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Bianisotropic exceptional points in an isolated dielectric nanoparticle
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Exceptional points are spectral singularities of open systems, where several eigenvalues and eigenvectors
coalesce. In photonics, they are associated to remarkable phenomena, such as unidirectional scattering, enhanced
sensing or chiral mode conversion. In this work, we study scattering of electromagnetic waves by a single
dielectric nanoparticle and observe the appearance of exceptional points in its eigenvalue spectrum. Their
existence is linked to breaking the mirror symmetry of the particle. Remarkably, they mark the onset from weak
to strong coupling of the resonant modes. We discuss in detail the example of the electric and magnetic dipole
modes supported by a silicon nanoparticle. We argue that any two modes of a resonant dielectric nanoparticle
can merge to create an exceptional point, provided their resonant frequencies cross as functions of a parameter
such as, e.g., aspect ratio, and their field distributions have opposite signs after a reflection in the transverse plane
of the structure. The strongly coupled modes radiate as a mixture of electric and magnetic dipoles resulting in
an intense bianisotropic response, being easily controlled by symmetry-breaking perturbations. We also study
the effect of a dielectric substrate and demonstrate that the latter provides an additional mechanism to tune the
position of exceptional points in the parameter space. Finally, we discuss applications of bianisotropic EPs,

including their use for refractive-index sensing.
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I. INTRODUCTION

Open physical systems, such as systems interacting with
an environment, are ubiquitous in nature. One of their most
remarkable features is their ability to host spectral singulari-
ties where both eigenvalues and eigenvectors coalesce, known
as exceptional points (EPs) [1,2]. At an EP, there is a col-
lapse in the dimensionality of the eigenspectrum, resulting
in a drastic increase in sensitivity to a small perturbation
€. Unlike Hermitian degeneracies (diabolical points), where
two or more eigenfrequencies coincide [3], whose eigenfre-
quencies shift linearly with a perturbation, at an nth-order
EP, the shift is proportional to €/" where n is the number
of coalescing eigenmodes [1,4]. This peculiarity renders EPs
highly attractive for many applications, including biosensing
schemes relying on resonance tracking [5].

EPs have no analog in Hermitian systems, such as those
employed in conventional quantum mechanics. However,
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other areas of wave physics are starting to explore the oppor-
tunities offered by operating at the vicinity of an EP. Besides
their unique sensitivity, EPs are associated with abrupt phase
transitions. In optics, this feature leads to a variety of coun-
terintuitive phenomena, such as unidirectional invisibility,
enhanced Sagnac effect in microcavities [6], laser mode se-
lectivity, loss-induced revival of lasing, bulk Fermi arcs [7]
and topologically protected chirality [8]. In the momentum
space, they are associated with a half-integer polarization
charge [9].

EPs are closely linked to parity-time (PT) symmetry, a
notion inherited from quantum mechanics that tells us that
systems invariant to parity inversion and time reversal can
exhibit real spectra [10]. Indeed, it has been shown that
EPs mark the transition between the PT-symmetric and PT-
broken phase [11]. Most experimental realizations of EPs in
photonics rely on this idea. Namely, by balancing gain and
dissipation in optical microcavities, an EP emerges, drasti-
cally altering the response of the system [4,12].

Nevertheless, the presence of gain and loss or PT-
symmetry is not necessary in order to reach an EP: they were
recently demonstrated in plasmonic metasurfaces by balanc-
ing the losses of two plasmon modes [5,13]. Plasmonic EPs
were utilized to develop an ultrasensitive scheme for anti-
immunoglobulin G [5]. So far, the vast majority of works are
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restricted to wavelength-scale systems based on waveguides,
metasurfaces and/or microresonators [4,5,7,8,14—16].

In recent years, resonant all-dielectric nanostructures have
progressively replaced plasmonics in a broad range of appli-
cations in nano-optics [17,18]. This trend has been largely
motivated by their negligible ohmic losses and their com-
patibility with complementary metal oxide semiconductor
technology. Whereas plasmonic structures support plasmons,
localized free electron oscillations at the surface of metallic
particles, dielectric nanoparticles exhibit geometric reso-
nances, concentrated within their volume. They are associated
with the excitation of complex distributions of polarization
currents [11]. Unlike conventional plasmonic particles [19],
dielectric nanoparticles support a broad class of multipolar
resonances of both electric and magnetic type, which can
mutually interfere leading to remarkable phenomena such as
the Kerker effect [20-24], nonradiating anapoles [25,26], spin
to orbital angular momentum conversion [27], or magnetic
light [28,29].

Intriguingly, even in the absence of heat dissipation, the
modes of all-dielectric nanostructures are non-Hermitian in
nature, as a result of radiation losses [30,31]. Leveraging
non-Hermiticity in dielectric nanostructures has recently en-
abled the realization of quasibound states in the continuum in
isolated cavities [32-34], and revealed a new superscattering
regime accessible through modal interference [35].

Here, we aim at introducing non-Hermitian singularities
as a prospective tool for dielectric resonant nanophotonics.
Specifically, we study the conditions necessary for their real-
ization and observation in a single dielectric nanoparticle with
simple geometry. Critically, unlike the only early attempt [36],
our design strategy is based solely on geometrical symmetry
breaking [37,38], without changing the refractive index of the
structure. This makes the EP realizable in a broad class of
dielectric materials, including silicon. While we illustrate our
approach with the lowest order electric and magnetic dipole
modes (ED and MD modes) of a silicon nanodisk, the theory
is general, allowing to design EPs from any two modes of a
dielectric nanodisk fulfilling two conditions:

(1) Their resonant frequencies must cross as a function of
aspect ratio,

(2) Their field distributions must have opposite mirror
symmetry in the transverse plane of the structure.

In our example, we demonstrate that the EP corresponds
to the onset of the strong coupling regime between the ED
and MD modes. The modes radiate as a mixture of electric
and magnetic dipoles, which result in a strong bianisotropic
response, easily controlled by the symmetry breaking per-
turbation [Figs. 1(a) and 1(b)]. The latter can be probed
experimentally, for instance, by measuring the asymmetry in
backscattering from illuminations from top and bottom, as we
calculate in Figs. 1(a) and 1(b).

Furthermore, we investigate the influence of a dielectric
substrate, demonstrating how the latter provides an additional
mechanism to tune the EP position in parameter space, facili-
tating the experimental implementation. Finally, we showcase
the potential of bianisotropic EPs to detect small variations in
the refractive index of the environment. The results confirm a
much stronger sensitivity to perturbations in comparison with
conventional ED and MD modes.

II. TWO-MODE MODEL OF A DIELECTRIC
NANOPARTICLE

Consider a dielectric nanoparticle illuminated by a normal-
incident plane wave. The plane wave excites several resonant
modes in the particle. They can be understood as geometrical
resonances, arising from the interference of traveling waves
due to reflections from the cavity walls. They correspond to
quasinormal modes (QNMs), solutions of Maxwell’s equa-
tions with open boundary conditions in the absence of an
exciting source [39,40].

For our purposes, we assume there are only two relevant
modes in the spectral range of interest and denote them as |m)
(as for MD), and |p) (as for ED).

Suppose that we perform a small perturbation in the shape
of such particle. Then, the modes of the perturbed particle,
lu, d), can be expressed as a linear combination of the original
ones, e.g., |u) = Cy|m) + Cp|p). This yields a generalized
eigenvalue problem [41-43] for the coefficients Cy:

wp, 0 Gy - L+Vy Vom Cp
- = Wy,d . (1)
0 Wy Cn Vin P 1+ Vi Cn

Note that, since the modes leak energy to the environment,
the eigenfrequencies @, are complex, so that @y, = wy — iYy.
wy 1s the resonant frequency of the mode, while y,, is the loss
rate. For an isolated mode, the loss rate is the half-width of the
resonance peak.

The V,p elements in Eq. (1) represent the perturbation.
They are rigorously calculated as integrals of the modal fields
over the surface of the nanoparticle [42]:

Vop = A / E(P(r) - AV(r)Ef_{)(r)dzr = (E, AV Ep).
S

2
The (+,—) signs in the superscripts indicate that the field
must be evaluated directly outside or inside the surface of the
particle, respectively. Ae is the permittivity contrast between
the particle and the environment. The shape perturbation is
contained in AV (r), which is the deformation undergone by
the particle normal to its boundary. To ensure that the higher
order modes can be safely neglected in the analysis, the latter
need to fulfill the criteria [44] |@, — @g| > |@gVupl, Where o
runs over all higher order modes, and 8 = p, m. Physically,
this implies that their spectral separation needs to be much
larger than their coupling with the modes of interest.

III. EXISTENCE OF EPs FOR A SINGLE DIELECTRIC

NANOPARTICLE

We now explore the possibility to induce an EP in this
system. First, we consider a simplified analytical form of
Eq. (1), valid for modes with small loss rates [35]:

Ho C = @ua © : 3)
C}’Il ' Cm

IS
Ho=<” ", 4)

where &) = @y /(1 + Vaq) and the coupling coefficients
Kop X Vag. Ho can now be interpreted as an effective

013053-2



BIANISOTROPIC EXCEPTIONAL POINTS IN AN ...

PHYSICAL REVIEW RESEARCH 6, 013053 (2024)

—MD mode —hybrid mode 1
J— —hybrid mode 2
(a) Ebmode 140 (b) 140
4 Top Incidence ¥
—Bottom Incidence Huygen 8 R(nm)
3 yg\ R(nm) Top Incidence
®w o9t N m ] beeeaifaaaa
i 130 % —Bottom Incidence 130
g a4
2 a
1 120 0 120
680 720 760 800 700 750 550 600 650 700 650 700
A (nm) A (nm) A (nm) A (nm)
(C) - = - Mirror - = = (d) -
1/ ED \| Plane !/ _,M \. S5 57
| LN & L
i I I 1 S 41 | Weak coupling,
' Even ' ' Odd ! S no bianisotropy
- = -=- g_ 3
y 0
T T YT 2 TR N w 2 n
I ! M > |1 ED 1 3
eval I I | S
Xy = @+ i S LN L -
[ | o || 17 0
[ N N2 & 0- .05

Strong Coupling,
bianisotropy

FIG. 1. Non-Hermitian transition from weak to strong bianisotropic response. (a) Right panel: Radar backscattering cross section (Qgrgs),

for a weakly truncated silicon nanocylinder under normally incident plane wave illumination from top (red arrow in the left inset) and bottom
(right inset). The top radius R has been optimized to induce a crossing between the electric and magnetic dipole modes (ED and MD modes),
forming a Huygen’s meta-atom, as shown in the left panel. The black dashed line indicates the chosen radius. (b) Same as (a), for a truncated
nanocone with top radius 80 nm. The bottom radius is fixed to the one in (a). Due to the breaking of the vertical mirror symmetry, the modes
are now coupled and possess a mixed bianisotropic character (hybrid modes 1 and 2). As a result, the back-scattering from the particle can be
resonantly suppressed (enhanced) for illumination from the top (bottom). The decrease in the overall volume of the nanoparticle causes the
resonances to blueshift. Parameters of the nanoparticles: height 100 nm, top radius 131 nm. (c) Top panel: symmetry of the ED and MD modes
of a dielectric nanocylinder with respect to a horizontal mirror plane. Bottom panel: Effect of an out-of-plane perturbation on the MD mode, and
equivalent decomposition into a sum of ED and MD contributions. (d) Evolution of the resonant frequencies of a prototypical non-Hermitian
Hamiltonian, calculated with Eq. (5). Here, A denotes the detuning between the uncoupled modes and « is the coupling coefficient, assumed

to be real (see details in text). An EP marks the transition from weak to strong coupling regimes.

Hamiltonian dictating the evolution of the modes. The per-
turbed eigenfrequencies are found to be

&)u,d = Epm + \/ Alzym + KpmKmp,

E,, is the average of the two unperturbed eigenfrequen-
cies, while A, is half their detuning, namely A, = (@, —
Om)/2.

Importantly, both real and imaginary parts of the per-
turbed eigenfrequencies become identical when the square
root in Eq. (5) vanishes. This situation fully corresponds to
an EP. If the leakage to the environment is small, and in
the absence of ohmic loss, K, ~ K;;p. Two conditions are
necessary to achieve the EP: (i) The resonant frequencies
of the original modes must coincide so that w, = w,, and
(ii) 2|k pm| = £(¥p — ¥m). In conclusion, unlike conventional
PT-symmetric structures, designing an EP in a passive, all-
dielectric nanoparticle should require the ability to tune at
least two parameters instead of one, in order to fulfill the two
conditions above.

A prototypical example of the eigenfrequency evolution
near a passive EP is displayed in Fig. 1(d). The latter has

&)

been calculated with Eq. (5), assuming «p,, = «,,, = «, where
k is real. This assumption is well justified for well-confined
modes, since their fields can then be made approximately
real, and this renders the coupling coefficients almost real
by virtue of Eq. (2). Suppose we have w, = w,,. From the
discriminant in Eq. (5), three regimes can be distinguished.
When 4«2 < (yp — ¥m)?, the square root becomes imaginary,
hence the loss rates avoid the crossing, but the real part of
the eigenfrequencies can cross. This is the weak coupling
regime. When 4«2 = (y, — y)*, condition (ii) is fulfilled,
and an EP appears in the dispersion. Finally, increasing the
coupling beyond this point 4«2 > Yp = Vm )%, the square root
becomes real, and the resonant frequencies avoid the crossing,
while the loss rates can cross, marking the onset of the strong
coupling regime.

The former theoretical discussion gives no hints as whether
the EP can be reached in practice in a real physical system.
In the following, taking as an example the electric and mag-
netic dipole modes, (ED and MD modes), we rigorously show
that EPs can be supported by a single dielectric nanoparticle.
As depicted in Fig. 1(d), the detuning can be controlled by
varying height or radius, while the coupling can be increased
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FIG. 2. Comparison between numerical results and the solution of Egs. (1) for different coupling regimes. No fitting has been performed.
In all cases, the height of the nanoparticle is fixed at H = 100 nm. Refractive index is kept at n, = 4. The numerical results have been obtained
with the eigenfrequency solver integrated in COMSOL Multiphysics. More details on the simulation setup can be found in Appendix A 1. (a)
Upper panel: crossing of the real parts of the two resonant modes in the weak coupling regime, before transitioning through an EP (/R = 1).
The scheme depicts a cross section of unperturbed geometry. Lower panel: avoided crossing of the imaginary parts. (b) same as (a) for
r/R = 0.95, near the EP. (c) Avoided crossing of the real parts in the strong coupling regime, after transitioning through the EP (upper panel),
and crossing of the imaginary parts (lower panel). The schemes in (b) and (c) depict cross sections of the truncated cone (over-deformed for a
better visualization). In all plots, lines of different colors indicate different QNMs obtained with Eq. (1). Only when /R = 1 we can associate

to each of them a pure electric or magnetic character.

with the conicity. Hence, we introduce a design strategy that
enables full control over the detuning and coupling strength
between multipolar modes, providing clear guidelines for the
realization of Eps at the nanoscale.

We start by investigating the lowest order multipolar modes
of a dielectric nanocylinder. A cylinder has full rotational
symmetry along its principal axis and hosts a horizontal mirror
plane perpendicular to it, which we label as o,. Note that,
in consequence, the electromagnetic modes supported by the
cylinder can be divided into even or odd with respect to
o,. Namely, if we denote by &, an operator that reflects the
electromagnetic field along o, its action over a mode of the
cylinder is 6,E, = £E,, depending on whether the mode is
even or odd. A pictorial representation of the ED mode and
the MD mode is shown in Fig. 1(c). It can be clearly seen that
the first is even with respect to o,, while the second is odd.

As shown in Fig. 2(d), the resonant frequencies of the
ED and MD modes [45,46] can be overlapped by varying
the radius. In a simplified view, this can be understood by
interpreting the ED mode as a standing wave formed between
the lateral walls of the cylinder, and the MD mode as a Fabry-
Perot mode that develops between the top and bottom walls
of the cavity [26]. An increase in the separation between the
lateral walls is then expected to strongly shift the ED reso-
nance, but affect less the MD resonance, so that both can be
brought together [see for instance the right panel in Fig. 1(a),

or Fig. 2(a)]. Thus, condition (i) can be easily fulfilled for the
two modes. Interestingly, the diabolical point formed by the
ED and the MD modes has been actively exploited for the
realization of a so-called Huygen’s meta-atom [46,47]. Such
a scatterer is characterized by resonantly enhanced forward
scattering due to far field interference between the ED and
MD modes. This effect can be confirmed by the small values
of backward scattering efficiency near resonance [Fig. 1(a)].

Unfortunately, condition (ii) cannot be realized, since the
ED and MD modes cannot couple. They have different sign
under &, so that

kma & (Ep, Eq) = (B, 6/6.Eq) = —(Ey, Eg) =0. (6)

In Eq. (6), we have used the fact that &, is unitary, and
the perturbation AV = AR can be taken out of the integral;
it is just a constant equal to the difference between the radius
of the original cylinder and the perturbed one. Importantly,
Eq. (6) explains why EPs have not been yet implemented
in all-dielectric nanophotonics: all even and odd modes of a
nanodisk excited by a normally incident plane wave follow
the same rule, and therefore cannot be brought to coalesce.

The only way of coupling the ED and MD modes is by
breaking the mirror symmetry in some fashion. For example,
as shown in Fig. 2(c), the cylinder can be transformed into a
truncated cone. This asymmetric perturbation drastically al-
ters the field distributions of the original modes. Its effect can
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FIG. 3. Calculated Riemann surfaces of the two eigenfrequencies in the vicinity of a pair of EPs. To obtain them, two parameters of the
structure need to be tuned: (i) the radius of a silicon cylinder in the vicinity of the Kerker condition (where the ED and MD modes overlap),
(ii) the conicity of the particle (ratio between top and bottom radii). (a) Real part, (b) imaginary part (loss rate). White dashed lines indicate
the region in parameter space displaying a bulk Fermi arc. Green dots correspond to the EPs, where both real and imaginary parts coalesce.

be graphically visualized by decomposing the perturbed field
into the sum of the original and the perturbation [Fig. 1(c),
lower panel]. Remarkably, the new modes are of mixed elec-
tric and magnetic nature, enabling them to mutually couple.

Having identified the key symmetry that needs to be broken
gives us freedom to control at will the parameters entering
in Eq. (5). The detuning can be set with the bottom radius
R, while coupling can be induced by modifying the top-to-
bottom ratio r/R.

In the next step, we calculate with the help of Egs. (1)
(which do not introduce any assumptions on the coefficients),
the evolution of the eigenfrequencies as a function of the
two parameters. In this case, AV (z) = zAr/H + AR, where
the origin of the z coordinate is taken at the bottom of the
nanoparticle, H is the height of the unperturbed cylinder and
Ar =r — R. Note that AV (z) allows us to investigate both
radial deformations and variations in conicity. To demonstrate
the accuracy of the analytical method, Fig. 2 compares the
results of the latter with numerical simulations in COMSOL
Multiphysics. Good agreement is observed in both real and
imaginary parts for the weak, EP and strong coupling regimes.
We clarify that the term strong coupling here strictly refers to
the strong interaction between the Mie modes of the bare res-
onator, unlike other platforms exploiting the coupling between
Mie modes and excitons, forming the so-called Mie-exciton
polaritons [48,49].

Having confirmed the validity of our model, we calcu-
late with the latter the evolution of resonant frequencies and
loss rates of the two modes as functions of the two parame-
ters, Fig. 3. Starting with a silicon nanocylinder with height
100 nm, increasing or decreasing r/R leads to the transition
from a crossing of the resonant frequencies to an avoided
crossing, a signature of strong coupling. The opposite occurs
for the loss rates. Marking the transition from one regime
to another, second order EPs can be found [green dots in
Figs. 3(a) and 3(b)]. The two eigenfrequency sheets, more
commonly known as Riemann surfaces, are seen to intersect
each other. The Riemann surface for each mode is cut at an
EP, giving rise to rich topological effects. Importantly, for
a constant AR, AV (z) can take different sign depending on
whether the top radius r is increased or decreased. The two
situations correspond to the two possible ways of fulfilling

condition (ii). Thus, EPs in a single dielectric nanoparticle
always come in pairs. They are connected in parameter space
by an open arc along which the resonant frequencies of the
two modes are degenerate but display different loss rates. This
phenomenon is analogous to a bulk Fermi arc [9], connecting
EPs of periodic systems in momentum space. Since the under-
lying physics is identical, we extend the same terminology to
the case under study.

Figure 4 shows a projection of the Riemann surfaces as a
function of r/R, near (blue lines), and far (orange lines) from
the EP pair. After the EPs, there is an abrupt transition and
the resonant frequencies split with a dependence fy o< +/r/R.
Drastic changes in the loss rates are also observed. We remark
an apparent asymmetry between the conditions to reach EPs
for /R > 1 and r/R < 1. This is simply because the bulk
Fermi arc is not at constant R, but blueshifts slightly for
decreasing r/R due to the change in the overall volume of the
nanoparticle.

In this section, we have confirmed the possibility to re-
alize EPs in a single dielectric nanoparticle. For the sake
of simplicity, ohmic losses have been neglected. However,
introducing a small extinction coefficient does not prevent the
EP, only shifts it in the parameter space, and increases the
loss rates of the involved QNMs. We have verified this in
Fig. 9 of the Appendix.

IV. BIANISOTROPIC RESPONSE IN THE REGIME
OF STRONG COUPLING

Most relevant physical phenomena associated with EPs do
not occur exactly at the singularity but in the vicinity of it.
For instance, a loop around an EP in parameter space leads
to mode interchange. Two loops lead to a recovery of the
original mode and an accumulated 477 non-Hermitian geomet-
rical phase [8]. Other interesting phenomena are associated to
the transition from the weak to the strong coupling regime
[50,51]. In this section, we demonstrate how, after transition-
ing through the EP, the new hybrid modes naturally lead to a
strong bianisotropic response in scattering [52,53].

To do so, we calculate the multipolar decomposition in
the weak and strong coupling regimes (Fig. 5). Since the
perturbation of the cylindrical shape breaks the mirror
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frequencies are identical, until a critical value of conicity (the EP), where a drastic change in the behavior can be observed.
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FIG. 5. Bianisotropy and strong coupling. (a) Multipolar decomposition of the scattering cross section for a truncated cone with
R =130nm, r/R = 0.6, H = 100 nm, under incident plane wave illumination from the bottom, as depicted in the scheme. (b) Multipolar
decomposition of the scattering cross section for the same truncated cone as in (a), with illumination from top. (c) Multipolar decomposition
of an unperturbed nanocylinder with R = 130 nm. The vertical axis is shown in log-scale for better visualization. The multipole contributions
have been obtained semi-analytically from full wave simulations in COMSOL Multiphysics, following the procedure in Ref. [56].
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FIG. 6. Multipole decomposition before and after the transition through an EP. (a) and (b) Magnetic dipole scattering cross section before
(a) and after (b) the transition through the EP, for different radii (ratio /R = 0.6). In the second case, a clear split in the MD resonance can be
observed in the strong coupling regime, in contrast to the weak coupling regime.

symmetry, in the strong coupling regime, we observe the
emergence of enhanced omega-type bianisotropy [54]. This
is a result of the enhanced mixing of the multipolar content of
each mode: i.e., there is no longer a pure ED or MD mode,
and exciting any of the two modes results in scattering of both
electric and magnetic dipolelike fields.

As shown in Figs. 5(a) and 5(b), illumination from the
top of the nanoparticle or from bottom results in a drastically
different multipolar response, albeit preserving the same total
scattering cross section [53-55]. For comparison, the multi-
polar decomposition of the unperturbed cylinder is shown in
Fig. 5(c). As we show in Appendix A 3, the total scattering
cross section must be preserved for any reciprocal scatterer
with negligible ohmic losses. However, this restriction does
not apply to the individual multipole contributions to the cross
section.

Interestingly, with illumination from the top, two MD
peaks can be clearly seen. However, the ED cross section
resembles qualitatively the unperturbed nanocylinder [inset of
Fig. 5(a)]. Conversely, when the nanocone is illuminated from
below, the multipolar spectrum displays the reversed behavior,
namely, the ED cross section splits up, while only a single MD
peak can be observed.

In Fig. 6(a), we clarify the origin of the split in the MD
cross section. The latter is associated with the repulsion of
the modes in the strong coupling regime. To verify this, the
MD cross section is plotted as a function of the bottom radius
R for r/R=1 and r/R = 0.6 (Fig. 6). In the strong cou-
pling regime, the two peaks follow the shift in the resonant
frequencies of the hybrid modes. Conversely, in the weak
coupling regime (nanocylinder), only one peak is appreciable,
corresponding to the MD mode.

V. SUBSTRATE-MEDIATED CONTROL
OF EXCEPTIONAL POINTS

Now, we investigate the conditions necessary to design a
bianisotropic EP in a practical experimental setup. As shown

in Fig. 3(a), the latter occurs at very small perturbations of
the cylindrical shape (less than 5% change in the radial ra-
tio). This can pose impediments for fabrication. A way to
overcome this issue is acting further on the parameters en-
tering condition (ii). Until now, only « o Ar/R was used.
Since the difference between the loss rates of the electric and
magnetic dipole modes in the cylinder is originally small, a
small k (and therefore a small perturbation of the top radius)
is required to compensate it and reach the EP. We propose to
introduce a substrate as an additional tuning mechanism. As
we explain in the next paragraph, the latter can modify the
difference between the loss rates Ay [Fig. 7(a)]. By doing
so, the deformation Ar to achieve the EP can be increased to
experimentally accessible values.

The underlying physical mechanism can be understood
regarding the ED and MD modes as standing waves of dif-
ferent geometrical origin [26]. As mentioned earlier, the ED
mode appears from oscillations between the lateral walls (Mie
mode), while the MD mode can be associated with oscilla-
tions between the top and bottom walls of the nanocylinder
(Fabry-Perot mode). It is thus expected that a modification
in the index contrast of the bottom wall of the cavity af-
fects more strongly the MD mode. The eigenfrequency of
a Fabry-Perot mode is given, approximately, by Ref. [26]
we = ¢/npH [l + i In(rioprvore)/2], where £ is the number of
maxima of the standing wave, n, is the particle refractive
index, and riop, roon are the reflection coefficients from the
top and bottom walls, respectively. The latter expression is
derived assuming no coupling with other modes takes place
due to the substrate. For high-index nanoparticles deposited
on top of dielectric substrates, the assumption is well ful-
filled, since the modal fields are strongly confined within
the high-index region. From the latter expression, we see
that a change in the substrate index affects only the imag-
inary part of the eigenfrequency, i.e., the loss rate of a
Fabry Perot mode evolves approximately as y o< In(riopZbort)-
Conversely, the loss rates of Mie modes are not strongly
affected.
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FIG. 7. Substrate engineering of exceptional points. By controlling the substrate index, the difference between the loss rates of the two
involved resonant modes can be tuned, thus modifying the critical ratio /R where the EP will take place. (a) Loss rates of the ED and MD
modes of the cylinder as a function of the substrate index. The schematic insets depict how the ratio /R needed to reach the EP is increased
with the substrate contrast. The field inset shows the near field of the EP when the particle is deposited on glass. (b) and (c) Field distribution
(electric field norm) of the ED mode of the cylinder in a homogeneous environment (air) (b) and on top of a glass substrate (c). (d) and (e)

Same as (c) and (d), but for the MD mode.

The qualitative arguments given above can be exploited as
design rules to control the difference between the loss rates
of both modes entering condition (ii). To verify our theory,
we calculate the loss rates of the ED and MD modes in the
nanocylinder for different substrate index contrasts [Fig. 7(a)].
We confirm that the ED mode maintains an approximately
constant loss rate, while the MD mode almost doubles it when
varying the substrate from pure water to glass (ng = 1.52).
Figures 7(b)-7(e) display the field distributions of the ED and
MD modes of the nanocylinder in air environment [Figs. 7(b)
and 7(d) and when the resonator is placed on top of a glass
substrate [Figs. 7(c) and 7(e)]. In agreement with our physical
picture, the ED mode shows no significant changes besides
an overall redistribution of the near field. In contrast, the MD
mode leaks strongly to the substrate, resulting in an increase
of its loss rate.

As a result of the above, the conicity required to reach the
EP increases, as depicted in Fig. 8(a). On top of glass, the EP
occurs near #/R = 0.7, an almost 30% change with respect to
the nanoparticle in an homogeneous environment.

Summarizing, we have shown that a dielectric substrate can
be used to control the loss rates of Fabry-Perot modes, en-
abling fine tuning of the EP condition. Specifically, with an in-
creasing substrate index, the EP condition is fulfilled at larger
conicities. This mechanism can be exploited to design EPs in
nanoparticles with experimentally accessible geometries.

VI. DESIGN OF LOCAL REFRACTIVE-INDEX SENSORS

EPs in microcavities have attracted a great deal of inter-
est for the development of ultrasensitive sensor technology
[5,14]. Specifically, they can improve significantly the perfor-
mance of sensing schemes based on the detection of resonance
splittings. The basic idea is the following; in a system where
two or more modes are degenerate (the sensor), a perturba-
tion € (the target signal) lifts the degeneracy resulting in a

splitting of the resonant frequencies, which can be detected
and quantified. For conventional degeneracies (that is, systems
where two resonances are simply brought together), the split is
linear with the perturbation. However, owing to the topology
of the Riemann sheets surrounding the EP, the separation
between the resonant frequencies turns out to be in the order
of /€. For a sufficiently small perturbation, the sensitivity
of an EP is larger than that of a conventional degeneracy
[4,5].

In this section, we study the benefits that EPs supported
by single nanoparticles could offer for all-optical nanosen-
sors with miniature footprints. Specifically, we envision the
possibility to detect local changes in the refractive index of a
surrounding environment.

To assess the potential of bianisotropic EPs in biosensing,
we first optimize our truncated nanocone placed on top of a
glass substrate and embedded in water [refer to scheme in
Fig. 8(a)].

Emulating a conventional experimental protocol [57], we
introduce small variations in the refractive index of the sur-
rounding environment (n¢,y), ranging from pure water to a
concentrated solution of ethylene glycol 9:1 (neny = 1.34), as
shown in Fig. 8(a). The change in n,, introduces a small
perturbation to the system’s modes, making them depart from
the EP. We envision a setup capable of tracking the evolution
of the split between the resonant frequencies, A f. Experimen-
tally, the eigenfrequencies can be extracted with a pole fitting
of, e.g. forward scattering [5], or by means of a principal
component analysis [58].

As a comparison, in Fig. 8(a) we also plot the evolution of
A f in a conventional diabolical point formed by overlapping
the resonant frequencies of the MD and ED modes of the
original nanocylinder. The latter shows the expected linear
dependence with ne,y, originated by a distortion of the evanes-
cent fields of the subwavelength modes. In stark contrast, near
the EP, A f demonstrates a square-root behavior. To further
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FIG. 8. Refractive index sensitivity near a bianisotropic exceptional point. The nanocone dimensions are R = 191 nm, /R = 0.575, H =
100 nm. (a) Split between the resonance frequencies of the two modes when collapsed in an EP or simply brought together by tuning the radius
of the nanocylinder, forming a diabolical point (DP). The local refractive index is varied from pure water to a solution of ethylene glycol in
water (n.,y = 1.34), emulating realistic experimental conditions [57]. (b) Log-Log plot of (a) and linear fit (dashed lines). The slopes (m) show
a linear dependence of the modes at the DP with Ane,,, while a square-root dependence (m = 0.5), is confirmed for the EP.

confirm the power laws, Fig. 8(b) displays a log-log plot of
Af as a function of the change in the environment refractive
index, Aneny. The dashed lines correspond to a linear fit, with
slope m. The diabolical point displays a slope of 1, whereas
the EP is well fitted with m = 0.5.

Importantly, due to the square-root asymptotic for small
Aneyy, frequency splits near the EP are much larger than
those of a conventional dielectric disk optimized at a diabol-
ical point. In consequence, we anticipate optical biosensing
schemes based on bianisotropic EPs to be more sensitive to
local environment changes than previously reported devices
implemented with conventional ED and MD resonances.

VII. CONCLUSION AND OUTLOOK

We have predicted the existence of non-Hermitian singu-
larities, EPs, in a single dielectric nanoparticle, subject solely
to geometrical perturbations. To do so, we have proposed and
validated a modal theory which evidences the critical role
of vertical symmetry breaking to achieve the EP. The latter
is general and tells us that any two resonant modes of a
dielectric disk whose eigenfrequencies cross with the aspect
ratio and have opposite sign with respect to a mirror reflection
perpendicular to the z axis can be brought to an EP by a
continuous perturbation that breaks the mirror plane of the
disk. Our theory can be applied to other structures beyond the
case of a disk. For instance, we have also designed an EP in
a rectangular dielectric nanowire, by introducing a hole that
breaks the mirror symmetry (Appendix A 4).

Critically, our approach can be implemented for conven-
tional dielectric materials in the near-IR part of the visible
spectra, such as silicon. As an example, we demonstrate the
formation of a bianisotropic EP between the ED and MD
modes by transforming a nanodisk into a truncated nanocone.
We confirm a transition from weak to strong coupling medi-
ated by the EP, and omega-type bianisotropy arising in the
strong coupling regime. In the latter case, the avoided cross-
ing can be observed in the multipolar decomposition of the

scattering cross section. For the first time to our knowledge,
we study the role of a dielectric substrate and build a physical
picture on its influence on the EP. Interestingly, we suggest
theoretically and verify numerically that the latter can be
used to bring the EP to experimentally accessible geometrical
parameters.

Finally, we propose to utilize bianisotropic EPs to detect
small local changes in the refractive index of an aqueous en-
vironment. The idea is based on tracking the split between the
resonant frequencies of the two modes. The numerical results
demonstrate that much larger sensitivities can be obtained
for the EP in comparison with the ED and MD modes of a
nanodisk. This is due to the anomalous square-root dispersion
characteristic of EPs, in contrast to the conventional linear
one. The results suggest a route towards novel biosensing
schemes based on single dielectric nanoparticles tuned near
an EP. We remark, however, that the performance of future
EP sensors implemented with dielectric nanoparticles will be
limited by noise as well as fabrication imperfections, same as
in other platforms [59].

Thus, this work sets the basis for bringing together all-
dielectric nanophotonics and EP physics, paving the way
for exciting applications and new uncharted effects. For in-
stance, isolated dielectric nanoparticles supporting EPs can
be combined in clusters, which should enable the realiza-
tion of higher-order EPs [14]. Another intriguing direction is
the study of the interplay between EPs and other scattering
anomalies commonly encountered in dielectric nanostruc-
tures, such as bound states in the continuum [60], lattice
resonances or supercavity modes. All these are associated
with high quality factors, which could drastically improve the
performance of EP-based dielectric biosensors [1].

Beyond sensing, EPs play a crucial role in the emerging
field of non-Hermitian topological physics [10]. By revealing
the existence of non-Hermitian singularities in realistic Si
nanostructures, all-dielectric nanophotonics presents itself as
an ideal playground for testing and validating ideas uprooted
in the latter.
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APPENDIX: METHODS AND ADDITIONAL EXAMPLE
1. Details on the numerical models

The numerical simulations of the eigenmode spectra of
all the structures in the main article were performed with
COMSOL Multiphysics © using its finite-element method
eigenmode solver, which is based on the Arnoldi iteration
method. Two numerical models were developed:

Model (i): nanoparticle embedded in a homogeneous
medium. The latter is placed at the center of the simulation
domain and surrounded by a sphere (refractive index ny,), with
radius in the order of a third of the resonant wavelengths of
interest, (hereon denoted as A for brevity). The air sphere is
enclosed by a spherical perfectly matched layer (PML) with
thickness in the order of A. At the external boundary of the
PML, the perfect electric conductor boundary condition is
imposed. All domains except the PML are meshed with a
tetrahedral mesh, with a maximum mesh size di, , = A /51y p,
where p denotes “nanoparticle”. The PML is meshed with a
swept mesh with at least 5 mesh elements across.

Model (ii): Nanoparticle embedded in a medium, deposited
on top of a substrate with refractive index ngy. To introduce a
substrate, the simulation domain, excluding the nanoparticle,
is subdivided in an upper (S;) and a lower (S-) hemisphere
with their respective spherical PML regions, and the nanopar-
ticle is placed on top of S_. S_ is then assigned the refractive
index ngy. Sy is assigned the refractive index ny,. The phys-
ical domain of S_ is meshed with a tetrahedral mesh with a
maximum mesh size dy = A/S5ng,. The PML domain in S_
is meshed with a swept mesh with at least 10 mesh elements
across, keeping a maximum mesh size ds. The nanoparticle
mesh settings and the boundary conditions are kept the same
as in model (i).

2. Influence of ohmic losses

Realistic dielectric materials display small amounts of
ohmic losses. Therefore, it is necessary to study the influence
of loss in the proposed design. Figure 9 displays the effect of
introducing a small extinction coefficient k on the dispersion
near the EP. The value chosen for k is typical for Si in the
near-IR part of the visible. It can be seen that the resonance
frequencies are almost unaffected, while the loss rates of both
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FIG. 9. (a) Resonant frequencies in the vicinity of the EP for
a truncated cone, with refractive index n = 4 + ik with £ = 0 and
k =0.01. (b) Loss rates for the two cases in (a). Height of the
nanoparticles is fixed to 100 nm.

modes increase for all particle radii studied. However, the EP
dispersion can still be observed.

3. Dipolar model of the bianisotropic response

In this section, we follow the approach in Ref. [53] and
provide a simple model that explains the main qualitative
features of the bianisotropic response of the truncated cone,
in the dipolar approximation. We assume, without loss of
generality, that our nanoparticle is illuminated by a normally
incident, x-polarized plane wave with amplitude |EI"|. Only
the electric and magnetic dipole moments have non-negligible
contributions to the cross section. Hence, we can write:

+
P — o E™ + a,,2,H"™, (A1)

0}
Zomy = dpeE}™ £ dpnZoH,™, (A2)

where the o;; are the elements of the (magnetoelectric) polar-
izability tensor and Zj is the vacuum impedance. The + signs
are selected depending whether we have illumination from the
top (+) or from the bottom (—). Imposing reciprocity, it can
be shown that ae, = —ame. With the help of this model, the
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FIG. 10. (a) Resonant frequencies in the vicinity of an EP designed in a perturbed rectangular nanowire. (b) Loss rates for the two cases
in (a) Inset: sketch of the geometry. (c) From left to right, electric field norms in the x-z plane of mode 1 and mode 2 in the unperturbed

nanowire (h = 0) and near the EP (A = 13.43 nm, R = 113.8 nm). Structure parameters for panels (a) and (b):n =4, H =

h = 13.43 nm.

extinction cross section gives

Oext = kK Im(0tee + ). (A3)

We can see from Eq. (A3) that o does not depend on
the magnetoelectric components e, ome. Instead, it only
depends on the conventional response, which does not change
sign with the direction of illumination. In the absence of losses
Oext = Osca- As a result, the total scattering cross section does
not change by reversing the direction of illumination. How-
ever, if we decompose oy, into its ED and MD contribution,
we get

4

Osca = Op +om= E(kxee + Olem|2 + | —Ctem £ amm|2)-

(A4)
o,,,m do depend on the magnetoelectric terms, and can change
significantly upon reversing the illumination direction.

100 nm, r = 50 nm,

4. Bianisotropic EP in a perturbed rectangular nanowire

The approach described in the main text is general and
applies beyond the case of a truncated cone. As an additional
example, here we report the emergence of a bianisotropic EP
in a perturbed rectangular nanowire. The geometry is sketched
in Fig. 10(b). It consists of a rectangular nanowire with height
H, radius R and refractive index n = 4. Two modes (mode
1 and mode 2) are selected since they cross and mode 1 (2)
is odd (even) in the unperturbed nanowire. Their field distri-
butions are shown in the two leftmost panels of Fig. 10(c).
To induce the EP, we drill a hole of radius r and height A.
All the geometrical parameters are given in the caption of
Fig. 10.

Keeping r constant, we gradually increase 4 and study the
mode dispersions as a function of R. The EP can be found
when 74 ~ 13.43nm and R =~ 113.8 nm.
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