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Systems with an effectively non-Hermitian Hamiltonian display an enhanced sensitivity to parametric and
dynamic perturbations, which arises from the nonorthogonality of their eigenstates. This enhanced sensitivity
can be quantified by the phase rigidity, which mathematically corresponds to the eigenvalue condition number
and physically also determines the Petermann factor of quantum noise theory. Here, we derive an exact nonpertur-
bative expression for this sensitivity measure that applies to arbitrary eigenvalue configurations. The expression
separates spectral correlations from additional geometric data and retains a simple asymptotic behavior close to
exceptional points (EPs) of any order, while capturing the role of additional states in the system. This reveals
that such states can have a sizable effect even if they are spectrally well separated and identifies the specific
matrix whose elements determine this nonperturbative effect. The employed algebraic approach, which follows
the eigenvectors-from-eigenvalues school of thought, also provides direct insights into the geometry of the states
near an EP. For instance, it can be used to show that the phase rigidity follows a striking equipartition principle
in the quasidegenerate subspace of a system.
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I. INTRODUCTION

From quantum mechanics to classical physics, linear al-
gebra has become such a central tool for the description of
physical systems that it seems to hold hardly any new sur-
prises. Experience informs us about the utility of eigenvalues
and eigenstates, whose calculation appears to be challeng-
ing only when one has to deal with very large systems.
An interesting mathematical complication arises in effective
descriptions that result in nonorthogonal eigenstates, as is
common in open quantum systems and classical systems with
gain and loss, where the effective Hamiltonian becomes non-
Hermitian [1,2]. A full characterization of each state then has
to involve two variants of it, the right eigenstate |Ri〉 and the
left eigenstate 〈Li| of any eigenvalue Ei. As long as eigenval-
ues are nondegenerate, these two sets can be used to form a
biorthogonal basis that diagonalizes the system [3]. However,
the nonorthogonality becomes further accentuated at generic
eigenvalue degeneracies, so-called exceptional points (EPs),
which lead to a defective system that cannot be diagonalized
anymore [3–6]. A physical signature of these EPs is a dras-
tically altered sensitivity of the system to perturbations, both
statically [7,8] and dynamically [9–11]. The nonorthogonality
itself enhances this sensitivity already for spectrally isolated
states, which can be quantified by a number of equivalent
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quantities, such as the phase rigidity

ri = 〈Li|Ri〉√〈Li|Li〉〈Ri|Ri〉
, (1)

which naturally appears in the characterization of the flux
nonconservation [12], or the Petermann factor

Ki = |ri|−2, (2)

which naturally appears in the evaluation of quantum
noise [13–18], as well as in classical dynamical response
theory [9,10]. Approaching an EP, the phase rigidity tends to
zero, and the diverging Petermann factor signifies the above-
mentioned drastic change in the response to perturbations.
Experimentally, these effects have been observed, e.g., in
the broadening of the quantum-limited linewidth of lasers
away from EPs [19,20], in the change of their line shape at
EPs [21], and in the enhancement of both signal and noise
in phonon lasers [22] and laser gyroscopes [23]. In nonre-
ciprocal settings, the Petermann factor can also diverge at
phase transitions that localize the right and left eigenstates
of a given mode at opposite ends of a system, which then
results in a proposed transition to directed amplification and
sensing [9,11,24,25]. As non-Hermitian spectra furthermore
lead to highly complex structures in parameter space [26–28],
a universal and detailed characterization is challenging, which
singles them out as an active field of study.

On the mathematical side, the very same quantity ri is
known as the eigenvalue condition number, which features
practically, e.g., as a measure of accuracy of numerical
diagonalization algorithms [29]. The concrete expression (1)
then reveals a deep relation between eigenvectors and spectral
properties—even though the latter are, in principle, basis in-
variant. These correlations are borne out, e.g., in the study of
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generic non-Hermitian random matrices [30] and in causality
constraints of passive systems [31–33]. In separate develop-
ments, even more concrete eigenvector-eigenvalue relations
are receiving considerable mathematical attention. This fol-
lows the realization that such relations can provide deeply
surprising and general insights, even into normal systems
with orthogonal eigenvectors. While variants of such relations
have appeared in many specific contexts, their comprehensive
landscape was only fully appreciated very recently, as is beau-
tifully surveyed in Ref. [34]. As this reference hints at various
points, the underlying ideas also transfer to non-normal sys-
tems, which is the general mathematical feature that renders
eigenvectors nonorthogonal.

In this paper we combine both themes to provide an ex-
act nonperturbative reformulation of the phase rigidity which
applies to arbitrary eigenvalue configurations and separates
spectral information that becomes singular at EPs from ge-
ometric data that remains regular. This reformulation allows
us to extract valuable information about the properties of a
system both close to and away from EPs of arbitrary order,
including combinations where some of the eigenvalues are
quasidegenerate and others are not, but the additional eigen-
states still have a finite overlap with the quasidegenerate sub-
space. This reveals that such additional states can have a direct
effect even if they are spectrally well separated, and captures
this precisely—realizing the beyond part in the title. On the
other hand, in the limit of a system where all states participate
in the EP, we recover a recently derived compact asymptotic
result [35]—realizing the near part in the title. Furthermore,
the underlying algebraic features allow us to extract additional
geometric information about the states near the EP, revealing
a striking equipartition property of the contributions from the
different directions in the quasidegenerate subspace. These
features directly transfer to the response of physical systems to
parametric and dynamic perturbations, including quantum and
classical noise, and determine the function of these systems as
sensors, in the settings described further above.

These results are presented along the following lines.
Section II provides the mathematical and theoretical back-
ground for this work. Section III formulates and derives
the exact nonperturbative reformulation of the phase rigid-
ity, which constitutes the main general result of this work.
Section IV highlights the implications for asymptotics near
EPs, which constitutes the main application of this formalism.
Section V illuminates these features further by an explic-
itly constructive approach to the eigenstate geometry, while
Sec. VI formulates the equipartition principle that arises from
these considerations. Section VII provides two examples il-
lustrating the nonperturbative role of additional states and the
interplay of multiple EPs, and Sec. VIII contains the conclu-
sions.

II. MATHEMATICAL BACKGROUND

In this paper, we are interested in geometric properties of
eigenvectors of non-Hermitian matrices, as captured by the
phase rigidity ri given in Eq. (1). In this section, the cen-
tral concepts surrounding this quantity are introduced in the
notation common to the physics literature, which is mainly
concerned with effective Hamiltonians H and employs the

Dirac notation. Furthermore, we review the starting point of
the considerations, given by the asymptotic results of the
phase rigidity near maximally degenerate EPs in Ref. [35],
and introduce the mathematical objects that we need to for-
mulate, derive, and apply the main result of this paper, which
extends this framework to systems with arbitrary eigenvalue
configurations.

A. Exceptional points and phase rigidity

In the physical context of effective Hamiltonians H , the
specific eigenvalues determine resonance energies or fre-
quencies, which we will denote by the symbol Ei. These
eigenvalues are defined via the right and left eigenvalue prob-
lems as

H |Ri〉 = Ei|Ri〉, 〈Li|H = 〈Li|Ei, (3)

where |Ri〉, 〈Li| are the corresponding right and left eigen-
vectors. Throughout, we will deal with systems of finite
dimension m = dim(H ), so that the eigenvalue spectrum is
discrete. Biorthogonality implies that 〈Li|Rj〉 = 0 if Ei �= Ej .
For reasons that are explained next, we will not enforce
the biorthogonal normalization condition 〈Li|Ri〉 = 1. Instead,
we will present the results in a form that is independent
of this normalization condition or, where convenient for the
exposition, resort to the unproblematic choice of individually
normalized eigenvectors 〈R̂i|R̂i〉 = 〈L̂i|L̂i〉 = 1 (the hat then
clearly indicates this choice).

These considerations are enforced by the behavior of these
states near degeneracies. For degenerate eigenvalues, we have
to distinguish their algebraic multiplicity n and geometric
multiplicity d , where n is given by the multiplicity of the root
p(Ei ) = 0 of the characteristic polynomial

p(E ) = det(E1 − H ), (4)

and d is given by the number of linearly independent solu-
tions in each of the two eigenvalue equations (3) (here and
henceforth, E represents a continuous energy or frequency
variable). In the case of normal matrices, which include Her-
mitian and unitary ones, both multiplicities d = n coincide,
while in the case of non-normal ones, generically d = 1,
hence only a single eigenvector can be found. These degen-
eracies are known as EPs of order n, and they imply that the
matrix can no longer be diagonalized: In other words, the
eigensystem is defective. (Instead, by Schur’s unitary trian-
gularization theorem the effective Hamiltonian can always be
unitarily transformed into upper triangular form, for which we
then explicitly use the symbol T [36].)

The quantities at the center of this paper provide insight
into the geometric properties of the eigensystem, both for
general fixed eigenvalue configurations and for the depen-
dence in parameter space. In the parametric vicinity of the
EP, the degeneracy of the eigenvalues in question is generi-
cally completely lifted. As one approaches the EP, not only
n eigenvalues tend to a common limit EEP, but also the cor-
responding eigenvectors approach common limits |REP〉 and
〈LEP| (modulo normalization and phase, which can be suitably
fixed). On the other hand, right up to the point of degeneracy
the still-nondegenerate eigenvectors fulfill the biorthogonal-
ity condition 〈Li|Rj〉 = 0 for i �= j. This implies that at the
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EP, the right and left eigenvectors become self-orthogonal,
〈LEP|REP〉 = 0. The phase rigidity ri from Eq. (1) quantifies
this self-overlap at any distance away from the EP, and indeed
does so independent of the normalization choice mentioned
above (it, however, contains an arbitrary phase). In terms
of the individually normalized eigenstates, it can also be
written as

ri = 〈L̂i|R̂i〉 (5)

and hence reduces to the overlap of these states.

B. Phase rigidity near EPs of maximal order

From Ref. [35], the behavior of ri is known near maximally
degenerate EPs, where all eigenvalues and eigenstates of the
system approach each other, i.e., for the case where the order
of the EP equals the dimension of the effective Hamiltonian,
n = m. Near these EPs, the Hamiltonian can be written as

H = EEP1 + N + εH ′, (6)

where εH ′ denotes a perturbation, which is assumed to be
small, while the residual term N obeys

Nn−1 �= 0, Nn = 0. (7)

For this setting, Ref. [35] derives the compact asymptotic
expression

|ri| ∼ |n(Ei − EEP)n−1/ξ | (8)

for the phase rigidity of the individual states near the EP,
where

ξ = ||Nn−1||2 (9)

is a common spectral strength characterizing the EP itself
(we use “∼” to denote the leading-order asymptotic result for
ε → 0, including coefficients). Involving just the perturbed
eigenvalue and a single characteristic number that can be
evaluated directly at the EP, this relation beautifully accen-
tuates the spectral significance of this quantity. On the other
hand, the result is only valid close to maximally degenerate
EPs in the space of H , while in the case that this effective
Hamiltonian is obtained by a truncation to a quasidegenerate
subspace the quantity ξ does not capture contributions from
additional states that do not participate in the EP.

C. Eigenvalues from eigenvectors

The main goal of this work is to express the phase rigidity
in a general and universal form so that it also applies in the
presence of additional states that do not participate in the EP,
and indeed for any eigenvalue configuration. The methods
are inspired from the eigenvalue-from-eigenvector school of
thought, which has been fully developed for Hermitian sys-
tems, where we can identify |Ri〉 = |Li〉 [34]. In the notation
of the present paper, the components of these conventional
eigenvectors then obey, after normalization, the identity

|〈k|R̂i〉|2 = |〈L̂i|k〉|2 =
∏m−1

j=1 (Ei − Ẽ j,k )∏m
j=1; j �=i(Ei − Ej )

, (10)

where |k〉 denotes a fixed orthonormal basis, while Ẽ j,k are
the eigenvalues of the matrix H̃k that is obtained from H by
removing its kth row and column.

In Ref. [34], these truncated matrices are referred to as
minors. In this paper, we follow the more standard convention
to reserve this word for determinants of such truncated matri-
ces. In particular, we will encounter determinants of matrices
obtained by removing a row k and a column l from a matrix
A, and denote these minors as Mkl (A). We furthermore will
encounter the adjugate matrix adj(A), whose matrix elements
are given by [37]

〈l|adj(A)|k〉 = (−1)kl Mkl (A). (11)

As we will see, such matrix elements efficiently capture
the nontrivial geometric properties of eigenvectors in non-
Hermitian settings.

D. The role of the characteristic polynomial

The final piece of mathematical preparation concerns the
role of the characteristic polynomial in linking these previous
statements. We see that this polynomial features naturally both
in Eq. (8), which we aim to generalize, and in Eq. (10), which
relates to the general tools required to formulate and derive
this generalization.

Generally, this polynomial can be written in two explicit
forms,

p(E ) =
m∑

k=0

Ekam−k =
m∏

j=1

(E − Ej ), (12)

where in the second expression any degenerate eigenvalues
are repeated with their algebraic multiplicity.

Let us first establish the asymptotics of this polynomial
near EPs of maximal order n = m, as modeled by the Hamil-
tonian given in Eq. (6). To simplify the derivation, we set
EEP = 0, and reinstate it to a finite value at the end of this
section. We then can use Newton’s formulas [38] to express
the coefficients ak by the traces tk = tr Hk , which here all are
of order tk = O(ε) (the EP condition implies tr Nk = 0 for all
k � 1). With our choice EEP = 0, we then find that with the
exception of a0 = 1, each coefficient |ak| ∼ |tk/k| is of the
same order, and by comparing orders we only need to consider

p(E ) ∼ En + (−1)ndet(H ). (13)

Therefore, close to the EP the eigenvalues approximately
spread out to take uniformly spaced positions on a circle,
which recovers the well-known result of the eigenvalue cloud
close to the EP [3]. In the present context, Eq. (13) allows
us to immediately read off p′(Ei) ∼ nEn−1

i , where the prime
denotes the derivative of the polynomial with respect to E .
Reinstating EEP to a finite value, this turns into the asymptotic
expression

p′(Ei ) ∼ n(Ei − EEP)n−1. (14)

We see that this captures the spectral content of Eq. (8). In the
presence of additional states, we analogously infer

p′(Ei ) ∼ n(Ei − EEP)n−1
∏

k

′
(Ek − EEP), (15)
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where the product is over the remaining eigenvalues not par-
ticipating in the EP (using again their algebraic multiplicities
in the case that they themselves participate in their own EPs).

Finally, note that irrespective of the eigenvalue configura-
tion, the result (10) for eigenvectors of Hermitian matrices can
be written as

|〈k|R̂i〉|2 = |〈L̂i|k〉|2 = p̃k (Ei )

p′(Ei )
, (16)

where p̃k (E ) is the characteristic polynomial of the matrix H̃k

(i.e., H with its kth row and column removed).
In summary, this background highlights the relation of

eigenstate geometry to algebraic objects such as the charac-
teristic polynomial (4) and the adjugate matrix (11). In the
next section, we use these mathematical objects to formulate
and derive the main general result of this paper.

III. MAIN GENERAL RESULT

With these mathematical preparations, we can now formu-
late the main general result of this work, a nonperturbative
expression of the phase rigidity that applies to arbitrary eigen-
value configurations. In this section, first this result is stated,
and then we turn to its derivation, which usefully illuminates
general geometric relations of the involved states. Subsequent
sections then describe the concrete insights that one can gain
from this reformulation, such as the ensuing general asymp-
totic behavior near EPs, including for the case where these do
not involve all states in the system. This utilizes a second key
feature of the intended reformulation, namely, that it cleanly
separates contributions due to spectral correlations, which can
be analyzed perturbatively, from additional, nonperturbative,
geometric data.

A. Exact reformulation

To achieve these goals, we prove, below in this section, the
exact reformulation

ri = p′(Ei )

gi
(17a)

of the phase rigidity, where the prime again denotes the deriva-
tive of the characteristic polynomial p(E ) with respect to E ,
while

gi = 〈R̂i|adj(Ei1 − H )|L̂i〉 (17b)

determines a matrix element of the adjugate matrix,
obtained from the determinantal minors Mkl (Ei1 − H ) as
specified in Eq. (11).

This reformulation allows us to obtain the phase rigidity
of eigenvalues for arbitrary configurations, both close to and
far away from EPs, and irrespective of how many of the
eigenvalues in the system are participating in it. Furthermore,
it cleanly separates out spectral content via the characteristic
polynomial, while additional geometric data are captured in
the coefficient gi.

B. Resolvent proof

For the derivation we employ the resolvent method,
which features centrally in the eigenvectors-from-eigenvalue

context [34]. On the physical side, this approach mirrors
closely contexts involving the Petermann factor Ki = 1/|ri|2.
This factor typically appears from the resolvent

G = (E1 − H )−1, (18)

which we can analyze for E → Ei. Using the spectral decom-
position, we have

Gkl ∼ Ri,kL∗
i,l

〈Li|Ri〉
1

E − Ei
, (19)

where “∼” now also implies the asymptotics E → Ei. On the
other hand, using Cramer’s rule [37],

Gkl ∼ (−1)k+l Mlk (Ei1 − H )

p′(Ei )

1

E − Ei
, (20)

where Mlk (A) is the minor of A obtained by removing the
indicated row-column pair and the prime in p′(Ei ) denotes
the derivative of p(E ) with respect to E , just as introduced
in Sec. II.

Comparison of these two expressions gives the important
exact relation (see remark 5 in Ref. [34])

(−1)k+l Mlk (Ei1 − H ) = Ri,kL∗
i,l

〈Li|Ri〉 p′(Ei ). (21)

We now temporarily resort to the individually normalized
eigenvectors, 〈R̂i|R̂i〉 = 1 = 〈L̂i|L̂i〉, to resolve this into the
relation

〈R̂i|adj(Ei1 − H )|L̂i〉 = p′(Ei )

〈L̂i|R̂i〉
(22)

for the corresponding matrix element of the adjugate matrix.
Given this normalization, we immediately obtain the general
main result (17) via Eq. (5).

IV. ASYMPTOTIC BEHAVIOR NEAR EPs

One of the key merits of the exact reformulation (17) is its
regular behavior close to EPs. The characteristic polynomial
p(E ) factors out the appropriate power-law dependence in
(Ei − EEP), while the geometric factor gi remains finite. Fur-
thermore, both factors fully account for all remaining states
in the system, again irrespective of how complicated their
eigenvalue configuration may be. Therefore we can evaluate
the resulting asymptotic behavior of the phase rigidity not
only near EPs of maximal order n = m, but also for EPs of
any order n < m, where additional states exist in the system.

A. EPs of maximal order

First, we verify that this approach recovers the correct
asymptotics near EPs of maximal order, as described by
the effective Hamiltonian (6). The exact reformulation then
expresses the result (8) as

|ri| ∼ |p′(Ei )|
|ML̂EPR̂EP

(N )| , (23)

where ML̂EPR̂EP
(N ) denotes the minor of N obtained by re-

moving the eigenvector directions 〈L̂EP| and |R̂EP〉 at the EP
from the row and column. This direct formulation rests on
the fact that these directions are orthogonal, 〈L̂EP|R̂EP〉 = 0, so
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that we can make them part of an orthonormal basis. For this
specific case, the two results agree by the following relations:
As already discussed in the context of Eq. (14), p′(Ei ) exactly
captures the spectral information appearing in the numerator
of Eq. (8). Furthermore, we now can confirm that

ξ = |ML̂EPR̂EP
(N )| (24)

follows using the normal form where N takes an upper trian-
gular form T , as obtained by a Schur decomposition, resulting
in a basis change, after which |R̂EP〉 is the first basis vector and
〈L̂EP| is the last. Then we can verify explicitly that

|Mn1(T )| =
∣∣∣∣∣
n−1∏
k=1

Tk,k+1

∣∣∣∣∣ = ||T n−1||2 = ξ (25)

takes exactly the same algebraic form as obtained from its
definition above; this then remains true in any orthonormal
basis. Equation (23) asks us to take the ratio of Eqs. (14)
and (25), and this then indeed recovers Eq. (8).

B. EPs of any order

Secondly, we make use of the universality of Eq. (17) to
address the role of additional states in the system and hence
determine the asymptotic behavior of the phase rigidity near
generic EPs to any order.

Indeed, the derivation of Eq. (17) does not rely on a trun-
cation of the matrix to the quasidegenerate space, which is
required to define ξ in the original context. Therefore we
can replace N → H − EEP1 by the full Hamiltonian at the
EP, including possible additional states with nondegenerate
eigenvalues. This gives our general result for the asymptotic
behavior near such an EP,

|ri| ∼ |p′(Ei )|
|ML̂EPR̂EP

(EEP1 − H )| , (26)

where the minor can be calculated directly in an orthonormal
basis where |R̂EP〉 and |L̂EP〉 are basis vectors, utilizing again
that such a basis exists since at the EP 〈L̂EP|R̂EP〉 = 0. If
desired, the spectral content in this asymptotic expression can
again be further evaluated by using Eq. (15).

Equation (26) implies that the additional states in the
system provide generally non-negligible nonperturbative con-
tributions to the phase rigidity. This is further illustrated by
the examples in Sec. VII.

V. CONSTRUCTIVE APPROACH

The derivation of the general result (17) in Sec. III is
closely connected to considerations in the eigenvectors-from-
eigenvalues school of thought, while the analysis of the
asymptotic behavior near EPs in Sec. IV makes use of the
separation of spectral data in the characteristic polynomial,
and additional geometric data in the coefficients gi. As laid
out in Sec. II, the determinantal minors appearing in these
coefficients also give us access to the spectral data itself.
Following the essence of these considerations further, we can
therefore approach this asymptotic behavior directly in terms
of these minors.

For this we express the components of the non-normalized
eigenvectors freely and exactly as

Ri,k = (−1)kMsk (Ei1 − H ),

L∗
i,k = (−1)kMkt (Ei1 − H ). (27)

Away from an EP, we can choose the indices s and t arbitrarily,
while at an EP these expressions apply to all choices of s and
t that give a finite result, of which there is generically at least
one. The proof of this representation is simple: For any square
matrix A with det A = 0, A adj A = 0, so that each column
|as〉 of adj A provides a solution to the homogenous system of
equations A|as〉 = 0. We here simply apply this to the matrix
A = Ei1 − H and obtain a right eigenvector as long as the
result does not vanish. For the left eigenvector, we proceed
analogously using the rows of adj A, given that adj A A = 0.

For instance, using the triangular normal form T of the
truncated system (6) and setting for convenience EEP = 0,
while choosing s = 1, t = n, we can write

Ri,k ∼ En−k
i

k−1∏
l=1

Tl,l+1, (28)

L∗
i,k ∼ Ek−1

i

n−1∏
l=k

Tl,l+1. (29)

It follows that 〈Ri|Ri〉 ∼ 〈Li|Li〉 ∼ ξ 2, |〈Li|Ri〉| ∼ n|En−1
i |ξ .

Therefore |ri| ∼ |nEn−1
i |ξ/ξ 2 again recovers the result (8),

this time fully constructively.
We note that the general result (17) is significantly more

compact than using Eq. (27). On the other hand, the construc-
tive approach gives direct access to the individual eigenvector
components and hence captures their explicit geometry in a
given basis. In the next section we utilize such additional
insights to identify a general geometric feature hidden in these
relations.

VI. EQUIPARTITION PRINCIPLE

The intermediate steps of the original derivation of Eq. (8)
in Ref. [35] involve a number of interesting perturbative
relations in the space of the truncated system (6), most promi-
nently for the overlaps

〈L̂i|R̂i〉 ∼ n〈L̂EP|R̂i〉, (30)

where the subscript “EP” denotes quantities at the EP. We did
not use this relation, but note that it can be recovered from
Eq. (21). For this, we simply take

〈L̂EP|A|L̂EP〉 ∼ 〈L̂EP|R̂i〉
〈L̂i|R̂i〉

p′(Ei ) = ML̂EPL̂EP
((Ei − EEP)1 − N ).

(31)

Now, because of the reduced matrix size in the minors
we find for the diagonal terms ML̂EPL̂EP

((Ei − EEP)1 − N ) ∼
(Ei − EEP)n−1 ∼ p′(Ei )/n. The relation (30) for overlaps in
the truncated system then follows directly.

Using our explicit expressions for the states, we can now
concretize this relation to obtain geometric insights into the
states near the EP. First, using the upper triangular normal
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FIG. 1. Illustration of the equipartition principle (32) in the trun-
cated subspace near an EP of order 3, for a pair of right and left
eigenvectors R, L with real components.

form T of the still-truncated system, Mkk ((Ei − EEP)1 − T ) =
(Ei − EEP)n−1, is identical for all k, and Eq. (21) gives

Ri,kL∗
i,k = 1

n
〈Li|Ri〉, (32)

so that every individual term contributes exactly equally to
this overlap. Next, using the generality of expression (21),
we find that this still applies to the nontruncated case, as
the further overlaps are all of a higher order. Therefore, in
the normal-form basis, each direction in the quasidegenerate
space provides exactly the same contribution to the phase
rigidity, as illustrated in Fig. 1. This equipartition principle
provides a striking geometric reinterpretation of the factor
n appearing in the asymptotic result (8), which still carries
over to the general case, and severely restricts the eigenstate
geometry near an EP.

VII. ILLUSTRATIVE EXAMPLES

We close this paper by providing two simple examples of
systems close to an EP. The examples illuminate the role of
additional states in the system, including for the case where
these participate themselves in their own EP. This reveals the
generally nonperturbative role of any additional states, which
we condense into guidance for more general applications.

A. Role of a spectrally isolated additional state

As the first example, we consider a 3×3 Hamiltonian at an
EP of order 2, written in upper triangular form as

H =
⎛
⎝

0 a b
0 0 c
0 0 �

⎞
⎠. (33)

The states participating in the EP have eigenvalue EEP =
E(1|2) = 0, and the right and left eigenstates associated with

it can be written as

|R(1|2)〉 =
⎛
⎝

1
0
0

⎞
⎠, 〈L(1|2)| = (0,�,−c). (34)

As required for a system that sits exactly at an EP, these
states are self-orthogonal, 〈L(1|2)|R(1|2)〉 = 0, so that the phase
rigidity r(1|2) = 0 vanishes.

Adding a small perturbation εH ′ to this Hamiltonian, the
eigenvalues participating in the EP become, to leading order,
perturbed into

E1,2 ∼ ±
√

−tr [H ′ adj (−H )]/� ≡ ±δ(1|2), (35)

where we expressed this compactly using the unperturbed
adjugate matrix

adj (−H ) =
⎛
⎝

0 −a� ac
0 0 0
0 0 0

⎞
⎠. (36)

Utilizing the same matrix in Eq. (17b), we evaluate that in
contrast to the phase rigidity itself, the coefficient

g(1|2) = a
√

|c|2 + |�|2 (37)

indeed remains finite at the EP. Together with the asymptotic
form p′(E1,2) ∼ −2E1,2� of the characteristic polynomial, we
then find the asymptotics

|r1,2| ∼ 2|E1,2|
|a|

|�|√
|c|2 + |�|2

(38)

of the phase rigidity for each of the two eigenvalues that
approach the EP.

These steps illuminate the passage from the general
result (17) to its asymptotic form (26). In the final
expression (38), the first factor |2E1,2/a| coincides with the
approximation where the matrix would be truncated to the
first and second row and column, to which we then can apply
Eq. (8), while the remaining factor captures the contribution
from the overlap of the additional eigenstate with the quaside-
generate subspace of the states near the EP. Such additional
states can therefore not be neglected.

Returning to the unperturbed system, the remaining eigen-
state has eigenvalue E3 = � and eigenvectors

|R3〉 =
⎛
⎝

(ac + b�)/�
c
�

⎞
⎠, 〈L3| = (0, 0, 1), (39)

which from the outset have a finite overlap. The phase rigidity
quantifying this overlap,

r3 = |�|2√
|(ac + b�)/�|2 + |c|2 + |�|2 , (40)

indeed agrees exactly with the prediction of the general, non-
perturbative, expression (17), where we utilize p′(�) = �2

and

adj (�1 − H ) =
⎛
⎝

0 0 ac + b�
0 0 �c
0 0 �2

⎞
⎠. (41)
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This illustrates how the framework developed in this paper
applies to evaluate the phase rigidity of both quasidegenerate
and isolated states in the system, and that in each case the
result involves nonperturbative terms from the overlap of their
respective subspaces.

B. Interplay of exceptional points

As a second example, let us consider a system of four
states, which pairwise participate in two EPs. We again utilize
Schur’s unitary triangularization theorem to study this system
in its upper triangular form,

H =

⎛
⎜⎜⎝

0 a1 a2 a3

0 0 b1 b2

0 0 � c1

0 0 0 �

⎞
⎟⎟⎠, (42)

where one EP has a vanishing eigenvalue E1 = E2 ≡
E(1|2) = 0, while the other has the eigenvalue E3 = E4 ≡
E(3|4) = �. Because of the defectiveness, each of these al-
gebraically degenerate eigenvalues has only one right-left
eigenvector pair,

|R(1|2)〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, 〈L(1|2)| = (0,�,−b1, (b1c1 − b2�)/�),

(43)

|R(3|4)〉 =

⎛
⎜⎜⎝

(a1b1 + a2�)/�
b1

�

0

⎞
⎟⎟⎠, 〈L(3|4)| = (0, 0, 0, 1).

(44)

The corresponding adjugate matrices are

adj (−H ) =

⎛
⎜⎜⎝

0 a1�
2 −a1b1� a1(b1c1 − b2�)

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

(45)

adj (�1 − H ) =

⎛
⎜⎜⎝

0 0 0 (a1b1 + a2�)c1

0 0 0 �b1c1

0 0 0 �2c1

0 0 0 0

⎞
⎟⎟⎠. (46)

Therefore, while at the EP the phase rigidity ri of the
participating eigenvalues again vanishes, the coefficients

g(1|2) = a1�
√

|�2| + |b1|2 + |b1c1 − b2�|2/|�|2, (47)

g(3|4) = c1�
√

|�2| + |b1|2 + |a1b1 + a2�|2/|�|2 (48)

are once more both finite.
Adding a small perturbation εH ′, the perturbative eigenval-

ues can be compactly expressed as

E1,2 ∼ ±
√

ε tr [H ′ adj (−H )]/� ≡ ±δ(1|2),

E3,4 ∼ � ±
√

ε tr [H ′ A (� − H )]/� ≡ � ± δ(3|4). (49)

Combining all these results in our asymptotic expres-
sion (26); we therefore obtain

|r1,2| ∼ 2|δ(1|2)|
|a1|

1√
1 + |b1|2/|�2| + |b1c1 − b2�|2/|�|4

(50)

and

|r3,4| ∼ 2|δ(3|4)|
|c1|

1√
1 + |b1|2/|�2| + |a1b1 + a2�|2/|�|4 .

(51)

In both cases, this again contains a factor as in Eq. (8), rep-
resenting the truncation of the system to the two-dimensional
quasidegenerate subspace, and a contribution characterizing
the overlap with the remaining states in the system.

C. Further guidance for applications

We note that in both examples, the additional states in
the system provide generally non-negligible, nonperturbative
contributions to the phase rigidity. Furthermore, while the
eigenvalue perturbations (35) and (49) also pick up contribu-
tions from outside the quasidegenerate subspace, these two
effects do not cancel. Therefore, in general, truncations to
the quasidegenerate subspace have to be treated with caution:
Their justification requires an analysis not only of the matrix
elements of the perturbation, but also of the nonperturbative
matrix elements of the adjugate matrix. In practical applica-
tions, this can be further guided by the constructive approach
in Sec. V, which gives direct access to the eigenvector com-
ponents in a given basis. However, in all these settings, our
general expression (17) and the asymptotic form (26) can be
utilized to analyze these without any further restrictions. In
particular, within this formalism we do not encounter any
further complications from the fact that the remaining states
may themselves be close to an EP.

VIII. CONCLUSIONS

In summary, we provided an exact nonperturbative refor-
mulation of the phase rigidity (or equivalently, the eigenvalue
condition number and the Petermann factor), given by
Eq. (17). This expression has three key merits: It is exact;
it is well behaved near exceptional points, where it takes the
asymptotic form Eq. (26); and it does not require truncation
of the system to a quasidegenerate subspace.

The expression therefore enjoys a wide range of applica-
bility, including to systems with additional overlapping states
that possibly participate in their own exceptional points. The
result also holds, e.g., when no eigenvalues are close to an
exceptional point or when such multiple exceptional points
are brought close to each other so that the quasidegenerate
eigenvalue clouds become intermingled. This then enables the
careful and precise analysis of effectively non-Hermitian sys-
tems, which is essential for the evaluation of their intriguingly
modified sensitivity to static and dynamic perturbations.

The results also demonstrate that common truncations to
quasidegenerate subspaces have to be treated with caution.
These are only admissible if other states in the system do not
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overlap with these spaces, which can only be asserted using
additional arguments. The formalism described here identifies
particular elements of the adjugate matrix as crucial for the
justification of such truncations.

This realization should motivate the design of systems
where new functionality arises from the combination of sev-
eral separate exceptional points. A particularly interesting
setting to explore such new enhancement effects is that of
active systems, in which inhomogeneous gain significantly
changes the mode nonorthogonality, while causality con-
straints of passive systems [31–33] no longer apply. This

also includes nonreciprocal variants of these systems, which
support directed amplification and sensing [9,11,24,25].
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