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Gauge violation spectroscopy of synthetic gauge theories
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Recently synthetic gauge fields have been implemented on quantum simulators. Unlike the gauge fields in
the real world, in synthetic gauge fields, the gauge charge can fluctuate and gauge invariance can be violated,
which leads to rich physics unexplored before. In this work, we first propose the gauge violation spectroscopy
as a powerful experimentally accessible measurement of synthetic gauge theories. We show that the gauge
violation spectroscopy exhibits no dispersion. Using three models as examples, two of which can be exactly
solved by bosonization, and one that has been realized in experiment, we further demonstrate the gauge violation
spectroscopy can be used to detect the confinement and deconfinement phases. In the confinement phase, it shows
a δ-function behavior, while in the deconfinement phase, it has a finite width.
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I. INTRODUCTION

Gauge theories play a central role in modern physics. On
one hand, gauge theories provide a unified description of
fundamental interactions between elementary particles within
the standard model [1]. On the other hand, gauge fields emerge
from the low-energy effective theories of strongly correlated
condensed matter [2,3]. Despite the success of gauge theories,
studying the real-time dynamics of gauge fields is a notable
challenge due to the limit of the classical computational meth-
ods. To overcome these limitations, synthetic gauge fields
have been implemented on quantum simulators based on ul-
tracold atoms in optical lattices [4–11], trapped ions [12], or
superconducting qubits [13,14].

The key concept of gauge theories is the local gauge
symmetry, [Ĝ(r), Ĥ ] = 0, where Ĝ(r) is the local gauge trans-
formation and Ĥ is the Hamiltonian of the system. Local
gauge symmetry separates the Hilbert space into disconnected
sectors labeled by local gauge charge Q̂(r), the generator
of Ĝ(r), see Fig. 1. In the real world, we are living in
the so-called physical sector with vanishing gauge charge
Q̂(r) = 0. Projecting into physical sector enforces an exten-
sive number of local constrains between matter and gauge
fields, which is nothing but the Gaussian law. However,
in synthetic gauge theories on quantum simulators, local
gauge charge Q̂(r) is not restricted to the physical sector. It
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can even fluctuate due to intersector superposition or gauge
violation perturbations and noise [15,16]. To simulate the
real gauge theories in the physical sector, one has to care-
fully prepare gauge invariant initial states, i.e., states in the
physical sector and suppress the unwanted gauge violation
perturbations and noise. That stimulates the seeking of local
gauge protection schemes [17,18]. However, such fluctua-
tions of gauge charges can lead to richer gauge violation
physics. For example, disorder-free localization can emerge
in synthetic gauge theories by preparing the initial states
as the superposition of several sectors [19–25]. Besides, al-
lowing transitions between different sectors can also lead
to exotic phase transition that does not exist in real gauge
theories [26,27].

Spectroscopy measurement is a powerful technique to
detect the excitations in both real materials and quantum
simulators. It has been widely used to probe the spectrums
of single-particle and collective excitations, which deter-
mine the phases and dynamics of a given quantum system.
For example, the angle-resolved photoemission spectroscopy
(ARPES) [28] has been applied to study the pseudogap
of high-Tc cuprates and edge states of topological insu-
lators. In ultracold atomic gases, radio frequency (RF)
spectroscopy [29] is used to measure single-particle spectrums
of Fermi gases [30–34] and Fermi/Bose polarons [35–39].
Several spectroscopy techniques have also been developed
in other quantum simulation platforms, such as trapped
ions [40,41] and superconducting qubits [42]. However, the
spectroscopy study of synthetic gauge theories on quantum
simulators is still missing.

In this paper, we first propose the gauge violation spec-
troscopy a powerful experimentally accessible tool to probe
the synthetic gauge theories on quantum simulators. By gauge
violation, we mean that the measurement induces a transition
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FIG. 1. Schematic of (a) gauge invariance and (b) violation spec-
troscopy. The blocks represent different gauge sectors labeled by
Q̂(r) in Hilbert space. In the gauge violation case (b), the operations
�̂(r2), �̂†(r2) induce a transition between Q̂ = 0 and Q̂ = δ(r − r2)
gauge sectors.

between different gauge sectors, see Fig. 1. We demonstrate
that the usual single-particle spectroscopy measurement pro-
cess (such as RF spectroscopy in ultracold atomic gases)
of synthetic gauge theories is gauge violation rather than
gauge invariant. Besides, the gauge invariant spectroscopy
needs highly nonlocal probes, and is challenging in current
experiments. Furthermore, we show that the gauge viola-
tion spectroscopy exhibits no dispersion, as it violates the
Gauss law. Using three models that possess local U (1) gauge
symmetries as examples, we show that the gauge violation
spectroscopy can be used to detect the confinement and decon-
finement phases in gauge theories. In the confinement phase,
gauge violation spectrum is nearly a δ function, while in the
deconfinement phase, it exhibits a finite width.

The rest of this paper is organized as follows. We intro-
duce the basic concept of gauge violation spectroscopy in
Sec. I. Then we calculate the gauge violation spectrum of two
Schwinger-like models by bosonization method in Sec. III.
We calculate the gauge violation spectrum of a quantum link
model, which has been realized recently in Sec. IV. In Sec. V,
we summarize the results.

II. BASIC CONCEPT OF GAUGE VIOLATION
SPECTROSCOPY

As we know the single-particle absorbing and emission
spectrum function can be obtained from the Fourier transfor-
mation of the following Green’s functions:

Aab(k, ω) = i
∫

dt
∫

drg>
r (t )e−i(k·r−ωt ), (1)

Aem(k, ω) = iε
∫

dt
∫

drg<
r (t )e−i(k·r−ωt ). (2)

These Green’s functions are defined as

ig>
r2−r1

(t ) = 〈ψ0|�̂(r2, t )�̂†(r1, 0)|ψ0〉, (3)

ig<
r2−r1

(t ) = ε〈ψ0|�̂†(r1, 0)�̂(r2, t )|ψ0〉, (4)

where �̂(r, t ) = eiHt �̂(r)e−iHt is the matter field operator in
Heisenberg picture, and ε = +1(−1) for bosonic (fermionic)
matter field. Here we choose |ψ0〉 to be the ground state in the
physical sector, i.e., the sector with vanishing gauge charge

Q̂(r) = 0. These Green’s functions describe the process that
adding one particle (hole) to the system at position r1, and
removing one particle (hole) at position r2 after evolution
time t . In synthetic gauge theories, the gauge field can not
adjust to follow the charge we add (remove). Thus this pro-
cess violates the Gaussian law, and excites the system away
from the physical sector. More specifically, matter field op-
erator is not invariant under local gauge transformation, thus
[�̂ (†)(r′), Q̂(r)] �= 0. One finds

Q̂(r)�̂ (†)(r′)|ψ0〉 = ±eδ(r − r′)�̂ (†)(r′)|ψ0〉. (5)

Note that the state �̂ (†)(r′)|ψ0〉 is no longer in the physical
sector as shown in Fig. 1(b), but in the sector with gauge
charge Q̂(r) = ξeδ(r − r1). Then the Green’s functions can
be simplified into

ig>
r2−r1

(t ) = δ(r2 − r1)〈ψ0|�̂(r2)e−iĤ−t �̂†(r1)|ψ0〉, (6)

ig<
r2−r1

(t ) = εδ(r2 − r1)〈ψ0|�̂†(r1)e+iĤ+t �̂(r2)|ψ0〉, (7)

where Ĥξ ≡ Ĥ [Q̂(r) = ξeδ(r − r1)], ξ = ±, is the Hamil-
tonian in the unphysical sectors, and energy of |ψ0〉 is
set to be zero. Here the δ function δ(r2 − r1) is due to
the fact that if r2 �= r1, the state will not go back to
the physical sector, Q̂(x)�̂(r2)�̂†(r1)|ψ0〉 = {δ(x − r2) −
δ(x − r1)}�̂(r2)�̂†(r1)|ψ0〉. As a result, the gauge violation
spectrum exhibits no dispersion,

Aab/em(k, ω) = Aab/em(ω). (8)

In contrast to gauge violation spectroscopy, to calculate the
gauge invariant spectrum, one needs to bind the matter field
operator to the gauge fields

�̂(r) −→�̂(r)ei
∫

dd xEcl (x)·Â(x), (9)

where Ecl(x) is a classical electric field satisfying
∇ · Ecl(x) = δ(x − r). It is invariant under gauge
transformation, and commutes with the gauge charge
[Q̂(r), �̂(r′)ei

∫
dd xEcl (x)·Â(x)] = 0. We note that in most

quantum simulators of synthetic gauge theories, it is hard
to perform the gauge invariant spectroscopy. Since it is
challenging to excite such highly nonlocal excitations.
Therefore the commonly used techniques, such as RF
spectroscopy, probe the gauge violation spectrum rather than
gauge invariant spectrum. Furthermore, we will show that
the gauge violation spectroscopy can be used to detect the
confinement and deconfinement phases in synthetic gauge
theories.

III. TWO SCHWINGER-LIKE MODELS

In the following, we will present two one-dimensional
models with U (1) local gauge symmetry, which can be both
exactly solved via bosonization method. One is the celebrated
Schwinger model. Its Hamiltonian is given by

Ĥ c = Ĥmat + 1

2

∫
dxÊ2(x), (10)

where

Ĥmat =
∫

dx�̂†(x)σz[−i∂x − eÂ(x)]�̂(x), (11)
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and the fermion fields have two components �̂ = (�̂R, �̂L )T .
The Schwinger model describes the (1+1)-dimensional
QED [43,44], and exhibits charge confinement phenomena.
Another is similar to the Schwinger model. Its Hamiltonian is
given by

Ĥd = Ĥmat + u

2

∫
dx[∂xÊ (x)]2. (12)

Note that it possesses a modified Maxwell term. The corre-
sponding energy density of gauge field is proportional to the
square of electrical field gradient rather than the square of
electrical field. This modified Maxwell leads to the deconfine-
ment of charges in this model.

These two models possess the local U (1) gauge symme-
tries. The corresponding gauge transformation operators are
both

Ĝ = exp

{
i
∫

dx[eρ̂(x)θ (x) + Ê (x)∂xθ ]

}

= exp

{
ie

∫
dxθ (x)[ρ̂(x) − 1

e
∂xÊ (x)]

}

= exp

{
−ie

∫
dxθ (x)Q̂(x)

}
, (13)

where θ (x) is an arbitrary phase distribution function, and
ρ̂(x) = �̂†(x)�̂(x) is the particle density operator. The gen-
erator of this gauge transformation is given by

Q̂(x) = ∂xÊ/e − ρ̂(x). (14)

Since [Ĝ, Ĥ c(d)] = 0, Q̂(x) is a conserved quantity called
gauge charge. In the physical sector, Q̂(x) = 0, the conserva-
tion leads to the Gaussian law in one dimension, ∂xÊ = eρ̂(x).

We use the bosonization method to deal with these
two models. Bosonization method maps one-dimensional
fermions to a problem of bosonic fields [45]. Here both Ĥ c and
Ĥd can be bosonized in arbitrary gauge sector. As discussed
above we only focus on the sector with gauge charge Q̂(x) =
ξδ(x − x′). The corresponding bosonized Hamiltonian in this
sector is given by [49],

Ĥ c
ξ = Ĥmat + m2

2

∫
dx

(
φ + ξesgn(x − x′)

2m

)2

, (15)

Ĥd
ξ = Ĥmat + g

2

∫
dx

(
∂xφ + ξeδ(x − x′)

m

)2

, (16)

where

Ĥmat = 1

2

∫
dx[2 + (∂xφ)2], (17)

g = um2 and m2 = e2/π . Note that all of these Hamiltonians
are quadratic, thus can be exactly diagonalized. Then it is
straightforward to calculate the gauge violation correlations
defined in Eqs. (6), (7). For the deconfinement model, one
obtains [49]

ig>(x, t ) = δ(x)

2πa

( −ia

vt − ia

)γ

e−iEQt , (18)

ig<(x, t ) = δ(x)

2πa

(
ia

vt + ia

)γ

eiEQt , (19)

FIG. 2. Gauge violation single-particle absorbing spectrum for
(a), (b) deconfinement model and for (c), (d) confinement model. (a),
(c) Momentum resolved gauge violation spectrum. (b), (d) Gauge
violation spectrum at a given momentum. We have set coupling
constant g = 0.5 for deconfinement model, and the boson mass m =
e/

√
π = 0.17 for confinement model.

where v = √
1 + g and γ = v2+1

2v3 . The ultraviolet cutoff a
is introduced by the bosonization procedure, and EQ is an
unimportant constant energy. For the Schwinger model, it is
hard to obtain a compact analytic form [49]. Then performing
the Fourier transformation one obtains the gauge violation
spectral functions.

The results are shown in Figs. 2 and 3. Note that for both
models, the gauge violation spectrums exhibit no dispersion.
For the model with charge confinement, the gauge violation
spectrum is a δ function. By contrast, for the deconfined
model, the gauge violation spectrum has a finite width. This
behavior can be understood as follows: The gauge violation
spectroscopy measurement adds one particle with charge +e
into the system, and creates a gauge charge −e at the same
position, which can not move. The interaction between this
particle and the gauge charge is governed by electrical field. In
the Schwinger model, this interaction energy is proportional
to the length of separation between the added particle and the
gauge charge, i.e., it is in the confinement phase. Thus the
added particle can not move far away from the original po-
sition. However, in the deconfinement model, the interaction
energy is nearly a constant. Then the added particle can
move away from the original position. For comparison, we
also have calculated the gauge invariance spectroscopy in the
Appendix B, which exhibits linear dispersion in momentum
space.
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FIG. 3. Gauge violation single-particle emission spectrum for
(a), (b) deconfinement model and for (c), (d) confinement model. (a),
(c) Momentum-resolved gauge violation spectrum. (b), (d) Gauge
violation spectrum at a given momentum. We have set coupling
constant g = 0.5 for deconfinement model, and the boson mass m =
e/

√
π = 0.17 for confinement model.

IV. QUANTUM LINK MODEL

Recently, the one-dimensional quantum link model, a U (1)
lattice gauge theory, has been realized on a quantum simulator
based on ultracold bosons in optical lattices [5]. The Gauss
law, as well as the thermalization of this model have been
observed [7]. By further engineering a tunable topological
θ term, confinement-deconfinement transition has been ob-
served [11]. The Hamiltonian of the quantum link model is
given by [46,47]

ĤQLM = J
∑

j

(
�̂

†
j+1Ŝ−

j+1; j�̂
†
j + H.c.

)

+
∑

j

M�̂
†
j �̂ j + χ

∑
j

(−1) j Ŝz
j+1; j . (20)

Here the gauge field is represented by spin-1/2 operators Ŝ+
i+1;i

on links. The matter fields �̂ j on even and odd sites repre-
sent particles and antiparticles. Thus, the term �̂

†
j+1Ŝ−

j+1; j�̂† j

represents the process of generating particle-antiparticle pairs,
as annihilating gauge fields. J is the gauge-matter coupling
strength and M is the mass of the matter field. χ can tune
the topological theta angle θ . When χ = 0, θ = π , as χ �= 0,
θ is tuned away from π . When χ �= 0, i.e., θ is away from
π , it is in the confined phase, and no single charge can be
observed. When χ = 0, i.e., θ = π , there is a transition from

FIG. 4. Gauge violation spectroscopies for the one-dimensional
quantum link model. (a), (b) Results for deconfinement phase with
M = 10J, θ = π . (c), (d) Results for confinement phase with M =
−10J, θ = π and M = ±10J, θ = π/2. The model contains total
number of sites L = 20.

confined phase to deconfined phase by tuning the matter mass
from negative to positive.

The local gauge transformation operator is Ĝ j = eiφQ̂ j , and
the conserved gauge charge is Q̂ j = Ŝz

j+1; j + Ŝz
j; j−1 + �̂

†
j �̂ j .

We calculate the gauge violation spectrum by numerical
exact diagonalization. The results of numerical simulation
are shown in Fig. 4. In Figs. 4(a)–4(b), we observe the
deconfinement behavior with M = 10J and the topologi-
cal angle θ = π . The spectrum has a finite width. Instead,
Figs. 4(c)–4(d) show the confinement behavior with M =
−10J, θ = π . It shows the δ-function behavior. This differ-
ence clearly distinguishes confinement from deconfinement
phase. In Figs. 4(c)–4(d), we also observe the same δ-function
behavior with M = ±10J, θ �= π , because there is only a
confinement phase when θ �= π .

V. SUMMARY

We propose the gauge violation spectroscopy in synthetic
gauge theories on quantum simulators, which could be used to
detect the confinement phase or deconfinement phase. In most
single-particle spectroscopy of synthetic gauge theories, such
as RF spectroscopy in ultracold quantum gases, one measured
the gauge violation spectrum, rather than the gauge invariant
spectrum. Since later spectroscopy needs highly nonlocal per-
turbations. We used three one-dimensional models with local
U (1) gauge symmetry to show that in the confined phase,
the gauge violation spectrum is nearly a δ function, while
in the deconfinement phase the spectrum has a finite width.
However, our conclusions are not limited to one-dimensional
models with U (1) gauge symmetry. It can be applied to higher
dimension or non-Abelian gauge. In addition, we would like
to point out that, for some simulators, the projected Hamil-
tonian instead of the Hamiltonian in the full Hilbert space is
realized [48]. In this situation, there is no room for fluctuation
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of gauge charge. Thus the gauge violation spectroscopy can
not be applied in these simulators.
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APPENDIX A: BOSONIZATION OF SCHWINGER-LIKE
MODELS

To calculate the spectral functions, we use the bosoniza-
tion method to deal with two Schwinger-like models
Eqs. (10), (12). The bosonization dictionary is given by

�̂R(L)(x) → 1√
2πa

e(−)i
√

4πφ̂R(L) (x), (A1)

ρ̂(x) = �̂
†
R�̂R + �̂

†
L�̂L → 1√

π
∂xφ̂, (A2)

Ĥmat =
∫

dx�̂†(x)σz[−i∂x − eÂ(x)]�̂(x),

→ 1

2

∫
dx[̂2 + (∂xφ̂)2], (A3)

and some definitions in the above equations

φ̂ = φ̂R + φ̂L, (A4)

θ̂ = φ̂L − φ̂R, (A5)

̂(x) = ∂x θ̂ (x). (A6)

φ̂R(x) =
∑

q

�(+q)√
2L|q|

(
b̂qeiqx + b̂†

qe−iqx
)
, (A7)

φ̂L(x) =
∑

q

�(−q)√
2L|q|

(
b̂qeiqx + b̂†

qe−iqx
)
, (A8)

where b̂q is the usual bosonic annihilation operator in the
state with momentum q satisfying the commutation relations
[b̂q, b̂†

q′ ] = δqq′ . e−aq/2 is a converging factor with a → 0+.
The system size L will be set to infinity in the last step.

It is straightforward to bosonize the first term in the two
models Eqs. (10), (12). Thus, let us focus on the second
term, which includes the electric field. We can work out the
electric field Ê (x) from Gauss law (14) using Green’s function
method,

Ê (x) =
∫

dy
e

2
[�(x − y) − �(y − x)][Q̂(y) + ρ̂(x)] dy.

(A9)
Then use the bosonic expression of ρ̂(x), and straightforward
integration leads to

Ê (x) = ÊB(x) + e√
π

φ̂(x), (A10)

where the background electric field generated by the gauge
charge Q(x) is defined as

ÊB(x) =
∫

dy
e

2
sgn(x − y)Q̂(y)dy. (A11)

Take the spatial derivative on both sides of Eq. (A10), and we
have

∂xÊ (x) = eQ̂(x) + e√
π

∂xφ̂(x). (A12)

Substitute Eq. (A10) and (A12) into Eqs. (10) and (12), re-
spectively, and we arrive at the bosonized Hamiltonians in any
sector Q̂(x) for the Schwinger-like models,

Ĥ c = 1

2

∫
dx

[
̂2 + (∂xφ̂)2

]
,

+ 1

2
m2

∫
dx

(√
π

e
ÊB(x) + φ̂(x)

)2

(A13)

Ĥd = 1

2

∫
dx

[
̂2 + (∂xφ̂)2

]
+ 1

2
g
∫

dx(
√

πQ̂(x) + ∂xφ̂)2 (A14)

with the mass of the bosonic field φ̂, m2 = e2

π
, and a di-

mensionless coupling constant g = ue2/π . In sectors Q̂(x) =
ξδ(x − x′) with ξ = 0,±, we obtain Ĥ c(d)

ξ in the main text.

APPENDIX B: SPECTRAL FUNCTIONS

In the following, we want to calculate the following types
of correlations:

ig>
σ (x, t ) = 〈ψ0|�̂R(x)e−iĤσ

ξ t �̂
†
R(0)|ψ0〉e+iEσ

0 t , (B1)

ig<
σ (x, t ) = 〈ψ0|�̂†

R(0)e+iĤσ
ξ t �̂R(x)|ψ0〉e−iEσ

0 t . (B2)

Here, Ĥσ
ξ with σ = c, d denote the Hamiltonians of

Schwinger-like models as in the main text or see
Eqs. (B3), (B4). The two models can be discussed in a fully
parallel and unified fashion by introducing the parameter σ .
The |ψ0〉 and Eσ

0 are the ground state and energy in the
physical sector, Ĥσ

ξ=0|ψ0〉 = Eσ
0 |ψ0〉. Since the right and left

movers possess the same physics as the other, we only focus
on the right mover in the following.

First, we diagonalize the bosonic Schwinger-like models in
sectors Q̂(x) = ξδ(x) with ξ = 0,±,

Ĥd
ξ = Ĥmat + m2

2

∫
dx

[
φ + ξesgn(x)

2m

]2

, (B3)

Ĥ c
ξ = Ĥmat + g

2

∫
dx

[
∂xφ + ξeδ(x)

m

]2

. (B4)

It is important to note that the definition of the bosonic field
Eq. (A4) and the Fourier expansion of sgn(x) = 1

L

∑
k

2
ik eikx

allow us to rewrite the Hamiltonians into a unified form in
momentum space

Ĥσ
ξ = Eσ

zp + ξ 2Eσ
Q +

∑
q

[
μσ

q b̂†
qb̂q + 1

2
�σ

q

(
b̂qb̂−q + b̂†

−qb̂†
q

)

+ iξλσ
q

(
b̂q − b̂†

q

)]
. (B5)
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Here,

E c
zp =

∑
q

1

2

(
|q| + m2

2|q|
)

Ed
zp =

∑
q

1

2

(
1 + g

2

)
|q|,

E c
Q =

∑
q

e2

2Lq2
Ed

Q =
∑

q

e2g

2Lm2
,

μc
q = |q| + m2

2|q| μd
q =

(
1 + g

2

)
|q|,

�c
q = m2

2|q| �d
q = g|q|

2
,

λc
q = em

q
√

2L|q| λd
q = egq

m
√

2L|q| .

So the Hamiltonian in the physical sector is given by

Ĥσ
ξ=0 = Eσ

zp +
∑

q

{
μσ

q b̂†
qb̂q + 1

2
�σ

q

(
b̂qb̂−q + b̂†

−qb̂†
q

)}
,

(B6)
which can be diagonalized by utilizing the Bogoliubov trans-
formation

b̂q = uσ
q β̂q − vσ

q β̂
†
−q, b̂†

q = uσ
q β̂†

q − vσ
q β̂−q,

with

(
uσ

q

)2 = 1

2

(
μσ

q

εσ
q

+ 1

) (
vσ

q

)2 = 1

2

(
μσ

q

εσ
q

− 1

)
,

εc
q =

√
|q|2 + m2 εd

q =
√

1 + g|q.

It follows that

Ĥσ
ξ=0 = Eσ

0 +
∑

q

εσ
q β̂†

q β̂q, (B7)

where Eσ
0 = Eσ

zp + Eσ
LHY is the ground-state energy in the

physical sector, and ELHY = 1
2

∑
q(εσ

q − μσ
q ). In this basis, the

Hamiltonians in sectors Q̂(x) = ξδ(x) can be rewritten into

Ĥσ
ξ = Eσ

0 + ξ 2Eσ
Q +

∑
q

εσ
q β̂†

q β̂q

+
∑

q

iξλσ
q

(
uσ

q − vσ
q

)(
β̂q − β̂†

q

)

= Eσ
0 + ξ 2Ẽσ

Q +
∑

q

εσ
q

(
β̂†

q + ξhσ∗
q

)(
β̂q + ξhσ

q

)
(B8)

with

hσ
q = −i

λσ
q

εσ
q

(
uσ

q − vσ
q

)
, (B9)

Ẽσ
Q = Eσ

Q −
∑

q

(
λσ

q

)2(
uσ

q − vσ
q

)2
/εσ

q . (B10)

To calculate spectral functions, it is also convenient to
rewrite the bosonic fields Eq. (A1) in terms of the new basis

�̂R(x) = 1√
2πa

e
∑

q [ησ
q (x)β̂†

q −ησ∗
q (x)β̂q] (B11)

with

ησ
q (x) = i

√
2π

|q|L
[
�(+q)uσ

q − �(−q)vσ
q

]
e−iqx.

1. Gauge invariance spectroscopy

Substitute Eqs. (B7), (B11) into the Green’s function
Eq. (B1), and we obtain

ig>
σ (x, t ) = 1

2πa
〈ψ0|e+ ∑

q [ησ
q (x)β̂†

q −η∗σ
q (x)β̂q]e−it

∑
q εσ

q β̂†
q β̂q

× e− ∑
q [ησ

q (0)β̂†
q −η∗σ

q (0)β̂q]|ψ0〉,

and ig<
σ (x, t ) is similar. Since we are calculating the correla-

tions for the ground state |ψ0〉 of Ĥξ=0, we can work out the
expression by normal ordering it using Baker-Hausdorff (BH)
formula. For deconfinement model, straightforward algebra
gives

ig>
d (x, t ) = a

(v−1)2

2v

2π
[i(x + vt ) + a]−

(v+1)2

4v

× [i(−x + vt ) + a]−
(v−1)2

4v ,

ig<
d (x, t ) = a

(v−1)2

2v

2π
[i(−x − vt ) + a]−

(v+1)2

4v

× [i(x − vt ) + a]−
(v−1)2

4v , (B12)

where v = √
1 + g with dimensionless coupling constant g =

ue2/π . For confinement model, it gives

ig>
c (x, t ) = 1

2πa
exp

⎧⎨
⎩−

∫ ∞

2π/L
dqe−aq m4

4q2εc
q

⎡
⎣1 − e−i(qx+εc

qt )(
εc

q + q
)2 + 1 − ei(qx−εc

qt )(
εc

q − q
)2

⎤
⎦

⎫⎬
⎭, (B13)

ig<
c (x, t ) = 1

2πa
exp

⎧⎨
⎩−

∫ ∞

2π/L
dqe−aq m4

4q2εc
q

⎡
⎣1 − ei(qx+εc

qt )(
εc

q + q
)2 + 1 − e−i(qx−εc

qt )(
εc

q − q
)2

⎤
⎦

⎫⎬
⎭. (B14)

Then we can calculate the spectral functions using the Fourier
transformation. The results are shown in Fig. 5, which exhibit
linear dispersion in momentum space.

2. Gauge violation spectroscopy

Because of the orthogonality of states in different gauge
sectors, the gauge violation correlations can be written
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FIG. 5. The gauge invariance single-particle absorbing and
emission spectrum for (a), (b) deconfinement model and (c), (d) con-
finement model. We have set coupling constant g = 0.5, the mass of
boson m = e/

√
π = 0.17, and system size L → +∞.

as

ig>
σ (x, t ) = δ(x)〈ψ0|�̂R(0)e−iĤσ

ξ t �̂
†
R(0)|ψ0〉e+iEσ

0 t ,

ig<
σ (x, t ) = δ(x)〈ψ0|�̂†

R(0)e+iĤσ
ξ t �̂R(0)|ψ0〉e−iEσ

0 t .

Substitute Eqs. (B8), (B11) into the above correlations, and
we obtain

ig>
σ (x, t ) = δ(x)

2πa
〈ψ0|e+ ∑

q [ησ
q (0)β̂†

q −η∗σ
q (0)β̂q]

× e−it
∑

q εσ
q (β̂†

q +ξhσ∗
q )(β̂q+ξhσ

q )

× e− ∑
q [ησ

q (0)β̂†
q −η∗σ

q (0)β̂q]|ψ0〉e−iξ 2Ẽσ
Q t ,

and ig<
σ (x, t ) is similar. Note that e+ ∑

q[ησ
q (0)β̂†

q −η∗σ
q (0)β̂q] is a

translation operator

e+ ∑
q [ησ

q (0)β̂†
q −ησ∗

q (0)β̂q]β̂†
q e− ∑

q [ησ
q (0)β̂†

q −ησ∗
q (0)β̂q] = β̂†

q − ησ∗
q ,

e+ ∑
q [ησ

q (0)β̂†
q −ησ∗

q (0)β̂q]β̂qe− ∑
q [ησ

q (0)β̂†
q −ησ∗

q (0)β̂q] = β̂q − ησ
q .

Thus we obtain

ig>
σ (x, t ) = δ(x)

2πa
〈ψ0|e−it

∑
q εσ

q (β̂†
q +χσ∗

q )(β̂q+χσ
q )|ψ0〉e−iξ 2Ẽσ

Q t

(B15)
with χσ

q = ξhσ
q − ησ

q (0). Then, we can define B̂σ
q = β̂q + χσ

q ,
such that B̂σ

q |ψ0〉 = χσ
q |ψ0〉. That is to say the ground state

|ψ0〉 in physical sector is the coherent state of operator B̂σ
q .

Thus we have

ig>
σ (x, t ) = δ(x)

2πa
〈ψ0|e−it

∑
q εσ

q B̂†
qB̂q |ψ0〉e−iξ 2Ẽσ

Q t

= exp

⎡
⎣−iξ 2Ẽσ

Qt +
∑

q

∣∣χσ
q

∣∣2(
e−iεσ

q t − 1
)⎤⎦.

Now let us calculate the summation∑
q

∣∣χσ
q

∣∣2(
e−iεσ

q t − 1
) =

∑
q>0

2π

|q|L γ +
q,σ

(
e−iεσ

q t − 1
)

+
∑
q<0

2π

|q|L γ −
q,σ

(
e−iεσ

q t − 1
)
,

where we have defined

γ +
q,σ =

∣∣∣∣∣1 + ξ

√
|q|L
2π

λσ
q

εσ
q

(uσ
q − vσ

q )

∣∣∣∣∣
2

,

γ −
q,σ =

∣∣∣∣∣1 + ξ

√
|q|L
2π

λσ
q

εσ
q

(vσ
q − uσ

q )

∣∣∣∣∣
2

.

For the deconfinement model, γ +,−
q,d is independent of

q because of the linearity of the dispersion relation εd
q =√

1 + g|q|. Thus, we can calculate the summation by using the
formula ln(1 − x) = − ∑

n>0 xn/n, and the gauge violation
correlations read

ig>
d (x, t ) = δ(x)

2πa

( −ia

vt − ia

) v2+1
2v3

, (B16)

ig<
d (x, t ) = δ(x)

2πa

(
ia

vt + ia

) v2+1
2v3

. (B17)

For the confinement model, since γ +,−
q,c depends on q, it is

hard to obtain a compact analytic form. Here, we only show
the exponential integral

ig>
c (x, t )

= δ(x)

2πa
exp

⎧⎨
⎩ −

∫ ∞

2π/L
dqe−aq m4

4q2εc
q

×
⎡
⎣1 − e−iεc

qt(
εc

q + q
)2 + 1 − e−iεc

qt(
εc

q − q
)2

⎤
⎦

⎫⎬
⎭

× exp

{
+

∫ ∞

2π/L
dqe−aq

(
q2 + εc2

q

)
m2

2q2εc3
q

(
1 − e−iεc

qt
)}

,

(B18)

FIG. 6. The norm of the gauge violation Green’s func-
tion of Schwinger model with m = 0.17. (a) Results for
L = 100, 500, 1000, 2000, and α = 0.01. (b) Results for α =
1, 0.1, 0.01, 0.001, and L = 1000. We find L = 1000 and α = 0.01
have converged the results.
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ig<
c (x, t ) = δ(x)

2πa
exp

⎧⎨
⎩−

∫ ∞

2π/L
dqe−aq m4

4q2εc
q

⎡
⎣ 1 − eiεc

qt(
εc

q + q
)2 + 1 − eiεc

qt(
εc

q − q
)2

⎤
⎦

⎫⎬
⎭ exp

{
+

∫ ∞

2π/L
dqe−aq

(
q2 + εc2

q

)
m2

2q2εc3
q

(
1 − eiεc

qt
)}

.

(B19)

After the Fourier transformation, we obtain the gauge violation spectral functions as shown in the main text. Here L = 1000 in
Schwinger model, L → ∞ in deconfinement model and α = 0.01 for all data have converged the results as illustrated in Fig. 6.
In the case m = 0 or g = 0, the Schwinger-like models reduce to massless Dirac model. All results above are consistent with the
known results in the particular case.
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