 1)th layer, meaning xk+1 = hk . The output
z of an encoder can be finally obtained by z = x1 + ∑d

k=1 hk .

For convenience, we denote the operation of WADNet en-
coder as W (·), i.e., z = W (x), in the following discussion. In
particular, the encoder in the down-sampling block of U-Net
is denoted as Wd, while the one in the up-sampling block is
represented as Wu.

By incorporating this encoder into the U-Net structure, we
construct the U-AnDi model, with its architecture displayed
in Fig. 2(c). The down-sampling block consists of a WADNet
encoder, a batch normalization layer, and a max-pooling layer.
We employ four consecutive down-sampling blocks to per-
form feature extraction on the input tensor. In the mth block,
the input vm is processed as governed by

um = BN
[
Wd

m(vm)
]
, (A2)

vm+1 = MaxPool(um), (A3)

where m = 1, 2, 3, 4. BN and MaxPool represent the batch
normalization [83] and max-pooling operators, respectively.
The filter number fm in encoder Wd

m is 64 × 2m−1 for subtask
1 and 128 × 2m−1 for subtask 2. The pooling size of max-
pooling layer is set to 2.

Next, the output from the fourth down-sampling block v5

is processed through five consecutive up-sampling blocks to
generate full-resolution feature maps, which are then used
for pointwise predictions. The up-sampling block is com-
prised of a WADNet encoder, a batch normalization layer,
an up-sampling layer using the nearest neighbor algorithm,
and a 1D convolutional layer with ks = 1. In particular, skip
connections are applied to get the input pn of the nth up-
sampling block when n � 2, as displayed by the dashed lines
in Fig. 2(c). These connections serve to reduce the loss of
fine-grained details during the up-sampling process and can
be mathematically described as

p̃n = W 1
n−1 ∗ UP

{
BN

[
Wu

n−1(pn−1)
]}

, (A4)

pn = Concat(p̃n, u6−n), (A5)

where n = 2, 3, 4, 5 and p1 = v5. UP denotes the up-sampling
operator, with a scale factor set as 2. Concat is the concate-
nation operator, which is applied in the channel dimension.
The filter number fn in encoder Wu

n is 64 × 25−n for subtask
1 and 128 × 25−n for subtask 2. The filter number of the 1D
convolutional layer W 1

n is half that of in encoder Wu
n . Note

that when performing the skip connection in Eq. (A5), the
shapes of p̃n and u6−n might not match. In such cases, we
apply padding to p̃n to make it compatible with u6−n for
concatenation. In the last up-sampling block, the up-sampling
layer is removed, and the filter number of the convolutional
layer is adjusted (1 for subtask 1 and 5 for subtask 2). This
yields a final output p f of the U-AnDi model, written as

p f = W 1
5 ∗ BN

[
Wu

5 (p5)
]
. (A6)

To illustrate the details of the U-AnDi architecture more
clearly, we take a trajectory with L = 500 as the input and
present the shapes of intermediate tensors for subtask 2 in
Table III. The shape follows the format [length, channel].

The postprocessing techniques used to obtain the final pre-
dictions for both subtasks are summarized below. In subtask
1, which is a pointwise regression task, the output p f from
a trained U-AnDi model serves as the predicted diffusion
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TABLE III. The shapes of intermediate tensors for subtask 2
when length of input trajectory is 500.

Tensor Shape Tensor Shape

v1 [500, 2] p̃2 [62, 1024]
v2 [250, 128] p2 [62, 2048]
v3 [125, 256] p̃3 [124, 512]
v4 [62, 512] p3 [125, 1024]
v5(p1) [31, 1024] p̃4 [250, 256]
u1 [500, 128] p4 [250, 512]
u2 [250, 256] p̃5 [500, 128]
u3 [125, 512] p5 [500, 256]
u4 [62, 1024] p f [500, 5]

exponents. To ensure a reasonable prediction with exponents
ranging from 0.05 to 2, values outside the interval are clipped
to the interval edges in p f . On the other hand, p f is trans-
formed using the following equations in subtask 2 to address
this pointwise classification task,

XProb
i = Softmax(p f ,i ), (A7)

XPred
i = arg max

(
XProb

i

)
. (A8)

Here, i denotes the ith trajectory. Softmax represents the soft-
max activation function. XProb

i and XPred
i are the predicted

probability and label, respectively.

APPENDIX B: DATA PREPROCESSING AND TRAINING
SCHEME OF THE U-AnDi MODEL

To train our deep learning model, 1 000 000 trajectories are
generated as the dataset for a fixed length parameter L. This
dataset is randomly split into two parts: 80% for the training
set and 20% for the validation set. The raw trajectory data
is independently normalized along the x and y dimensions,
achieving a mean of 0 and a standard deviation of 1 for each
dimension. Then, the normalized data from both dimensions,
[x(1), x(2), x(3), . . . , x(L)] and [y(1), y(2), y(3), . . . , y(L)],
are concatenated to form a sequence:{

[x(1), x(2), x(3), . . . , x(L)]

[y(1), y(2), y(3), . . . , y(L)]

}
, (B1)

which is utilized as the input of the U-AnDi model.
The selected loss functions are mean squared error (MSE)

for subtask 1 and cross entropy (CE) for subtask 2. The model
is trained using the backpropagation algorithm with a batch
size of 512 on a single NVIDIA A100 GPU. The learning
rate is 0.0002, and the optimizer is Adam. In particular, an
L2 penalty is applied for subtask 2 with a weight decay of
2×10−5. The training process involves 100 epochs for subtask
1 and 200 epochs for subtask 2. The model performance on the
validation set is evaluated every 1000 steps.

We use the trajectory data with L = 500 as the example
to illustrate the evolution of loss function during training, as
shown in Fig. 14(a) for subtask 1 and Fig. 14(b) for subtask
2. A rapid convergence of the train loss can be observed for
both tasks, with the valid loss exhibiting a similar trend. This
indicates that our model is fully capable of accomplishing

FIG. 14. [(a), (b)] Evolution of the loss function during training
for subtask 1 (a) and subtask 2 (b). The thick line represents a
smoothed version of the original train loss to provide better visual
guidance. [(c), (d)] Epoch dependence of the valid metric for subtask
1 (c) and 2 (d). The dashed line denotes the value of the best metric,
and the yellow dot highlights the location of the best step.

both tasks without encountering over-fitting issues. Further-
more, the optimal weight of the U-AnDi model is determined
based on the best metric achieved on the validation set. The
epoch dependencies of valid metrics for subtask 1 and 2 are
presented in Figs. 14(c) and 14(d), respectively. As indicated
by the yellow dot, the selected weight corresponds to the step
where the best metric is reached.

APPENDIX C: DETAILS OF COMPARATIVE MODELS

In this Appendix, we provide a comprehensive description
of the models utilized for comparative analysis in our study.
These models are specifically chosen and designed to enable
a robust comparative evaluation against our proposed U-AnDi
model regarding the semantic segmentation of anomalous dif-
fusion trajectories.

(1) Long short-term memory (LSTM) [66]: The LSTM
model we use in this paper is structured as a three-layered
stack, where the dimensionality of hidden state is set as 64.

(2) Gated recurrent unit (GRU) [67]: In this paper, the
GRU model is also architecturally configured as a three-
layered stack, wherein each layer possesses a hidden state
with a dimensionality of 64.

(3) Transformer (TFM) [68]: Analogous to the LSTM and
GRU, the TFM model is structured with three layers of Trans-
former encoders, where each encoder employs an embedding
dimensionality of 128.

(4) WADNet encoder (WE): The WE model is derived
from the encoder part of our previously proposed WADNet
structure [34]. The model’s hyperparameters align with the
WADNet encoder in the first down-sampling block of U-
AnDi.
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(5) U-CNN: The U-CNN model represents a modified
architecture developed from U-AnDi, wherein WADNet en-
coders are substituted with simpler dilated causal 1D CNN
layers. Specifically, the input and output channels, kernel size,
and dilation rate of a CNN layer are maintained consistent
with the corresponding WADNet encoder.

In addition, we provide a concise overview of the divide-
and-conquer moment scaling spectrum (DC-MSS) here as
described in Ref. [38]. DC-MSS is a technique designed for
analyzing single-particle tracking data. It works by dividing
trajectories into shorter segments and computing their mo-
ment scaling spectrum. Through detecting shifts in the scaling
exponents of these segments, DC-MSS pinpoints changes
in diffusion behavior. Notably, it excels at distinguishing
transitions among different modes of motion, including Brow-
nian diffusion, confined diffusion, directed motion, and the
immobile state. In this paper, we employ the DC-MSS
technique with the default hyper-parameters as outlined in
Ref. [38].

APPENDIX D: POSTPROCESSING TECHNIQUE
IN SUBTASK 1

Given a continuous pointwise prediction of diffusion expo-
nents, denoted as

α1, α2, α3, . . . , αL, (D1)

for a trajectory of length L, we first calculate the differences
between adjacent elements and get the sequence

β1, β2, β3, . . . , βL−1, (D2)

where βi = αi+1 − αi. Next, we set a threshold value ε and
identify all indices i satisfying βi > ε. These indices form a
new sequence

i1, i2, i3, . . . , ik . (D3)

If two consecutive indices im and im+1 in this sequence meet
im+1 − im � 10, we denote im + 1 as the starting point of the
current segment, and im+1 as the endpoint of this segment.
Then, the changepoint between two successive predicted seg-
ments [ia + 1, ia+1] and [ib + 1, ib+1] can be identified in the
interval [ia+1 + 1, ib]. We select the point within this interval
that exhibits the maximum absolute value of the derivative
as the changepoint. Applying this rule, we can obtain the
sequence of changepoints, given by

c1, c2, c3, . . . , cn. (D4)

Here, c2, c3, . . . , cn−1 are the predicted changepoints, and c1

and cn are set as 1 and L, respectively. Based on the detection
result of changepoints, the predicted diffusion exponent α̃i of
the ith segment can be given as

α̃i = 1

ci+1 − ci

ci+1∑
j=ci

α j, (D5)

where i = 1, 2, . . . , n − 1.

FIG. 15. (a) F1-score for changepoint detection as a function
of ε. The horizontal dashed line signifies 98% of the maximum
F1-score, and the vertical dashed lines indicate the candidate interval
for ε, within which the F1-score retains at least 98% of its peak value.
(b) MAE as a function of ε. The optimal ε is selected to minimize
the MAE within the candidate interval (vertical dashed lines). The
yellow dot highlights the chosen optimal ε value of 0.028 for this
paper.

In particular, the method for determining the threshold
value ε is summarized here. A larger ε tends to yield higher
precision in detecting changepoints, albeit with a lower recall,
while a smaller ε may compromise the precision but enhance
recall. Therefore, as ε increases, the F1-score for changepoint
detection initially rises and subsequently diminishes, as de-
picted in Fig. 15(a). Concurrently, alterations in ε also induce
variation in the model’s MAE, as illustrated in Fig. 15(b).
Under these circumstances, the selection of ε emerges as a
result of balancing a trade-off between MAE and F1-score on
the validation set. In more detail, we select the optimal ε from
a candidate interval where the F1-score is at least 98% of its
maximum value, as indicated by the vertical dashed lines in
Fig. 15(a). Within this interval, we seek the ε that minimizes
the MAE value. In this work, 0.028 is identified as the optimal
ε, as highlighted by the yellow dot in Fig. 15(b).

APPENDIX E: ADDRESSING CONCURRENT EXPONENT
AND MODEL VARIATIONS USING

MULTITASK LEARNING

The versatility of U-AnDi has been previously highlighted
for its effectiveness at segmenting trajectories based on vari-
ations in either the diffusion exponent or the dynamic model.
However, real-world scenarios often present more intricate
challenges where both exponent and model might concur-
rently vary within the same trajectory. To address this issue,
we have further enhanced U-AnDi’s capabilities through the
integration of a multitask learning strategy in this section.

The method for simulating trajectories with concurrent
variations in both exponent and model is an extension of the
approach used in subtask 2. We combine segments from dif-
ferent diffusion models to generate a composite trajectory, as
illustrated in Fig. 16(a). A notable distinction in this enhanced
simulation is the allowance for variations of the diffusion
exponent within a segment characterized by a single dynamic
model, as depicted in Fig. 16(b). To enrich the diversity of
simulated trajectories, we expand the number of segments, M,
from the initial range of 2 to 5 to an extended range of 3 to 8.
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FIG. 16. (a) Illustration of a composite trajectory of length 500
with different diffusion models. (b) Time evolution of trajectories in
(a) for both x and y dimensions, showing variations of the diffusion
exponent within a single model segment. [(c)–(d)] Segmentation
results for the trajectory in (a) based on the diffusion exponent (c) and
the diffusion model (d). (e) Distribution of TP, FP, and FN as a
percentage of TNC for both segmentation tasks. (f) Comparative
analysis regarding precision and recall of changepoint detection re-
sults with those from subtasks 1 and 2.

Subsequently, we employ a multitask learning approach
to enable U-AnDi to effectively segment these trajectories.
In detail, we utilize the intermediate output of U-AnDi, just
prior to the final 1D CNN layer, which is denoted as po

and expressed as po = BN[Wu
5 (p5)]. This intermediate out-

put is directed into two separate 1D CNN head layers, W 1
f1

and W 1
f2

. The layer W 1
f1

, with an output p f1 = W 1
f1

∗ po, is
dedicated to a pointwise regression task, aiming to segment
based on the diffusion exponent. In contrast, the other layer
W 1

f2
focuses on a pointwise classification task, targeting the

segmentation of the diffusion model and leading to an output
p f2 = W 1

f2
∗ po. After that, we compute the loss functions L1

and L2 for p f1 and p f2 using MSE and CE respectively. The
final loss function L for this task is given as L = L1 + L2.
The data size and training method are consistent with those in
subtask 2.

In line with the presentation style of subtask 1 and 2,
we demonstrate U-AnDi’s segmentation performance on tra-
jectories of length 500 here. To visualize this intuitively,
segmentation results for the diffusion exponent and dy-
namic model of the trajectory in Fig. 16(a) are illustrated in
Figs. 16(c) and 16(d), respectively. As expected, both predic-
tions display a high degree of alignment with the ground truth.
The results on the validation set yield an MAE of 0.1376 and
an mDice of 0.9474, indicating that U-AnDi can effectively
segment trajectories where the exponent and model concur-
rently vary.

On the other hand, when it comes to the detection of
changepoints, Fig. 16(e) reveals that TP consistently ranks
highest for both segmentation tasks, whether based on the
exponent or the model. F1-scores achieved for these two de-
tections are 0.8501 and 0.8269, respectively, underscoring a
robust capability of U-AnDi in identifying changepoints. Fur-
thermore, as depicted in Fig. 16(f), we compare the detection
results with those from subtasks 1 and 2. For both exponent
and model changepoint detections, there is a decline in recall,
with the latter also experiencing a noticeable decrease in pre-
cision. The common reduction in recall can be attributed to the
increased complexity of the task. The diminished precision
in detecting model changepoints might stem from variations
of diffusion exponent within a single model segment. These
variations potentially result in occasional misinterpretations
and consequently lead the model to detect more transition
points than actual.

APPENDIX F: SIMULATION OF MULTISTATE
TRAJECTORIES IN BIOLOGICAL

EXPERIMENT SCENARIOS

In this section, we introduce the simulation techniques in
detail for generating trajectories that represent different states
commonly observed in biological experiments. These tech-
niques are primarily adapted from the procedures described in
Ref. [38]. While the simulation parameters for each individ-
ual trajectory remain constant, they differ across the various
trajectories. The chosen parameters align closely with those
in Ref. [38] to ensure an equitable evaluation of the DC-MSS
method’s segmentation performance.

(1) Brownian diffusion (BD): Simulating the free Brow-
nian diffusion requires a series of x and y displacements.
Each displacement is drawn from a Gaussian distribution
N (0,

√
2Dδt ), where D is the diffusion coefficient and δt is

the time interval. We set δt = 1 and select D uniformly from
the range 1.0 to 3.0.

(2) Confined diffusion (CD): The generation of confined
diffusion trajectories is akin to that of free Brownian diffusion
trajectories. However, a reflection occurs once the subsequent
coordinate of the random walker exceeds the boundary of the
confined region. This confined region is defined as a circle
with a radius R. Here, the radius R ranges from 3.0 to 5.0,
while the diffusion coefficient D varies between 1.0 and 3.0.

(3) Directed motion (DM): Each displacement in a tra-
jectory of the directed motion consists of two components:
a Brownian diffusive component with a diffusion coefficient
D ∈ [1.0, 3.0] and a directed component. The directed compo-
nent is defined by v cos θ · δt for x displacement and v sin θ ·
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FIG. 17. Comparisons of the velocity autocorrelation functions
C(t ) of simulated trajectories (dots) with their theoretical values
(lines) from Eqs. (8)–(11) under various parameters for the four types
of correlations: (a) exponential decay (exp); (b) multi-exponential
decay (multi-exp) where φ = 0.5; (c) exponentially damped cosine
wave (exp-cos); (d) Mittag-Leffler decay (M-L) where τ = 10. Here,
A in the y axis label refers to the amplitude used in Eqs. (8)–(11).

δt for y displacement. The drift velocity v varies between 2.0
and 3.0, while the drift angle θ spans from 0 to 2π .

(4) Immobile state (IS): The simulation of immobile
state is achieved by generating x and y coordinates from a
Gaussian distribution N (0, σp). Here, σp represents the posi-
tional localization error, with values ranging from 0.8 to 1.6.

Leveraging these simulation techniques, we employ the
same approach as in subtask 2 to combine trajectory seg-
ments of four diffusion states, ultimately producing the
multistate trajectories in biological experiment scenarios. The
codes for trajectory generation can be found in our GitHub
repository [80].

FIG. 18. (a) Relationship between MSD/(2D) and time t for
simulated trajectories associated with exp, multi-exp, and exp-cos
correlations. (b) Log-log plot of MSDs of simulated trajectories
governed by a M-L correlation for specific λ values of 0.6, 1.2, and
1.8 (represented by dots). The corresponding theoretical predictions,
derived from Eq. (13), are also depicted as lines.

APPENDIX G: VALIDATING THE METHOD FOR
GENERATING TRAJECTORIES WITH DEFINED

CORRELATION FUNCTIONS

Within this Appendix, we will validate the effectiveness of
our trajectory generation method based on the Davies-Harte
algorithm. For that purpose, we initially compare the veloc-
ity autocorrelation functions [VACFs, C(t )] of trajectories
generated using this method under various parameters with
their theoretical values. The results of this comparison are
summarized in Fig. 17. As observed, for the four types of
correlations, i.e., exp, multi-exp, exp-cos, and M-L, VACFs of
simulated trajectories (represented by dots) align closely with
their respective theoretical values (depicted by lines). This
consistency strongly attests to the validity of our trajectory
generation method.

On the other hand, from the perspective of MSD, we
further validate the effectiveness of this method. Using the
equation MSD = 2

∫ t
0 (t − s)C(s)ds, we derive the theoreti-

cal expressions for exp, multi-exp, and exp-cos correlations,
as detailed in Table IV. From the long-time behavior of
MSD, we can discern that the trajectories associated with
exp, multi-exp, and exp-cos correlations exhibit long-time
Fickian diffusion theoretically. This diffusion type is typically
represented by MSD ≈ 2Dt , where D denotes the long-time
diffusion coefficient. To substantiate this, we present the
relationship between MSD/(2D) and time t for simulated tra-
jectories of these three types of correlations in Fig. 18(a). The
slope of 1.0 across these plots confirms that MSDs for these
trajectories are consistent with their theoretical descriptions.
For the M-L correlation, the theoretical MSD value is deter-
mined via numerical integration. In Fig. 18(b), we present the
MSDs of simulated trajectories for specific λ values of 0.6,
1.2, and 1.8 in a log-log form. These are juxtaposed with their

TABLE IV. Theoretical expressions of MSD and long-time MSD corresponding to the exp, multi-exp, and exp-cos correlations.

Correlation type Theoretical expression of MSD Long-time MSD

exp 2Aτ [t + τ (e−t/τ − 1)] 2Aτ t

multi-exp 2A[φτ1t + φτ 2
1 (e−t/τ1 − 1) + (1 − φ)τ2t + (1 − φ)τ 2

2 (e−t/τ2 − 1)] 2A[φτ1 + (1 − φ)τ2]t
exp-cos 2Aτ

(1+τ2ω2 )2 [(1 + τ 2ω2)t − τ (1 − τ 2ω2) + τe−t/τ [(1 − τ 2ω2) cos ωt − 2τω sin ωt]] 2Aτ

1+τ2ω2 t
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theoretical predictions, underscoring a pronounced congru-
ence between them. Furthermore, as indicated by the slope,
the long-time diffusion exponent α derived from our mea-
surements relates to λ following the relationship α = 2 − λ.
This observation agrees well with the descriptions provided
in Ref. [82].

In summary, the alignment of the VACF and MSD
with their theoretical values underscores the effectiveness
of our trajectory generation method. This method offers a
solid framework for studies focusing on segmenting anoma-
lous diffusion trajectories that exhibit defined long-time
correlations.
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