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Robustness of interdependent hypergraphs: A bipartite network framework
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In this paper, we develop a bipartite network framework to study the robustness of interdependent hypergraphs.
From such a perspective, nodes and hyperedges of a hypergraph are equivalent to each other, a property
that largely simplifies their mathematical treatment. We develop a general percolation theory based on this
representation and apply it to study the robustness of interdependent hypergraphs against random damage,
which we verify with numerical simulations. We analyze a variety of interacting patterns, from heterogeneous
to correlated hyperstructures, and from full- to partial-dependency couplings between an arbitrary number of
hypergraphs, and characterize their structural stability via their phase diagrams. Given its generality, we expect
that our framework will provide useful insights for the development of more realistic venues to characterize
cascading failures in interdependent higher-order systems.
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I. INTRODUCTION

Natural systems often depend on one another to function.
Modeling this feature can drastically change the robustness of
coupled networks as compared to their isolated counterparts
[1–4] since small damages get amplified, within and across
scales, leading to macroscopic regime shifts [5]. Well-known
examples pertinent to this finding often happen in manmade
infrastructures such as blackouts in power grids [6–10], finan-
cial and ecological systems [11–13], and lie at the origin of
extreme events such as transport congestion [14,15] or climate
changes [16,17].

In the context of network theory, interdependent net-
works [18] provide a minimal theoretical [19–21] and
experimental [22] framework to study these catastrophic
events under realistic constraints. Thus far, models of inter-
dependent systems focused mainly on pairwise dependency
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links between pairwise-coupled networks endowed with a
broad variety of structural and functional patterns like partial
dependencies [23], correlated structures [24–27], redundant
dependencies [28], or multiple support or dependent inter-
connections [29–31], to name a few. However, a growing
body of evidence shows that real-world systems may not be
faithfully described by models based only on pairwise in-
teractions, resulting in an increasing interest in higher-order
network models [32–38]. In this light, a series of works have
revealed essentially new outcomes induced from high-order
interactions in a large variety of collective phenomena which
are otherwise absent when only pairwise interactions are taken
into account [37,39–46]. Paradigmatic examples are complex
contagion processes [47–49] and ecosystems [50–53], where
higher-order interactions yield new patterns in their structural
and functional robustness or change the type of their phase
transitions.

Motivated by these examples, models of interdependent
higher-order networks have started attracting certain inter-
est, raising mathematical and computational challenges to
study their structural and dynamical properties [54–56]. In
Ref. [57], in particular, a multiplex representation based on
the factor graph of hypergraphs was put forward to analyze
the properties of higher-order percolation on such structures
under a variety of structural constraints. In this paper we
study, instead, the percolation of a network of interdependent
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FIG. 1. Illustration of the bipartite representation of hypergraphs and interdependent hypergraphs. (a) A schematic plot of a hypergraph
with three hyperedges, where the degree of hyperedge 1 (the left triangle-like shape in yellow) is three containing nodes 1, 2, and 3 (indexed
in blue), the degree of hyperedge 2 (the middle one in yellow) is three containing nodes 3, 4, and 5, and the degree of hyperedge 3 (the right
one in lilac) is four. (b) The bipartite network representation of the hypergraph in (a) where nodes and hyperedges are indexed in the same
way. For this hypergraph G, the number of nodes is |N�| = 8, the number of hyperedges is |N⊥| = 3, and the number of node-hyperedge
connections is |E | = 10. (c) A schematic plot of two interdependent hypergraphs, where dashed lines connect the pairs of hyperedges in the
two hypergraphs that are interdependent. (d) The bipartite network representation of the interdependent hypergraphs shown in (c).

hypergraphs (IHs) by relying on a bipartite network repre-
sentation [58], where nodes and hyperedges are represented
by two separated sets of topological objects and if a node
is incident to a hyperedge then a bipartite link connects the
node to the hyperedge. This representation produces an in-
cidence matrix which enables us to fully and concisely
characterize the robustness of interdependent hypergraphs by
a suitable generalization of the generating function formalism
[59]. We show that our bipartite framework can be conve-
niently applied to delicate scenarios, including correlated IHs,
IHs composed by an arbitrary number of layers, and IHs with
partial dependency couplings, whose analytical predictions
are validated against numerical simulations.

The paper is organized as follows. In Sec. II we in-
troduce the bipartite network representation to model a
single hypergraph. Section III applies the bipartite model to
hyperedge-IHs and a percolation theory is developed to an-
alyze their robustness under cascading failures. Section IV
contains the general case where interdependent hyperedges
are correlated according to the order of the interaction they
model (e.g., order 2 for pairwise links, order 3 for triples, n
for n-tuples, and so forth). Section V describes the case where
IHs are composed of an arbitrary number of hypergraphs, and
Sec. VI extends the latter to the case of partial IHs where only
a fraction of hyperedges in one layer are dependent on those
in other ones. We present our conclusions in Sec. VII.

II. BIPARTITE NETWORK REPRESENTATION

In the bipartite network representation, nodes and hyper-
edges of a hypergraph are separated into two distinct sets,
denoted as N� and N⊥, respectively. When a node is inci-
dental to a hyperedge, a link is generated connecting the node
and the hyperedge, which is regarded as a node-hyperedge
connection. Elements in the same set do not connect directly
and their relations can be read from the node-hyperedge
connections [see Fig. 1(b) for an illustrative example]. By
collecting all the node-hyperedge connections into the set
E , we obtain the full structural information of a hypergraph
G = (N�,N⊥, E ), where the notation “�” will be hereafter

adopted to denote observables related to nodes and “⊥” for
hyperedges. One can see that the number of links attaching
to a node—say, k—which is defined as the degree of the node
tells the number of hyperedges incident to it. Analogously, the
number of links attaching to a hyperedge—say, m—denotes
how many nodes it involves, which we referred to as the
degree of this hyperedge. Accordingly, relevant degree dis-
tributions of the two sets are defined as P�(k) and P⊥(m),
respectively.

Within the bipartite network framework, the percolation
behaviors of a hypergraph can be studied by generalizing
the self-consistent arguments developed for the computation
of the giant connected component (GCC) in single networks
[59]. To do so, we suppose that a hypergraph is initially dam-
aged by losing 1 − p� fraction of nodes and 1 − p⊥ fraction
of hyperedges. Then, we define S�′

(S⊥′
) as the probability

that a node (hyperedge) reached by a node-hyperedge connec-
tion belongs to the giant component of the hypergraph. For a
node of degree k (incident to k hyperedges) that is not initially
damaged and meanwhile reached by a hyperedge (through
a node-hyperedge connection), the probability it belongs to
the GCC equals the probability that at least one of the re-
maining k − 1 hyperedges incident to this node belongs to the
GCC, which gives 1 − (1 − S⊥′

)k−1. Summing over all degree
classes k and noting that the probability of a degree k node
reached by a hyperedge through a node-hyperedge connection
is proportional to its degree k, we have

S�′ = p�
[

1 −
∑

k

P�(k)k

〈k〉 (1 − S⊥′
)k−1

]
. (1)

The same reasoning gives

S⊥′ = p⊥
[

1 −
∑

m

P⊥(m)m

〈m〉 (1 − S�′
)m−1

]
. (2)

The observables S�′
and S⊥′

are obtained by solving the
self-consistent Eqs. (1) and (2), in terms of which the frac-
tion of nodes and hyperedges that are contained in the GCC,
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FIG. 2. Hypergraph percolation. Behaviors of S� and S⊥ as
functions of p� and p⊥ for a single hypergraph. There are four
situations: S�(p�)|p⊥=1 (red solid curve), S⊥(p�)|p⊥=1 (black solid
curve), S�(p⊥)|p�=1 (red dashed curve), and S⊥(p⊥)|p�=1 (black
dashed curve). The behaviors of S�(p⊥)|p�=1 and S⊥(p⊥)|p�=1 and
the behaviors of S⊥(p�)|p⊥=1 and S�(p⊥)|p�=1 completely overlap,
respectively. In this hypergraph, P�(k) and P⊥(m) both follow Pois-
son distribution with their average 〈k〉 = 〈m〉 = δ = 3. The inset
shows the behaviors of the critical points p�

c and p⊥
c on the (p�, p⊥)

plane for the cases 〈k〉 = 〈m〉 = δ = 3, 4, 5, respectively. According
to Eq. (4), these curves give inversely proportional functions.

respectively S� and S⊥, can be evaluated via

S� = p�
[

1 −
∑

k

P�(k)(1 − S⊥′
)k

]
,

S⊥ = p⊥
[

1 −
∑

m

P⊥(m)(1 − S�′
)m

]
.

(3)

Equations (1) and (2) highlight the equivalent role, from the
bipartite network perspective, played by site nodes and hyper-
edge nodes in the study of site-bond percolation in random
hypergraphs. Moreover, they enable us to readily and un-
ambiguously apply in the hypergraph realm the probabilistic
methods underlying the generating function approach in pair-
wise graphs (see Appendix A).

Figure 2 shows the behaviors of S� (red solid curve) and
S⊥ (black solid curve) with the growing of p�, where p⊥ is set
to be 1. For the convenience of comparison, in this hypergraph
the degree distribution P�(k) and the size distribution P⊥(m)
both follow Poisson distribution with the same average value
such that 〈k〉 = 〈m〉 = δ. We observe a continuous phase tran-
sition at a critical point p�

c . When p� > p�
c , S� grows almost

linearly with the growth of p�. This observation implies that,
above the critical point p⊥

c , nodes that survived from the initial
damage will be included in the GCC with a nearly constant
ratio. Besides, since the initial damage does not directly act
on hyperedges (p⊥ = 1), the extent in the loss of hyperedge ⊥
is smaller than that of nodes �, resulting in a greater score of
S⊥(p�)|p⊥=1 as compared to S�(p�)|p⊥=1. The dashed curves
in Fig. 2 show the behaviors of S� and S⊥ in the converse sit-
uation where p⊥ grows with p� being set to be 1. We see that

the curves of S�(p⊥)|p�=1 and S⊥(p⊥)|p�=1 perfectly overlap
the curves of S⊥(p�)|p⊥=1 and S�(p�)|p⊥=1, respectively. This
result manifests the equivalent roles of nodes and hyperedges
in a hypergraph, where the impact of deleting a fraction of
nodes on the nodes and hyperedges is equivalent to the impact
of deleting a fraction of hyperedges on the hyperedges and
nodes.

The critical points p� = p�
c and p⊥ = p⊥

c , where the hy-
pergraph transits from non-percolating phase to percolating
phase, could be evaluated by Eqs. (1) and (2) (details are
provided in Appendix A). The expressions, Eqs. (1) and (2),
give a reciprocal relation between p�

c and p⊥
c ,

p�
c p⊥

c =
[ 〈k(k − 1)〉

〈k〉
〈m(m − 1)〉

〈m〉
]−1

, (4)

which is consistent with what is found in Ref. [57]. The
relation between p�

c and p⊥
c on the condition 〈k〉 = 〈m〉 = δ

is shown in the inset of Fig. 2, where it can be seen that
large values of δ yield smaller values of the critical points,
indicating a stronger robustness of the system to random
failures.

III. INTERDEPENDENT HYPERGRAPHS

Consider now two hypergraphs, G1 = (N�
1 ,N⊥

1 , E1)
with degree distributions P�

1 (k) and P⊥
1 (m) and G2 =

(N�
2 ,N⊥

2 , E2) with degree distributions P�
2 (l ) and P⊥

2 (n),
whose hyperedges are interdependent in a one-to-one fash-
ion [Fig. 1(d)]. The mutual percolating component of an IH
requires not only that the nodes and hyperedges belong to the
GCC of their own hypergraph but that the dependent nodes
and hyperedges in the other hypergraph should belong to
the GCC of their own hypergraph. This triggers a cascade
of failures of nodes and hyperedges, whose back-and-forth
propagation within and between layers of the interdependent
hypergraph continues until no more elements are removed.
We refer to the remaining component as the hypergraph mu-
tually connected giant component (HMCGC). Since nodes
and hyperedges are on an equal footing in the bipartite
network representation, studying hyperedge-interdependent
hypergraphs or node-interdependent ones are equivalent prob-
lems. In this paper, without losing generality, we consider
the hyperedge-interdependency case, so that if a hyperedge
(elements in N⊥

1 or N⊥
2 ) belongs to HMCGC, this hyper-

edge and the hyperedge dependent on it must belong to the
GCC of their own hypergraphs, respectively, while nodes
(elements in N�

1 or N�
2 ) in these hypergraphs are free from

such constraint. We start, then, by studying the case where
two hypergraphs are fully interdependent on each other, i.e.,
such that all the hyperedges in one hypergraph are dependent
on those in the other hypergraph. This condition immediately
implies |N⊥

1 | = |N⊥
2 | under one-to-one correspondence.

Let S�
1

′
(S⊥

1
′
) be the probability that a node (hyperedge) of

G1 reached by a randomly chosen node-hyperedge connection
in G1 belongs to the HMCGC, and S�

2
′

(S⊥
2

′
) are defined

similarly. Supposing initially that G1 is damaged by losing
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1 − p� fraction of nodes and 1 − p⊥ fraction of hyperedges,
we have

S�
1

′ = p�
[

1 −
∑

k

P�
1 (k)k

〈k〉 (1 − S⊥
1

′
)k−1

]
, (5a)

S⊥
1

′ = p⊥
[

1 −
∑

m

P⊥
1 (m)m

〈m〉 (1 − S�
1

′
)m−1

]

×
[

1 −
∑

n

P⊥
2 (n)(1 − S�

2
′
)n

]
. (5b)

The term in the first pair of square brackets on the right-hand
side of Eq. (5b) denotes the probability that a hyperedge
reached by a node-hyperedge connection in G1 belongs to the
GCC of G1, and the term in the second pair of square brackets
denotes the probability that the dependent hyperedge in the G2

belongs to the GCC of G2. Similarly, we have

S�
2

′ =
[

1 −
∑

l

P�
2 (l )l

〈l〉 (1 − S⊥
2

′
)l−1

]
, (6a)

S⊥
2

′ =
[

1 −
∑

n

P⊥
2 (n)n

〈n〉 (1 − S�
2

′
)n−1

]

× p⊥
[

1 −
∑

m

P⊥
1 (m)(1 − S�

1
′
)m

]
. (6b)

Let S�
1 (S⊥

1 ) and S�
2 (S⊥

2 ) be the fraction of nodes (hyperedges)
of G1 and G2 that are contained in the HMCGC, respectively,
which serve as the proper order parameters to measure the
robustness of the IH. With Eqs. (5) and (6), these order pa-
rameters can be calculated as follows:

S�
1 = p�

[
1 −

∑
k

P�
1 (k)(1 − S⊥

1
′
)k

]
,

S⊥
1 = p⊥

[
1 −

∑
m

P⊥
1 (m)(1 − S�

1
′
)m

]

× p⊥
[

1 −
∑

n

P⊥
2 (n)(1 − S�

2
′
)n

]
,

S�
2 = 1 −

∑
k

P�
2 (l )(1 − S⊥

2
′
)l ,

S⊥
2 =

[
1 −

∑
n

P⊥
2 (n)(1 − S�

2
′
)n

]

× p⊥
[

1 −
∑

m

P⊥
1 (m)(1 − S�

1
′
)m

]
.

(7)

In particular, when considering hypergraphs with Poisson de-
gree distributions, Eq. (7) simplifies as

S�
1 = p�(1 − e−〈k〉S⊥′

1 ),

S⊥
1 = p⊥(1 − e−〈m〉S�′

1 )(1 − e−〈n〉S�′
2 ),

S�
2 = 1 − e−〈l〉S⊥′

2 ,

S⊥
2 = (1 − e−〈n〉S�′

2 )p⊥(1 − e−〈m〉S�′
1 ),

(8)

FIG. 3. Robustness of hyperedge-interdependent hypergraph.
Order parameters S�

1 , S⊥
1 , S�

2 , and S⊥
2 as functions of (a) p� on the

condition p⊥ = 1 and (b) p⊥ on the condition p� = 1, where degree
distributions satisfy Poisson distribution and all their average degrees
equal δ = 3. Symbols in (a) and (b) are obtained from numerical
simulations. (c) The behaviors of the critical points p�

c and p⊥
c on the

(p�, p⊥) plane for the cases 〈k〉 = 〈m〉 = 〈l〉 = 〈n〉 = δ = 3, 4, 5,
respectively. (d) Behaviors of p�

c on the condition p⊥ = 1 and p⊥
c

on the condition p� = 1 for growing values of the average degree δ.

with

S�′
1 = p�(1 − e−〈k〉S⊥′

1 ),

S⊥′
1 = p⊥(1 − e−〈m〉S�′

1 )(1 − e−〈n〉S�′
2 ),

S�′
2 = 1 − e−〈l〉S⊥′

2 ,

S⊥′
2 = (1 − e−〈n〉S�′

2 )p⊥(1 − e−〈m〉S�′
1 ),

(9)

where 〈k〉, 〈m〉, 〈l〉, and 〈n〉 are the average degree of the
distributions P�

1 (k), P⊥
1 (m), P�

2 (l ), and P⊥
2 (n), respectively.

Figure 3(a) shows the behaviors of the four order param-
eters along p� on the condition p⊥ = 1 where 〈k〉 = 〈m〉 =
〈l〉 = 〈n〉 = δ. In this case, the initial damage is imposed on
the nodes of hypergraph G1. This leads to the severest damage
on nodes of G1 as compared to other elements in G1 and G2,
reflected by the lower curve that S�

1 has with respect to the
other order parameters. Besides, we observe that the curves
of S⊥

1 (red solid) and S⊥
2 (black dashed) completely overlap.

This happens because the one-to-one correspondence of the
hyperedge-dependency coupling mirrors the damage between
the layers, resulting (on average) in the same number of
remaining hyperedges in both hypergraphs. Moreover, since
nodes in G2 receive minimal impact from the initial damage
on the nodes in G1, the behavior of S�

2 is the largest among
all the other order parameters. On the other hand, when initial
damage acts on the hyperedges of G1 rather than the nodes,
dependency links immediately mirror the damage to the hy-
peredges in G2 and, since these two hypergraphs have the same
degree distribution, the fraction of percolating nodes is also
the same for the two hypergraphs. Under these circumstances,
we have that S⊥

1 = S⊥
2 (damage on the hyperedges is the same)

and S�
1 = S�

2 , as is shown in Fig. 3(b).
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Percolation in IHs exhibits discontinuous phase transitions,
as shown in Figs. 3(a) and 3(b). The procedure of evaluat-
ing the positions of the transition thresholds p� = p�

c and
p⊥ = p⊥

c is detailed in Appendix B. Since the initial damage
acts only on G1, the reciprocal role of p� and p⊥ is no longer
present, as visible from Eq. (10) below:

−bp⊥(−ac f p� p⊥ + adep� p⊥ + f ) − acp� p⊥ + 1 = 0,

(10)

where the expressions of a– f can be found in Eq. (B2) in
Appendix B. Figure 3(c) shows the relations of p�

c and p⊥
c

on the (p�, p⊥) plane for the cases of δ = 3, 4, 5. We see that
the robustness of IHs is enhanced by larger values of the av-
erage degree δ; moreover, the relative skewness of the curves,
p�

c |p⊥=1 < p⊥
c |p�=1, indicates that the system is, indeed, more

tolerable to nodes’ failure, given their lack of dependencies.
This is further clarified by a more detailed plot of p�

c |p⊥=1 and
p⊥

c |p�=1 in Fig. 3(d), where the former is always smaller than
the latter.

IV. IH WITH INTERHYPERGRAPH CORRELATIONS

We consider now the case in which the degrees of two
interdependent hyperedges are correlated. Specifically, we
introduce a correlation function P(m, n) which portrays the
fraction of the interdependent hyperedges where one is of
degree m in G1 and the other is of degree n in G2. Thus, we
have

∑
n P(m, n) = P⊥

1 (m) and
∑

m P(m, n) = P⊥
2 (n).

Following a reasoning perfectly analogous to the one con-
sidered for Eqs. (5)–(7), we find

S�′
1 = p�

[
1 −

∑
k

P�
1 (k)k

〈k〉 (1 − S⊥′
1 )k−1

]
,

S⊥′
1 = p⊥ ∑

m,n

P(m, n)

[
1 − m

〈m〉 (1 − S�′
1 )m−1

]

× [1 − (1 − S�′
2 )n], (11)

S�′
2 =

[
1 −

∑
l

P�
2 (l )l

〈l〉 (1 − S⊥′
2 )l−1

]
,

S⊥′
2 = p⊥ ∑

m,n

P(m, n)

[
1 − n

〈n〉 (1 − S�′
2 )n−1

]

× [1 − (1 − S�′
1 )m],

and

S�
1 = p�

[
1 −

∑
k

P�
1 (k)(1 − S⊥′

1 )k

]
,

S⊥
1 = p⊥ ∑

m,n

P(m, n)[1 − (1 − S�′
1 )m][1 − (1 − S�′

2 )n],

S�
2 =

[
1 −

∑
l

P�
2 (l )(1 − S⊥′

2 )l

]
,

S⊥
2 = p⊥ ∑

m,n

P(m, n)[1 − (1 − S�′
2 )n][1 − (1 − S�′

1 )m].

(12)

To quantify the impact of correlations on the robustness of
IHs, we propose a method to generate the correlation function

FIG. 4. Robustness of interdependent hypergraphs with hyper-
edge correlations. (a) Behaviors of S�

1 as functions of p� with p⊥ = 1
(dashed curves) and p⊥ with p� = 1 (solid curves) for a maximum
positive correlation (α = 1, red curves), noncorrelation (α = 0, blue
curves), and maximum negative correlation (α = −1, black curves).
(b) The relation between the critical points p�

c or p⊥
c and the pa-

rameter α controlling the extent of hyperedge correlations. All the
degree distributions of both hypergraphs follow identical power-law
distribution, with the exponent being 2.2 and δ = 3.

P(m, n) which allows us to interpolate from the maximum
degree of negative correlation to the maximum degree of pos-
itive correlation. For doing so, we first generate the maximum
positive correlation function, denoted as P+(m, n). We list the
hyperedges of the two hypergraphs both in ascending order
according to their degree. Then, we establish dependency cou-
plings for each pair of hyperedges that are collected from the
two lists with the same index. Since both hypergraphs have the
same number of hyperedges, a one-to-one correspondence is
maintained. Evidently, such formed interdependency reaches
the maximum extent of positive correlation. In a similar way,
we can generate the maximum negative correlation function
P−(m, n) by ordering the hyperedges of the two hypergraphs,
one in ascending order and the other in descending order. Be-
sides, a noncorrelation function P0(m, n) can be also defined
via P0(m, n) = P⊥

1 (m)P⊥
2 (n). With these three functions, we

define a correlation function P(m, n) by introducing a control-
ling parameter α ∈ [−1, 1] which linearly tunes the weight of
these functions as follows:

P(m, n) =
{

αP+(m, n) + (1 − α)P0(m, n), α � 0,

|α|P−(m, n) + (1 − |α|)P0(m, n), α < 0.

(13)

Notice that when α = 1, 0,−1, P(m, n) becomes P+(m, n),
P0(m, n), and P−(m, n), respectively.

The effects of these correlations are presented in Fig. 4(a).
We can see that for the cases of initial damage on nodes
(p� � 1, p⊥ = 1, dashed curves) or initial damage on hy-
peredges (p⊥ � 1, p� = 1, solid curves), positive correlation
produces the strongest robustness in both cases. On the one
hand, positive correlations yield the smallest critical values p�

c
or p⊥

c so that, under such a pattern, the system may sustain the
greatest extent of initial damage. On the other hand, positive
correlations always result in the largest HMCGC (indicated
by nonzero S�

1 ). These observations are further confirmed
with the relation between the critical points p�

c or p⊥
c and

the controlling parameter α in Fig. 4(b). We find, in fact, that
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a larger α (greater extent of positive correlation) produces a
smaller value of p�

c and p⊥
c . Moreover, we observe p⊥

c > p�
c .

This is because the initial damage on hyperedges will be
immediately transferred to the dependent hyperedges in G2,
which effectively doubles the initial damage, consistent with
the results in Fig. 3(d).

V. NETWORK OF IHs
WITH AN ARBITRARY NUMBER OF LAYERS

The bipartite network representation of IH can be con-
veniently extended to the case with an arbitrary number of
interacting layers. We consider here an IH composed of L
layers with all-to-all dependencies (denoted as L-IH). Ev-
ery hypergraph has the same number of hyperedges and it
is interdependent with every other L − 1 hypergraph under
one-to-one correspondence. When implementing dependency
couplings, in particular, a feedback-loop condition is intended
so that if hyperedge i in hypergraph 1 depends on hyperedge j
in hypergraph 2 and hyperedge j in hypergraph 2 depends on
hypergraph k in hypergraph 3, then hyperedge i must depend
on hyperedge k. This avoids the additional amplification of a
cascade through the spreading of damage caused by directed
dependency patterns between the L hypergraphs.

Similarly to the case with L = 2 IHs, a fully interdepen-
dent L-IH imposes here the condition |N⊥

1 | = · · · = |N⊥
L | on

the number of hyperedges in each layer. Hence, we denote
the degree distributions of the ith hypergraph as P�

i (ki ) and
P⊥

i (mi ), respectively, and write the order parameters of the ith
hypergraph as

S�
i = (p�)δ1i G�

0i(1 − S⊥
i

′
),

S⊥
i = (p⊥)

L∏
j=1

G⊥
0 j (1 − S⊥

j
′
),

(14)

with

S�
i

′ = (p�)δ1i G�
1i(1 − S⊥

i
′
),

S⊥
i

′ = (p⊥)G⊥
1i(1 − S�

i
′
)

L∏
j=1, j �=i

G⊥
0 j (1 − S⊥

j
′
),

(15)

where δ1i = 1 when i = 1 and δ1i = 0 otherwise, and the
generating functions G�

0i, G⊥
0i, G�

1i, and G⊥
1i are defined as

G�
0i(x) = 1 −

∑
ki�0

P�
i (ki )x

ki ,

G⊥
0i(x) = 1 −

∑
mi�0

P⊥
i (mi )x

mi ,

G�
1i(x) = 1 −

∑
ki�1

kiP�
i (ki )

〈ki〉 xki−1,

G⊥
1i(x) = 1 −

∑
mi�1

miP⊥
i (mi )

〈mi〉 xmi−1.

(16)

Intuitively, since all the L hypergraphs are interdependent,
a larger number of layers makes the whole IH more vulnerable

FIG. 5. Robustness of fully connected networks of hyperedge-
interdependent hypergraphs. Behaviors of S�

1 as functions of (a)
p� (with p⊥ = 1) and (b) p⊥ (with p� = 1) for different L on DR
L-IH (solid curves), where all the nodes and hyperedges have the
same degree, here being 3, and UPL L-IH (dashed curves), where all
the degree distributions of nodes and hyperedges follow the same
power-law distribution with the exponent being 2.8. The average
degree of the power-law distribution is the same as that in DR L-IH.
(c) Behaviors of critical points p�

c and p⊥
c with the growing of L on

DR L-IH and UPL L-IH. (d) Behaviors of critical points p�
c and p⊥

c

with the growing of L on the DR L-IH and power-law L-IH with
maximum positive correlation (PPL L-IH).

to random damages [60]. This is indeed the case as verified by
the behaviors of order parameter S�

1 as the functions of p�
(with p⊥ = 1) and of p⊥ (with p� = 1) shown in Figs. 5(a)
and 5(b), respectively, where the performance of degree-
regular (DR) L-IH (degree of nodes and hyperedges of all the
hypergraphs are identical) and uncorrelated power-law (UPL)
L-IH (degree distributions of nodes and hyperedges of all the
hypergraphs follow identical power-law distribution with no
interhypergraph correlation) are presented. We observe that
for both types of IHs, curves for larger L correspond to larger
p�

c and p⊥
c and smaller S�

1 .
Figures 5(a) and 5(b) convey, however, an interesting ob-

servation. When L is small, UPL L-IH possesses a smaller
value of critical points p�

c and p⊥
c than DR L-IH [red and blue

curves in Fig. 5(a) and red curves in Fig. 5(b)], while when
L is large, this situation reverses [green and black curves in
Fig. 5(a) and blue and green curves in Fig. 5(b)]. This feature
is more evident in Fig. 5(c), where the relation of critical
points with the number L is presented. We can see that for
both p�

c (red) and p⊥
c (black) the curves for DR L-IH (solid)

and UPL L-IH (dashed) intersect before or after L = 3. This
feature could be understood in the way that heterogeneity of
degree of nodes or hyperedges could enhance the robustness
of the system, since hubs connect more elements in a hyper-
graph prone to form a large local clique. However, with the
growing number of hypergraphs that are interdependent, a hub
hyperedge becomes increasingly fragile due to the failure of
its dependent hyperedges in other hypergraphs. Since hubs are
rare, when a sufficient number of them fails, the UPL L-IH
becomes rather fragile as the size of the remaining hyperedges
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is dominantly small. On the contrary, when instead the de-
gree of hyperedges is homogeneous, the impact of losing a
fraction of hyperedges is much less sensitive than the failure
of hubs. Hence, the change in the value of critical points
for DR L-IH is more stable (relatively small ranges of p�

c
and p⊥

c ) than that of UPL L-IH. This argument is further
confirmed by comparing the behaviors of critical points be-
tween DR L-IH and power-law L-IH with maximum positive
correlation (denoted as PPL L-IH) as shown in Fig. 5(d).
A crossing between the curves for the two types of L-IH
also appears, though the intersection point shifts to larger
values of L due to stronger robustness induced by positive
correlation.

VI. PARTIALLY INTERDEPENDENT HYPERGRAPHS

We here extend our bipartite framework to the case where
only a fraction of hyperedges in a hypergraph are dependent
on those in other hypergraphs; we refer to such cases as
partially interdependent hypergraphs.

A. Partially interdependent hypergraphs with L = 2

We start by considering an IH composed of L = 2 layers.
A fraction q1 of hyperedges in hypergraph G1 is assumed
to be interdependent with a fraction q2 of hyperedges in G2

under the one-to-one fashion, in which case the self-consistent
equations characterizing the system’s order parameters are

S�′
1 = p�

[
1 −

∑
k

P�
1 (k)k

〈k〉 (1 − S⊥′
1 )k−1

]
,

S⊥′
1 = p⊥

{
q1

[
1 −

∑
m

P⊥
1 (m)m

〈m〉 (1 − S�′
1 )m−1

][
1 −

∑
n

P⊥
2 (n)(1 − S�′

2 )n

]
+ (1 − q1)

[
1 −

∑
m

P⊥
1 (m)m

〈m〉 (1 − S�′
1 )m−1

]}

= p⊥
[

1 −
∑

m

P⊥
1 (m)m

〈m〉 (1 − S�′
1 )m−1

][
1 − q1

∑
n

P⊥
2 (n)

(
1 − S�′

2 )n

]
,

S�′
2 =

[
1 −

∑
l

P�
2 (l )l

〈l〉 (1 − S⊥′
2 )l−1

]
,

S⊥′
2 = p⊥

[
1 −

∑
n

P⊥
2 (n)n

〈n〉 (1 − S�′
2 )n−1

][
1 − q2

∑
m

P⊥
1 (m)(1 − S�′

1 )m

]
.

(17)

Since we aim at understanding the impact of partial
dependency couplings, we adopt, for simplicity, Poisson dis-
tributions for the degree distributions of nodes and hyperedges
with the same average degree δ, so that 〈k〉 = 〈m〉 = 〈l〉 =
〈n〉 = δ. Because, in this case, the random removal of a frac-
tion of nodes or hyperedges is equivalent to reducing the
average degree of related distributions [31], we simplify the
cascading process by setting p� = p⊥ ≡ 1, so that the impact
of the initial damage is absorbed into the average degree δ.
Given the identical average degree of the two hypergraphs,
the one-to-one correspondence implies that |N⊥

1 | = |N⊥
2 |,

meaning that q1 = q2 ≡ q. Then, Eq. (17) simplifies to

S�
1 = (1 − e−δS⊥

1 ),

S⊥
1 = (1 − e−δS�

1 )(1 − qe−δS�
2 ),

S�
2 = (1 − e−δS⊥

2 ),

S⊥
2 = (1 − e−δS�

2 )(1 − qe−δS�
1 ),

(18)

where the relations S�
1 = S�′

1 and S�
2 = S�′

2 have been
adopted. Equation (18) indicates the symmetric relations
between the order parameters for the two hypergraphs,
which suggests the definition S� = S�

1 = S�
2 and S⊥ =

S⊥
1 = S⊥

2 . After some rearrangements, this yields the single
self-consistent equation

S� = 1 − e−δ[(1−q)(1−e−δS�
)+q(1−e−δS�

)2]. (19)

Figure 6 presents the behavior of S�(δ) for several values of
the fraction q of interdependent hyperedges. A continuous
phase transition is observed in the weakly interdependent
regime, i.e., when q is small (red dashed curve), followed by

FIG. 6. Robustness of partially interdependent hypergraphs. Be-
haviors of the order parameter S� as functions of δ for different q
values (q = q∗ is the tricritical point). The inset shows the types of
phase transitions on the (q, δ) plane: the red (black) curve corre-
sponds to the continuous (discontinuous) phase transition, and the
black dot identifies the tricritical point.
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a discontinuous phase transition at larger values of q (black
solid curve). Analogously to the case of partially interdepen-
dent pairwise networks [19–21,61], a tricritical point is also
found in this case at a finite fraction q = q∗ and for an average
degree δ = δ∗. To analytically determine the location of the
tricritical point, we define the function f (S�) with Eq. (19) as
follows:

f (S�) = S� − (1 − e−δ[(1−q)(1−e−δS�
)+q(1−e−δS�

)2] ). (20)

A graphical analysis shows that continuous phase tran-
sitions occur when f (0) = f ′(0) = 0, while discontinuous
transitions happen whenever f (S�) = f ′(S�) = 0 with S� �
0. The tricritical point is reached when the latter conditions co-
incide at S� = 0, i.e., S� = f (S�) = f ′(S�) = f ′′(S�) = 0.
The behaviors of the two types of phase transitions, as well
as the location of the tricritical point on the (q, δ) plane, are
shown in the inset of Fig. 6.

B. Partially interdependent hypergraphs with arbitrary L

We finally address the general case of a network of L par-
tially interdependent hypergraphs. To simplify the analysis,
we rely also here on the scenario where all the degree dis-
tributions of the hypergraphs Poisson with the same average
degree δ � 1. In this case, Eq. (18) can be generalized to

S�
i = 1 − e−δS⊥

i ,

S⊥
i = (1 − q)(1 − e−δS�

i ) + q
L∏

�=1

(1 − e−δS�
� ), (21)

where the definitions of the notations are inherited from
Sec. VI A. Similarly, the symmetrical expressions of S�

i
and S⊥

i permit the definition S� ≡ S�
1 = · · · = S�

L and S⊥ ≡
S⊥

1 = · · · = S⊥
L , which leads to

S� = 1 − exp(−δ[(1 − q)(1 − e−δS�
) + q(1 − e−δS�

)L]),

(22)

and hence the function f (S�) reads now as

f (S�) = S� − (1 − e−δ[(1−q)(1−e−δS�
)+q(1−e−δS�

)L] ). (23)

Interestingly, the increase in the number of layers induces
percolating behaviors that are absent in the L = 2 case. Fig-
ure 7(a) shows the behaviors of S�(δ) for several values of q
for the case of L = 3. When q is relatively small, S�(δ) under-
goes a continuous percolating phase transition. The condition
for the onset of the continuous phase transition is f (0) =
f ′(0) = 0, which is indicated in the lower box in Fig. 7(b).
However, when q surpasses the critical point q∗

I , a region of
two-stage structural transitions begins. The two-stage phase
transition is a phenomenon in which both continuous and
discontinuous phase transitions occur for the same q. Since
the condition for the appearance of discontinuous phase tran-
sition is f (S�) = f ′(S�) = 0, (S� > 0), as indicated in the
upper box in Fig. 7(b), this condition is also required for the
appearance of the two-stage phase transition. However, more
delicate conditions are further demanded for the existence of
two-stage phase transition.

FIG. 7. Robustness of L > 2 partially interdependent hyper-
graphs. (a) Behaviors of the order parameter S� for several values of
q with L = 3; the red curve corresponds to the continuous transition,
the green curve corresponds to the onset of the two-stage transition
at q = q∗

I � 0.69 (with δ = δ∗
I � 1.88), the thin green curve exhibits

a typical behavior of S� with two-stage percolating transition, and
the black curve corresponds to the onset of discontinuous transitions
at q∗

II � 0.74 (with δ = δ∗
II � 1.96). (b) The three types of transitions

are plotted on the (q, δ) plane, where red, green, and black curves
match the definitions in (a). The conditions for the emergence of
these structural transitions as well as the critical points (q∗

I , δ∗
I ) and

(q∗
II, δ∗

II) are presented and indicated by arrows. (c) Details of the
parameters related to the two-stage phase transition, where (q∗

I , δ
∗
I )

and (q∗
II, δ

∗
II ) correspond to the onset and the end of the two-stage

phase transition, respectively. (d) Three-dimensional plot of the be-
haviors S�(q, δ). The light blue surface indicates the profile of S�.
The light purple curved plane intersects the profile at discontinuous
phase transitions for reference. Black dots indicate typical locations
of the phase transitions as in accordance with those in (c).

Specifically, at the critical point q = q∗
I , when the growing

δ first reaches the point δc satisfying the condition f (0) =
f ′(0) = 0, the continuous phase transition appears and the
order parameter S� starts to grow from zero to nonzero values
in a continuous manner. Then, when δ further reaches the
critical point δ∗

I satisfying the condition f (S�) = f ′(S�) = 0
[see Fig. 7(c)], a discontinuous phase transition with an in-
finitely small jump emerges [see Fig. 7(d)]. The coexistence
of the two types of phase transitions at q = q∗

I indicates the
emergence of the two-stage phase transition. A graphical anal-
ysis provided in Appendix C shows that this particular point
demands an additional condition f ′′(S�) = 0. In other words,
the condition for the onset of the two-stage phase transition is
f (S�) = f ′(S�) = f ′′(S�) = 0.

When q = 0.72, the two-stage phase transition
is evident with δ = δc corresponding to the continuous phase
transitions and δ = δd corresponding to the discontinuous
phase transitions, as illustrated in Figs. 7(c) and 7(d).
However, besides the conditions for the continuous and
discontinuous phase transitions as expressed in the boxes in
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FIG. 8. Criterion for a two-stage structural transition in par-
tially interdependent Poisson hypergraphs. (a) Behaviors of f (S�)
with q = q∗

I and δ = δ∗
I for the cases of L = 2, 3, and 4. Black

dots indicate the nonzero solution of S� that meets the condition
f (S�) = f ′(S�) = f ′′(S�) = 0 for L = 3 and 4. (b) Different types
of phase transition are plotted on the q − δ plane. Specifically, the
orange curve is obtained by solving f (S�) = f ′(S�) = f ′′(S�) = 0
for different L values. This orange curve intersects with the curves
for L = 2, 3, and 4 that are generated with the condition f (S�) =
f ′(S�) = 0. The three intersections (black, blue, and magenta dots)
correspond to the curves in (a).

Fig. 7(b), the condition f ′(0) < 0 is additionally required
for the two-stage phase transition taking place at q = 0.72.
When q further reaches the other critical point q = q∗

II,
the continuous phase transition terminates, signaled by
the condition f ′(0) = 0. As a consequence, the region of
two-stage phase transition also terminates at this point,
leaving only the classic discontinuous phase transition
happening at δ = δ∗

II. Relevant detailed graphical analysis can
be found in Appendix C, which manifests that the emergence
of a two-stage transition requires a nonzero solution S� > 0
for the condition f (S�) = f ′(S�) = f ′′(S�) = 0. This is
indeed satisfied if and only if L > 2 [see Fig. 8(a)] since, for
L = 2, the solution for the condition is instead S� = 0, thus
resulting in the absence of a two-stage transition.

The role of L in determining the existence of a nonzero
solution S� can be proved mathematically by analyzing
the function f (S�). Setting the condition S� = f (S�) = f ′
(S�) = f ′′(S�) = 0 in the definition (23), we get

1 + δ = δ3L(L − 1)q(1 − e−δ·0)L−2, (24)

where the relation 1 − δ2(1 − q) = 0 obtained from f ′(0) =
0 has been used. In fact, when L > 2, one finds (1 −
e−δ·0)L−2 = 0, so that Eq. (24) simplifies to 1 + δ = 0, which
contradicts the requirement of δ > 0 and therefore excludes
S� = 0 from being a feasible solution for L > 2, implying
a nonzero solution. However, when L = 2 the term (1 −
e−δ·0)L−2 becomes an indeterminate form of the type 00, thus
a reasonable solution of δ is possible when the indetermi-
nate has a proper finite value. The orange curve in Fig. 8(b)
shows the condition f (S�) = f ′(S�) = f ′′(S�) = 0 and its
dependence on L on the (q, δ) plane. We observe that this
curve begins from L = 2, which intersects with the red curve
(continuous phase transition); then, the two curves diverge,
indicating the feasibility of two-stage phase transition when
L > 2. We expect that similar arguments hold also for
other cases where two-stage structural transitions have been
reported—for example, in L > 2 multiplex networks with link

overlap [25], as well as for percolation in duplex hypergraphs
with large hyperedge cardinality [57].

VII. CONCLUSION

We have presented a bipartite network framework to study
the robustness of IHs under various structural settings. In this
representation, we have developed a theory based on the gen-
erating function formalism to describe the percolation process
in IHs. We have demonstrated the generality of our framework
by applying it to various cases, including correlated IHs, IHs
with an arbitrary number of layers, and partially IHs. The
impact on the robustness of IHs of hyperedges, of the extent
of correlation between hyperedges in different hypergraphs,
of the number of hypergraphs, and of the degree of partial
interdependency has been studied in detail. One of the most
important findings refers to the identification in the condition
of producing a two-stage phase transition in partially IH,
which can only happen when more than two hypergraphs
are partially dependent in a system. Our findings deepen the
understanding on this topic and advance the development of
the theory of interdependent systems. We stress that, while
our framework exhaustively takes into account the aftermath
(i.e., the equilibrium phases) due to cascading failures in inter-
dependent hypergraphs, it does not provide information about
the temporal evolution of the percolating observables during
the propagation of cascades, which we find to be a desirable
direction for future works. We hope, hence, that our work
brings useful insights also for the study of higher-order sys-
tems with the potential to be generalized to scenarios where
hypergraphs have richer structural and dynamical features.
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APPENDIX A: BIPARTITE REPRESENTATION
OF ISOLATED HYPERGRAPHS

1. Site-bond percolation on random networks

We first derive the equations for site-bond percolation on
random pairwise networks based on the generating function
formalism. We call, respectively, p� and p⊥ the occupation
probability of nodes and of edges of a given network with
degree distribution P(k). We perform a random site-bond
percolation by removing, independently from each other, a
fraction 1 − p� of nodes and a fraction 1 − p⊥ of edges. Un-
der the condition that the network is locally tree-like, we can
solve exactly the site-bond percolation problem in a recursive
fashion as follows. Let u be the probability that, following
a randomly chosen edge to one of its vertices whose degree
is k, we arrive at a finite connected component; since we
percolate both bonds and sites, u is given by the mean over the
network of the sum of three main contributions: (1) the proba-
bility that the edge itself is empty, 1 − p⊥; (2) the probability
that the edge is occupied but the vertex we arrive is empty,

013049-9



XINGYU PAN et al. PHYSICAL REVIEW RESEARCH 6, 013049 (2024)

p⊥(1 − p�); and (3) the probability that the bond is occupied
and the vertex is occupied but none of the k − 1 remaining
edges leads to the giant connected component, p� p⊥uk−1.
Summing the above and performing an average over the net-
work, we find

u = 1 − p� p⊥ + p� p⊥ ∑
k�1

kP(k)

〈k〉 uk−1, (A1)

which can be equivalently rewritten in terms of the comple-
mentary probability x ≡ 1 − u as

x = p� p⊥
(

1 −
∑
k�1

kP(k)

〈k〉 (1 − x)k−1

)
. (A2)

The probability, 1 − S, that a randomly chosen node does not
belong to the giant connected component is, instead, the sum
of two terms: (1) the probability that the site is empty, 1 − p�,
and (2) the probability that the site is occupied but none of its k
emanating edges leads to the giant, i.e., p�uk . Again, adopting
the tree-like approximation, we get

S = p�
(

1 −
∑
k�0

P(k)uk

)
. (A3)

We now show how the above problem can be equivalently
solved within the bipartite network representation. To this
aim, we define P(k) the degree distribution of “site” nodes and
with P(m) the degree distribution of the “edge” nodes. Since
the network still retains its locally tree-like structure, let us
define u� (respectively, u⊥) the probability that by following
a randomly chosen edge of the bipartite representation we
arrive at a site node (respectively, an edge node) that does
not belong to the giant component of the network. Given
the perfect equivalence between site nodes and edge nodes,
the arguments in the above readily follow and imply that the
probability that a randomly chosen site node S� or edge node
S⊥ are respectively given by

S� = p�
(

1 −
∑
k�0

P(k)uk
⊥

)
,

(A4)

S⊥ = p⊥
(

1 −
∑
m�0

P(m)um
�

)
,

where the probabilities u� and u⊥ are, mutatid mutandis, given
by

u� = 1 − p� + p� ∑
k�1

kP(k)

〈k〉 uk−1
⊥ ,

u⊥ = 1 − p⊥ + p⊥ ∑
m�1

mP(m)

〈m〉 um−1
� .

(A5)

To verify that Eqs. (A4) and (A5) match Eqs. (A1)–(A3), it
is sufficient to notice that, for pairwise graphs, P(m) = δm,2,
with δmn the Kronecker delta distribution function, so u⊥ =
1 − p⊥ + p⊥u� = 1 − p⊥(1 − u�). By calling y� ≡ 1 − u�
and identifying x� ≡ p⊥y�, one recovers Eq. (A2) from u� in
Eq. (A5) and Eq. (A3) from S� in Eq. (A4).

2. Percolation critical threshold

The critical points p�
c and p⊥

c for a single hypergraph could
be calculated by the Jacobian matrix obtained from Eqs. (1)
and (2) at the point S�′

1 = S⊥′
1 = 0. The nonzero elements of

the Jacobian matrix can be expressed as follows:

∂S�′
1

∂S⊥′
1

∣∣∣∣∣
S⊥′

1 =0

= p� 〈k(k − 1)〉
〈k〉 ,

∂S⊥′
1

∂S�′
1

∣∣∣∣∣
S�′

1 =0

= p⊥ 〈m(m − 1)〉
〈m〉 . (A6)

Then, imposing the condition that the largest eigenvalue � of
the matrix equals 1,

det[J − I] =
∣∣∣∣∣ −� p� 〈k(k−1)〉

〈k〉
p⊥ 〈m(m−1)〉

〈m〉 −�

∣∣∣∣∣ = 0, (A7)

where I is the unit matrix. Equation (A7) produces the relation
of the critical points p�

c and p⊥
c , which reads

p�
c p⊥

c =
[ 〈m(m − 1)〉

〈m〉
〈k(k − 1)〉

〈k〉
]−1

. (A8)

APPENDIX B: THEORETICAL EVALUATION
OF CRITICAL POINTS FOR IH COMPOSED

OF TWO HYPERGRAPHS

Equations (5) and (6) are shown in Eq. (B1) below for
convenience, which allow to compute the critical points p�

c
and p⊥

c of an interdependent hypergraph.

S�′
1 = p�

[
1 −

∑
k

P�
1 (k)k

〈k〉 (1 − S⊥′
1 )k−1

]
,

S�′
2 =

[
1 −

∑
l

P�
2 (l )l

〈l〉 (1 − S⊥′
2 )l−1

]
,

S⊥′
1 = p⊥

[
1 −

∑
m

P⊥
1 (m)m

〈m〉 (1 − S�′
1 )m−1

][
1 −

∑
n

P⊥
2 (n)(1 − S�′

2 )n

]
,

S⊥′
2 =

[
1 −

∑
n

P⊥
2 (n)n

〈n〉 (1 − S�′
2 )n−1

]
p⊥

[
1 −

∑
m

P⊥
1 (m)(1 − S�′

1 )m

]
. (B1)
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For doing so, we calculate the Jacobian matrix of Eq. (B1), and its nonzero elements are presented in Eq. (B2) with the notation

∂�,i
⊥, j = ∂S�′

i

∂S⊥′
j

,

∂�,1
⊥,1 = p� ∑

k

P�
1 (k)k(k − 1)

〈k〉 (1 − S⊥′
1 )k−2 = p�a,

∂�,2
⊥,2 =

∑
l

P�
2 (l )l (l − 1)

〈l〉 (1 − S⊥′
2 )l−2 = b,

∂⊥,1
�,1 = p⊥ ∑

m

P⊥
1 (m)m(m − 1)

〈m〉 (1 − S�′
1 )m−2

[
1 −

∑
n

P⊥
2 (n)(1 − S�′

2 )n

]
= p⊥c,

∂⊥,1
�,2 = p⊥

[
1 −

∑
m

P⊥
1 (m)m

〈m〉 (1 − S�′
1 )m−1

]∑
n

P⊥
2 (n)n(1 − S�′

2 )n−1 = p⊥d,

∂⊥,2
�,1 = p⊥

[
1 −

∑
n

P⊥
2 (n)n

〈n〉 (1 − S�′
2 )n−1

] ∑
m

P⊥
1 (m)m(1 − S�′

1 )m−1 = p⊥e,

∂⊥,2
�,2 = p⊥ ∑

n

P⊥
2 (n)n(n − 1)

〈n〉 (1 − S�′
2 )n−2

[
1 −

∑
m

P⊥
1 (m)(1 − S�′

1 )m

]
= p⊥ f . (B2)

The critical points p�
c and p⊥

c satisfy the condition when the largest eigenvalue of the Jacobian matrix equals 1, i.e., � = 1. The
secular equation of the Jacobian matrix is written as

det[J − I] =

∣∣∣∣∣∣∣∣∣∣

−� 0 ∂�,1
⊥,1 0

0 −� 0 ∂�,2
⊥,2

∂⊥,1
�,1 ∂⊥,1

�,2 −� 0

∂⊥,2
�,1 ∂⊥,2

�,2 0 −�

∣∣∣∣∣∣∣∣∣∣
= �4 − (

∂�,1
⊥,1 ∂⊥,1

�,1 + ∂�,2
⊥,2 ∂⊥,2

�,2

)
�2 + ∂�,1

⊥,1 ∂�,2
⊥,2

(
∂⊥,1
�,1 ∂⊥,2

�,2 − ∂⊥,1
�,2 ∂⊥,2

�,1

) = 0.

(B3)

Letting � = 1, one gets

∂�,1
⊥,1 ∂�,2

⊥,2

(
∂⊥,1
�,2 ∂⊥,2

�,1 − ∂⊥,1
�,1 ∂⊥,2

�,2

) + ∂�,1
⊥,1 ∂⊥,1

�,1 + ∂�,2
⊥,2 ∂⊥,2

�,2 − 1

= 0, (B4)

which gives

−bp⊥(−ac f p� p⊥ + adep� p⊥ + f ) − acp� p⊥ + 1 = 0.

(B5)

Equation (B5) shows that p� and p⊥ do not always appear
in pairs, indicating their asymmetric roles in interdependent
hypergraphs.

APPENDIX C: GRAPHICAL ANALYSIS OF TYPICAL
PERCOLATING BEHAVIORS STUDIED IN SEC. VI B

To provide more detailed understanding about why two-
stage transition is absent for L = 2 but emerge when more
layers are coupled together, we investigate the four differ-
ent percolation behaviors of S�(δ) for L = 3 presented in
Fig. 7(a) by analyzing corresponding behaviors of the function
f (S�).

Figure 9(b) shows the behaviors of f (S�) for three typical
δ values as indicated by the vertical lines in Fig. 9(a), where
the red curve in Fig. 9(a) is duplicated from that in Fig. 7(a).
The shape of f (S�) illustrates that with the growing of δ,
the (stable) solution of f (S�) = 0 continuously grows from

zero to nonzero values. The condition for the appearance
of continuous phase transition is f (0) = f ′(0) = 0, which is
consistent with the results in Ref. [61].

The behaviors of f (S�) for the case of q = q∗
I for typical

δ values are presented in Fig. 9(d). It is obvious that in this
case the shape of f (S�) is essentially different from those
in Fig. 9(b). One may observe that these curves possess a
special point in the medium range of S� at which f ′′(S�) = 0
(denoted by black dots). In particular, for the special case
δ = δ∗

I the nonzero solution of f (S�) = 0 locates exactly at
the point when f ′′(S�) = 0 as well as f ′(S�) = 0 (the orange
curve).

In fact, the nonzero solution of the condition f (S�) =
f ′(S�) = f ′′(S�) = 0 signals the emergence of a two-stage
phase transition. This can be better understood by observing
Figs. 9(e) and 9(f) for the case of q = 0.72, where a typical
two-stage phase transition is evidently exhibited. We can see
that at the critical point δ = δd where a discontinuous phase
transition takes place, there are two nonzero solutions for the
f (S�), one for continuous phase transition (the smaller one)
and one for discontinuous phase transition (the larger one).
Note that the larger one [the right dot in Fig. 9(f)] meets
the condition f (S�) = f ′(S�) = 0, which is the requisite for
the appearance of discontinuous phase transition. Further, by
comparing Figs. 9(d) and 9(f), one may expect that with the
decreasing of q, the two black dots in Fig. 9(f) will approach
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FIG. 9. Graphical analysis of the function f (S�) for typical percolation behaviors for L = 3 as shown in Fig. 7(a). (a) The behavior of
S�(δ) for the case of q = 0.6 [the same as the red curve in Fig. 7(a)], where blue, orange, and green dashed vertical lines indicate three typical
δ values. (b) Behaviors of the function f (S�) for the three typical δ values identified in (a). Similarly, (c) and (d), (e) and (f), and (g) and (h)
present the behaviors of S�(δ) and f (S�) of typical δ values for the cases of q = q∗

I , q = 0.72, and q = q∗
II, respectively. The black dots in

(d) indicate the location of f ′′(S�) = 0. The black dots in (e) and (f) indicate the two nonzero solutions of f (S�) = 0. δc � 1.89 (δd � 1.93)
in (f) indicates the critical value of δ where the continuous (discontinues) phase transition happens.

and finally merge together, resulting in the orange curve in
Fig. 9(d). At this particular situation f ′′(S�) = 0 is attained,
and the two types of phase transition are merged to a continu-
ous phase transition. Thus, the condition f (S�) = f ′(S�) =
f ′′(S�) = 0 determines the the lower boundary of q, i.e.,
q = q∗

I , for the appearance of the two-stage phase transition.
On the other hand, with the increasing of q, the two black
dots will move apart, and at the point q = q∗

II the left dot will
reach the original point [giving f ′(0) = 0] where the two-
stage phase transition simplifies to the classic discontinuous
phase transition, which indicates the upper boundary of q for
the two-stage phase transition [see Figs. 9(g) and 9(h)].

Hence, the above observations suggest the following un-
derstanding: (i) When q is in a medium range of q∗

I � q � q∗
II

[for example, q = 0.72 in Fig. 9(e)], on the condition δ is in
the range δc < δ < δd , the fraction 1 − q of the independent
part in each hypergraph appended with some small fraction

of dependent hyperedges is enough to formed a nonzero (but
relatively small) size of HMCGC, which supports that a con-
tinuous phase transition occurred at δc. When δ reaches δd ,
a discontinuous phase transition occurs due to the interde-
pendency. These combined effects contribute to a two-stage
phase transition. (ii) When q is small (q < q∗

I ), the fraction
1 − q of independent part is large enough that the HMCGC
is formed mainly on the basis of the independent part of
hypergraphs and the effect of the interdependency is sub-
merged into the existing HMCGC with the growing of δ.
In this case, the discontinuous phase transition is invisible,
leaving only a continuous phase transition to the system.
(iii) When q is large (q > q∗

II), on the condition a discon-
tinuous phase transition happens at δ = δd , the fraction of
the independent part is, however, so small that a HMCGC
is not formed yet, resulting in a single discontinuous phase
transition.
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