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Improving transmon qudit measurement on IBM Quantum hardware
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The Hilbert space of a physical qubit typically features more than two energy levels. Using states outside the
qubit subspace can provide advantages in quantum computation. To benefit from these advantages, individual
states of the d-dimensional qudit Hilbert space have to be discriminated during readout. We propose and analyze
two measurement strategies that improve the distinguishability of transmon qudit states. Based on a model
describing the readout of a transmon qudit coupled to a resonator, we identify the regime in hardware parameter
space where each strategy is optimal. We discuss these strategies in the context of a practical implementation
of the default measurement of a ququart on IBM Quantum hardware whose states are prepared by employing
higher-order X gates that make use of two-photon transitions.
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I. INTRODUCTION

Conventional quantum computing is based on qubits which
are realized on two-level subspaces of a larger physical Hilbert
space. A number of physical realizations of qubits have been
proposed and implemented on various platforms. These in-
clude superconducting qubits [1], trapped ions [2], cold atoms
and Rydberg atoms [3], as well as electron spins in quantum
dots [4]. On all of these platforms, it is necessary to isolate
the two-dimensional qubit space from the remaining states of
the physical Hilbert space to avoid leakage out of the com-
putation space. However, utilizing qudits, i.e., d-dimensional
building blocks of quantum computation, can provide ad-
vantages [5–17]. Examples include implementing an ancilla
qubit within the second and third excited states of a qudit [6].
Another example is the so-called shelving [9]: by transferring
the population of the first excited state to the second excited
state, the error of identifying the ground state decreases.

Superconducting qubits [18,19] are prominent building
blocks of noisy intermediate-scale quantum systems. The
most promising example is the so-called transmon that can
effectively be described as a quantum anharmonic electromag-
netic oscillator. In this system, the two lowest-energy levels
are identified as the qubit. Taking into account higher-lying
transmon levels leads to a natural realization of a supercon-
ducting qudit. The smallest extension of the qubit is the qutrit,
i.e., a three-level system. Qutrits have been used to imple-
ment a Toffoli gate [10] with a significantly lower number
of elementary gates compared with a realization based on
two-level systems. Another interesting example is the recent
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experimental demonstration of a qutrit Greenberger Horne
Zeilinger (GHZ) state [11].

In general, if one is interested in measuring a qudit state, a
proper classification of all levels involved is needed. In [20],
the qubit state is determined by a fit of the time evolution of
the system. In setups which do not provide time-resolved data,
such as the current IBM Quantum [21] devices, other methods
of separating qudit states have to be employed [22–24]. The
strategies described in both [22] and [23] involve exciting
the qudit-resonator system at readout drive frequencies other
than the default frequency. At the default frequency, the dis-
tinguishability of the ground state and first excited state is
maximized, whereas using the adapted frequencies aims at
optimizing distances between different pairs of qudit states.

In this paper, we propose and evaluate improvements of the
measurement scheme of transmon qudit states by enhancing
their distinguishability. To optimize the readout, we determine
the measurement errors from the assignment matrix whose en-
tries denote the probability to classify a measurement outcome
to a state |i〉 even if state | j〉 was prepared. This assignment
matrix is calculated using qudit-state-dependent resonator
steady-state amplitudes obtained from a model describing the
readout of a transmon qudit by driving a coupled resonator.
The default measurement schedule of most superconducting
quantum hardware consists of a single-tone drive applied to
the readout resonator. The frequency of the tone is chosen to
maximally separate the ground and first excited states. The
strategies we propose are based on modified readout resonator
drive frequencies that take into account the separation of all
qudit states. These strategies include a single-frequency as
well as a multifrequency readout scheme. For a ququart, viz.,
the four lowest states of a qudit, we compare the proposed
strategies in simulation and show that depending on hardware
parameters, both strategies can be beneficial. We furthermore
compare the model to a measurement of the drive-frequency-
dependent resonator states on a current IBM Quantum device.

The paper is organized as follows. In Sec. II, we present
a mean-field model describing the readout sequence of a
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FIG. 1. Overview of qudit parameters of the IBM Quantum
devices listed in the legend. The qubit resonance frequency and
anharmonicity are denoted by ω0,1 and α1; see Appendix A. The
energy dispersion ε3 of the third excited state given in Eq. (A5)
follows from these device specifications. The labeled straight black
lines denote constant values of EJ/EC .

transmon qudit coupled to a harmonic readout resonator.
Based on this model, we calculate the readout drive-
frequency-dependent assignment errors between multiple
states that in some limits can be expressed analytically. In
Sec. III, we analyze both proposed readout schemes that aim
to minimize these errors. We compare the data that we gen-
erated on current IBM Quantum hardware (see Sec. IV) to
the readout model and strategies discussed in Secs. II and III.
The data for Fig. 1 were obtained on May 23, 2023, whereas
the data for Figs. 2–6 were obtained on July 7, 2023. To
improve the state preparation required in this procedure, we
propose to add two-photon transitions to the universal gate set
of qudit gates [7] and show that this will reduce the execution
time of certain qudit circuits and the duration of X -gate cali-
brations; see Appendixes B 2 and C. Finally, we conclude in
Sec. V.

II. TRANSMON-RESONATOR SYSTEM

A. Effective Hamiltonian

The fundamental building blocks of a superconducting
quantum computer are a quantum anharmonic oscillator, i.e.,
the transmon qudit, coupled to a harmonic oscillator, i.e., the
readout resonator. Following [19], the corresponding effec-
tive Hamiltonian obtained by treating the Jaynes-Cummings
interaction between the qudit and the resonator as a small
perturbation (see Appendix B 1) reads

Heff =
∑

j

(ω j + χ j−1, j + χ ja
†a)| j〉〈 j| + ωra†a. (1)

The parameter ω j is the energy (see Appendix A) of the bare
qudit state | j〉, ωr is the energy of the readout resonator, and
a(†) is its annihilation (creation) operator. Here and in the rest
of the paper, we set h̄ = 1. The second-order corrections to
the qudit and resonator energies, χ j−1, j and χ j , are defined in

Eqs. (B11) and (B12). Additionally, we describe a coherent
driving of the resonator at frequency ωd by [1]

Hd = �

2
(eiωd t−iφa + e−iωd t+iφa†), (2)

which enables the readout of qudit states.

B. Readout of states

The readout of a transmon qudit, in short, consists of driv-
ing the readout resonator while recording the response signal.
We model the time evolution of a general quantum state ρ

comprised of a qudit and its readout resonator by the following
Lindblad master equation:

d

dt
ρ = −i[Heff + Hd , ρ] + κD[a](ρ), (3)

D[a](ρ) = aρa† − 1

2
(a†aρ + ρa†a), (4)

where κ is the decay rate of the resonator. Using the effective
Hamiltonian given by Eq. (1) and assuming the qudit to be in
state | j〉, we arrive at the equation of motion of the mean-field
amplitude A ≡ 〈a〉 = Tr[aρ],

d

dt
A = −i(ωr + χ j )A − i

�

2
e−iωd t+iφ − κ

2
A. (5)

The fact that A depends on the qudit state | j〉 is used to dis-
criminate different qudit states. If the qudit is in a mixture or
superposition of states, this measurement procedure projects
the qudit onto one of its Fock states [1].

The general form of the complex value returned by an IBM
Quantum device is

Ā =
∫ T

0
dt k(t )A, (6)

where k(t ) encodes the kernel integration instructions (see
meas_kernel [25] in QISKIT [26]) and T is the total duration of
the measurement. The choice k(t ) = exp(iωdt ) corresponds to
integrating the measurement signal in the rotating frame of the
drive (see Sec. II B 1), whereas the choice k(t ) = exp(iωmt )
corresponds to a frame rotating at an arbitrary modulation
frequency ωm (see Sec. II B 2).

In this paper, we mainly consider the offset charge con-
figuration ng = 0. The value of ng influences the transmon
qudit energy spectrum; see Appendix A. Note that due to the
significant dependence on ng of the third and higher excited
states, their corresponding readout resonator states may be
smeared out in phase space if charge noise is present. In Fig. 1,
we present an overview of the energy dispersion ε3 of the third
excited state defined in Eq. (A5) for several IBM Quantum
devices. Since ε3 decreases with increasing EJ/EC , qudits that
lie in the upper-right region are preferred in general.

1. Rotating frame of drive

In this section, we will work in the rotating frame of the
drive. Quantities in this frame will be denoted by the super-
script (d ). Since Eq. (5) is defined in the laboratory frame,
we choose k(t ) = exp(iωdt ) to transform the signal into the
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FIG. 2. (a) Drive-frequency-dependent phase-space positions A(d )
j and A(m)

j of the coherent state of the resonator given the qudit prepared

in | j〉; see Eqs. (7) and (12). For ωm = ωd , the trajectories of all states A(d )
j match, denoted by the black circle. The colored lines denote A(m)

j for

ωm = ω
(0,1)
d,0 . Crosses highlight the positions at ωd = ωm where both models match, A(d )

j = A(m)
j . (b),(c) Error measures ξ j and ξ in the frame of

ωd and ωm respectively; see Eqs. (17) and (18). Following Appendixes A and B 1, for these plots, we determine EJ/EC by the qubit parameters
ω0,1 and α1 from ibm_lagos Q4. Moreover, we choose g/2π = 100 MHz, �/2π = 100 MHz, κ/2π = 5 MHz, T = 0.35 µs, σ j = 0.13�/κ ,
φ = 0, and ng = 0.

rotating frame of the drive and obtain

Ā(d )

T
κT �1−→ −�

2

eiφ

ωr + χ j − ωd − iκ/2
≡ A(d )

j . (7)

Here, A(d )
j is the steady-state resonator amplitude when the

qudit is in state | j〉 and defines a coherent state |A(d )
j 〉. Its

dependence on the resonator drive frequency is presented
in Fig. 2(a). Varying ωd , the steady-state amplitudes A(d )

j
of the readout resonator move on a circle centered at Ac =
−ieiφ�/2κ with diameter �/κ . At resonance ω

( j)
d,0 = ωr +

χ j , the states reach the maximum amplitude 2Ac. For qudit
readout, it is important that the distance di, j = |A(d )

i − A(d )
j |

between two qudit-state-dependent resonator states is large.
We can identify two regimes of how the positions of the
states in phase space depend on the readout drive frequency.
For a large resonator decay rate κ > |χi − χ j |, all states are
close to the position of maximum amplitude within the same
frequency range. In this case, di, j exhibits only one maximum
at

ω
(i, j)
d,0 = ωr + χi + χ j

2
, (8)

di, j
(
ω

(i, j)
d,0

) = 2�|χi − χ j |
(χi − χ j )2 + κ2

. (9)

In contrast, for a small resonator decay rate κ < |χi − χ j |, the
frequency ranges where the state amplitudes A(d )

j are close
to the maximum amplitude do not match. Here, two drive
frequencies ωd = ω

(i, j)
d,± maximize the distance di, j ,

ω
(i, j)
d,± = ω

(i, j)
d,0 ± 1

2

√
(χi − χ j )2 − κ2, (10)

di, j
(
ω

(i, j)
d,±

) = �

κ
≡ dc, (11)

where dc denotes the diameter of the circle on which the
states move. Thus, at ω

(i, j)
d,± , both states are located on opposite

sides of the circle, which is the maximum separation they can
obtain.

If we set the drive frequency to ω
(i, j)
d,0 (or ω

(i, j)
d,± ), i.e., max-

imizing the distance between state |i〉 and | j〉, the distance
between other pairs of states is in general reduced and hence
not optimal for discrimination of these states. Therefore, in
Sec. III, we present two measurement strategies to mitigate
this issue.

2. General rotating frame

In a frame of a general rotation frequency ωm, i.e., choos-
ing k(t ) = exp(iωmt ), the state reached in the long-time limit
κT � 1 is time dependent,

Ā(m)

T
κT �1−→ ei[(ωm−ωd )T/2]sinc[(ωd − ωm)T/2]A(d )

j ≡ A(m)
j ,

(12)

where sinc(x) = sin(x)/x and the superscript (m) is used
to denote quantities in this frame. The difference between
Eqs. (7) and (12) is an additional factor of sinc peaking
at ωd = ωm. These resonator state amplitudes and their de-
pendence on the drive frequency ωd are also visualized in
Fig. 2(a). The states A(d )

j move on the black circle with di-

ameter �/κ , whereas the motion of the states A(m)
j follows a

distorted circle (colored lines).

III. MEASUREMENT STRATEGIES

In the previous section, we presented a model describing
the readout on superconducting quantum hardware. The cen-
ters of the Wigner functions of the coherent readout resonator
states when the qudit is in state | j〉 are given by Aj . Due to
intrinsic quantum noise and hardware limitations, the possible
readout resonator states for each qudit state overlap. This leads
to potential misclassification and thus measurement errors
when reading out the qudit states.
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In the following, we propose two strategies for improving
qudit readout compared to the default measurement scheme
that utilizes a single resonator drive frequency that opti-
mizes the classification of |0〉 and |1〉. The first strategy
consists of finding a single frequency that maximizes the
distinguishability between all d qudit Fock states. In the sec-
ond strategy, we allow for multiple different drive frequencies.

A. Assignment matrix

To arrive at a measure of the distinguishability of states,
we introduce the measurement assignment matrix M [27].
The qudit-state-dependent resonator states are defined by their
steady-state amplitude Aj . We assume their Wigner functions
to follow a two-dimensional Gaussian distribution,

G(z, Aj, σ j ) = 1

2πσ 2
j

exp

(
−|z − Aj |2

2σ 2
j

)
, (13)

centered at Aj with standard deviation σ j larger than the in-
trinsic quantum noise. The elements of M are given by

Mi, j =
∫

d2z G(z, Aj, σ j )
∏
k �=i

i,k (14)

and define the probability to classify a measurement as state
|i〉 even if state | j〉 was prepared. The region corresponding to
each state |i〉 is defined by the maximum likelihood estimator
(MLE) leading to

i,k = [G(z, Ai, σi ) − G(z, Ak, σk )], (15)

where  denotes the Heaviside function. For σ j = σ (valid
assumption for this hardware setup; see the discussion about
the distribution of σ of Gaussian fits in the second paragraph
of Sec. IV), the MLE is equivalent to the minimum distance
estimator (MDE) that implies

i,k = (|z − Ak| − |z − Ai|). (16)

Using the MDE, a data point z is assigned to the region of
state Ai if its Euclidean distance to all of the other states Ak is
larger. In contrast, using the MLE, a data point z is assigned
to the region of the state Ai that has the largest probability
density. For simplicity and since in our measurements all σ j

are comparable, we choose the MDE throughout this paper.
Ideally, Mi, j = δi, j , meaning perfect measurement. We de-

fine two measures ξ j and ξ ,

ξ j = 1 − Mj, j, (17)

ξ = 1

d

d−1∑
j=0

ξ j, (18)

where ξ j is the probability of misclassifying the qudit state
| j〉. The dependence of ξ j and ξ on the readout resonator
drive frequency is shown in Figs. 2(b) and 2(c). The mea-
surement errors ξ j achieve their minima at different readout
resonator drive frequencies. If ωm �= ωd , the locations of the
minima cannot be distinguished as well as for ωm = ωd . In
the current setup of IBM Quantum hardware, the frequency
ωm of the rotating frame cannot be changed. Therefore, the
difference between the frequency dependencies of all ξ j is less
pronounced.

Note that for setups where all qudit states lie on a circle
(e.g., always for qutrits) and σ j = σ , Mi, j can be expressed in
terms of Owen’s T function; see Appendix E. This allows for
fast numerical calculation of Eq. (14).

B. Finite sampling

In experiments, measuring an unknown state |ψ〉 =∑
j c j | j〉 in the Z basis is equivalent to estimating its popu-

lations p j ≡ |c j |2 based on a set of N data points {z j}, also
called shots. For each shot, the total state is projected onto
one of the d qudit states | j〉 with probability pj . Therefore, the
total probability distribution of measuring one shot at z given
�p is a sum of all d Gaussians defined in Eq. (13) weighted
by p j . The measurement task can be understood as learn-
ing the parameters �p = (p j ) of this multimodal probability
distribution,

P(z| �p) =
d−1∑
j=0

p jG(z, Aj, σ j ), (19)

where Aj and σ j are obtained from a separate measurement.
The space of possible �p,

p j ∈ [0, 1], pd−1 = 1 −
d−2∑
j=0

p j, (20)

can be mapped to a (d − 1)-simplex, using the normalization
condition of �p.

We describe the measurement analysis as follows. Each
shot is labeled by a state | j〉 depending on its phase-space
distance (MDE) to the d qudit Fock states. The resulting
list of counts �N can be used to obtain information about �p.
In Appendix D, we show that by using Bayes’ formalism,
the probability distribution of �p given �N is the Dirichlet
distribution,

P( �p | �N ) = 1

N Dir(M �p, �N ). (21)

The component Nj of �N equals the number of shots classi-
fied as state | j〉. The assignment matrix M reflects the fact
that some shots are classified incorrectly. Given �N , the lo-
cation of the maximum (also called mode) can be computed
analytically,

�pmode = 1

N
M−1 �N . (22)

This result is similar to a common procedure known in QISKIT

as “measurement error mitigation.” Note that applying the
inverse of M to �N can lead to negative components of �pmode. In
QISKIT, this problem is circumvented by approximating �pmode

by the valid �p ′ that is closest (in two-norm) to �N (see method
least_squares in qiskit.utils.mitigation._filters.py [26]),

�p ′ = argmin
�p

(| �N/N − M �p |2). (23)

Equation (23) is the estimate of the state populations
�p after measuring �N shots. We will use the uncertainty
of these estimates, viz., the numerically calculated stan-
dard deviations SD[pj], to decide which of the proposed
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strategies performs best, i.e., exhibits the smallest standard
deviation.

C. Comparison of strategies

We consider two strategies that make use of either
one or multiple drive frequencies. In the default readout
scheme of superconducting quantum hardware, measurement
pulses with a single drive frequency that maximizes the
distinguishability between the qubit states |0〉 and |1〉 are
applied.

The first strategy we propose replaces the default frequency
by the one that optimally separates all qudit states in phase
space simultaneously. Since, in general, the state |ψ〉 that we
want to measure is unknown, we suggest to optimize ξ [see
Eq. (18)], which is the average of the individual measurement
errors ξ j .

The second strategy uses N/d shots for each of the d dif-
ferent frequencies at which individual states are most isolated,
i.e., ξ j are minimal. We will show that this strategy is advanta-
geous in cases when there is no single frequency at which all
states are separated well enough. Hardware parameters and
the state to be measured determine which of the two strategies
outperforms the other.

To compare both strategies, we draw N = 1000 samples
from the probability distribution given by Eq. (19) for σ j = σ

and an equal-superposition state pj = 1/d . The drive frequen-
cies we use are the locations of the minimum of ξ for the
single-drive strategy and the minima of ξ j for the multifre-
quency strategy. Each sample is classified using the MDE [see
Eq. (16)], i.e., by its Euclidean distance to the nearest state
| j〉. The final probability distribution for the p j of the single-
frequency strategy is given in Eq. (21). The final probability
distribution for the multifrequency strategy is the normalized
product of the term in Eq. (21) for each measurement fre-
quency ωk ,

P( �p |{�nk}) ∝
d−1∏
k=0

Dir(M(ωk ) �p |�nk ), (24)

where �nk is the list of counts of classified shots for the kth
measurement frequency. The standard deviation SD[pj] is
computed numerically from this distribution.

Figure 3 shows the dependence of the ratio of both aver-
aged standard deviations,

SDs/m = 1

d

d−1∑
j=0

SDs/m[p j], (25)

of p j on hardware parameters σ j = σ and κ . The blue region
corresponds to setups for which the standard deviation SDs of
p j using a single-drive-frequency scheme is smaller. In con-
trast, the red region corresponds to hardware configurations
where it is beneficial to measure at multiple frequencies, i.e.,
SDm of the multidrive frequency scheme is smaller. The gray
region indicates parameter values for which both standard
deviations exceed SDs/m � 0.1. Since the expected values p j

lie in [0,1], this threshold corresponds to an uncertainty of at
least 10%.

FIG. 3. Ratio of the standard deviation SDm for the multifre-
quency strategy and the standard deviation SDs of the single-
frequency strategy applied to an equal-superposition state taking
N = 1000 shots. The gray region indicates where both standard
deviations exceed SDs/m � 0.1. The straight lines denote constant
values of σκ/�. We take the same qudit parameters as in Fig. 2 and
choose g/2π = 100 MHz and �/2π = 100 MHz.

The overall trend is that for small σ , i.e., strongly located
Gaussians, the single-frequency strategy performs at a similar,
slightly better level than the multifrequency strategy. The mul-
tifrequency strategy is preferable for large σ , when the overlap
of the Gaussians would be too large using a single drive
frequency. Intuitively, this is expected since, for small κ and
large σ , only one state is isolated from the others which group
together at the origin in phase space; see discussion of regimes
κ ≶ |χ j − χ j+1| in Sec. II B 1. We also added lines of constant
relative uncertainty σκ/�. Along these lines, the Gaussian
widths σ are fixed in units of the diameter �/κ of the circle on
which the states move in the rotating frame of the drive. The
solid line corresponds to σ = 0.13�/κ chosen in Figs. 2(b)
and 2(c), whereas the dashed line approximately matches the
threshold of SDs/m � 0.1. Following the solid black line, the
standard deviation of the single-frequency strategy appears
to exhibit a minimum around κ/2π = 1 − 2 MHz. For fixed
σκ/� and small resonator decay rates κ , the states move
around the circle rather individually, whereas for large κ , the
states move as a group; cf. Sec. II B 1.

IV. MEASUREMENT OF A QUQUART

In this section, we will compare the model described in
Sec. II to data obtained from ibm_lagos Q4. We prepare the
four lowest Fock states of the transmon qudit and measure
them for various readout drive frequencies. In Appendix C,
the preparation of the individual qudit Fock states is described.
Sequences of X gates defined as simple Gaussian pulses are
used to prepare the four lowest Fock states of the transmon
qudit. As mentioned earlier, we make use of higher-order X
gates; see Appendix B 2. These provide a reduction of the
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FIG. 4. (a) Drive-frequency-dependent ququart measurements on ibm_lagos Q4, the experimental equivalent of Fig. 2(a). The colored
curves (with white shadows) correspond to the centers of Gaussian fits to the Fock states | j〉. Black straight lines indicate the boundaries of
regions assigned to individual Fock states. These boundaries are constructed using the minimum distance estimator; see Eq. (16). For the drive
frequency ω0 = 7.2463 GHz, we show the measurement results of all N = 2000 shots for each prepared Fock state. Black crosses mark the
centers of their Gaussian fits. (b) Measurement errors ξ j = 1 − Mj, j based on all measured shots of the data presented in (a). Here, the elements
Mi, j of the assignment matrix equal the relative number of shots, Ni/N , that are classified as |i〉 even if | j〉 is prepared. The horizontal gray line
denotes the measurement error ξdef obtained using the default measurement pulse. (c) Measurement errors ξ j based on Gaussian fits to the data
presented in (a) and the assignment matrix M defined in Eq. (14). Using the centers and average σ of Gaussian fits for each readout resonator
drive frequency, we calculate M numerically. The ξ j shown in (b) are larger than those in (c) since they do not only represent assignment
errors, but also include additional errors such as qudit decay, leakage, and imperfect state preparation. In both (b) and (c), the minimum of the
average assignment error ξ will be smaller than ξdef obtained by the default pulse if the modulation frequency is chosen such that ωm = ωd ; cf.
Figs. 2(b) and 2(c).

execution time of certain quantum circuits and a reduction of
the duration of X -gate calibrations.

In Fig. 4(a), we show the measurements of the four lowest
Fock states for various readout resonator drive frequencies.
This plot is the experimental equivalent of Fig. 2(a). For each
Fock state and for each readout resonator drive frequency, we
take N = 2000 shots while keeping the other drive parameters
fixed at the default values. For ω0 = 7.2463 GHz, Fig. 4(a)
shows all shots in the color of the prepared Fock state. This
value of ω0 is −5.5 MHz off the default frequency reported by
the IBM Quantum device. Black crosses highlight the centers
of the Gaussian fits. For other drive frequencies, we only plot
the centers of the Gaussian fits as colored lines (with a white
shadow). The straight black lines denote the boundaries of
regions [defined via MDE; see Eq. (16)] that are assigned to
one Fock state.

We analyze the measurement errors in two ways. First,
we define the elements Mi, j by the relative number of shots,
Ni/N , classified as |i〉 even if | j〉 is prepared. In this way, M
incorporates misclassification errors but also additional errors
such as imperfect qudit state preparation. From this matrix, we
obtain the errors ξ j , displayed in Fig. 4(b). Second, we use the
centers of the Gaussian fits for each qudit state and for each
value of the resonator drive frequency and a fixed value of
σ to compute the assignment matrix defined in Eq. (14). By
examining these Gaussian fits, we find a narrow distribution
of the σ values: σ = (0.302 ± 0.017) [same arbitrary units as
in Fig. 4(a)]. The resulting errors ξ j are shown in Fig. 4(c).
Here, the ξ j only represent errors that arise from misassign-
ment of shots drawn from the multi-Gaussian distribution; see
Eqs. (13) and (14). Since real devices feature other sources of
error, e.g., qubit decay, leakage, and imperfect state prepara-

tion, the values of ξ j presented in Fig. 4(b) are larger than in
Fig. 4(c).

Our model, visualized by the theory plots in Figs. 2(a) and
2(c), shows qualitative agreement with the data presented in
Figs. 4(a) and 4(c). In both Figs. 4(b) and 4(c), the horizontal
gray line ξdef denotes the average assignment error of the four
lowest Fock states using the default readout pulse and should
be compared with the solid black line ξ . The corresponding
data were taken from Rabi calibration measurements, similar
to Fig. 6(b), at the drive amplitude that is closest to the fitted
optimum.

We find a dependence of the measurement errors ξ j

on the readout resonator frequency as expected. The
data presented in Figs. 4(b) and 4(c) suggest that the
default measurement frequency is not ideal to separate
all four qudit states. However, the minima appear at
only slightly different positions. Note that the differ-
ence in positions is only small due to IBM Quantum
software/hardware limitations: ωm cannot be set to its ideal
value ωm = ωd ; see Sec. II B 2. We expect the impact of
varying the readout resonator drive frequency to be much
higher if it is possible to analyze all data in the rotating frame
of the drive; compare Figs. 2(b) and 2(c).

In this paper, we focused on the analysis of only four qudit
states since the readout of higher excited states beyond |3〉
becomes difficult for several reasons. Higher excited states are
more sensitive to charge noise; see Fig. 5. Since χ j depends
on the qudit spectrum ω j , charge noise leads to ambiguous
steady-state amplitudes. In addition, finding a single drive
frequency that properly separates all qudit states becomes
more difficult with an increasing number of qudit states. For
example, for the IBM Quantum device that we utilized in
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this paper, we estimate χ1 < χ4 < χ2 which indicates that the
steady-state amplitude corresponding to |4〉 lies between |1〉
and |2〉. We expect that the more states are involved, the better
the performance of a multifrequency strategy in comparison
to a single-frequency strategy given a small κ < |χi − χ j |; cf.
Fig. 3.

V. CONCLUSION

We have presented a model that describes phase-space
measurement data of qudit states on superconducting quantum
hardware. Our model qualitatively matches the data that we
generated on a current IBM Quantum device. For qudit-state
preparation, we employ higher-order X gates between | j〉 and
| j + 2〉. This scheme leads to a reduction of the execution
time of qudit quantum circuits as well as of the duration of
X -gate calibrations. Based on our model, we have compared
the performance of two measurement strategies, a single-
frequency and a multifrequency scheme, in simulations. For
each strategy, we have identified the regime in hardware pa-
rameter space where it is optimal. The multifrequency strategy
is superior when the qudit-state-dependent resonator states
overlap significantly.

To use the full potential of both strategies, it is necessary
to adjust the modulation frequency ωm of the device. This is
currently not possible on IBM Quantum hardware. Despite
these software/hardware restrictions, we still find differences
in the frequency locations of the minima of the individual
measurement errors ξ j and an improvement over the mea-
surement error ξdef using the default measurement pulse. We
expect a better performance of the strategies for setups that
operate in the rotating frame of the drive ωm = ωd .

In the future, adaptive measurement schemes that change
the drive frequency from shot to shot or between bunches of
shots may be possible. This can lead to a further improvement
of transmon qudit measurements.
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APPENDIX A: TRANSMON ENERGY LEVELS

To estimate resonance frequencies for various transitions,
we numerically compute the energy levels of the transmon
qudit Hamiltonian [19,28],

HT = 4EC

∑
n

(n − ng)2|n〉〈n|

− EJ

2

∑
n

(|n〉〈n + 1| + |n + 1〉〈n|), (A1)

FIG. 5. Numerical prediction of the energy levels En of
ibm_lagos Q4 based on Eq. (A1) and EJ/EC ≈ 45.6. The transition
frequencies ωi, j are displayed in units of (2π ) GHz.

depending on the offset charge ng and the ratio EJ/EC . The
sorted eigenvalues En(ng) are shifted such that E0(0) = 0. We
define the average transition frequency ωi, j between |i〉 and
| j〉 of both configurations ng = 0, 1/2 as

ωi, j = Ej (0) + Ej (1/2) − Ei(0) − Ei(1/2)

2( j − i)
, (A2)

and the frequency difference �ωi, j as

�ωi, j = Ej (0) − Ei(0) − Ej (1/2) + Ei(1/2)

j − i
. (A3)

The anharmonicity α j and the energy dispersion ε j of the
transmon qudit are defined by

α j = ω j, j+1 − ω j−1, j, (A4)

ε j = Ej (0) − Ej (1/2). (A5)

We numerically obtained the fundamental parameter EJ/EC

of a specific IBM Quantum backend by demanding that the
qubit frequency ω0,1 and anharmonicity α1 match the values
reported by this device. In Fig. 5, we plot the dependence of
En on ng for the five lowest states. The values of the frequency
difference vary from �ω0,1/2π = 25.1 kHz to �ω3,4/2π =
−142 MHz. In Fig. 1, the values ε3 for a number of IBM
Quantum devices are displayed. For large ε j compared to
ω j, j+1, the Wigner function of the state | j〉 effectively is
smeared out in phase space since both configurations ng =
0, 1/2 exhibit different resonance frequencies.

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION

In this appendix, we will use Schrieffer-Wolff transforma-
tions [29] to obtain perturbative approximations of, first, the
Jaynes-Cummings interaction between a qudit and a readout
resonator and, second, the two-photon drive of the qudit.
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In general, the system of interest can be defined by the
Hamiltonian

H = H0 + λH1 + λV. (B1)

Here, H0 and H1 are block diagonal in the subsystems,
whereas V is block off diagonal. To find an effective block-
diagonal Hamiltonian, i.e., eliminate the block off-diagonal
part V , the unitary transformation U = eS is applied to H ,

Heff = UHU † = eSHe−S. (B2)

Expanding the anti-Hermitian operator S = −S† as S =∑∞
n=1 λnS(n), Heff can be expressed as

Heff = H + [S, H] + 1

2
[S, [S, H]] + · · · =

∞∑
n=0

λnH (n)
eff . (B3)

The first-order contribution reads H (1) = H1 + V +
[S(1), H0]. To eliminate the block off-diagonal V in this
expression, we impose V = −[S(1), H0]. Since H0 is
block diagonal, S(1) has to be block off diagonal. As a
consequence, [S(1),V ] is block diagonal. The second-order
contribution reads H (2) = 1

2 [S(1),V ] + [S(1), H1] + [S(2), H0],
and imposing [S(1), H1] = −[S(2), H0] guarantees the second
order to be block diagonal. The second-order contribution to
the effective block-diagonal Hamiltonian is then given by

H (2)
eff = 1

2 [S(1),V ]. (B4)

We choose a superposition of all operators appearing in V as
an ansatz for S(1).

1. Jaynes-Cummings interaction

Following the notation of [19], the Hamiltonian describing
a transmon qudit coupled to a readout resonator reads

Hq + Hr + Hint

=
∑

j

ω j | j〉〈 j| + ωra†a

+
∑

j

g j, j+1(a†| j〉〈 j + 1| + a| j + 1〉〈 j|), (B5)

where ω j is the energy (see Appendix A) of the bare
qudit state | j〉, ωr is the energy of the readout res-
onator, and a(†) is its annihilation (creation) operator.
The parameters g j, j+1 denote generalized Jaynes-Cummings
coupling strengths between the qudit and the resonator.
Using the approximation g j, j+1 = g

√
j + 1, the interaction

Hamiltonian reduces to g(a†b + ab†) [18], where b(†) is
the annihilation (creation) operator of the transmon qu-
dit. The qudit and resonator Hamiltonians Hq and Hr

denote two blocks of commuting operators |i〉〈 j| and
a(†). The generalized Jaynes-Cummings interaction couples
both blocks.

We start with identifying the block-diagonal and block off-
diagonal parts,

H0 = Hq + Hr, H1 = Hd , (B6)

V = Hint. (B7)

Using a superposition of all operators appearing in V as an
ansatz for S(1),

S(1) =
∑

j

(Cja
†| j〉〈 j + 1| − C∗

j a| j + 1〉〈 j|), (B8)

the coefficients Cj are obtained as

Cj = g j, j+1

ω j − ω j+1 + ωr
. (B9)

Replacing Cj in Eq. (B8) by this expression and using the
definition g−1,0 = 0 as well as the sign convention of [1,19]
leads to

1

2
[S(1),V ] =

∑
j

χ j−1, j | j〉〈 j| +
∑

j

χ ja
†a| j〉〈 j|. (B10)

Here,

χ j, j+1 = g2
j, j+1

ω j+1 − ω j − ωr
, (B11)

χ j ≡ χ j−1, j − χ j, j+1

= g2
j−1, j

ω j − ω j−1 − ωr
− g2

j, j+1

ω j+1 − ω j − ωr
, (B12)

and we have neglected terms proportional to (a2| j + 2〉〈 j| +
H.c.). This is justified by the possibility to interpret
these terms as perturbations that are eliminated by a
second Schrieffer-Wolff transformation. This will lead to
terms proportional to | j〉〈 j|, a†a| j〉〈 j|, (a†a)2| j〉〈 j|, and
also (a4| j + 4〉〈 j| + H.c.). Importantly, for typical values
of g j, j+1, ω j , and ωr , the coefficients of all these terms
are a factor of 104 smaller than the previous second-
order contributions and can therefore safely be neglected.
In conclusion, in Eq. (B10), we arrived at corrections
to the Hamiltonian that are diagonal in the qudit and
resonator states. The shifts of the qudit and resonator
energies are

ω̃ j = ω j + χ j−1, j,

ω̃r, j = ωr + χ j . (B13)

The resonance frequencies of the qudit transitions |i〉 ↔ | j〉
can be estimated to

ω̃i, j = ω̃ j − ω̃i

j − i
. (B14)

2. Qudit drive

In analogy to Appendix B 1, we perform a Schrieffer-Wolff
transformation in a system consisting of a qudit and its drive
only. We will use this method to predict the Rabi oscillation
frequencies of second-order transitions | j〉 ↔ | j + 2〉. For
previous work on multiphoton transitions, see, e.g., [30,31].
Starting with the Hamiltonian [1],

H = H0 + λV =
∑

j

(ω̃ j − ωd )| j〉〈 j|

+ λ
�q

2

∑
j

√
j + 1(e−iφ| j〉〈 j + 1| + eiφ| j + 1〉〈 j|),

(B15)
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FIG. 6. (a) Qudit resonator spectroscopy of transitions |i〉 ↔ | j〉. Colored markers denote measured data and solid curves correspond to
Gaussian fits. We plot each resonance spectrum centered around the predicted transition frequency ω̃i, j [see Eq. (B14)] using g/2π = 65 MHz.
(b) Rabi oscillations |i〉 ↔ | j〉 depending on the drive amplitude for fixed pulse duration. We sweep the readout resonator drive amplitude while
keeping all other parameters of the drive fixed. For first-order qudit state transitions, we fit a sinusoidal dependence on a linear function of the
drive amplitude in the interval [0,0.5]; see the lines connecting crosses and, respectively, diamonds. For second-order qudit state transitions, we
fit a sinusoidal dependence on a quadratic function of the drive amplitude in the interval [0,1]; see the lines connecting dots and, respectively,
triangles. The vertical dashed lines indicate the locations of the first maxima obtained from the fits.

an expansion in λ leads to

H (2)
eff = −�2

q

8

∑
j

f j (e
−2iφ | j〉〈 j + 2| + e2iφ | j + 2〉〈 j|) ,

(B16)

where

f j =
√

( j + 1)( j + 2)(ω̃ j+2 − 2ω̃ j+1 + ω̃ j )

(ω̃ j+2 − ω̃ j+1 − ωd )(ω̃ j+1 − ω̃ j − ωd )
. (B17)

Note that these expressions only hold for ωd �= ω̃ j+1 − ω̃ j ,
i.e., drives that are not resonant with transitions between
neighboring qudit levels | j〉 ↔ | j + 1〉.

APPENDIX C: PREPARATION OF QUDIT STATES

We prepare the four lowest Fock states of an IBM Quantum
transmon qudit, described in Sec. IV, by applying sequences
of calibrated X gates to the qudit ground state |0〉. For simplic-
ity, we implement these X gates via Gaussian pulses. For each
pulse, we first calibrate its drive frequency ωd and second, its
drive amplitude �q.

The optimal drive frequency is obtained from a Gaus-
sian fit to resonance measurement data shown in Fig. 6(a),
where we fix the pulse amplitude to an initial estimate.
First, the measured N = 2000 shots per qudit drive fre-
quency are averaged. Second, these averages are rotated such
that their major principal axis is oriented along the X axis.
And third, the means are projected onto the X axis which
justifies the axis label “rotated projected data.” For the spec-
troscopy measurements, in addition, we define the origin of
the y axis of Fig. 6(a) to correspond to the initial state of
the analyzed transition and the maximum to the final state.
Our estimated frequency ω̃i, j is calculated by Eq. (B14)
using g/2π = 65 MHz.

To obtain the initial estimate of the qudit drive ampli-
tude, we define the rotation angle θ of a resonant Rabi
oscillation between states | j〉 and |k〉. Comparing both
sides of

exp(−iHt ) = exp

[
− i

2
θ (| j〉〈k| + |k〉〈 j|)

]
, (C1)

where the left-hand side is the time evolution of the effective
drive Hamiltonian,

H = �( j, k)(| j〉〈k| + |k〉〈 j|). (C2)

Therefore, the rotation angle θ depends on the effective
Rabi frequency �( j, k) and the pulse duration t . Following
Eq. (B15) for λ = 1, the rotation angle θ for Rabi oscillations
between | j〉 and | j + 1〉 is given by

θ = t j, j+1�
( j, j+1)

√
j + 1. (C3)

The rotation angle for Rabi oscillations between non-
neighboring states | j〉 and | j + 2〉 can be computed using
Eq. (B16),

θ = t j, j+2
(�( j, j+2))2

4
f j . (C4)

The Rabi frequency of the |0〉 ↔ |2〉 transition scales quadrat-
ically with �(0,2). Using Eqs. (C3) and (C4), the initial
estimate for the π -pulse amplitudes �

( j,k)
π can be related to the

default X -gate amplitude �(0,1)
π reported by the IBM Quantum

backend,

�( j, j+1)
π = �(0,1)

π√
j + 1

, (C5)

�( j, j+2)
π = 2

√
�

(0,1)
π t0,1

f jt j, j+2
. (C6)
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Here we used that all single-qudit operations are implemented
within the same duration t j, j+1 = t0,1.

After evaluating the resonance measurement, we calibrate
the X -gate drive amplitude via Rabi oscillations; see Fig. 6(b).
The data are rotated and projected onto the major principal
axis as described before for the spectroscopy measurements.
As shown in Eq. (B16), the Rabi frequency for transitions
| j〉 ↔ | j + 2〉 depends nonlinearly on the drive amplitude.
Since these transitions are suppressed by the small factor
�q f j , we choose t j, j+2 = 2t0,1 such that �(0,2)

π does not exceed
the limits of IBM Quantum software/hardware restrictions.
The π amplitude of an X -gate pulse is identified with the
location of the first maximum in Fig. 6(b), indicated by dashed
lines. For transitions between neighboring states, we fit a sine
dependence on a linear function of �q and, for second-order
transitions, we fit a sine dependence on a second-order poly-
nomial of �q. Using those fits, any desired rotation angle, e.g.,
π for an X gate or π/2 for a Hadamard gate, can be mapped
back to a corresponding pulse amplitude.

The sequence of calibrating drive frequency and amplitude
described above can be iterated several times to improve gate
fidelity. For simplicity, we consider only one round of calibra-
tions. To increase fidelity, we chose the initial value for �1,3

based on prior test measurements.
Implementing gates in the | j〉 ↔ | j + 2〉 subspace re-

sults in two advantages. First, our implementation of an
X -gate Xj, j+2 between | j〉 and | j + 2〉 takes only twice
the single-qudit gate duration t0,1. In contrast, using single-
qudit gates, Xj, j+2 consists of three single-qudit operations
Xj, j+1Xj+1, j+2Xj, j+1 with a total duration of 3t0,1. Second, the
calibration of the drive frequencies (amplitudes) for |0〉 ↔ |1〉
and |0〉 ↔ |2〉 are independent of each other and can therefore
be combined into a single QISKIT job (set of measurements
submitted to an IBM Quantum device). In contrast, the fre-
quency calibration for the transition |1〉 ↔ |2〉 depends on
the Rabi measurement for the transition |0〉 ↔ |1〉. In total,
we can perform our calibration in four QISKIT jobs: (i) drive
frequency of X01 and X02, (ii) drive amplitude of X01 and X02,
(iii) drive frequency of X12, X23, and X13, and (iv) drive ampli-
tude of X12, X23, and X13. In contrast, the standard sequential
calibration of single-qudit X gates would take six jobs: two
for each of the three single-qudit X gates between neighboring
states.

APPENDIX D: DIRICHLET DISTRIBUTION

We describe the probability distribution that estimates the
populations p j ≡ |c j |2 of the state we want to analyze us-
ing Bayesian inference. To this end, we define a recursion
relation

P( j+1)( �p) = P(z j | �p)

P(z j )
P( j)( �p), (D1)

P(z j ) =
∫

dd−1 p P(z j | �p)P( j)( �p), (D2)

between the estimated probability distribution (prior) P( j)( �p)
of the Gaussian amplitudes �p before and after receiving the
jth data point z j , also called shot. Each shot follows the
probability distribution P(z j | �p) defined in Eq. (19). After ob-
taining N data points, this leads to the probability distribution

P(N )( �p),

P(N )( �p) =
∏N−1

j=0 P(z j | �p)∏N−1
j=0 P(z j )

P(0)( �p). (D3)

The initial prior P(0)( �p) is chosen to be a uniform distribution.
If the width of the Gaussians is small compared to their

distances, this method is equivalent to the description given
in the following; see, also, Sec. III B. For simplicity, instead
of using this Bayesian ansatz of the probability distribution,
each of the N shots is classified as one of the d qudit states.
The components Nj of �N equal the number of shots classified
as | j〉. This procedure corresponds to neglecting the position
z j of this shot, i.e., the Gaussian weight G(z, Aj, σ j ) of the
shot. Given Nj , the posterior probability distribution P(N )( �p)
for the qudit populations p j for a perfect measurement is equal
to

P( �p | �N ) = Dir( �p, �N ) = (N + d − 1)!∏d−1
k=0 Nk!

d−1∏
k=0

pNk
k , (D4)

with

d−1∑
j=0

p j = 1,

d−1∑
j=0

Nj = N, (D5)

introducing the Dirichlet distribution Dir [32]. The location of
its maximum (also called mode) with respect to p j is given by
Nj/N , and its variances follow as

Var[p j] = (Nj + 1)/(N + d )[1 − (Nj + 1)/(N + d )]

N + d + 1
.

(D6)

Defining n j = Nj/N , for large N the variance of p j scales like
n j (1 − n j )/N .

We now consider the assignment matrix M [see Eq. (14)],
which describes misclassification errors. Using a Bayesian
posterior ansatz, we find that the probability distribution has
to be modified to

P( �p | �N ) = 1

N Dir(M �p, �N ), (D7)

where

N =
∫

V�p
dd p Dir(M �p, �N ). (D8)

The assignment matrix maps proper states �p from V�p
[related to a (d − 1)-simplex] to a subspace VM �p ⊆ V�p. There-
fore, if �N/N ∈ VM �p, the mode of Eq. (D7) is naturally
M−1 �N/N .

APPENDIX E: ANALYTICAL ASSIGNMENT MATRIX

In this appendix, we present an analytical expression for
the assignment matrix in specific setups that allows for a
fast numerical implementation. The following expressions
hold for systems with σ j = σ . Furthermore, all states have
to lie on a circle centered at Ac = xc + iyc. Examples are
qudit systems with ωm = ωd (cf. discussion in Sec. II B 1)
or qutrit systems with arbitrary ωm. Equation (14) can be

013050-10



IMPROVING TRANSMON QUDIT MEASUREMENT ON IBM … PHYSICAL REVIEW RESEARCH 6, 013050 (2024)

written as

Mi, j = 1

4

[
1 − erf

(
x j − xc√

2σ

)]

+ T

(
x j − xc

σ
,−ai,

yc − y j + ai(x j − xc)

σ

)
, (E1)

where the slope of the bisecting line between Ai and Ai−1 is

ai = −xi − xi−1

yi − yi−1
. (E2)

Here, the variables x j and y j are the real and imaginary
part of Aj . The coordinate system is rotated such that Ai

and Ai+1 are aligned along the real axis in phase space.

Finally,

T (h, a, b) = 1

2
√

2π

∫ ∞

h
dx exp

(
−x2

2

)
erf

(
ax + b√

2

)
= 1

4
erf

(
b√

2(1 + a2)

)[
1 − erf

(
h√
2

)]

+ T

(
b√

1 + a2
, a + h(1 + a2)

b

)
+ T

(
h, a + b

h

)
− T

(
b√

1 + a2
,

h
√

1 + a2

b

)
− T

(
h,

b

h
√

1 + a2

)
(E3)

is a generalized version of Owen’s T function, T (h, a) = T (h, a, 0) [33,34].
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