
PHYSICAL REVIEW RESEARCH 6, 013051 (2024)

Enhancing the performance of quantum reservoir computing and solving the time-complexity
problem by artificial memory restriction
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We propose a scheme that can enhance the performance and reduce the computational cost of quantum
reservoir computing. Quantum reservoir computing is a computing approach which aims at utilizing the
complexity and high dimensionality of small quantum systems, together with the fast trainability of reservoir
computing, in order to solve complex tasks. The suitability of quantum reservoir computing for solving temporal
tasks is hindered by the collapse of the quantum system when measurements are made. This leads to the
erasure of the memory of the reservoir. Hence, for every output, the entire input signal is needed to reinitialize
the reservoir, leading to quadratic time complexity. Another critical issue for the hardware implementation of
quantum reservoir computing is the need for an experimentally accessible means of tuning the nonlinearity of
the quantum reservoir. We present an approach which addresses both of these issues. We propose artificially
restricting the memory of the quantum reservoir by only using a small number inputs to reinitialize the reservoir
after measurements are performed. This strongly influences the nonlinearity of the reservoir response due to the
influence of the initial reservoir state, while also substantially reducing the number of quantum operations needed
to perform time-series prediction tasks due to the linear rather than quadratic time complexity. The reinitialization
length therefore provides an experimental accessible means of tuning the nonlinearity of the response of the
reservoir, which can lead to significant task-specific performance improvement. We numerically study the linear
and quadratic algorithms for a fully connected transverse Ising model and a quantum processor model.
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I. INTRODUCTION

The field of quantum computation promises a significant
computational speedup over classical computation for cer-
tain sets of problems [1]. Machine learning is one such field
where it is known that quantum computers can offer an
advantage [2]. Several machine learning tasks have been ex-
perimentally realized on quantum systems—some examples
are Refs. [3–6]—but broad applicability of machine learning
on quantum devices is still hindered by the limitations of
current quantum processing devices. One of these limitations
is the inevitable noise these devices experience. For reservoir
computing, a subfield of machine learning, this noise does not
pose a hindrance and could even be a resource [7–9].

Reservoir computing is a machine learning approach
wherein only the output layer is trained [10–13]. Due to
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this simple training scheme it is well suited for hardware
implementation, meaning that an input signal is fed into a
physical system and the dynamics of that physical “reservoir”
are utilized to project the data into a high-dimensional latent
space. The responses of the reservoir are then sent through
a readout layer, which is trained in order to approximate the
desired function.

There are two main avenues of research into quantum
reservoirs, either quantum systems whose dynamics are gen-
erated by a Hamiltonian H or quantum circuits consisting of
several qubits on which unitary operations can be performed.
For the former, several studies have been dedicated to the Ising
model [14–18], showing its viability as a reservoir for sev-
eral benchmark tasks. The authors of Refs. [7,8,19] devised
schemes for reservoir computing on a quantum circuit and
implemented them on IBM quantum processors. A promising
avenue of use for quantum reservoir computing is to aid in the
measurement of quantum states [20,21].

There are still several hurdles to be overcome for the
efficient hardware implementation of quantum reservoir com-
puting (QRC). In this manuscript we address two of these
hurdles: an experimentally accessible means of tuning the
nonlinear response of the reservoir and a reduction of the
number of quantum operations needed for temporal tasks.
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The output of both types of quantum reservoirs mentioned
above are typically time series of one- or two-qubit observ-
ables. For each output, quantum measurements have to be
performed, which poses a significant problem for the physical
implementation of quantum reservoir computing [22]. With
each measurement, the quantum system state collapses and all
information about the input signal is lost. Therefore, for each
time step of the output, the entire signal up to that point is
needed to reinitialize the reservoir. This procedure leads to a
time complexity quadratic in the length of the input signal.
The authors of Ref. [14] propose as a solution to perform
reservoir computing with nuclear-magnetic-resonance spin
ensemble systems [23,24]. These large ensembles have the ad-
vantage that all copies of the ensemble can be simultaneously
controlled such that they all follow the same dynamics. In
this way expectation values can be measured with barely any
backaction. The authors of Ref. [25] investigate the influence
of weak measurements and additionally make the observation
that due to the fading memory of the reservoir it is not neces-
sary to reset the reservoir using the entire sequence of previous
inputs. The latter was also previously investigated in Ref. [7]
and can be understood as follows. Typically, information is
encoded in the system state of some elements and then the
closed system is evolved in time. Due to the successive over-
writing of elements of the quantum reservoir, memory of past
inputs is gradually lost. This means that the response of the
reservoir is independent of inputs from the distant past and
only a finite number of past inputs are needed to reinitialize
the reservoir after each measurement.

In this paper we study the influence of restricting the num-
ber of reinitialization inputs after the reservoir is reset by a
measurement. Not only does this reduce the time complexity
of the reservoir computing algorithm [25], it also provides
a means of experimentally tuning the nonlinearity of the
quantum reservoir response, which addresses the need for
task-dependent hyperparameter optimization. Task-dependent
hyperparameter optimization is not an issue specific to QRC,
but a general issue for reservoir computing, particularly for
hardware-implemented reservoir computing where the ac-
cessible hyperparameters can be restricted and difficult or
cumbersome to tune.

We demonstrate our approach on two simulated quantum
reservoirs: a transverse field Ising Hamiltonian and a quantum
circuit. In both cases we analyze their performance on the
information processing capacity [26] and the Lorenz chaotic
attractor [27]. We show that our proposed algorithm leads
to improved performance for these tasks and addresses the
problem of quadratically increasing reinitialization sequences
for time-series tasks.

II. RESERVOIR COMPUTING

A reservoir computer can be understood as a recurrent neu-
ral network, where only the output weights Wout are trained.
The weighted connections between the internal nodes are
either chosen randomly or are determined by the physical
properties of the reservoir. To perform time-series prediction
tasks using reservoir computing, an input sequence must be
fed into the reservoir and then the responses to these in-
puts are sampled. The desired output is then approximated

by constructing a weighted sum of the sampled responses.
The training procedure to determine the output weights is as
follows. Assume an input series u = [u(t1), u(t2), . . .] and NS

readout nodes. At each time ti the ith input ui is introduced
into the system and the output [s1(ti ), . . . , sNS (ti)] is obtained.
The target at each ti is ytarg(ti ) and the estimate by the reservoir
is obtained by taking a linear combination of the output signal
weighed by the vector Wout ,

y(ti ) =
∑

j

W out
j s j (ti ). (1)

The optimal weights are obtained by

Wout
opt = arg min

W out

∑
i

[ytarg(ti ) − y(ti )]
2 (2)

= (ST S + λI)−1ST Ytarg, (3)

where Y targ
i, j = ytarg

j (ti) are the elements of the target vector
Ytarg and Si, j = s j (ti ) are the elements of the state matrix S,
where j ∈ {1, 2, . . . , NS} is the readout node index.

Time multiplexing

In order to increase the number of sampled reservoir re-
sponses, it can be beneficial to time multiplex. This means that
each input ui in the input sequence u is fed into the reservoir
for a duration T and during this time the response of each of
the NS readout nodes is sampled at NV different points in time.
The total number of sampled reservoir responses per input is
then NS × NV and the number of columns in the state matrix
is increased accordingly. This reservoir computing scheme is
depicted in Fig. 1. Due to the nature of the time evolution of
the quantum reservoirs, in contrast to common practice when
using classical reservoirs [28], no input mask is used.

III. QUANTUM MEASUREMENT FOR
TIME-SERIES PREDICTIONS

A. Quadratic scheme

In quantum reservoir computing the system state collapses
when the reservoir response is measured. The usual procedure
to experimentally implement time-series tasks in quantum
reservoirs involves reinitializing the reservoir with the entire
input history before the next reservoir response is measured.
This procedure is depicted in Algorithm 1. The inputs to this
algorithm include a unitary operation U , the set of observables
to be measured {Oo}o, the initial state |�I〉, an input series
u = {ui}M

i=1 of length M, and a scheme which encodes the
input into a state |�E (ui )〉. For each time step i, the system
is initialized to |�I〉 and the signal up until ui is fed into the
reservoir. Afterwards, the measurement of the set of observ-
ables {Oo}o is performed. Since the ith. input requires i unitary
operations, the complexity of this algorithm for a time series
of length M is determined by

T1(M ) =
M∑

i=1

i = M(M + 1)

2
∈ O(M2). (4)

For large or continuous time series (M → ∞), this approach
therefore becomes unfeasible. Current literature on quantum

013051-2



ENHANCING THE PERFORMANCE OF QUANTUM … PHYSICAL REVIEW RESEARCH 6, 013051 (2024)

Wout

 SWout=Y 

u(ti-1)=ui-1 u(ti)=ui u(ti+1)=ui+1

T

x1(ti-1) x2(ti-1) x3(ti-1) x4(ti-1)
x1(ti ) x2(ti ) x3(ti ) x4(ti )

re
sp

on
se

 x
in

pu
t u

physical system
f(x, u, t)=x'

Wint

t

x1(ti)

x2(ti)
x3(ti)

x4(ti)

u2

Win

U

u1

hidden layer output layerinput layer

FIG. 1. Sketch of a time-multiplexed reservoir computer scheme. The inputs ui are sequentially fed into the reservoir and the corresponding
responses of the reservoir x j (tu) are sampled in time, where j ∈ {1, . . . , NV } and NV is the number of sampled responses for each input ui.
Due to the internal dynamics of the reservoir the x j (ti ) are coupled forward in time. The coupling matrix Wint depends on the properties of the
reservoir. The output Yi is obtained by multiplying the vector of sampled reservoir responses with the vector of output weights Wout, which is
determined in the training phase.

reservoir computing for time-series tasks analyzes the prop-
erties of the reservoir using this scheme with quadratic time
complexity [7,8,14,15,17].

B. Linear scheme

We propose an alternative scheme for reservoir computing.
The scheme is based on the fading memory property usually
assumed for reservoir computers [10,11], and the memory-
nonlinearity trade-off which is known to occur in reservoir
computing [29–31]. Qualitatively the fading memory property
states that the reservoir forgets inputs far into the past. It
can be characterized by the linear contribution to the infor-
mation processing capacity IPC1. The information processing
capacity is a generalization of the linear memory capacity [26]

Algorithm 1. Quadratic complexity quantum algorithm (QCQA).

Require: U, |�I 〉, |�E (um )〉, {Oo}o

Require: u ← [u1, u2, ..., uM ] � Input series
1: i ← 1
2: while i � M do
3: ρ(0) ← |�I 〉〈�I |
4: j ← 1
5: while j � i do
6: ρ̃( j) = |�E (uj )〉〈�E (uj )| ⊗ Tr1[ρ( j − 1)]
7: ρ( j) = U ρ̃( j − 1)U †

8: j ← j + 1
9: end while

10: Sm,o ← Tr[ρ(tm )Oo] � collapse of state
11: i ← i + 1
12: end while
13: return S

which quantifies the ability of the reservoir to construct non-
linear transforms of all possible combinations of past inputs
into the reservoir (see Appendix D for details) and can be used
to predict the performance on certain tasks [28,32].

The scheme we propose here is to only insert the previous
m = n − 1 inputs to initialize the system before for each input
ui, rather than the last i − 1 inputs, where n can be much
shorter than the fading memory of the reservoir. This results
in a total of n unitary operation per input ui and leads to a
total of

T2(M ) = n M ∈ O(M ) (5)

unitary operations. This approach is computationally feasible
for continuous or large time series (M → ∞), as at any given
input ui only n + 1 unitary operations are required and thus
can be computed in real time. The difference between our ap-
proach and that of Ref. [25] is that we consider much smaller
n, which leads to a fundamentally different input response of
the reservoir, as we will show in the subsequent sections. Our
linear algorithm is depicted in Algorithm 2.

Algorithm 2. Linear complexity quantum algorithm (LCQA).

ρ(0) ← |�I〉〈�I |
k ← 0
while k � n do

j ← i − n + k
k ← k + 1
ρ̃( j) = |�E (uj )〉〈�E (uj )| ⊗ Tr1(ρ( j − 1))
ρ( j) = U ρ̃(i)U †

end while
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C. Input encoding

In the following section we compare the quadratic (QCQA)
and the linear complexity quantum algorithms (LCQA) as a
function of the reset length n. We study two different systems:
an Ising model and a quantum circuit. For both systems, we
encode our input series in the first qubit |�1〉 and set the initial
state of the reservoir |�I〉 and the encoding state |�E (ui )〉
depending on an input ui to

|�I〉 = |0000〉 (6)

|�E (ui )〉 =
√

1 − ui

2
|0〉 +

√
1 + ui

2
|1〉. (7)

IV. ISING MODEL

The dynamics of the fully connected transverse field Ising
model are described by the Hamiltonian

H =
NS∑

i=1, j>i

Ji jXiXj +
NS∑
i=1

hZi. (8)

Xi, Yi and Zi are the Pauli matrices of the ith. particle and are
given by

Xi,Yi, Zi =
(

i−1⊗
k=1

I2

)
⊗ σx,y,z ⊗

⎛
⎝ NS⊗

k=i+1

I2

⎞
⎠, (9)

where σx,y,z are the one-qubit Pauli matrices and I2 the one-
qubit identity operator. The Ji j are the coupling strengths
between two particles in the x direction and are sampled
from a uniform distribution on the interval [0.25, 0.75], while
h = 0.5 is the coupling strength to an external magnetic field
in the z direction.

We numerically study the Ising model with four qubits
NS = 4. The outputs of the reservoir are the expectation val-
ues {〈Zi〉}4

i=1, where Zi is the z Pauli matrix for the ith.

qubit. Additionally, we perform time multiplexing: each in-
put signal is fed into the reservoir for an evolution time T ,
during which we perform NV = 30 measurements. This leads
to a total of 4×30 = 120 observables or readout nodes for
each input step i. The unitary time evolution operation is
given by

U = exp −iHT , (10)

with an evolution time (clock cycle) of T = 20.
For the Ising model, the linear memory capacity as a func-

tion of the steps into the past is shown in Fig. 2(a). Using the
entire history to reset the system, i.e., the QCQA, the recall
ability of this Ising model reservoir fades to zero after approx-
imately 15 steps into the past (black line), meaning that a reset
length of n = 15 should be sufficient to emulate the QCQA.
To demonstrate the influence of the reset length in a general
and task-independent manner, we calculate the information
processing capacities as a function of n. Figures 2(b) and 2(c)
show the summed information processing capacities (IPCs) of
polynomial order one to six (IPC1–IPC6) and Fig. 2(d) shows
the total IPC summed over all polynomial orders. In each case
the QCQA limit (dashed lines) is reached as n approaches
the maximum number of steps into the past for which the

(c) (d)

(a) (b)

FIG. 2. Ising model: (a) Linear IPCs as a function of the steps
into the past d for the LCQA with n = 5, 6 (grays) and for the QCQA
(black). Summed IPCs of polynomial orders (b) 1–3 and (c) 4–6,
and (d) the total summed IPC, in dependence of the reset length n
using the LCQA. The corresponding QCQA limits are indicated by
the dashed lines. We have calculated the standard deviation for ten
different realizations of Ising Hamiltonians, where Ji j were sampled
randomly.

reservoir has recall capabilities (n ≈ 15). For very small n
the IPCs are decreased due to the artificial memory restriction
that is being imposed on the reservoir. However, there is an
intermediate range for the reset length n where the total IPC
and IPC2–IPC6 are increased compared with the QCQA limit.
This is an insight which can be used to substantially reduce the
number of quantum operations needed for time-series tasks,
while simultaneously optimizing the performance.

To gain more insight into this effect, in Fig. 2(a) the linear
memory (delay d resolved individual linear IPCs) is plotted
for n = 5, 6. Here, it can be seen that the distribution of
the linear IPCs is changed compared with the QCQA case.
Although the summed linear IPC (IPC1) is decreased for
n = 5, 6 [see Fig. 2(b) IPC1 at n = 5, 6], the capacities for
the past inputs which can be reconstructed are higher. This
increase in the memory is related to the initial state of the
reservoir. We initialize the reservoir in the pure state Eq. (6),
but, as input data is added and the system evolves, the state
of the reservoir becomes mixed and dependent on the input
history. If we require the reservoir to recall an input from, for
example, four steps into the past, then there is less variation in
the reservoir response, and hence better recall performance,
if the state of the reservoir before four steps was always the
same and if this state was a pure state. The influence of the
initial state can be seen in Fig. 3. Here, the linear IPCs are
shown for a reset length of n = 8 for various initial states
(see Appendix E for more results). For past inputs d � n the
LCQA with the pure initial state shows the best performance.
When the initial state is chosen randomly, the performance is
worst for small d , but approaches the QCQA for d = n. This
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FIG. 3. Ising model: Linear IPCs as a function of the steps into
the past d for the LCQA with reset length n = 8 and using three
different initial conditions for reinitializing the reservoir; random
state (gray), pure state [Eq. (6), green], and mixed state (orange).
The QCQA is indicated in black.

means that the dynamics of the reservoir before the past state
that is to be recalled are detrimental to the performance. This
explains the increase in the summed higher-order IPCs, since
the high-order IPCs are composed of inputs from fewer steps
into the past, as can be inferred by the small reset lengths n
needed to reach the QCQA limit as the polynomial order is
increased [see Fig. 2(c)].

To demonstrate that the observed increases in the IPCs can
translate to improved performance for a time-series prediction
task, we also calculate two tasks related to the Lorenz chaotic
attractor [27] (see Appendix B). In both tasks the x variable
of the Lorenz system is inserted into the reservoir. The first
task (LXX) is to predict the x variable one step ahead. The
second task (LXZ) is to cross-predict the z variable one step
ahead. Figure 4(a) shows the normalized root-mean-squared
error (NRMSE) (as defined in Appendix B) for the LXX
and LXZ tasks in dependence of the reset length n. For both
tasks, compared with the QCQA limit (dashed lines), a lower
NRMSE is achieved for small n. For this particular reservoir,
the minimum NRMSE for both tasks is achieved at n = 3,
which corresponds to the reset length at which IPC5 and IPC6

exhibit a maximum [see Fig. 2(c)]. These results demonstrate
that the reset length can be used as a tuning parameter which
does not require any changes to the physical reservoir. In
general, the optimal reset length will depend on both the task
and reservoir.

(a) (b)

FIG. 4. Lorenz tasks: NRMSE of the LXX (green) and LXZ
(orange) tasks for the LCQA as a function of the reset length n using
(a) the Ising Reservoir and (b) the quantum circuit. The QCQA limit
is indicated by dashed lines.

V. QUANTUM CIRCUIT

To demonstrate the universality of our restricted memory
approach, the second type of quantum reservoir we consider
is an NS-qubit circuit. Each layer of the circuit consists of two
sublayers of two-qubit unitary operators Wj and Vj acting on
neighboring qubits. The unitaries Wj and Vj are of the form

Wj = w j,1 U2 j−1,2 j (a j, b j, c j ) w j,2

Vj = v j,1 U2 j,2 j+1(d j, e j, f j ) v j,2, (11)

with

Uk,l (a, b, c) = eia XkXl +ibYkYl +icZkZl

and

w j,k =
⎛
⎝ j−2⊗

k=1

I2

⎞
⎠ ⊗ u j,k,1 ⊗ u j,k,2

⎛
⎝ NS⊗

k= j+1

I2

⎞
⎠

v j,k =
⎛
⎝ j−1⊗

k=1

I2

⎞
⎠ ⊗ g j,k,1 ⊗ g j,k,2

⎛
⎝ NS⊗

k= j+2

I2

⎞
⎠,

where the u j,k,l and g j,k,l are single-qubit unitaries drawn
from the Haar measure [33] and ai, . . . , f j are uniformly
drawn from the interval [−k, h]. The two sublayers are then
defined by

W =
∏

j

Wj and V =
∏

j

Vj . (12)

Recently, the authors of Ref. [34] showed that if the single-
qubit unitaries w, v are drawn from the Haar distribution,
see, e.g., Ref. [35] (Sec. 58), and k = h, then by changing h
the system undergoes a transition between a localized and an
ergodic phase. In our case, we draw the parameters randomly
from the interval

ai, . . . , f j ∈ [0.1, 0.2]. (13)

We implement both the QCQA and the LCQA scheme,
where the unitary operation U is given by repeating the sub-
layers W and V , NW = 10 times,

U = (V W )NW , (14)

and where we time multiplex by performing an additional
measurement after the application of each V and W layer
individually. We use NS = 4 qubits, thus, in total, there are
8×10 = 80 outputs of the reservoir for each input.

Figure 5 shows the various components of the IPC as a
function of the reset length n. Here, we find the same qual-
itative results as in the Ising model case (see Fig. 2). The
IPC1–IPC6 can be increased with respect to the QCQA limit,
and for sufficiently large n the QCQA limit is reached. The
exact influence of the reset length on the distribution of the
IPCs depends on the dynamics of the reservoir, as can be seen
by the differences between Figs. 2 and 5.

For the quantum circuit, optimization of the reset length
also leads to an improvement in the performance of the LXX
and LXZ tasks, as shown in Fig. 4(b). Here, the best perfor-
mances occur for n = 4, which corresponds to the maximum
IPC5 and IPC6 for the quantum circuit.
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(c) (d)

(a) (b)

FIG. 5. Quantum circuit: (a) Linear IPCs as a function of the
steps into the past d for the LCQA with n = 7, 15 (grays) and for the
QCQA (black). Summed IPCs of polynomial orders (b) 1–3 and (c) 4
to 6, and (d) the total summed IPC, in dependence of the reset length
n using the LCQA. The corresponding QCQA limits are indicated
by the dashed lines. We have calculated the standard deviation for
ten different realizations of the input signal and different random
parameters aj, . . . , f j and single-qubit unitaries w, v in Eq. (11).

VI. CONCLUSION

In this work, we presented the LCQA for quantum reser-
voir computing. The algorithm allows the reset length to be
used as a tuning parameter which controls the nonlinearity
of the reservoir response and successfully reduces the time
complexity of quantum reservoir computing for time-series
tasks from quadratic to linear, thus making physical imple-
mentations for long time series feasible.

We have compared our LCQA approach to the established
QCQA on a fully connected Ising chain and a quantum pro-
cessor reservoir computer. We found that LCQA outperforms
the currently utilized QCQA scheme both in the information
processing capacity and in Lorenz time series prediction tasks.

The proposed approach allows the nonlinearity of the reser-
voir response to be tuned at the expense of the linear memory.
For tasks requiring greater memory, the LCQA can be sup-
plemented with memory augmentation methods on the input
or the output of the reservoir, such as those presented in
Refs. [36–39].

Our findings from the evaluation of the LCQA scheme
using the quantum circuit indicate that this algorithm shows
great potential for the hardware implementation of quantum
reservoir computing not only to reduce the time needed to
perform computations, but also to improve the performance.
Furthermore, our results open questions about how the initial
state of the quantum system can be used to tailor the non-
linear response of the quantum reservoir. Another promising
avenue of research is the applicability of this approach to
hardware-implemented classical reservoirs, where one would

TABLE I. Simulation parameters.

Parameter Value

Initialization steps 10 000
Training steps 50 000
Testing steps 5 000
Tikhonov regularization parameter 10−2

quantum circuit
Noise regularization parameter 10−6

Ising model
Sampling, quantum circuit aj, . . . , f j ∈ [0.1, 0.2]
Haar distribution with parameters
Sampling, Ising model Uniform on [0.25, 0.75]
coupling Ji j hi = 5
Time evolution for Ising model T = 20
Number of qubits NQ = 4

find a trade-off between tunability of the reservoir and com-
putational cost.
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APPENDIX A: PARAMETERS

The simulation parameters are listed in Table I.

APPENDIX B: LORENZ TASK

The Lorenz 63 system is commonly used for time-series
prediction benchmark tasks [27]. The Lorenz attractor dynam-
ics are governed by Eq. (B1),

Ẋ = a(Y − X )

Ẏ = X (b − Z ) − Y (B1)

Ż = XY − cZ.

For time-series prediction, the system variables will be dis-
cretized, such that the series Xn = X (n�t ), Yn = Y (n�t ), and
Zn = Z (n�t ) are constructed. In this manuscript the Lorenz
XX and Lorenz XZ tasks are used as target functions. The
Lorenz XX task tries to predict the future of the Xn variable,
where the reservoir is driven with the Xn. The Lorenz XZ task
gets Xn as an input and tries to predict Zn. The most commonly
used parameters in research are a = 10, b = 28, and c =
8/3 with the discretization �t = 0.1, which will be used here.

APPENDIX C: ERROR MEASURE

The NRMSE between y = (y1, y2, . . . , yN ) and ytarg =
(ytarg

1 , ytarg
2 , . . . , ytarg

N ) is defined as

NRMSE =
√∑N

i=1

(
yi − ytarg

i

)2

Nvar(ytarg)
=

√
1 − C(y, ytarg) (C1)
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with

C(y, ytarg) = cov(y, ytarg)

σ 2(y)σ 2(ytarg)
, (C2)

where cov(·) and σ (·) are the covariance and standard devia-
tion, respectively.

APPENDIX D: INFORMATION PROCESSING CAPACITY

The information processing capacity is a measure that
quantifies the computational power of a reservoir computer
and was introduced in Ref. [26]. This measure quantifies the
ability of the reservoir to recall nonlinear combinations of past
inputs by mapping the input response of the reservoir to a set
of orthogonal functions. We choose the Legendre polynomials
as the orthogonal basis. In the following we will show how the
IPCs are calculated and define the summed IPC.

1. Legendre polynomials

The Legendre polynomials ln are defined by

l0(x) = 1

l1(x) = x

l2(x) = 1

2
(3x2 − 1)

ln+1(x) = 2n + 1

n + 1
xln(x) − n

n + 1
ln−1(x), for n � 2. (D1)

They are orthogonal under the scalar product:∫ 1

−1
li(x)l j (x)dx = δi, j . (D2)

2. Capacity

For a reservoir computer with a state matrix S and the out-
put y = SWout with the target ytarg, the capacity to calculate
the target ytarg is defined as

C(y, ytarg) = cov(y, ytarg)

σ 2(y)σ 2(ytarg)
. (D3)

cov(y, ytarg) is the covariance between the output y and target
ytarg, while σ (y) and σ (ytarg) are the standard deviations of the
output and target.

3. Calculating the information processing capacity

The information processing capacity tries to classify the
computational power of a reservoir computer by examining
how well the system maps a set of orthogonal functions, in
our case Legendre polynomials. To do this the capacity of the
reservoir to construct all possible combinations of the Leg-
endre polynomials of all polynomial orders and all admitted
combinations of the past inputs need to be calculated. For this
the reservoir is fed with a sequence of input chosen from a
uniform distribution between −1 and 1.

a. Combinations of the Legendre polynomials

Let k be the order of a polynomial and let Dk =
[d1, d2, . . . , dq] denote a tuple with 0 < d j � k and da � db

for a < b, such that
∑q

j=1 d j = k holds true. For each order k
there exists a finite number of tuples Nk with these conditions.
The oth. tuple is addressed by Dk

o = [do,1, do,2, . . . , do,q],
where o ∈ {1, 2, . . . , Nk} holds. Let Mk

o be the length of Dk
o.

For example, the Lth. tuple of the K th. order is defined
as DK

L = [dL,1, dL,2, dL,3], with MK
L = 3 and dL,1 + dL,2 +

dL,3 = K . The oth. polynomial of pth. order is defined as

pk
o =

Mk
0∏

j=1

ldo, j , (D4)

where ldo, j is the do, j th. Legendre polynomial. We will give
an example for the polynomial of order k = 3. There ex-
ist three combinations such that the above conditions are
met: D3

1 = [d1,1] = [3], D3
2 = [d2,1, d2,2] = [1, 2], and D3

3 =
[d3,1, d3,2, d3,3] = [1, 1, 1]. From these tuples the lengths
M3

1 = 1, M3
2 = 2, and M3

3 = 3 can be calculated. The poly-
nomials of the third order are given by

p3
1 =

M3
1∏

j=1

ld1, j = l3

p3
2 =

M3
2∏

j=1

ld21, j = l1l2 (D5)

p3
1 =

M3
3∏

j=1

ld3, j = l1l1l1.

Assume the input vector uall = (u−b+1, u−b+2, . . . , u0, u1,

u2, . . . , un). This vector can be split into the vector for
the state matrix u = (u1, u2, . . . , un) and the vector prior
uprior = (u−b+1, u−b+2, . . . , u0). u(m) and u(m − i1) denote
the mth. input and the shifted input by i1 time steps into
the past, where −b � m � n and i1 � b holds. The shift
of the system vector u by i1 time steps into the past will
be addressed with u(i1) = (u1−i1 , u2−i1 , . . . , un−i1 ). The ath.

Legendre polynomial of the input vector u will be denoted as
la(u) = [la(u1), la(u2), . . . , la(un)] and the shifted ath. Legen-
dre polynomial will be defined as

la(i1) = la[u(i1)] = [la(u1−i1 ), la(u2−i1 ), . . . , la(un−i1 )]. (D6)

The point-wise multiplication between two vectors a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) results in a new
vector c = a 
 b = (a1, a2, . . . , an) 
 (b1, . . . , bn) = (a1b1,

a2b2, . . . , anbn).
The polynomials for different steps in time are calculated

by

pk
o(i1, . . . , iq) =

Mk
o⊙

j=1

ldo, j (i j ). (D7)
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As an example, the polynomials of third order with regards to
the past inputs i j are given by

p3
1(i1) =

M3
1⊙

j=1

ld1, j (i j ) = l3(i1)

p3
2(i1, i2) =

M3
2⊙

j=1

ld1, j (i j ) = l1(i1)l2(i2) (D8)

p3
3(i1, i2, i3) =

M3
3⊙

j=1

ld1, j (i j ) = l1(i1)l1(i2)l1(i3).

b. Legendre memory accuracy

Assume that the target function is of the form
ytarg(i1, i2, . . .) = pk

l (i1, i2, . . .) for one tuple of (i1, i2, . . .).
The capacity of such a target is defined as

Ccomb
k,l (i1, i2, . . .) = cov[y, ytarg(i1, i2, . . .)]

σ 2(y)σ 2[ytarg(i1, i2, . . .)]

= cov[y, pk
l (i1, i2, . . .)]

σ 2(y)σ 2[pk
l (i1, i2, . . .)]

. (D9)

c. Combinations of past inputs

Valid combinations of (i1, i2, . . .) are those that comply
with the following two conditions:

(1) Only combinations are allowed where all i1, i2, . . . are
unequal to each other (ia �= ib, if a �= b).

(2) The second condition is best understood with an ex-
ample.

Let p7
1(i1, . . . , i4) = l1(i1)l1(i2)l1(i3)l2(i4)l2(i5). There are

three Legendre polynomials of first order with indices
(i1, i2, i3) and two Legendre polynomial of second order with
indices (i4, i5). The second condition is on the indices where
the Legendre polynomials are of the same order. In these sub-
sets only decreasing indices are allowed, meaning i1 > i2 > i3
and i4 > i5. It is noted that i4 can be greater than i3. One valid
combination is (i1, i2, i3, i4, i5) = (5, 4, 2, 3, 1).

Example. Let (i1, i2, . . . , in) ∈ comb, where the set comb
consists of all valid combinations. The combinations for 1 �
i j � 4 for the first three orders of polynomials and one real-
ization of fourth order are given by:

(1) First-order polynomials:

p1,1(i1) = l1(i1), i1 ∈ comb1,1 = {1, 2, 3, 4}. (D10)

(2) Second-order polynomials:

p2,1(i1) = l2(i1), i1 ∈ comb2,1 = {1, 2, 3, 4},
p2,2(i1, i2) = l1(i1)l1(i2),

(i1, i2) ∈ comb2,2 = {(2, 1), (3, 1), (4, 1),

(3, 2), (4, 2), (4, 3)}. (D11)

(3) Third-order polynomials:

p3,1(i1) = l3(i1), i1 ∈ comb3,1 = {1, 2, 3, 4}
p3,2(i1, i2) = l1(i1)l2(i2),

(i1, i2) ∈ comb3,2 = {(2, 1), (3, 1), (4, 1), (1, 2),

(3, 2), (4, 2), (1, 3), (2, 3),

(4, 3), (1, 4), (2, 4), (3, 4)}
p3,3(i1, i2, i3) = l1(i1)l1(i2)l1(i3),

(i1, i2, i3) ∈ comb3,3 = {(3, 2, 1), (4, 2, 1),

(4, 3, 1), (4, 3, 2)}. (D12)

(4) One fourth-order polynomial:

p4,4(i1, i2, i3) = l1(i1)l1(i1)l2(i2)

(i1, i2, i3) ∈ comb4,4 = {(3, 2, 1), (4, 2, 1), (4, 3, 1),

(3, 1, 2), (4, 1, 2), (4, 3, 2),

(2, 1, 3), (4, 1, 3), (4, 2, 3),

(2, 1, 4), (3, 1, 4), (3, 2, 4)}. (D13)

This example should help the reader to better understand
how the i j are picked for each polynom. In the next step a
sum over all valid combinations combk,l of Ccomb

k,l is taken, to
get the capacity Ck,l in regards to the target polynomial pk

l ,

Ck,l =
∑

combk,o

Ccomb
k,l (i1, i2, . . .). (D14)

d. Summed information processing capacities

As described above, Nk different polynomial combinations
of degree k exist, where o ∈ {1, 2, . . . , Nk} is the index for
these polynomials. The kth.-order information processing ca-
pacity IPCk is given as the sum over the capacities of all
polynomial combinations of degree k:

IPCk =
∑

l

Ck,l . (D15)

The total IPC is obtained from the sum over all IPCk ,

IPC =
∑

k

IPCk. (D16)

For an actual calculation the combinations to be calcu-
lated need to be restricted to a finite number. For this the
fading memory property of the reservoir can be used, which
ensured that limi1→∞ → 0. Reservoir-dependent cutoffs for
the polynomial order must also be implemented. Additionally,
the total IPC has an upper bounded C � NR, where NR is the
number of readout nodes [26], which can aid in determining
suitable cutoff conditions.

APPENDIX E: SIMULATIONS WITH DIFFERENT
INITIAL STARTING STATE

Figure 6 shows the capacity for reconstructing the input
d steps into the past for different starting states using a reset
length of n = 15. The legend is explained in Table II. The up,
same random, entangled, mixed, and new random schemes all
use the LCQA algorithm, where the starting state is changed
according to the description in the table. Note that the random
states are generated with the “rand_ dm” method of QUTIP [40]
with “density = 1”. The last scheme uses the QCQA scheme,
where the previous state is reconstructed. For both the
quantum circuit [Fig. 6(a)] and the Ising model [Fig. 6(b)], all
capacitances show similar behavior up to d = 10. For further
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FIG. 6. Linear IPCs (C1) for the quantum circuit (left) and Ising
model (right) with a reset length of n = 15.

past inputs, we observe that the memory capacity is higher for
some of the LCQA schemes. Qualitatively, we see that states
with lower von Neumann entropy (i.e., the pure states “up”
and “entangled”) remember their first inputs better than states
with higher entropy (i.e., “same random,” or with even higher
entropy, “new random” and “mixed”).

In all schemes, the input is inserted into the first qubit.
The new density matrix of all qubits is formed by the tensor
product between the density matrix of the first qubit ρ1(i)
and the partial trace of the density matrix of the other qubits
Tr1[ρ(i − 1)]:

ρ(i) = ρ1(i) ⊗ Tr1ρ(i − 1). (E1)

TABLE II. Description of the legend of Fig. 6.

Label Description

Up |0000〉
Same random Same random state as starting state for each input
Entangled |0000〉 + |1111〉/√2
Mixed ρ = Id16/16
New random New random state as starting state for each input
QCQA Scheme with quadratic complexity

By increasing the reset length n the newly constructed density
matrix ρ(i) is highly likely to be a mixed state. Similarly, a
random state vector is expected to be mixed. The similarities
between the new random state, QCQA scheme, and the mixed
state suggest that the increase around the number of the reset
length n of C1 is influenced by two factors: (1) whether the
starting state for each input is the same, and (2) whether the
starting state for each input is mixed.

Similar behavior can be observed in the Ising model, albeit
to a lesser extent. Once again, the “up,” “same random,” and
“entangled” starting states remember early inputs better than
the “mixed” starting state, “new random” starting state, and
the QCQA scheme. In this case as well, C1 of the QCQA
scheme exhibits almost identical behavior to the new random
and mixed states.

APPENDIX F: ISING MODEL: INFLUENCE
OF THE QUBIT NUMBER

When the reservoir sampling dimension increases, so does
the maximum possible total IPC [26]. This can translate to im-
proved performance on specific tasks. In Fig. 7 the influence

FIG. 7. NRMSE for the LXX and LXZ tasks with p step ahead prediction as a function of the reset length n for four-, five-, and six-qubit
Ising model reservoirs. The QCQA limit is indicated by the dashed lines. The value RQi gives the minimum NRMSE achieved with the LCQA
divided by the QCQA limit for i = 4, 5, 6 qubits.
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of increasing the sampling dimension is investigated by com-
paring Ising models with four, five, and six qubits. With time
multiplexing this corresponds to sampling dimensions of 120,
150, and 180, respectively. In each case a clear improvement
is evident when the reset length is optimized. The relative
impact is slightly increased when the qubit number is larger,
as indicated by the decrease in the RQ (RQ is the minimum
NRMSE achieved with the LCQA divided by the QCQA
limit) values as the qubit number increases. For example, for
the Lorenz cross prediction task (LXZ, p = 1) the shortened

reset length reduces the NRMSE to 0.24, 0.11, and 0.08 of the
QCQA limit for four, five, and six qubits, respectively.

In general, a higher reservoir sampling dimension will lead
to better performance. But at some point this performance
improvement will saturate. It is possible that if this limit is
reached, then no further improvement will be found by tuning
the reset length. However, our approach can enable the same
performance while using a much smaller reservoir, which
can make hardware implementation more feasible and more
energy efficient.
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