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Detecting fractionalization in critical spin liquids using color centers
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Quantum spin liquids are highly entangled ground states of insulating spin systems, in which magnetic
ordering is prevented down to the lowest temperatures due to quantum fluctuations. One of the most extraordinary
characteristics of quantum spin liquid phases is their ability to support fractionalized, low-energy quasiparticles
known as spinons, which carry spin-1/2 but bear no charge. Relaxometry based on color centers in crystalline
materials—of which nitrogen-vacancy (NV) centers in diamond are a well-explored example—provides an
exciting new platform to probe the spin spectral functions of magnetic materials with both energy and momentum
resolution and to search for signatures of these elusive, fractionalized excitations. In this work, we theoretically
investigate the color-center relaxometry of two archetypal quantum spin liquids: the two-dimensional U(1)
quantum spin liquid with a spinon Fermi surface and the spin-1/2 antiferromagnetic spin chain. The former
is characterized by a metallic, spin-split ground state of mobile, interacting spinons, which closely resembles
a spin-polarized Fermi liquid ground state but with neutral quasiparticles. We show that the observation of
the Stoner continuum and the collective spin wave mode in the spin spectral function would provide a strong
evidence for the existence of spinons and fractionalization. In one dimension, mobile spinons form a Luttinger
liquid ground state. We show that the spin spectral function exhibits strong features representing the collective
density and spin-wave modes, which are broadened in an algebraic fashion with an exponent characterized by the
Luttinger parameter. The possibilities of measuring these collective modes and detecting the power-law decay of
the spectral weight using NV relaxometry are discussed. We also examine how the transition rates are modified
by marginally irrelevant operators in the Heisenberg limit.

DOI: 10.1103/PhysRevResearch.6.013043

I. INTRODUCTION

Quantum spin liquid (QSL) phases are ground states of
certain Mott insulators in which strong quantum fluctuations
prevent magnetic ordering down to zero temperature [1–4].
These phases are distinguished among themselves by different
quantum orders characterizing their many-body quantum en-
tanglement as opposed to which space-time or spin-rotational
symmetries they break [5,6]. One of the most striking impli-
cations of this quantum non-locality is fractionalization: it is
a QSL’s ability to support sharp, low-energy excitations that
behave as “fractions” of an electron, even though the physical
electrons that form these phases are robust against such splin-
tering. Fractionalization is one of the defining characteristics
of QSL phases [7], and identifying experimental signatures of
the phenomenon is indispensable for the discovery of these
elusive phases.
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The most prominent examples of these fractionalized
excitations are spinons. In certain half-filled Mott insula-
tors, these spinons emerge as gapless, mobile fermionic
quasiparticles—akin to conventional Landau quasiparticles—
that can transport heat but carry no charge. They also carry
spin-1/2, in spite of the fact that each site of the lattice
contains a single localized electron, in which case any local
spin excitation corresponds to a full spin-1 insertion. In the
one-dimensional (1D) spin-1/2 antiferromagnetic spin chain,
such spinons arise as domain walls separating two different
configurations of antiferromagnetic order [8–11]. In two di-
mensions, these spinons may emerge in Mott insulators in the
vicinity of the metal-insulator transition [12,13]. A canonical
model for these so-called “weak” Mott insulators involves
a half-filled, single-band Hubbard model on the triangular
lattice with a relatively small Mott gap. Enhanced charge
fluctuations stemming from the small charge gap have been
shown to stabilize a QSL state, the low-energy model of which
is predicted to involve a Fermi surface of spinons coupled
to a fluctuating U(1) gauge field [14,15]. Measurements sup-
porting this prediction have been reported on organic salt
compounds [16,17], as well as the triangular antiferromagnet
YbMgGaO4 [18].

A promising spin-sensitive probe that may shed fresh
light on these exotic quasiparticles is relaxometry based on
color center defects in crystalline materials. Of all the color
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centers that are suggested to exist in various wide band-gap
materials [19], one prominent example is nitrogen-vacancy
(NV) defects in diamond. With a broad operational regime
(temperatures from a few Kelvin to above room temperature
and magnetic fields from zero to a few Tesla), a dynamic
frequency range up to a few hundred GHz, and nanoscale spa-
tial resolution, NV relaxometry offers unrivaled versatility in
the field of magnetic sensing [20–22]. The technique involves
placing an NV defect near the surface of a magnetic material
and measuring the relaxation rate of the S = 1 spin localized
on the defect. The rate is sensitive to the magnetic-field power
spectral density at the defect site, which in turn depends on the
imaginary part of the dynamic spin response function—the
spin spectral function—of the magnetic material. Measuring
the relaxation rates thus allows one to extract the material’s
spectral properties.

One notable feature of NV relaxometry is that it probes the
response function at a specific probe (or “ESR”) frequency,
which is determined by an external bias magnetic field. The
technique thus functions as a field-tuned spectrometer of spin
fluctuations and is excellently well-suited for evincing the
spectral properties of QSL materials under the influence of
a magnetic field.

Another attractive feature is that the relaxation rates are
typically most sensitive to spin fluctuations at wave vectors
q ∼ d−1, where d is the defect-sample distance. Therefore, by
tuning d and the external field, NV relaxometry can be used
to quantify the spin spectral function with both energy and
momentum resolution.

Recent relaxometry measurements on a ferrimagnetic in-
sulator Y3Fe5O12 have achieved energy resolution up to
∼10−6 K and wave vector resolution up to ∼103 m−1 for
magnons with wave vectors q ∼ 107 m−1 [23]. These mea-
surements have also demonstrated the possibility of detecting
magnon excitations with wave vectors up to 5 × 107 m−1; this
maximum wave vector lies outside of the accessible wave-
vector range of current FMR spectroscopy and spin-pumping
techniques [24] and approaches the measurement limit of
Brillouin light scattering [25,26]. The possibility of NV spin
sensors to scan the spin spectral landscape over a wide range
of frequencies and wave vectors with energy and momentum
resolution makes it a highly desirable probe of fractionaliza-
tion in QSL phases.

Motivated by these latest developments, we theoretically
examine the NV relaxometry of two representative QSL
phases—the spin-1/2 antiferromagnetic quantum spin chain
[9,10] and the 2D QSL with a spinon Fermi surface coupled
to a U(1) gauge field [1,2,14,15]. With the rising possibility
of utilizing NV spin sensors for energy- and momentum-
resolved spectroscopy, our focus will be on the spin spectral
functions of these QSL phases and to examine how fraction-
alization manifests itself in these functions and ultimately
in the NV relaxation rates [20,27,28]. The ESR frequency
of the NV spin is determined by an externally applied bias
magnetic field. We therefore evaluate the spectral functions as
a function of this bias field by taking account of the effects
of this field on the QSLs. We also incorporate the fact that
1D and 2D QSLs are typically embedded in 3D materials. For
the 2D QSL, we consider stacking identical 2D QSL layers
in the third direction and compute the relaxation rates due to

this layered structure. For the 1D case, we compute the rates
for a 3D stack of quantum spin chains in which nonlocal spin
correlations extend only along one spatial direction.

Summary: Signatures of Fractionalization in NV Relaxometry

Before delving into the technical details, we begin by de-
scribing the salient signatures of fractionalization in the spin
spectral function. This brief summary focuses on the 2D QSL
with a spinon Fermi surface, as the qualitative features in the
2D case carry over to the 1D case.

In this work, we make some simplifying assumptions that
should not impact our main findings qualitatively. First, we
do not explicitly take account of the potential due to the
background lattice and use effective long-wavelength theo-
ries to calculate spin spectral functions. Second, we assume
that the quantization axis of the NV spin and the external
bias field are collinear to each other and that they are both
normal to the magnetic film. If we further assume that the
quantum magnet possesses uniaxial spin-rotational symmetry
about this axis, NV spin relaxometry effectively probes the
imaginary part of the sum of the transverse and longitudi-
nal components of the dynamic spin response function, i.e.,
Im{χR

⊥(q,�) + χR
‖ (q,�)}, where

χR
⊥ ≡ 1

4 (χR
+− + χR

−+) , χR
‖ ≡ χR

zz , (1)

and the response function reads

χR
αβ (q,�) =

∫
dt
∫

d2r χR
αβ (r, t )e−iq·r+i�t , (2)

χR
αβ (r, t ) = −i�(t )〈[sα (r, t ), sβ (0, 0)]〉 . (3)

Here, α, β = x, y, z,+,− label the spin components, sα (r, t )
denotes the local spin density in the QSL, and r = (x, y) and
q = (qx, qy), respectively, denote the position and wave vector
within the magnetic plane.

The low-energy model of the 2D QSL is a “Fermi liquid” of
spinons—spin-1/2, charge-neutral fermionic quasiparticles—
coupled to a fluctuating U(1) gauge field, the mathematical
structure of which arises in several different contexts of con-
densed matter physics including the half-filled Landau level
[29] and non-Fermi liquid metals [30–32]. Let us first con-
sider the spin response in the absence of the gauge field.
The fractionalization of spin-1 (magnon) excitations into two
spinons converts Eq. (2) into a two-particle retarded correla-
tion function of spinons. In the presence of the bias magnetic
field, Im{χR

⊥(q,�)} then exhibits a two-particle continuum
spectral weight, known as the Stoner continuum, represent-
ing the kinematically allowed spin-1 particle-hole excitations.
Figure 1(a) is a plot of −Im{χR

⊥(q,�) + χR
‖ (q,�)} computed

in the absence of the gauge fluctuations using the time-
dependent Hartree-Fock approximation (details are provided
in Sec. III); the Stoner continuum is given by the “fan” region
labeled “II.”

The pole of the transverse component χR
⊥(q,�) defines

a collective spin-1 mode, i.e., the spin wave mode, of the
QSL that appears as a sharp spectral weight below the Stoner
continuum and disperses down [see Fig. 1(a)]. This spin wave
mode emerges exactly at the Zeeman energy h̄γ B0 at q = 0
(with γ being the gyromagnetic ratio of the QSL and B0 being
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FIG. 1. Plot of −Im{χR
⊥(q, �) + χR

‖ (q, �)} (q ≡ |q|) without (a) and with (b) corrections due to the fluctuating U(1) gauge field. The
low-frequency spectral weight, i.e., region IV, comes from the longitudinal component χR

‖ (q, �), while the Stoner continuum (region II)
and the collective spin wave mode arise from the transverse component χR

⊥(q, �). Correlation strength ξ ≡ ug0 = 0.3 is used, and q0 is the
wavevector at which the lower boundary of the Stoner continuum reaches zero frequency. For the definitions of χR

⊥(q,�) and χR
‖ (q, �), see

Eq. (1), and for the definitions of the variables, see Sec. III.

the bias magnetic field) and remains sharp as long as the
damping mechanisms, such as U(1) gauge field fluctuations,
are absent. The spin wave mode at q = 0 describes a uniform
spin precession at the Larmor frequency γ B0, a result that is
in accordance with the Larmor theorem [33], which states that
the only response of any spin system with SU(2) symmetry at
zero field is at the Larmor frequency. As we later show, the
inclusion of (repulsive) spinon interactions via the Hartree-
Fock approximation leads to the detuning of the vertex of the
Stoner continuum away from the Larmor frequency, as seen
by the detuning of 	 away from γ B0 in Fig. 1(a).

It turns out that the dynamic U(1) gauge field in the 2D
QSL has a nearly flat band; therefore, this field acts as an
effective momentum sink for the spinons. The addition of the
gauge fiuctuations thus generally leads to the smoothening out
of the sharp features in Fig. 1(a) [see Fig. 1(b)]. The most
notable effect is the broadening of the spin wave mode due to
the gauge field, i.e., the gauge fluctuations introduce a lifetime
to the spin wave mode. This broadening, however, vanishes as
q → 0 so that the mode becomes sharp in the uniform limit,
in accordance with the Larmor theorem.

The spin wave mode discussed here was studied in the con-
text of a conventional Fermi liquid many decades ago [34,35]
and, very recently, in the context of a 2D QSL with a spinon
Fermi surface in Ref. [36]. An analysis of a similar spin-1
mode in the context of a spin-1/2 antiferromagnetic quantum
spin chain was recently presented in Ref. [37]. Unlike zero
sound, which is undamped at low energies, the collective
spin wave mode is typically overdamped by the particle-hole
continuum at zero field. However, a finite magnetic field shifts
both the continuum and the mode up to Zeeman energy, and
the inclusion of repulsive quasiparticle interactions shifts the
continuum further up in energy [e.g., up to 	 in Fig. 1(a)]. [38]
An important difference between conventional Fermi liquids
and the 2D QSL is that in the former case, the Zeeman energy
h̄γ B0 relative to the Fermi energy is essentially zero, while in
the latter case the Fermi energy is determined by the exchange
constant J , so h̄γ B0 could be a significant fraction of εF . As
the ratio h̄γ B0/εF grows, the “triangular” region, i.e., region

III in Fig. 1(a), enlarges, and the interesting collective spin
wave dynamics arises over a substantial region in q-� space
[36].

It is remarkable that a 2D QSL, a half-filled Mott insu-
lator, exhibits a paramagnetic response that resembles that
of a weakly correlated metal. This is a striking consequence
of strong interactions: strongly correlated electron systems,
such as QSLs, often host novel excitations at low ener-
gies that bear little resemblance to the constituent electrons.
The observation of the Fermi liquid-like signatures, i.e., the
Stoner continuum and the collective spin wave mode, in
these QSL phases would provide a definitive signature of
fractionalization.

This paper is organized as follows. In Sec. II, derivations
of the NV relaxation rates for generic, quasi-1D and quasi-2D
quantum magnets are presented. Section II also elucidates
how the relaxation rates depend on the spin spectral functions
of these quantum magnets. The spin spectral functions for the
two representative QSLs are then evaluated in the following
two sections. The spectral function for the 2D QSL is derived
first in the absence of the gauge field in Secs. III A and III B
using the static and time-dependent Hartree-Fock approxima-
tions. It is then re-evaluated by including the gauge fluctu-
ations to lowest order in Sec. III C. The results are plotted,
compared, and analyzed in Sec. III D. The spectral function
for the quantum spin chains is derived in Sec. IV, where the
results are discussed. Conclusions are drawn in Sec. V.

II. RELAXATION RATES

We begin by evaluating the NV relaxation rates for layered
quantum magnets and 3D stacks of quantum spin chains. NV
relaxometry involves placing an NV defect near the surface of
a magnetic material and measuring the relaxation rate of the
S = 1 spin localized on the defect; see Appendix A for a brief
introduction to the technique [20–22]. As we show below, the
rate is sensitive to the magnetic-field power spectral density
at the defect site, which in turn depends on the spin spectral
function of the proximate magnetic material.
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FIG. 2. NV center placed at distance d above a 2D quantum
magnet. Static field B0 is applied antiparallel to the NV spin axis,
which is oriented along the z axis.

In conventional ferromagnetic materials, NV relaxometry
has enabled the imaging of single spins [28] and magnetic
domain walls [39], the detection of spin waves [40–43], and
the extraction of key spin transport quantities like the magnon
chemical potential [44]. Theoretical proposals have also re-
vealed the possibility of detecting magnon condensation in
ferromagnets [45], probing the hydrodynamic modes of a
magnon fluid [46], and measuring charge and spin correlations
in 1D systems [47] through this technique. Recent theoretical
works have also shown how the technique can be used to
reveal Fermi and non-Fermi liquid behavior of spinons in
QSLs [48,49].

A. 3D stack of 2D quantum magnets

Stable NV defect centers can exist within a few nanome-
ters from the surface of diamond, allowing experimentalists
to place the sensor close to the sample of interest. Let us
consider an NV center located at a distance d above a generic
2D quantum magnet at x = (0, 0, d ); the quantum magnet is
placed in the xy plane, and we assume that the NV spin axis
lies parallel to the z axis (see Fig. 2).

In the presence of a bias magnetic field pointed along the
−z direction, i.e., B0 = −B0ẑ, the NV Hamiltonian can be
written as

H0 = −h̄γ̃ B0Sz + 	gS2
z , (4)

where γ̃ is the negative of the gyromagnetic ratio of the
impurity spin. The ESR frequencies are then given by h̄�± =
	g ∓ h̄γ̃ B0.

Spin fluctuations inside the quantum magnet generate a
fluctuating magnetic field at the impurity spin. For a single
2D quantum magnet, this field is given through the dipolar
formula, [50]

b = −h̄γ

∫
d2r
[

3(s(r) · ρ)ρ

ρ5
− s(r)

ρ3

]
, (5)

where s(r) denotes the spin density inside the quantum mag-
net, ρ = (−r, d ) is the vector joining the source of spin
fluctuations to the NV center, and γ is the negative of the
gyromagnetic ratio of the quantum magnet (see Fig. 2). The
Zeeman coupling between this fluctuating field and the NV

spin then leads to a correction to Eq. (4) of the form

V = h̄γ̃ b · S . (6)

The fluctuating dipolar field generates transitions between the
|0〉 and | ± 1〉 states (for details on the internal states of the NV
spin, see Appendix A). Using Eq. (6) and the Fermi golden
rule, the symmetrized transition rates between the |0〉 and | ±
1〉 states are given by

�± = γ̃ 2

4
[C∓±(�±) + C±∓(−�±)] , (7)

where C∓±(t ) = 〈b∓(t )b±(0)〉 and b± = bx ± iby.
The spin response function of the quantum magnet has

been introduced in Eq. (2). For a spatially isotropic quantum
magnet, Eq. (2) should depend on the wave vector magnitude
only, i.e., χR

αβ (q,�) = χR
αβ (q,�). If we further assume the

presence of uniaxial spin-rotational symmetry about the z
axis, the transition rates become

�± = − π (h̄γ γ̃ )2

d3
coth

(
h̄�±
2kBT

)∫ ∞

0
dq

× f̄2(qd )Im{χR
⊥(q,�±) + χR

‖ (q,�±)} , (8)

where f̄2(z) = z3e−2z and T is the temperature of the quantum
magnet; the transverse and longitudinal response functions
have been defined in Eq. (1). Similar result has been obtained
in Refs. [45,51]. Since the NV spin couples to the magnet
material via dipolar coupling, both longitudinal and transverse
components of the response function enter the expressions for
the rates.

Equation (8) gives the rates due to a single magnetic layer.
If identical layers are now stacked below the z = 0 plane
with uniform interlayer spacing a⊥ and if these layers are
uncorrelated, the total rates can be obtained by summing over
the layers incoherently, i.e.,

�± = − π (h̄γ γ̃ )2 coth

(
h̄�±
2kBT

) ∞∑
n=0

∫ ∞

0
dq

× q3e−2qdn Im{χR
⊥(q,�±) + χR

‖ (q,�±)}, (9)

where dn = d + na⊥. For qa⊥ � 1, we obtain

�± = − d

a⊥

π (h̄γ γ̃ )2

2d3
coth

(
h̄�±
2kBT

)∫ ∞

0
dq

× f2(qd )Im{χR
⊥(q,�±) + χR

‖ (q,�±)}, (10)

where the filtering function is now given by

f2(z) = z2e−2z . (11)

Comparing Eq. (10) to Eq. (8), we find two differences.
First is the difference between the filtering functions f̄2(z) and
f2(z), where we find that summing over the layers in the third
direction slightly shifts the weight of the function to smaller
q. Second is the introduction of an overall enhancement factor
d/a⊥ in Eq. (10), which indicates that layers within a distance
d from the top surface contribute most strongly to the rates.
The function f2(z) is plotted in Fig. 3. A clear peak is ob-
tained at qd ∼ 1, indicating that the relaxation rates are most
sensitive to spin fluctuations with wave vectors q ∼ d−1.
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FIG. 3. The filtering functions in 1D and 2D.

B. 3D stack of quantum spin chains

To obtain the relaxation rates for a 3D stack of quantum
spin chains, we begin by evaluating the rates due a set of
quantum spin chains arranged on a plane, extended along the
x axis and stacked in the y direction, as shown in Fig. 4. The
dipolar field generated by the chains is given by

b = −h̄γ

∞∑
n=−∞

∫
dx

[
3(s(rn) · ρn)ρn

ρ5
n

− s(rn)

ρ3
n

]
, (12)

where s(rn) is now the local spin density (per unit length)
on the nth spin chain, rn = (x, nay), ρn = (−rn, d ), ay is the
interchain spacing, and the integer n indexes the chains. Here,
we ignore interchain correlations, i.e.,

〈sα (x, nay, t )sβ (x′, n′ay, 0)〉 = δnn′ 〈sα (x, t )sβ (x′, 0)〉
≡ δnn′ iχ>

αβ (x − x′, t ) . (13)

As in the 2D case, we assume that the spin chains have a uni-
axial spin-rotational symmetry about the z axis and that they
are inversion symmetric, such that χαβ (q, t ) = χαβ (−q, t ),

FIG. 4. NV center placed at a distance d above a sequence of
quantum spin chains. The chains extend along the x axis and are
stacked in the y direction. As before, a static field B0 is applied
antiparallel to the NV spin axis.

where

χαβ (q, t ) =
∫

d (x − x′)e−iq(x−x′ )χαβ (x − x′, t ) . (14)

If we now consider stacking these layers in the vertical direc-
tion with a uniform interlayer distance a⊥ and summing over
the layers, the rates become (see Appendix B for details)

�± = − d2

aya⊥

π (h̄γ γ̃ )2

d4
coth

(
h̄�±
2kBT

)∫ ∞

0
dq

× f1(qd )Im{χR
⊥(q,�±) + χR

‖ (q,�±)}, (15)

where the 1D filtering function f1(z) is explicitly derived in
Appendix B and plotted in Fig. 3. We note a strong resem-
blance between Eqs. (10) and (15): we find that the rates for
the 1D case can simply be obtained by replacing the spin
spectral functions from the 2D result, i.e., Eq. (10), by those
for the 1D spin chains and using a modified filtering function,
which accounts for the fact that nonlocal spin correlations
extend only along one spatial direction. As in the quasi-2D
case, an enhancement factor of d/a⊥ is obtained here.

The filtering functions in the 1D and 2D cases both show
increased sensitivity at wave vectors q ≈ d−1. However, they
have contrasting behavior as q → 0. In the 2D case, the q = 0
contribution vanishes because an infinite, uniformly polarized
magnetic film does not produce any stray field. In the 1D
case, however, the dipolar field does not vanish for each spin
chain, and once the contributions from all the spin chains are
summed incoherently, a finite q = 0 component remains.

III. SPIN RESPONSE AT FINITE MAGNETIC FIELD:
TWO DIMENSIONS

As shown in Sec. II, NV relaxometry probes the spin re-
sponse function of a QSL at the probe frequencies �±. The
filtering functions Fig. 3 also show that the relaxation rates are
most sensitive to spin fluctuations at wave vectors q ∼ d−1.
This opens the possibility of utilizing NV relaxometry to
measure the spin spectral function with both energy and wave
vector resolution.

The ESR frequencies �± are determined by the bias mag-
netic field B0, which should affect the quantum magnet.
Therefore, over the next two sections, we analyze the spin
response of the two QSLs under the influence of this bias
magnetic field. We begin by discussing the 2D QSL in this
section and address the 1D QSL scenario in the following
section. Many of the features obtained in the 2D case carry
over to the 1D case.

The effective low-energy description of the 2D U(1)
QSL consists of weakly interacting, charge-neutral, spin-1/2
fermions (i.e., spinons) coupled to a transverse U(1) gauge
field [14,15,52]. The effective spinon Hamiltonian can be
written as

Hs = 1

2m∗
∑

σ

∫
d2r ψ†

σ (r)(−ih̄∇ − a(r))2ψσ (r)

+ u
∫

d2r ψ
†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r)

−
∑

σ

∫
d2r ψ†

σ (r)
σb0

2
ψσ (r), (16)
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where ψσ (r) is the field for spin-σ spinons (with effective
mass m∗), a is the transverse gauge field, and b0 = h̄γ B0

(with γ being the gyromagnetic ratio of the QSL) is the
Zeeman energy (see Appendix C for a phenomenological
derivation of this starting theory). The spinons couple to the
magnetic field only through Zeeman coupling because they
are charge neutral. Notably, the Hamiltonian Eq. (16) with
a = 0 is similar to that of a conventional Fermi liquid where
the Landau quasiparticles interact through contact interaction
and are subjected to the Zeeman field. We will therefore start
by analyzing the spin response of the U(1) QSL in the limit of
a = 0, drawing on the intuition we have for the paramagnetic
response of standard metals. We will subsequently incorporate
the effects of the transverse gauge field perturbatively.

A. Static Hartree-Fock approximation

Let us set a = 0 and treat the effects of the interaction
u first within the static Hartree-Fock (HF) approximation.
According to Eq. (16), we obtain the following HF spectrum
for the spinons:

ξHF
kσ = εk − σb0/2 − σum − εF , (17)

where εk = h̄2k2/2m∗ is the bare spinon dispersion, εF is the
spinon Fermi energy, and m is the spin-polarization in the
z direction that is to be determined self-consistently. Mean-
field decoupling of the quartic Hamiltonian with respect to all
particle-hole channels gives (fixing the total spinon density)

uψ
†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r) → −2us(r) · 〈s(r)〉 , (18)

where sα =∑σσ ′ ψ†
σ σ α

σσ ′ψσ ′/2 is the spinon spin density and
we assume that the total spinon density remains fixed. At

zero temperature, this leads to the following self-consistent
equation for m,

m = 1

2A

∑
kσ

σ�(εF + σb0/2 + σum − εk) , (19)

where A is the area of the QSL. This equation can be solved
analytically, giving

m = 1

2

g0b0

1 − ug0
, (20)

where g0 = m∗/2π h̄2 is the spinon density of states (per spin
projection) at the Fermi level.

Equation (20) is an exact result for m for the quadratic
dispersion εk = h̄2k2/2m∗. However, the result also holds true
for any dispersion relation εk as long as b0, um � εF and the
spinon density of states is finite and smooth in the vicinity
of the Fermi energy. For u = 0, Eq. (20) gives the Pauli
susceptibility, akin to the free Fermi gas; the inclusion of
spinon interactions gives rise to the Stoner enhancement factor
(1 − ug0)−1.

B. Time-dependent Hartree-Fock approximation

The dynamic spin response function for the QSL can now
be computed using the time-dependent self-consistent HF ap-
proximation, which is equivalent to the RPA. The details of the
calculation are presented in Appendix D, so we only briefly
outline the technical procedure here. Our quantity of interest
is [see Eq. (2)]

χR
αβ (k, k′; q, t ) = − i�(t )

4A

∑
{σi}

σα
σ1σ2

σβ
σ3σ4

〈[
eiHst/h̄ψ

†
kσ1

ψk+qσ2 e−iHst/h̄, ψ
†
k′σ3

ψk′−qσ4

]〉
, (21)

which obeys the equation of motion,

ih̄∂tχ
R
αβ (k, k′; q, t ) = i

4A

∑
{σi}

σα
σ1σ2

σβ
σ3σ4

{
�(t )

〈[[
Hs, ψ

†
kσ1

(t )ψk+qσ2 (t )
]
, ψ

†
k′σ3

ψk′−qσ4

]〉
− ih̄δ(t )

〈[
ψ

†
kσ1

ψk+qσ2 , ψ
†
k′σ3

ψk′−qσ4

]〉}
. (22)

The inner commutator on the second line of Eq. (22) gives
rise to both quadratic and quartic terms, the latter of which
are decoupled in the particle-hole channel as was done in
the mean-field analysis of Sec. III A. This leads to a closed
equation of motion for the spin response function that can be
solved in frequency space. We therefore arrive at the following
results (see Appendix D):

χR
⊥(q,�) = 1

4

∑
σ

χ
R(0)
σ σ̄

1 + u
h̄χ

R(0)
σ σ̄

, (23)

χR
‖ (q,�) = 1

4

∑
σ

χR(0)
σσ

(
1 − u

h̄χ
R(0)
σ̄ σ̄

)
1 − u2

h̄2 χ
R(0)
σσ χ

R(0)
σ̄ σ̄

, (24)

where

χ
R(0)
σσ ′ (q,�) = 1

A

∑
k

nF
(
ξHF

kσ

)− nF
(
ξHF

k+qσ ′
)

� + ξHF
kσ

/
h̄ − ξHF

k+qσ ′
/

h̄ + i0
, (25)

and nF is the Fermi-Dirac distribution function.

C. Gauge field corrections

We now discuss how the gauge fluctuations affect the dy-
namic response. In the low-energy, long-wavelength limit, the
frequencies � and momenta q of these gauge fluctuations
obey the scaling � ∼ q3 [29,53,54]. This relatively flat spec-
trum makes the gauge field bath an effective momentum sink
for the spinons and leads to an overall smoothening of the spin
response function.
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FIG. 5. Corrections to the bare particle-hole bubble containing
one gauge line. The first two are self-energy corrections, and the
third diagram is a vertex correction. The red wavy lines represent
the gauge propagator, which is given through Eq. (C14). All three
diagrams must be included to preserve gauge invariance.

We study the extent of this smoothening when a single
gauge line is added to the bare bubble, i.e., χ

R(0)
σσ ′ . There are

three relevant diagrams for each bubble as shown in Fig. 5,
where the double lines represent spinon propagators with the
static HF potential included, and the red wavy lines represent
the gauge fluctuations. There are two diagrams corresponding
to self-energy corrections and one corresponding to a vertex
correction, all of which must be kept to preserve gauge in-
variance [36,55]. Because we are ultimately interested in the
imaginary part of the spin response function, we focus solely
on the imaginary part of this correction. The detailed evalua-
tion of the three diagrams are presented in Appendix F. If we
define dimensionless variables y = h̄�/4εF , x = q/2kF , and
δ = (b0 + 2um)/4εF ≡ 	/4εF , where kF is the spinon Fermi
wave vector, the corrections to the transverse and longitudinal
response functions read

δχR
±∓(q,�) = −ich̄g0

x2y7/3|y ∓ δ|
|(y ∓ δ)2 − x2|5/2

, (26)

δχR
σσ (q,�) = −ich̄g0

x2y10/3

|y2 − x2|5/2
, (27)

where c is a real constant of order 1. Accounting for this cor-
rection, each of the bare spin response functions is modified
as

χ
R(0)
σσ ′ (q,�) → χ

R(0)
σσ ′ (q,�) + δχR

σσ ′ (q,�) , (28)

which enter Eqs. (23) and (24).

D. Results

A plot of −Im{χR
⊥(q,�) + χR

‖ (q,�)} is presented in
Fig. 1, both (a) without and (b) with the gauge field correction:
a static field of b0/4εF = 0.02 and dimensionless correlation
strength ξ ≡ ug0 = 0.3 are used. We begin by discussing
Fig. 1(a), since most of the qualitative features of the spin re-
sponse can be understood in the absence of gauge fluctuations.

The low-frequency continuum, labeled “IV” in Fig. 1(a),
arises due to the longitudinal response χR

‖ (q,�). It is bounded
from above by

� = vF q
√

1 + 2δ + εq

h̄
, (29)

where δ = b0/4εF (1 − ξ ), as defined earlier, is the Stoner-
enhanced magnetic field (see Appendix E) and εq =
h̄2q2/2m∗. Examining the poles of the longitudinal RPA re-
sponse using Eq. (24), we find that there are no undamped
collective modes outside of this continuum.

The transverse spin response χR
⊥(q,�) gives rise to the

Stoner continuum that emanates from

h̄� = 	 = b0

1 − ξ
, (30)

and expands into region II. This region is bounded by

	 − h̄vF q
√

1 + 2δ + εq � h̄� � 	 + h̄vF q
√

1 + 2δ + εqa,

(31)

and the lower boundary of this continuum reaches zero fre-
quency at

q0 = kF (
√

1 + 2δ − √
1 − 2δ) . (32)

The transverse response also contains an undamped collective
spin wave mode that remains outside the Stoner continuum for
all q � q0 and sharp in the absence of damping mechanisms,
e.g., gauge fluctuations. The dispersion relation �c(q) of the
spin wave mode is given by the pole of χR

⊥(q,�), i.e.,

h̄�c(q) = 1 − ξ

1 − 2ξ

{
b0 −

√(
ξ

1 − ξ

)2

b2
0 + (h̄vF q)2(1 − 2ξ ) +

(
1 − 2ξ

ξ

)2

ε2
q

}
. (33)

At small wave vectors q � kF ,

h̄�c(q) ≈ b0

[
1 − (1 − ξ )2

2ξ

(
vF q

γ B0

)2
]

, (34)

so the mode emerges from the Zeeman energy and softens
quadratically as q increases from zero. The lower boundary
of the Stoner continuum [see Eq. (31)] remains larger than
h̄�c(q) for q < q0; therefore, this spin wave mode approaches
but remains outside of the continuum. In the absence of
the gauge field, regions I and III have zero weight because
spinon-hole excitations are kinematically forbidden for those
momenta and frequencies.

The spin wave mode at q = 0 describes uniform spin
precession at the Larmor frequency γ B0, a result that is in
accordance with the Larmor theorem [33], which states that
the only response of any spin system with SU(2) symmetry
at zero field is at the Larmor frequency. The Stoner con-
tinuum, whose vertex is off-resonant with γ B0, indeed has
vanishing weight as q → 0, so that the theorem remains intact.
If we now recall the results from Secs. III A and III B, we
see that the static HF potential (see Sec. III A) generates an
upshift of the Stoner continuum from b0 to 	. The subsequent
time-dependent HF (RPA) treatment of the spin response (see
Sec. III B) then leads to the spin wave mode that separates
off from the continuum and restores the expected Larmor
response [36].
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We now discuss how the spin spectral function is modified
in the presence of the gauge fluctuations [see Fig. 1(b)]. These
fluctuations open up new scattering processes that are kine-
matically forbidden in their absence. The addition of Eqs. (26)
and (27) introduces new spectral weight over all four regions
of phase space and has a general effect of smoothening out the
sharp features in Fig. 1(a).

The most visible effect in Fig. 1(b) is the broadening of
the spin wave mode due to the gauge field. This is an intrinsic
broadening of the mode due to the internal emergent gauge
symmetry of the system [1]. The linewidth of this mode can
be understood by studying χ

R(0)
+− (q,�). Since the mode is

outside the Stoner continuum, we have Im{χR(0)
+− (q,�)} = 0;

therefore

Im{χR
+−(q,�)}

= Im{δχR
+−(q,�)}[

1 + u
h̄χ

R(0)
+− (q,�)

]2 + [ u
h̄ Im{δχR+−(q,�)}]2 . (35)

In the limit of q � kF , we may write

1 + u

h̄
χ

R(0)
+− (q,�) ≈ h̄� − h̄�c(q)

h̄� − 	
, (36)

where �c(q) is given by Eq. (34). Using Eq. (26), the
linewidth can then be estimated by

δ� ≈ u

h̄
Im{δχR

⊥(q, b0/h̄)}b0 − 	

h̄

≈ 4c(1 − ξ )3

ξ 2

εF

h̄

(
4εF

b0

)2/3( q

2kF

)2

. (37)

What is notable from Eq. (37) is that the broadening vanishes
as q → 0 so that the spin wave mode becomes sharp in the
uniform limit, again in accordance with the Larmor theorem.
This sharpening of the spin wave mode can be observed in
Fig. 1(b).

Comparing Figs. 1(a) and 1(b), we may say that the gauge
fluctuations have a relatively weak effect, as the essential fea-
tures in Fig. 1(a) remain intact in Fig. 1(b). We note, however,
that the spinon model Eq. (16) is a paradigmatic model of a
non-Fermi liquid. The evaluation of the spinon self-energy
�k(ω) due to the transverse gauge propagator is known to
give Im �k(ω) ∝ ω2/3 at one-loop level, implying a vanishing
quasiparticle weight and the breakdown of the Fermi liquid
picture [29,53,54]. An imprint of this non-Fermi liquid scaling
is manifested in the anomalous exponent 2/3 in Eq. (37),
which arises due to the presence of the extremely soft gauge
fluctuations with a � ∼ q3 spectrum.

If �± is computed in the limit of kF � d−1, the filtering
function f2(z) [see Eq. (11)] places a strong weight at small
q. Therefore, by sweeping the external magnetic field from
zero up to b0 = 	g, �+ should pick up strong signals when
�+ comes in resonance with the collective spinon mode and
the Stoner continuum. The other triplet mode �− remains off-
resonant, so we focus solely on �+ here.

We plot �+ in units of π h̄g0(2kF )3(h̄γ γ̃ )2/2a⊥ in Fig. 6
for the same parameters as above along with zero-field split-
ting 	g/4εF = 0.02 and kF d = 50. For simplicity, we will
assume γ = γ̃ in the following discussion. A peak is obtained
at b0 = 	g/2, where the probe frequency �+ = (	g − b0)/h̄

FIG. 6. Plot of �+ as a function of the external magnetic field at
zero temperature. Here, 	g/4εF = 0.02 and kF d = 50 are used, and
the rate is plotted in units of π h̄g0(2kF )3(h̄γ γ̃ )2/2a⊥.

comes in resonance with the collective spinon mode. A broad
peak to the left of the peak is obtained as �+ sweeps through
the Stoner continuum, and a tail is observed to the right due to
the longitudinal contribution to the spin response.

The peak height in Fig. 6 can be estimated by (noting that
h̄�+ = 	g/2 at the peak)

�+ ≈ −π (h̄γ 2)2

2a⊥
coth

(
	g

4kBT

)

×
∫ ∞

0
dqq2e−2qd Im{χR

+−(q,	g/2h̄)}

≈ π h̄g0(2kF )3(h̄γ γ̃ )2

2a⊥
coth

(
	g

4kBT

)

× c

kF d

1

(1 − ξ )2

(
	g

8εF

)7/3

, (38)

where the peak rate is estimated by dropping the contributions
from χR

−+ and χR
‖ , as they are far off-resonant. The anomalous

7/3 exponent enters here again due to the coupling to the
gauge fluctuations.

IV. SPIN RESPONSE AT FINITE MAGNETIC FIELD:
ONE DIMENSION

The spin-1/2 antiferromagnetic spin chain is a paradig-
matic model of a 1D QSL with numerous material realizations
[9,10]. Experimental investigations of these materials began
with thermal transport measurements and were then followed
by the quantification of spin transport via NMR and muon-
spin resonance [56]. More recently, spin Seebeck effect was
used to detect spin transport directly in a quasi-1D cuprate
material Sr2CuO3 [57].

With an external magnetic field applied along the negative
z direction, the starting Hamiltonian for the spin chain may be
written as

H = J
∑

n

(
1

2
S−

n S+
n+1 + H.c. + ζSz

nSz
n+1

)
− b0

∑
n

Sz
n

≡ H0 + HZ , (39)
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where n labels the sites and J > 0 is the antiferromagnetic
exchange constant. We first focus on the gapless critical
regime, where the anisotropy parameter ζ obeys |ζ | < 1, and
comment on the expected NV relaxometry signatures at the
isotropic point ζ = 1 later.

The low-energy properties of the antiferromagnetic spin
chain for |ζ | < 1 can be obtained by first mapping H to
a one-dimensional system of interacting fermions using the
Jordan-Wigner transformation [58],

Sz
n = ψ†

n ψn − 1

2
,

S+
n = (−1)nψ†

n exp

(
iπ
∑
n′<n

ψ
†
n′ψn′

)
= (S−

n

)†
, (40)

where the factor (−1)n is included so that the fermionic spec-
trum, post-fermionization, has positive concavity at k = 0.
The exponential factor is the Jordan-Wigner string, which
ensures commutativity of spins on different sites after
fermionization and rotates all the spins located at n′ < n by π

about the z axis. If we then start with a state |�〉, where all the
spins are pointed in the x direction, the application of a single
ψ

†
n̄ on the state, i.e., ψ

†
n̄ |�〉, creates a Bloch domain wall,

i.e., a quantum kink, at n = n̄ such that Sx
n = ±1/2 for n ≷ n̄

and Sz
n = 1/2 at n = n̄. Since a single spin flip is realized

by introducing two such domain walls, each Jordan-Wigner
fermion should carry spin 1/2.

Equation (39) maps to a theory of interacting fermions on
a 1D lattice,

H = − J

2

∑
n

(ψ†
n ψn+1 + H.c.) + b0

∑
n

(
ψ†

n ψn − 1

2

)

+ Jζ
∑

i

(
ψ†

n ψn − 1

2

)(
ψ

†
n+1ψn+1 − 1

2

)
. (41)

With regard to the Jordan-Wigner string, π -rotations about
the z axis in the clockwise and anticlockwise directions are
equivalent. This allows for an alternative definition of the
transformation, cf. Eq. (40), where

Sz
n = ψ†

n ψn − 1

2
, S+

n = (−1)nψ†
n cos

(
π
∑
n′<n

ψ
†
n′ψn′

)
. (42)

Physical observables are unaffected by this formal change,
and we choose Eq. (42) for mathematical convenience.

In calculating the spin response functions, we first note
that the 1D filtering function f1 in Eq. (15) restrict most
of the integral weight to wave vectors q � d−1, where d is
the NV-to-sample distance. For d � a, where a is the lattice
constant of the spin chain [59], and for h̄�± � J , which
holds when the relevant frequencies obey h̄�± � 	g � J ,
the spin response functions can be computed within the
long-wavelength, low-energy description of H . We therefore
switch to the Luttinger-liquid representation of Eq. (41) and
compute the spin response functions using the method of
bosonization. Equation (41) then becomes [10]

H = u

2

∫
dx

{
πK

h̄
�2(x) + h̄

πK
[∂xφ(x)]2 + b0

π
∂xφ

}
, (43)

where ∂xφ(x)/π is the continuum variable for the local z-
polarized spin density, �(x) is the conjugate momentum
density obeying

[φ(x),�(x′)] = ih̄δ(x − x′) , (44)

and u and K are, respectively, the speed of sound and Luttinger
parameter, both of which depend on the anisotropy parameter
ζ . At zero magnetic field, u and K over the entire critical
regime are given via the Bethe-ansatz solution [60],

u = πJa
√

1 − ζ 2

2h̄ cos−1 ζ
, K = π

2(π − cos−1 ζ )
. (45)

At finite magnetic fields, these parameters are renormalized.
However, for NV relaxometry experiments, the external field
would reach a maximum magnitude of the order of the zero-
field splitting 	g ∼ 0.1 T. This is a small fraction of the
intrinsic antiferromagnetic exchange scale J , which in most
cases ranges from 1 to 1000 T, so u and K are renormalized
negligibly. We will therefore approximate these parameters
hereafter with their zero-field values, i.e., Eq. (45).

For � > 0 and q > 0, the imaginary parts of the transverse
response functions read (see Appendix G)

−Im{χR
±∓(q,�)} = 2π2C

u

(a/u)2K+1/2K−2

�(K + 1 + 1/4K )�(K − 1 + 1/4K )
[�(uq ± �B + �)�(� − uq ∓ �B)(uq ± �B + �)K+1/4K

× (� − uq ∓ �B)K+1/4K−2 + �(� − uq ± �B)�(� + uq ∓ �B)(� − uq ± �B)K+1/4K

× (� + uq ∓ �B)K+1/4K−2], (46)

and the longitudinal response is given by

−Im{χR
‖ (q,�)} = δ(� − uq)

K�

2u
, (47)

where �B = 2Kb0/h̄. The constant C is a real dimensionless
correlation amplitude, a nonuniversal constant that cannot be
obtained through bosonization. A numerical estimate for C at

finite magnetic fields has found C ∼ 0.01 for small fields and
0 � ζ < 1 [61].

A. Results

Plots of −Im{χR
⊥(q,�) + χR

‖ (q,�)} for various values of
ζ are presented in Fig. 7. Following Ref. [61], a correlation
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FIG. 7. Plot of −Im{χR
⊥(q, �) + χR

‖ (q, �)} for various values of the anisotropy parameter ζ and for Zeeman energy b0 = 0.1. (a) ζ = 0.5,
(b) 0.6, (c) 0.7, (d) 0.8, (e) 0.9, and (f) ≈ 1. We have used C = 0.02.

amplitude of C = 0.02 is used. Comparing these plots with
Fig. 1, we see resemblances with the 2D scenario. Emanat-
ing from q = � = 0 is the longitudinal response, which in
the 1D case corresponds to the collective density waves of
the Jordan-Wigner fermions, i.e., zero sound. The transverse
response forms a continuum, akin to the Stoner continuum
in Fig. 1, that emanates from �B = 2Kb0/h̄ at q = 0. Away
from the Heisenberg point, where 2K = 1, the vertex of the
continuum is located away from the Zeeman energy, since

the Larmor theorem does not have to be satisfied here. How-
ever, as the isotropic point is approached, i.e., ζ → 1 (or
K → 1/2), the response at q = 0 sharpens and shifts down
toward the Zeeman energy, in agreement with the Larmor
theorem.

At q = 0 and for � > �B, the spin response comes solely
from χR

+−(q,�), and we may therefore ignore the longitudinal
component and χR

−+(q,�). A cut of −Im{χR
+−(q,�)} at q =

0, given by

−Im{χR
+−(0,�)} = 4π2C

u

(a/u)2K+1/2K−2

�(K + 1 + 1/4K )�(K − 1 + 1/4K )
[(� + �B)K+1/4K (� − �B)K+1/4K−2], (48)

is plotted as a function of � in Fig. 8 for the same set of ζ values as those used in Fig. 7. As the Heisenberg limit is
approached, i.e., K → 1/2, we have �(K + 1/4K − 1) → ∞, and the divergence seen in Fig. 8 comes from Eq. (48). Indeed,
as K → 1/2,

−Im{χR
+−(0,�)} ≈ 4π2C

u
lim

K→1/2

[
1

�(K − 1 + 1/4K )

(
� − b0/h̄

� + b0/h̄

)K+ 1
4K −2

]
. (49)

The limiting expression in the square brackets is a repre-
sentation of the delta function, so −Im{χR

+−(0,�)} ∝ δ(� −
b0/h̄), in agreement with the Larmor theorem.

Away from the Heisenberg limit, the response peak occurs
above the Zeeman energy b0 and there is significant spec-
tral weight at frequencies above the peak. The peak has a

power-law divergence, as expected from the Luttinger
physics, with an anomalous exponent K + 1/4K − 2.

This anomalous exponent may be measurable using NV
relaxometry. In the limit of d � a, where a is the spin chain
lattice constant, almost all of the weight in the filtering func-
tion f1(qd ) comes from q ∼ 0, so the transition rates can be
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FIG. 8. Plot of −Im{χR
+−(q = 0, �)} for various values of the anisotropy parameter ζ and for Zeeman energy b0 = 0.1.

estimated as

�± ≈ −1

4
Im{χR

+−(0, (	g ∓ b0)/h̄)} coth

(
	g ∓ b0

2kBT

)

× d2

aya⊥

π (h̄γ γ̃ )2

d4

∫ ∞

0
dq f1(qd ) . (50)

For 	g − b0 � kBT , we therefore find that �+ scales accord-
ing to the anomalous Luttinger scaling with the magnetic field
as

�+ ∝
(

2kBT

	g − b0

)
[	g − (1 + 2K )b0]K+1/4K−2 , (51)

for b0 < (1 + 2K )−1	g < 	g.

B. The isotropic limit: K = 1/2

The bosonization of Eq. (41) is known to generate an
additional term to Eq. (43), the so-called umklapp term,

Humklapp = g̃
∫

dx cos [4φ(x)] , (52)

which describes the scattering of two fermions from one
Fermi point to the other accompanied by a momentum transfer
of 4kF . For |ζ | < 1, g̃ is RG irrelevant and flows to zero at
zero magnetic field. At finite fields, the RG flow, in principle,
stops at the scale ε ∼ b0, but we expect g̃ to be algebraically
small in b0/�, where � is the cutoff scale, such that Hu can be
neglected to a good approximation. In the Heisenberg limit,
however, g̃ is only marginally irrelevant and may thus have
appreciable magnitude even at the scale ε ∼ b0. This limit
must therefore be treated with care.

A convenient way to examine the effects of marginally
irrelevant operators on the spin spectral function [see Fig. 7(f)]
is to utilize a fermionization protocol that is different from
the Jordan-Wigner transformation used in Sec. IV. We note
that the fermionized Hamiltonian Eq. (41) is not manifestly
SU(2) invariant, although the original Heisenberg model is.
Affleck and Haldane developed a fermionic representation of
the Heisenberg spin chain that explicitly preserves this SU(2)
invariance [62]. The elementary excitations in this represen-
tation are charge-neutral, spin-1/2 fermionic quasiparticles,
i.e., spinons, which are different from the Jordan-Wigner

fermions but more closely resemble the spinons discussed in
the context of the 2D QSL. The Affleck-Haldane fermion-
ization procedure thus allows for more unified descriptions
of the Heisenberg spin chain and the 2D U(1) QSL. The
transverse spin response function of the antiferromagnetic
Heisenberg spin chain was studied in Ref. [37] using this
SU(2) symmetry-preserving fermionization. In this subsec-
tion, we briefly discuss how our results from the previous
subsection are modified by this fermionization procedure.

Following Affleck and Haldane, the low-energy effective
behavior of the Heisenberg spin chain can be modeled by an
interacting gas of spin-1/2 Dirac spinons: H = H0 + HZ +
Hback [11,37,62], where

H0 = h̄u
∑

σ

∫
dx[ψ†

Rσ (x)(−i∂x )ψRσ (x)

+ψ
†
Lσ (x)(i∂x )ψLσ (x)], (53)

HZ = −b0

∫
dx
[
Jz

R(x) + Jz
L(x)

]
, (54)

describe the right- and left-moving chiral spinons with prop-
agation speed u and their coupling to the external magnetic
field, and

Hback = −g
∫

dx JR(x) · JL(x) , (55)

models the backscattering interaction; the quantities

Jα
R,L(x) = 1

2

∑
σσ ′

ψ
†
R,Lσ (x)σα

σσ ′ψR,Lσ ′ (x) (56)

represent the right- and left-chiral spinon densities. For a
qualitative discussion on how H is obtained, see Appendix H.

In this fermion representation, the marginally irrelevant
coupling is the backscattering amplitude g � 0, which intro-
duces logarithmic corrections to our previous results for ζ = 1
[see Fig. 7(f)]. Equation (55) can be decomposed into the
transverse and longitudinal parts,

H⊥
back = − g

2

∫
dx [ j+R (x) j−L (x) + j−R (x) j+L (x)] , (57)

H‖
back = −g

∫
dx jz

R(x) jz
L(x) , (58)
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FIG. 9. Plots of −Im{χR
+−(q,�)} for the Heisenberg chain (i.e., K = 1/2) in the long-wavelength regime (taken from Ref. [37]). Plot

(a) corresponds to the transverse response at g = 0, which matches the corresponding response shown in Fig. 7(f). For g > 0 shown in (b), the
upper branch shifts up in energy by an amount proportional to the average magnetization M. In contrast, the lower branch remains at b0 and
sharp at q = 0 and the spectral weight of the upper branch vanishes as q → 0. Here, we have used gM = 0.3b0.

where j±R,L(x) = jx
R,L(x) ± i jy

L,R(x). In the presence of the
magnetic field in the negative z direction, the spin chain forms
a static magnetization M. As in the 2D QSL formulation, the
effect of this magnetization can be incorporated by a mean-
field decoupling of the longitudinal term, i.e.,

−gjz
R(x) jz

L(x) → −g
〈
jz
R(x)

〉
jz
L(x) − g

〈
jz
L(x)

〉
jz
R(x) (59)

= −g
M

2

(
jz
R(x) + jz

L(x)
)
, (60)

where the spinon over-population (magnetization) M is split
symmetrically between the chiral channels, 〈 jz

R〉 = 〈 jz
L〉 =

M/2, and we see that the backscattering g subjects the spinons
to an additional induced field −gM/2. This induced field is
analogous to the induced field discussed in the 2D QSL sce-
nario, cf. Sec. III A. The transverse spin response can then be
computed in the presence of this induced field and by treating
H⊥

back within the RPA [37].
The imaginary part of the transverse spin response func-

tion, χR
+−(q,�), is plotted in Fig. 9; the plots are generated

using Eq. (7) in Ref. [37]. We note that −Im{χR
+−(q,�)} is

plotted in Fig. 9 and not −Im{χR
⊥(q,�) + χR

‖ (q,�)} as done
in Fig. 7. This difference leads, for example, to the absence of
one of the branches in Fig. 9 that emanates from h̄uq/b0 = 1
with a positive group velocity.

Figure 9(a) shows the result for g = 0, i.e., result in the ab-
sence of the marginally irrelevant backscattering term. There
are two branches that converge at the Larmor frequency b0 and
exactly match the corresponding branches found in Fig. 7(f).
When one accounts for the backscattering term, i.e., g > 0,
the upper branch moves up in energy by gM, much like the
up-shift of the Stoner continuum relative to the collective
mode observed in the presence of spinon interactions in Fig. 1.
It is important to note that the Larmor theorem is still satisfied
in Fig. 9(b) because the lower branch remains at the Zeeman
energy and sharp at q = 0 and because the spectral weight of
the upper branch vanishes as q → 0 [37].

The rate �+ in the limit of d � a essentially probes
the transverse response at qa � 1. If we now account for
the above modification due to the backscattering term, the

transition rate �+ for the Heisenberg chain should have two
peaks as the Zeeman field b0 is varied from 0 to 	g. The
first peak should occur at b0 = 	g/2 when �+ = 	g − b0

comes in resonance with the lower spectral branch in Fig. 9(b).
The second peak is expected at b0 ≈ (	g − gM )/2 when �+
comes in resonance with the upper spectral branch located at
b0 + gM. The height of the latter peak should be smaller than
the former because the spectral weight of the upper branch
vanishes as q → 0.

V. CONCLUSIONS

Relaxometry based on NV centers in diamond offers ex-
citing new opportunities to noninvasively measure the spin
spectral functions of QSL materials with both energy and
momentum resolution. This work examines the spin spec-
tral functions of two representative QSLs—the 2D QSL
with a spinon Fermi surface coupled to a U(1) gauge field
and the spin-1/2 antiferromagnetic quantum spin chain—
and elucidates the definitive signatures of fractionalization in
these functions that should be directly measurable via NV
relaxometry.

Owing to strong correlations, local spin-1 magnon excita-
tions in these QSLs fractionalize into two neutral, spin-1/2
fermionic quasiparticles called spinons. In 2D, these spinons
form a metal-like ground state with a Fermi surface. The
emergence of such delocalized, “electron-like” quasiparticles
leads to a paramagnetic response that closely resemble the
response of a conventional weakly correlated metal. We have
shown, for example, that the spin spectral function should
exhibit a spin-1 particle-hole continuum, i.e., the Stoner con-
tinuum, along with a collective spin wave mode, both of
which are characteristics of conventional Fermi liquids. Such
an “unexpected” response coming from Mott insulators with
localized electrons represent one of the most definitive signa-
tures of fractionalization.

The Luttinger liquid formalism and bosonization are used
to compute the dynamic response of the quantum spin chain.
Resonant spectral weights come from regions in (q,�)-space
corresponding to the low-energy collective modes. For an
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XXZ spin chain, away from the SU(2)-symmetric (Heisen-
berg) point, there is significant weight away from the mode
resonances that decay algebraically with an anomalous critical
exponent determined by the Luttinger parameter. NV center
relaxometry can be used to measure this exponent. We also
examine the effects of marginally irrelevant operators on the
spin spectral functions in the Heisenberg limit.

The scale on the wave vector axis in Fig. 1 is set by kF ,
which may be estimated by the inverse of the lattice con-
stant. In the case of YbMgGaO4, the lattice constant is 3.4 Å
[63]. Setting the upper limit of the detectable wave vectors at
qmax ∼ 5 × 107 m−1, we obtain qmax/2kF ∼ 0.01. This gives
NV relaxometry sufficient wave vector accessibility to capture
the main features of fractionalization—the Stoner continuum
as well as the broadened spin wave mode—in Fig. 1.

The 2D QSL model considered in this work may be rel-
evant to certain half-filled Mott insulators on the triangular
lattice [16–18]. However, some of these QSL candidates show
evidence for spin-orbit coupling [64,65] and disorder [66].
Full characterization of the transition rates in the presence of
these departures from the clean, SU(2) limit can be a topic of
future work.

Future outlook: applications

With an eye to the future, there is now emergent interest in
exploiting magnetic systems as a resource to engineer quan-
tum correlations between distant spin qubits [67–69]. QSLs
are prototypical spin models with extensive many-body quan-
tum entanglement [1]; therefore, the formation and control of
entanglement between distant spin qubits by bringing them
in close proximity to these materials is an interesting topic
for exploration. It is also interesting to use QSLs for entan-
gling multiple two-level systems over long distances, with
power-law correlations, to achieve unconventional regimes of
nonlocal collective (dissipative) quantum dynamics imprinted
onto these qubits. The signatures of such collective dynam-
ics could be interesting for exploring both new modalities
of quantum sensing and preparing highly entangled qubit-
ensemble states for quantum applications. The integration of
NV center spins with QSLs, as done in this work, could
serve as a stepping stone for exploring a range of applications
relevant to future quantum technologies.
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APPENDIX A: NV RELAXOMETRY

In this Appendix, we give a brief introduction to the
physics of NV centers. The NV center is a lattice defect in
diamond formed by a substitutional nitrogen atom bound to a
lattice vacancy in the diamond lattice [20,27,28]. The relevant
energy diagram consists of the spin triplet ground state |g〉,

FIG. 10. (a) Energy diagram of the NV center consisting of the
spin triplet ground state |g〉, the spin triplet excited state |e〉, and
the intermediate singlet state |s〉. The zero-field splittings of the
ground and excited states are given by 	g and 	e, respectively.
Excitation with a green laser results in two spin-conserving decay
paths with red fluorescence and one spin nonconserving decay path
via the intermediate state |s〉 with no fluorescence in the visible
range. (b) Eigenstates of the bare NV Hamiltonian H0, i.e., 0, h̄�± =
	g ∓ h̄γ̃ B0, in the presence of a static magnetic field B0 applied
along the NV spin axis.

the spin triplet excited state |e〉, and the intermediate singlet
(dark) state |s〉, all located within the band gap of diamond
[see Fig. 10(a)] [22]. A zero-field splitting 	g ≈ 2.87 GHz
separates the ms = 0 and ms = ±1 substates of the ground
state, while the excited state has a similar triplet level structure
with a smaller splitting 	e ≈ 1.42 GHz. The magnetic reso-
nances of the ground and excited states are both characterized
by electron g factors g ≈ 2 [22].

An off-resonant green laser triggers a spin-conserving ex-
citation of electrons from the ground state up into the excited
state. These excited electrons can subsequently decay back to
their original spin substate by emitting a red photon as shown
in Fig. 10(a). However, the electrons in the |e,±1〉 states have
an additional nonradiative decay channel via the intermediate
singlet state |s〉 that competes with the direct optical transition
and directs them predominantly to the |g, 0〉 state. This differ-
ence in the nonradiative |e〉 → |g〉 decay pathways between
the ms = 0 and ms = ±1 spin projections is at the heart of
the NV center’s quantum sensing and quantum computing
applications. It enables (i) a high-fidelity initialization of the
spin state using a green laser and (ii) the identification of the
spin state by monitoring the NV fluorescence count-rate, as
the competing nonradiative decay path introduces a reduction
in the fluorescence count-rate associated with the | ± 1〉 spin
states.

One of the main magnetic-sensing applications of the NV
center is relaxometry: the measurement of its longitudinal re-
laxation rates �± between the |0〉 and | ± 1〉 states, performed
by preparing the NV center into a spin eigenstate and tracking
the state populations as a function of time [70]. These rates
depend on the magnetic field power spectral density at the
quantum impurity site; therefore, if the NV center is placed
close to a quantum magnet, spin fluctuations therein generate
a fluctuating magnetic field at the NV site and modify these
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rates [45,51]. A direct relationship between the longitudinal
relaxation rates and the dynamic spin response function of

proximate quantum spin liquids (QSLs) is presented in Sec. II
of the main text.

APPENDIX B: TRANSITION RATES FOR A 3D STACK OF QUANTUM SPIN CHAINS

In this Appendix, we provide the technical details leading up to Eq. (15) in the main text. Using Eq. (12), we directly obtain

〈b−(t )b+(0)〉 = i(h̄γ )2
∫

dq

2π

∞∑
n=−∞

{
I2
+−(nay, d, q)χ>

+−(q, t ) + I2
−+(nay, d, q)χ>

−+(q, t ) + I2
zz(nay, d, q)χ>

zz (q, t )
}
, (B1)

where n indexes the spin chains, which are separated by ay,

χ>
αβ (q, t ) = −i

∫
d (x − x′)〈sα (x, t )sβ (x′, 0)〉e−iq(x−x′ ) , (B2)

and

I+−(yn, d, q) =
∫

dx
3

2

(x − iyn)2(
d2 + x2 + y2

n

)5/2 eiqx, (B3)

I−+(yn, d, q) =
∫

dx

[
3

2

(
x2 + y2

n

)2
(
d2 + x2 + y2

n

)5/2 − 1(
d2 + x2 + y2

n

)3/2

]
eiqx, (B4)

Izz(yn, d, q) =
∫

dx
3d (yn + ix)(

d2 + x2 + y2
n

)5/2 eiqx , (B5)

where yn = nay. Performing these integrals,

I+−(yn, d, q) = 3|q|K1
(|q|√d2 + y2

n

)
√

d2 + y2
n

+ 2ynq|q|K1
(|q|√d2 + y2

n

)
√

d2 + y2
n

−
(
d2 + 2y2

n

)
q2K2

(|q|√d2 + y2
n

)
d2 + y2

n

, (B6)

I−+(yn, d, q) = |q|K1
(|q|√d2 + y2

n

)
√

d2 + y2
n

− d2q2K2
(|q|√d2 + y2

n

)
d2 + y2

n

, (B7)

Izz(yn, d, q) = 2yndq2K2
(|q|√d2 + y2

n

)
d2 + y2

n

− 2dq|q|K1
(|q|√d2 + y2

n

)
√

d2 + y2
n

. (B8)

In order to consider stacking layers of quantum spin chains along the vertical z axis, we replace d by d + ma⊥ and sum over
of m from 0 to ∞. If we approximate both the m and n sums by integrals, we may write

〈b−(t )b+(0)〉 = i
(h̄γ )2

aya⊥

∫
dq

2π

∫ ∞

d
dλ

∫ ∞

−∞
dy
{
I2
+−(y, λ, q)χ>

+−(q, t ) + I2
−+(y, λ, q)χ>

−+(q, t ) + I2
zz(y, λ, q)χ>

zz (q, t )
}
, (B9)

Similar evaluation can be performed for the second term, i.e., C+−(−�±) in Eq. (7). If we finally rescale y → λy and λ → dν,
the rates become

�± = − d2

aya⊥

π (h̄γ γ̃ )2

d4
coth

(
h̄�±
2kBT

)∫ ∞

0
dqIm

{
1

4
f +−
1 (qd )χR

+−(q,�±) + 1

4
f −+
1 (qd )χR

−+(q,�±) + f zz
1 (qd )χR

zz(q,�±)

}
,

(B10)

where

f +−
1 (z) = 2z4

π2

∫ ∞

1
dνν

∫ ∞

−∞
dy

[
9K2

1 (zν
√

1 + y2)

(zν)2(1 + y2)
+ 4y2K2

1 (zν
√

1 + y2)

1 + y2
+ (1 + 2y2)2K2

2 (zν
√

1 + y2)

(1 + y2)2

−6(1 + 2y2)K1(zν
√

1 + y2)K2(zν
√

1 + y2)

zν(1 + y2)3/2

]
, (B11)

f −+
1 (z) = 2z4

π2

∫ ∞

1
dνν

∫ ∞

−∞
dy

[
K2

1 (zν
√

1 + y2)

(zν)2(1 + y2)
+ K2

2 (zν
√

1 + y2)

(1 + y2)2
− 2K1(zν

√
1 + y2)K2(zν

√
1 + y2)

zν(1 + y2)3/2

]
, (B12)
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and

f zz
1 (z) = 2z4

π2

∫ ∞

1
dνν

∫ ∞

−∞
dy

[
y2K2

2 (zν
√

1 + y2)

(1 + y2)2
+ K2

1 (zν
√

1 + y2)

1 + y2

]
. (B13)

Here, Kn is the modified Bessel function of the second kind. Once the integrals over ν and y are performed, all of the filtering
functions, f ±∓

1 (z) and f zz
1 (z), converge to the same function f1(z) plotted in Fig. 3.

APPENDIX C: U(1) QUANTUM SPIN LIQUID
WITH A SPINON FERMI SURFACE

In this Appendix, we provide a brief introduction to the
physics of U(1) quantum spin liquids (QSLs) and a phe-
nomenological derivation of the starting Hamiltonian (16).

The U(1) QSL with a spinon Fermi surface first emerged
as a possible ground state of half-filled 2D Mott insulators
in proximity to a metal-insulator transition. The most well-
known candidate materials are the organic molecular crystals,
e.g., κ-(ET)2Cu2(CN)3 (κ-ET) and Pd(dmit)2(EtMe3Sb)
(dmit) [16,17], both of which can be modeled as an isotropic
spin-1/2 system on the triangular lattice. These systems are
believed to be close to the Mott transition because of its
tendency toward metallic behavior under modest pressures.

At ambient pressures, these materials satisfy the standard
necessary conditions for a QSL, i.e., they are insulating and
display no magnetic ordering down to millikelvin tempera-
tures despite its relatively large antiferromagnetic exchange
constant of order J ∼ 100 K. Intriguingly, thermodynamic
measurements show a linear temperature dependence of the
specific heat and Pauli-like spin susceptibility at low tempera-
tures and a Wilson ratio of order 1 [71,72], suggesting that the
low-energy excitations are nearly free spin-1/2 fermions with
a Fermi surface. This scenario is further corroborated by low-
temperature thermal conductivity data, which show a linear-T
contribution in addition to the T 3 phonon contribution that can
be attributed to the spin subsystem [12,13].

Different theoretical approaches exist to understand this
QSL state [14,15,73]. Lee and Lee investigated the single-
orbital Hubbard model on the triangular lattice using the
parton mean-field and slave-rotor approaches to show the
existence of a stable QSL state near the Mott transition and
that this state is a U(1) gauge theory coupled to spinons with a
Fermi surface [14]. A similar conclusion was drawn using the
strong coupling expansion, where the inclusion of the terms
to fourth order in t/U , justified for weak Mott insulators, was
found to stabilize the spinon Fermi surface state [15].

In the phenomenological model proposed by Zhou and
Ng, the U(1) QSL is viewed as a kind of Landau Fermi
liquid subjected to specific constraints [52]. The construction
of the QSL state begins with the ordinary (metallic) Fermi
liquid as the parent state, which becomes unstable to the
spinon Fermi surface state as the interaction strength is
increased. The phenomenological model therefore suggests
a scenario in which the Fermi surface of the parent metal is
not destroyed but the Landau quasiparticles are converted
into charge-neutral, spin-1/2 spinons at the Mott transition.
An important ingredient in this phenomenological approach
is to place appropriate constraints on the Landau parameters
to ensure that the low-energy excitations in the spin liquid

state carry heat but no charge. We now briefly sketch this
phenomenological model below.

Central to Landau’s Fermi liquid theory is the adiabatic
assumption, i.e., the existence of a one-to-one correspondence
between the low-lying excited states of the free Fermi gas and
those of the interacting system as the interactions are adia-
batically switched on. In the phenomenological QSL model,
one further assumes that the same labeling scheme holds in
the QSL state, so that the low-energy excitations in the spinon
Fermi surface state are still described by the same occupation
numbers as the free Fermi gas. This one-to-one correspon-
dence between the free Fermi gas and QSL states is a postulate
of the model, as it is not guaranteed by adiabaticity.

Under this assumption, we start with the energy (differ-
ence) functional for the ordinary Landau Fermi liquid,

	E = E − E0 =
∑

k

ξkδnkσ

+ 1

2

∑
kk′

∑
σσ ′

fσσ ′ (k, k′)δnkσ δnk′σ ′ , (C1)

where ξk is the quasiparticle dispersion, δnkσ is the deviation
in the average occupation number from its zero temperature
value, i.e., δnkσ ≡ nkσ − �(−ξk), and fσσ ′ (k, k′) is the Lan-
dau interaction function. For a system with spatial isotropy
and spin rotational symmetry, the interaction function can be
expanded in terms of the spin-symmetric and spin-asymmetric
components, i.e.,

fσσ ′ (k, k′) = f s(θ ) + σσ ′ f a(θ ) , (C2)

where cos θ = k̂ · k̂
′
and we have set k = k′ = kF since we are

only interested in states close to the Fermi surface. In 2D, the
symmetric and antisymmetric functions can be expanded in
terms of the Chebyshev polynomials T�(cos θ ) = cos(�θ ),

f s,a(θ ) =
∞∑

�=0

f s,a
� T�(cos θ ) . (C3)

The dimensionless Landau parameters are then defined by

F s,a
� = g0A f s,a

� , (C4)

where g0 = m∗/2π h̄2 is the quasiparticle density of states per
spin at the Fermi level (m∗ being the quasiparticle effective
mass), and A is the system area.

To distinguish the QSL state from the conventional Fermi
liquid, Zhou and Ng note how the quasiparticle interactions
renormalize the charge and thermal currents. The Landau
theory in two dimensions gives

Jc = m

m∗
(
1 + F s

1

)
J (0)

c , JQ = m

m∗ J (0)
Q , (C5)

013043-15



SO TAKEI AND YAROSLAV TSERKOVNYAK PHYSICAL REVIEW RESEARCH 6, 013043 (2024)

FIG. 11. A schematic U -T phase diagram showing the transition
from the metallic Fermi liquid state to the insulating U(1) QSL state
as a finite-temperature crossover. The Pomeranchuk instability is
denoted by Uc, and the possible instability toward a gapped phase
at lower temperatures is shown. The phenomenology is not capable
of capturing the exact nature of this gapped phase or the finite-
temperature “critical region” around Uc. The phase diagram has been
adapted directly from Ref. [52].

where J (0)
c and J (0)

Q denote the charge and thermal currents,
respectively, in the corresponding free system [74]. In systems

with Galilean invariance, we have the constraint m∗/m = 1 +
F s

1 , and the charge current is unrenormalized by interactions.
An important point is that in non-Galilean invariant systems,
e.g., electrons in crystalline solids, this constraint no longer
holds and the charge and thermal currents can be renormal-
ized asymmetrically by interactions. The Mott transition at
the critical Hubbard interaction Uc then corresponds to the
point at which 1 + F s

1 (Uc) = 0, where the original Landau
quasiparticles are converted into chargeless, spin-1/2 spinons.
As illustrated in Fig. 11, the quantity 1 + F s

1 (U ) vanishes as
U approaches Uc, and is assumed to remain zero for U > Uc.

As pointed out by Zhou and Ng, the critical point 1 +
F s

1 (Uc) = 0 coincides with the Pomeranchuk instability point,
at which the Fermi surface becomes unstable with respect
to deformations [2,52]. Therefore the U(1) QSL state with a
spinon Fermi surface is likely to transition into a more stable
QSL phase at lower temperatures that gap out part of or the
entire Fermi surface. As shown in Fig. 11, the system may
be driven into a gapped QSL phase for T < Tc(U ). The pre-
cise nature of the low-temperature QSLs cannot be captured
within the phenomenological model because it depends on the
microscopic details of the system.

Our basic starting action is therefore given by

S =
∫

dt
∑
kσ

ψ̄kσ (t )(i∂t − ξk/h̄)ψkσ (t ) − 1

2h̄g0A

∫
d�

2π

∑
q

[
F s

0 (q,�)|ρ(q,�)|2 + F s
1 (q,�)

v2
F

| j(q,�)|2
]

, (C6)

where ψσ (r, t ) is the spin-σ quasiparticle field, vF = h̄kF /m∗ is the Fermi velocity, and

ρ(q, t ) =
∑
kσ

ψ̄kσ (t )ψk+qσ (t ) , j(q, t ) = h̄

m∗
∑
kσ

(
k + q

2

)
ψ̄kσ (t )ψk+qσ (t ) . (C7)

We now note that if we retain only the q = 0 term in the interaction term and ignore the frequency-dependences of the functions
F s

0 and F s
1 , Eq. (C6) maps precisely to the standard Landau Fermi-liquid phenomenology with the symmetric, � = 0, 1 Landau

parameters only. Also under this specific mapping, the QSL state, which we are about to describe below, coincides with the
Pomeranchuk instability within the standard Landau phenomenology.

Here, we assume a renormalized quadratic spectrum, i.e., ξk = h̄2(k2 − k2
F )/2m∗. This choice is not an essential aspect of this

model but is made to align with the other microscopic approaches, e.g., Refs. [14,15]. If F s
0 (q,�) is expanded in powers of q

and �, we may keep the lowest order term, i.e., the constant term, since the constant term is the most RG relevant term. Then
the term proportional to F s

0 leads to the quartic term in Eq. (16) once we make the identification u ≡ F s
0 /g0.

The gauge field a can be introduced through the Hubbard-Stratonovich decoupling of the current-current interaction term,

1

2g0A

∫
dt
∑

q

F s
1 (q)

v2
F

| j(q, t )|2 →
∫

d�

2π

1

A

∑
q

[
j(q,�) · a(−q,−�) − n

2m∗
|a(q,�)|2
F s

1 (q,�)

]
, (C8)

where n = k2
F /2π is the total average quasiparticle density. With the introduction of the gauge field, the gauge-invariant

quasiparticle current then gains the “diamagnetic” term,

j(q, t ) → h̄

m∗
∑
kσ

(
k + q

2

)
ψ̄kσ (t )ψk+qσ (t ) − n

m∗ a(q, t ) . (C9)

Combining Eqs. (C6) and (C8), the action takes the form of the U(1) gauge theory,

S = 1

h̄

∫
dt
∫

d2r
∑

σ

[
ψ̄σ (r, t )(ih̄∂t + μ)ψσ (r, t ) − 1

2m∗ ψ̄σ (r, t )(−ih̄∇ − a)2ψσ (r, t )

]

− 1

h̄

∫
d�

2π

1

A

∑
q

n

2m∗

(
1 + 1

F s
1 (q,�)

)
|a2(q,�)|2 − u

h̄

∫
dt
∫

d2r ψ̄↑(r, t )ψ̄↓(r, t )ψ↓(r, t )ψ↑(r, t ). (C10)

The Landau parameter F s
1 (q,�) may also be expanded in powers of q and �. Then in the spin liquid phase, where 1 +

F s
1 (0, 0) → 0, the vector gauge field becomes massless, so higher-order (q,�)-dependent terms should be included in the Landau
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parameter to obtain nonsingular results. Therefore one may write

1 + F s
1 (q,�) ≈ α − β�2 + γt q

2
t + γl q

2
l , (C11)

where qt = −i∇× and ql = −i∇ are the transverse (curl) and longitudinal (gradient) parts, respectively, of the small-q
expansion. In a QSL state, α = 0. Reference [52] also argues that γl must be zero to ensure that the system is in an incompressible
(insulator) state. The first term on the second line in Eq. (C10) leads to the standard Maxwell Lagrangian involving the vector
gauge field [52], i.e.,

S⊥[a] = − n

2m∗h̄

∫
dt
∫

d2r

[
β

(
∂a
∂t

)2

− γt (∇ × a)2

]
. (C12)

We then arrive at the following effective Lagrangian for the spin liquid:

S = S⊥[a] + 1

h̄

∫
dt
∫

d2r
∑

σ

[
ψ̄σ (r, t )(ih̄∂t + μ)ψσ (r, t ) − 1

2m∗ ψ̄σ (r, t )(−ih̄∇ − a)2ψσ (r, t )

]

− u

h̄

∫
dt
∫

d2r ψ̄↑(r, t )ψ̄↓(r, t )ψ↓(r, t )ψ↑(r, t ) . (C13)

This is the standard starting action for the U(1) quantum spin liquid that has been derived in various different ways. [75]
We emphasize that the field ψσ (r, t ) in Eq. (C13) now represents charge-neutral spinons as opposed to charged fermionic
quasiparticles as in Eq. (C10), since by this point the charge-neutrality condition 1 + F s

1 (0, 0) → 0 has been applied.
We note that the low-energy, long-wavelength behavior of the gauge field is actually not determined by S⊥[a] but by their

coupling to the fermion matter field. In the standard approach, the effective theory for the transverse gauge field is obtained by
integrating out the fermions and incorporating the effects of the spinons within the random phase approximation (RPA) [54,76].
Following the same procedure and fixing ourselves to the Coulomb gauge (i.e., ∇ · a = 0), the effective Euclidean action for the
gauge field becomes

Seff
⊥ [a] = 1

2

∑
qn

(
χd q2 + |�n|

vF q

2εF

π h̄3

)
|a(q,�n)|2 , (C14)

where �n is the Matsubara frequency, χd = 1/12π h̄m∗ is the (2D) spinon diamagnetic susceptibility, and “a” corresponds to the
component of a transverse to q; the term proportional to the frequency represents Landau damping of gauge fluctuations due to
the spinon continuum.

We finally note that the QSL is subjected to the static perpendicular magnetic field B0 = −B0ẑ, which controls the resonance
frequency of the NV center. In the presence of this field, Eq. (C13) must be amended by the Zeeman term

SZ = 1

h̄

∫
dt
∫

d2r
∑

σ

ψ̄σ (r, t )
σb0

2
ψσ (r, t ) , (C15)

where b0 = h̄γ B0 is the Zeeman energy. Equations (C13) and (C15) directly lead to Eq. (16) in the main text. The effective
action for the vector gauge bosons Eq. (C14) will become important when computing the gauge field corrections to the dynamic
spin response functions: see Appendix F.

APPENDIX D: TIME-DEPENDENT HARTREE-FOCK APPROXIMATION

In this Appendix, we reproduce the standard RPA result by applying the time-dependent Hartree-Fock approximation. The
formulation of the approximation presented here is similar to the formulation presented in Ref. [77]. Here, we solely consider
the case where spinon-gauge coupling is zero, so the starting spinon Hamiltonian is given by

H =
∑
kσ

ξkσ f †
kσ

fkσ + u

A

∑
k1k2 p

f †
k1↑ f †

k2↓ fk2+p↓ fk1−p↑ ≡ H0 + Hint , (D1)

where ξkσ is the bare spinon dispersion.
We are interested in the spin response,

χR
αβ (k, k′; q, t ) = − i

4A
�(t )

∑
σi

σα
σ1σ2

σβ
σ3σ4

〈[
eiHt/h̄ f †

kσ1
fk+qσ2 e−iHt/h̄, f †

k′σ3
fk′−qσ4

]〉
. (D2)
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Let us now take the time derivative of the response function to find its equation of motion:

ih̄∂tχ
R
αβ (k, k′; q, t ) = i�(t )

4A

∑
σi

σα
σ1σ2

σβ
σ3σ4

〈[[
H, f †

kσ1
(t ) fk+qσ2 (t )

]
, f †

k′σ3
fk′−qσ4

]〉

+ h̄δ(t )

4A

∑
σi

σα
σ1σ2

σβ
σ3σ4

〈[
f †
kσ1

fk+qσ2 , f †
k′σ3

fk′−qσ4

]〉
. (D3)

The last term can be evaluated:

h̄δ(t )

4A

∑
σi

σα
σ1σ2

σβ
σ3σ4

〈[
f †
kσ1

fk+qσ2 , f †
k′σ3

fk′−qσ4

]〉 = h̄δ(t )

4A

∑
σ1σ2

σα
σ1σ2

σβ
σ2σ1

(
nkσ1 − nk+qσ2

)
δk′,k+q, (D4)

where nkσ = 〈 f †
kσ

fkσ 〉. If we now calculate the internal commutator in the first term of Eq. (D3), the first piece is given by[
H0, f †

kσ1
fk+qσ2

] = (ξkσ1 − ξk+qσ2

)
f †
kσ1

fk+qσ2 , (D5)

while the second piece is given by[
Hint, f †

kσ1
fk+qσ2

] = u

A

∑
k1k2 p

[
f †
k1↑ f †

k2↓ fk2+p↓ fk+qσ2δk1−p,kδ↑σ1 + f †
k1↑ f †

k2↓ fk+qσ2 fk1−p↑δk2+p,kδ↓σ1

− f †
k1↑ f †

kσ1
fk2+p↓ fk1−p↑δk2,k+qδ↓σ2 − f †

kσ1
f †
k2↓ fk2+p↓ fk1−p↑δk1,k+qδ↑σ2

]
(D6)

= u

A

∑
k1 p

[
f †
k+p↑ f †

k1↓ fk1+p↓ fk+qσ2δ↑σ1 + f †
k1↑ f †

k−p↓ fk+qσ2 fk1−p↑δ↓σ1

− f †
k1↑ f †

kσ1
fk+p+q↓ fk1−p↑δ↓σ2 − f †

kσ1
f †
k1↓ fk1+p↓ fk−p+q↑δ↑σ2

]
. (D7)

We now apply the Hartree-Fock approximation on these four terms, assuming that the spin order points along the z axis:[
Hint, f †

kσ1
fk+qσ2

]→ u

A

∑
k1

[〈
f †
k1↓ fk1↓

〉
f †
k↑ fk+qσ2δ↑σ1 + 〈 f †

k+q↑ fk+q↑〉 f †
k1↓ fk1+q↓δ↑σ1δ↑σ2

− 〈 f †
k+q↓ fk+q↓〉 f †

k1↑ fk1+q↓δ↑σ1δ↓σ2 + 〈 f †
k+q↓ fk+q↓〉 f †

k1↑ fk1+q↑δ↓σ1δ↓σ2 + 〈 f †
k1↑ fk1↑

〉
f †
k↓ fk+qσ2δ↓σ1

− 〈 f †
k+q↑ fk+q↑〉 f †

k1↓ fk1+q↑δ↓σ1δ↑σ2 − 〈 f †
k↓ fk↓〉 f †

k1↑ fk1+q↑δ↓σ1δ↓σ2 − 〈 f †
k1↑ fk1↑

〉
f †
kσ1

fk+q↓δ↓σ2

+ 〈 f †
k↑ fk↑〉 f †

k1↑ fk1+q↓δ↑σ1δ↓σ2 − 〈 f †
k1↓ fk1↓

〉
f †
kσ1

fk+q↑δ↑σ2 − 〈 f †
k↑ fk↑〉 f †

k1↓ fk1+q↓δ↑σ1δ↑σ2

+ 〈 f †
k↓ fk↓〉 f †

k1↓ fk1+q↑δ↓σ1δ↑σ2

]
. (D8)

Now replacing the expectation values, we obtain[
Hint, f †

kσ1
fk+qσ2

] = u

A

∑
k1

[
(nk+q↑ − nk↑) f †

k1↓ fk1+q↓δ↑σ1δ↑σ2 + (nk+q↓ − nk↓) f †
k1↑ fk1+q↑δ↓σ1δ↓σ2

− (nk+q↓ − nk↑) f †
k1↑ fk1+q↓δ↑σ1δ↓σ2 − (nk+q↑ − nk↓) f †

k1↓ fk1+q↑δ↓σ1δ↑σ2

]
+ u

A

[
N↑ f †

k↓ fk+qσ2δ↓σ1 + N↓ f †
k↑ fk+qσ2δ↑σ1 − N↑ f †

kσ1
fk+q↓δ↓σ2 − N↓ f †

kσ1
fk+q↑δ↑σ2

]
, (D9)

where Nσ =∑k nkσ .
If we now insert this result into Eq. (D3), the equation of motion for the −+ component becomes

ih̄∂tχ
R
−+(k, k′; q, t ) = h̄δ(t )

A
(nk↓ − nk+q↑)δk′,k+q − (ξk↓ − ξk+q↑)χR

−+(k, k′; q, t )

+ (nk+q↑ − nk↓)
u

A

∑
k1

χR
−+(k1, k′; q, t ) − (N↑ − N↓)

u

A
χR

−+(k, k′; q, t ). (D10)

Summing over k′ and Fourier transforming to �,

h̄�χR
−+(k; q,�) = h̄

A
(nk↓ − nk+q↑) − (ξk↓ − ξk+q↑)χR

−+(k; q,�)

+ (nk+q↑ − nk↓)
u

A
χR

−+(q,�) − (N↑ − N↓)
u

A
χR

−+(k; q,�). (D11)
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where χR
−+(k; q,�) =∑k′ χR

−+(k, k′; q,�). The “+−” component can be computed in a similar way. Solving these equations,
we finally obtain

χR
−+(q,�) = χ

R(0)
−+ (q,�)

1 + u
h̄χ

R(0)
−+ (q,�)

, χR
+−(q,�) = χ

R(0)
+− (q,�)

1 + u
h̄χ

R(0)
+− (q,�)

, (D12)

where χR
±∓(q,�) =∑k χR

±∓(k; q,�)

χ
R(0)
−+ (q,�) = 1

A

∑
k

nF
(
ξHF

k↓
)− nF

(
ξHF

k+q↑
)

� + ξHF
k↓ /h̄ − ξHF

k+q↑/h̄ + iη
, χ

R(0)
+− (q,�) = 1

A

∑
k

nF
(
ξHF

k↑
)− nF

(
ξHF

k+q↓
)

� + ξHF
k↑ /h̄ − ξHF

k+q↓/h̄ + iη
. (D13)

To obtain the longitudinal response function, we define four components ↑↑, ↑↓, ↓↑, and ↓↓ such that

χR
‖ (q,�) = χR

zz(q,�) = 1
4 [χR

↑↑(q,�) + χR
↑↓(q,�) + χR

↓↑(q,�) + χR
↓↓(q,�)]. (D14)

Using Eq. (D3), the equations of motion for these four components become

(h̄� + ξk↑ − ξk+q↑)χR
↑↑(k; q,�) = h̄

A
(nk↑ − nk+q↑) − u

h̄

h̄

A
(nk↑ − nk+q↑)χR

↓↑(q,�) , (D15)

(h̄� + ξk↓ − ξk+q↓)χR
↓↓(k; q,�) = h̄

A
(nk↓ − nk+q↓) − u

h̄

h̄

A
(nk↓ − nk+q↓)χR

↑↓(q,�) , (D16)

(h̄� + ξk↑ − ξk+q↑)χR
↑↓(k; q,�) = −u

h̄

h̄

A
(nk↑ − nk+q↑)χR

↓↓(q,�) , (D17)

(h̄� + ξk↓ − ξk+q↓)χR
↓↑(k; q,�) = −u

h̄

h̄

A
(nk↓ − nk+q↓)χR

↑↑(q,�) . (D18)

From this, we obtain

χR
‖ (q,�) = 1

4

χ
R(0)
↑↑ (q,�)

(
1 − u

h̄χ
R(0)
↓↓ (q,�)

)+ χ
R(0)
↓↓ (q,�)

(
1 − u

h̄χ
R(0)
↑↑ (q,�)

)
1 − ( u

h̄

)2
χ

R(0)
↑↑ (q,�)χR(0)

↓↓ (q,�)
, (D19)

where

χR(0)
σσ (q,�) = 1

A

∑
k

nF
(
ξHF

kσ

)− nF
(
ξHF

k+qσ

)
� + ξHF

kσ

/
h̄ − ξHF

k+qσ
/h̄ + iη

. (D20)

APPENDIX E: BARE SPIN RESPONSE FUNCTIONS

In this Appendix, we provide detailed evaluations of the bare spin response functions Eq. (25). For the +− component, we
have

χ
R(0)
+− (q,�) = 1

A

∑
k

nF
(
ξHF

k↑
)− nF

(
ξHF

k+q↓
)

� + (ξHF
k↑ − ξHF

k+q↓
)/

h̄ + iη
= 1

A

∑
k

nF
(
ξHF

k↑
)− nF

(
ξHF

k+q↓
)

� + (εk − εk+q − 	)/h̄ + iη
, (E1)

where 	 = b0 + 2um = b0/(1 − ug0) and η is an infinitesimal. If we now go to zero temperature, we have

χ
R(0)
+− (q,�) = h̄

∫
d2k

(2π )2

�(εF↑ − εk)

h̄�̃ + εk − εk+q + ih̄η
− h̄

∫
d2k

(2π )2

�(εF↓ − εk)

h̄�̃ + εk+q − εk + ih̄η
, (E2)

where εFσ = εF + σ	/2 and �̃ = � − 	/h̄. If we now scale the energies in the first integral by εF↑ and in the second integral
by εF↓, we obtain

χ
R(0)
+− (q,�) = h̄g0

2

∫ 1

0
kdk

∫
dθ

2π

1

ỹ↑ − kx↑ cos θ − x2
↑ + iη

− h̄g0

2

∫ 1

0
kdk

∫
dθ

2π

1

ỹ↓ + kx↓ cos θ + x2
↓ + iη

, (E3)

where ỹσ = h̄�̃/4εFσ and xσ = q/2kFσ . Performing the integrals, we obtain

χ
R(0)
+− (q,�) = h̄g0

4x2
↑

[z̃↑− − �(z̃2
↑− − x2

↑)sgn(z̃↑−)
√

z̃2
↑− − x2

↑ − i�(x2
↑ − z̃2

↑−)
√

x2
↑ − z̃2

↑−]

− h̄g0

4x2
↓

[z̃↓+ − �(z̃2
↓+ − x2

↓)sgn(z̃↓+)
√

z̃2
↓+ − x2

↓ − i�(x2
↓ − z̃2

↓+)
√

x2
↓ − z̃2

↓+], (E4)
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where z̃σ± = ỹσ ± x2
σ . If we define ỹ = (h̄� − 	)/4εF , x = q/2kF , and z̃± = ỹ ± x2,

χ
R(0)
+− (q,�) = h̄g0

2x2

[
�

(
z̃2
+ − x2 εF↓

εF

)
sgn(z̃+)

√
z̃2+ − x2

εF↓
εF

+ i�

(
x2 εF↓

εF
− z̃2

+

)√
x2

εF↓
εF

− z̃2+

]

− h̄g0

2x2

[
�

(
z̃2
− − x2 εF↑

εF

)
sgn(z̃−)

√
z̃2− − x2

εF↑
εF

+ i�

(
x2 εF↑

εF
− z̃2

−

)√
x2

εF↑
εF

− z̃2−

]
− h̄g0 . (E5)

Finally, this can be reexpressed as

χ
R(0)
+− (q,�) = h̄g0

2x2
[�(z̃2

+ − x2(1 − 2δ))sgn(z̃+)
√

z̃2+ − x2(1 − 2δ) + i�(x2(1 − 2δ) − z̃2
+)
√

x2(1 − 2δ) − z̃2+]

− h̄g0

2x2
[�(z̃2

− − x2(1 + 2δ))sgn(z̃−)
√

z̃2− − x2(1 + 2δ) + i�(x2(1 + 2δ) − z̃2
−)
√

x2(1 + 2δ) − z̃2−] − h̄g0 , (E6)

where δ ≡ 	/4εF . The −+ component can be obtained by the replacement 	 → −	.
Let us now compute the equal-spin component:

χR(0)
σσ (q,�) = 1

A

∑
k

nF
(
ξHF

kσ

)− nF
(
ξHF

k+qσ

)
� + εk − εk+q + iη

. (E7)

A calculation similar to the transverse component results in

χR(0)
σσ (q,�) = h̄g0

2x2
[�(z2

+ − x2(1 + σ2δ))sgn(z+)
√

z2+ − x2(1 + σ2δ) + i�(x2(1 + σ2δ) − z2
+)
√

x2(1 + σ2δ) − z2+]

− h̄g0

2x2
[�(z2

− − x2(1 + σ2δ))sgn(z−)
√

z2− − x2(1 + σ2δ) + i�(x2(1 + σ2δ) − z2
−)
√

x2(1 + σ2δ) − z2−] − h̄g0 ,

(E8)

where z± = h̄�/4εF ± (q/2kF )2.

APPENDIX F: GAUGE CORRECTION TO THE BARE SPIN RESPONSE FUNCTIONS

In this Appendix, we provide details for the insertion of a single gauge propagator into the bare spin response functions, i.e.,
the details behind Eqs. (26) and (27). The technicalities presented here are similar to those in Ref. [36].

The real-time action for the spinons coupled to gauge fluctuations is given by

S = 1

h̄

∑
σ

{
ψ̄σ (r, t )

(
ih̄∂t + h̄2∇2

2m∗ + εF

)
ψσ (r, t ) − j(r, t ) · a(r, t )

}
, (F1)

where ψσ (r, t ) is the spin-σ spinon field, and j(r, t ) is the spinon current density. Fourier transforming to momentum space,

S =
∑
kσ

ψ̄kσ (t )(i∂t − ξk/h̄)ψkσ (t ) − 1

2h̄
√

A

∑
kk′σ

ψ̄kσ (t )vk+k′ · ak−k′ (t )ψk′σ (t ) , (F2)

where ξk = h̄2k2/2m∗ − εF and vk = h̄k/m∗.
In contrast to Ref. [36], which uses the imaginary-time formalism, we proceed by placing the real-time action on the

Schwinger-Keldysh time-loop contour [78], i.e., working with real times and frequencies. The +− component on the contour is
defined as

χκκ ′
+−(q, t ) = − i

A

∑
k1k2

〈
ψ̄κ

k1↑(t )ψκ
k1+q↓(t )ψ̄κ ′

k2↓(0)ψκ ′
k2−q↑(0)

〉
, (F3)

where the superscripts κ, κ ′ = ± label the forward and backward branches of the time-loop contour on which the time variables
lie. In this representation, κ = κ ′ = +, κ = −κ ′ = +, κ = −κ ′ = −, and κ = κ ′ = − correspond to the time-ordered, lesser,
greater, and antitime ordered correlation functions, respectively, and the retarded component can be obtained via

χR = χ++ − χ−− + χ−+ − χ+− . (F4)

The corrections with a single gauge propagator emerge at second order in Sint, i.e.,

δχκκ ′
+−(q, t ) = i

2A

∑
k1k2

〈
ψ̄κ

k1↑(t )ψκ
k1+q↓(t )ψ̄κ ′

k2↓(0)ψκ ′
k2−q↑(0)S2

int

〉
0 , (F5)
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where the interaction contribution to the action on the Keldysh contour reads [cf. Eq. (F2)]

Sint = − 1

2h̄
√

A

∫ ∞

−∞
dt
∑
κ=±

∑
kk′σ

κψ̄κ
kσ (t )vk+k′ · aκ

k−k′ (t )ψκ
k′σ (t ) , (F6)

and the average 〈· · · 〉0 is now taken with respect to the noninteracting spinon action. The sum over κ in Eq. (F6) encodes the sum
over the two branches of the Keldysh contour, where the time integral over the backward branch introduces an overall negative
sign, hence the pre-factor κ .

Equation (F5) generates three relevant terms: two diagrams (labeled below by 1 and 2) corresponding to self-energy
corrections and one vertex correction (labeled below by 3), shown diagrammatically in Fig. 5 of the main text. All three diagrams
must be accounted for to maintain gauge invariance. These three corrections in Keldysh space read

δχκκ ′
+−1(q,�) = 1

(2h̄)2A 2

∑
i j

∑
kp

∑
κ1κ2

∫
dω

2π

∫
dν

2π
κ1κ2 Dκ1κ2,i j

−p (−ν)vi
2k+2q+pv

j
2k+2q+p

× gκκ1
k+q↑(ω + ν)gκ1κ2

k+q+p↑(ω + � + ν)gκ2κ
′

k+q↑(ω + ν)gκ ′κ
k↓ (ω) , (F7)

δχκκ ′
+−2(q,�) = 1

(2h̄)2A 2

∑
i j

∑
kp

∑
κ1κ2

∫
dω

2π

∫
dν

2π
κ1κ2 Dκ1κ2,i j

−p (−ν)vi
2k+pv

j
2k+p

× gκκ ′
k+q↑(ω + �)gκ ′κ1

k↓ (ω)gκ1κ2
k+p↓(ω + ν)gκ2κ

k↓ (ω) , (F8)

δχκκ ′
+−3(q,�) = 1

(2h̄)2A 2

∑
i j

∑
kp

∑
κ1κ2

∫
dω

2π

∫
dν

2π
κ1κ2 Dκ1κ2,i j

−p (−ν)vi
2k+2q+pv

j
2k+p

× gκκ1
k+q↑(ω + �)gκ1κ

′
k+q+p↑(ω + � + ν)gκ ′κ2

k+p↓(ω + ν)gκ2κ
k↓ (ω) . (F9)

Here, gκκ ′
kσ

(ω) and Dκκ ′,i j
q (�) are the spinon and gauge field Green functions, where κ and κ ′ once again label the contour

branches. These Green functions can be “rotated” from the +/− basis to the RAK (retarded, advanced, and Keldysh) basis via
[78]

GR = 1
2 (G++ − G−− + G−+ − G+−), GA = 1

2 (G++ − G−− − G−+ + G+−), GK = 1
2 (G++ + G−− + G−+ + G+−),

(F10)

where this transformation holds for both fermionic and bosonic propagators. The components of the spinon Green function
matrix in the RAK basis are given by

gR
kσ (ω) = 1

ω − ξHF
kσ

/h̄ + iη
= gA∗

kσ (ω) , (F11)

gK
kσ (ω) = tanh

(
h̄ω

2kBT

)[
gR

kσ (ω) − gA
kσ (ω)

]
. (F12)

If we place Eq. (C14) on the Keldysh contour, the effective action for the gauge fluctuations in terms of momentum and real
frequency reads

Seff = i

2

∫
d�

2π

∑
q

∑
i, j=x,y,z

(
ai,c

−q(−�) ai,q
−q(−�)

)(DK
i j (q,�) DR

i j (q,�)

DA
i j (q,�) 0

)−1(
a j,c

q (�)

a j,q
q (�)

)
, (F13)

where the components of the (RPA) gauge propagator read

DR
i j (q,�) = −

(
δi j − qiq j

q2

)
1

χd q2 − i �
vF q

2εF

π h̄3

≡ −
(

δi j − qiq j

q2

)
dR

q (�), (F14)

DK
i j (q,�) = coth

(
h̄�

2kBT

)[
DR

i j (q,�) − DA
i j (q,�)

]
. (F15)
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Using Eqs. (F4), (F7), and (F10), we may write the imaginary part of the first correction as

Im{δχR
+−1(q,�)} = 1

4A

∑
k

∫
dω

2π

[
tanh

(
h̄(ω + �)

2kBT

)
− tanh

(
h̄ω

2kBT

)]

× [gR
k+q↑(ω + �)�R

k+q↑(ω + �)gR
k+q↑(ω + �) − (R → A)

][
gR

k↓(ω) − gA
k↓(ω)

]
, (F16)

where the retarded and advanced spinon self-energies are defined by

�R
kσ (ω) = 2i

(4h̄)2A

∫
dν

2π

∑
p,i j

[
gR

k+pσ (ω + ν)DK
i j,−p(−ν) + gK

k+pσ (ω + ν)DR
i j,−p(−ν)

]
vi

2k+pv
j
2k+p , (F17)

�A
kσ (ω) = 2i

(4h̄)2A

∫
dν

2π

∑
p,i j

[
gA

k+pσ (ω + ν)DK
i j,−p(−ν) + gK

k+pσ (ω + ν)DA
i j,−p(−ν)

]
vi

2k+pv
j
2k+p. (F18)

Performing the sum over i j, we then obtain

�R
kσ (ω) ≈ iv2

F

2h̄2A

∫
dν

2π

∑
p

[
gR

k+pσ (ω + ν)dK
−p(−ν) + gK

k+pσ (ω + ν)dR
−p(−ν)

]
, (F19)

�A
kσ (ω) ≈ iv2

F

2h̄2A

∫
dν

2π

∑
p

[
gA

k+pσ (ω + ν)dK
−p(−ν) + gK

k+pσ (ω + ν)dA
−p(−ν)

]
. (F20)

Similar evaluation of the second term gives

Im{δχR
+−2(q,�)} = 1

4A

∑
k

∫
dω

2π

[
tanh

(
h̄(ω + �)

2kBT

)
− tanh

(
h̄ω

2kBT

)]

× [gR
k+q↑(ω + �) − gA

k+q↑(ω + �)
][

gR
k↓(ω)�R

k↓(ω)gR
k↓(ω) − (R → A)

]
. (F21)

The self-energy turns out to be approximately independent of ξk [36], so terms that involve only retarded Green functions or
only advanced Green functions do not contribute once ξk integral is performed. Using partial fractions, the sum of the first and
second terms can then be rewritten as

Im{δχR
+−12(q,�)}

= 1

4A

∑
k

∫
dω

2π

[
tanh

(
h̄ω

2kBT

)
− tanh

(
h̄(ω + �)

2kBT

)]

×
{

gR
k+q↑(ω + �)

[
�R

k+q↑(ω + �) − �A
k↓(ω)

]
gA

k↓(ω)

� − ξk+q↑
h̄ + ξk↓

h̄ + iη
+ gA

k+q↑(ω + �)
[
�A

k+q↑(ω + �) − �R
k↓(ω)

]
gR

k↓(ω)

� − ξk+q↑
h̄ + ξk↓

h̄ − iη

}
. (F22)

Now performing the ξk integral, we obtain

Im{δχR
+−12(q,�)} = −m∗

2h̄

∫
dθ

2π

∫
dω

2π

[
tanh

(
h̄ω

2kBT

)
− tanh

(
h̄(ω + �)

2kBT

)]
Im

⎧⎪⎨
⎪⎩

�R
k+q↑(ω + �) − �A

k↓(ω)(
� − ξk+q↑

h̄ + ξk↓
h̄ + iη

)2

⎫⎪⎬
⎪⎭ . (F23)

The p integral in the self-energy, e.g., Eq. (F17), can be performed by decomposing p into the component parallel to k and
perpendicular to k; we denote these components, respectively, by p‖ and p⊥. Evaluating the self-energy terms and performing
the p‖ integral only [36], we obtain

Im{δχR
+−12(q,�)} = − kF

(2h̄)2

∫
dθ

2π

∫
dω

2π

∫
d p⊥
2π

∫
dν

2π

[
tanh

(
h̄(ω + �)

2kBT

)
− tanh

(
h̄ω

2kBT

)]

× Im

{
coth

(
h̄ν

2kBT

)[
dR

−p⊥ (−ν) − dA
−p⊥ (−ν)

]− tanh
( h̄(ω+�+ν)

2kBT

)
dR

−p⊥ (−ν) + tanh
( h̄(ω+ν)

2kBT

)
dA

−p⊥ (−ν)

(� − vF q cos θ − 	/h̄ + iη)2

}
.

(F24)
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Combining this with the vertex correction [see Eq. (F9)] and going to the zero temperature limit, we obtain

Im{δχR
+−(q,�)} = kF

(2h̄)2

∫
dθ

2π

∫
dω

2π

∫
d p⊥
2π

∫
dν

2π
[sgn(ω + �) − sgn(ω)]

× Im

{[
sgn(ν)

(
dR

−p⊥ (−ν) − dA
−p⊥ (−ν)

)− sgn(ω + � + ν)dR
−p⊥ (−ν) + sgn(ω + ν)dA

−p⊥ (−ν)
]

×
(

1

(� − vF q cos θ − h̄qp⊥ sin θ/m∗ − 	/h̄ + iη)(� − vF q cos θ − 	/h̄ + iη)

− 1

(� − vF q cos θ − 	/h̄ + iη)2

)}
. (F25)

Let us define the following angle integrals,

I±(z) =
∫

dθ

2π

1

ỹ − cos θ ± iη

1

ỹ − cos θ − z sin θ ± iη
= |ỹ|

[(ỹ ± iη)2 − 1]
√

(ỹ ± iη)2 − (z2 + 1)
, (F26)

where ỹ = �/vF q − 	/h̄vF q and z = p⊥/kF . Inserting this result into the above expression, we may write the total correction
due to gauge fluctuations as

Im{δχR
+−(q,�)} = kF

(2h̄vF q)2

∫
dω

2π

∫
dν

2π

∫
d p

2π
[sgn(ω + �) − sgn(ω)]

× Im
{[

sgn(ν)
(
dR

−z(−ν) − dA
−z(−ν)

)− sgn(ω + � + ν)dR
−z(−ν) + sgn(ω + ν)dA

−z(−ν)
]
[I+(z) − I+(0)]

}
,

(F27)

where we replaced p⊥ → p, and

dR(A)
−z (−ν) = π h̄3

εF

z

z3/6 ± ih̄ν/εF
. (F28)

This can be reexpressed as

Im{δχR
+−(q,�)} = 2k2

F

(2h̄vF q)2

∫
dω

2π

∫
dν

2π

∫ ∞

−∞

dz

2π
[sgn(ω + �) − sgn(ω)]

× [sgn(ω + ν) − sgn(ν)]Im
{
dA

−z(−ν)(I+(z) − I+(0))
}

. (F29)

Doing the ν integral (and assuming � > 0),

Im{δχR
+−(q,�)} = − k2

F

2π (vF q)2

∫ �

0

dω

2π

∫ 1

0
dzzRe

{
log

(
1 − 6ih̄ω

z3εF

)
(I+(z) − I+(0))

}
. (F30)

Let us split this integral into two parts:

Im{δχR(1)
+− (q,�)} = − k2

F

4π2(vF q)2

∫ �

0
dω

∫ 1

0
dz z Re

{(
−6ih̄ω

z3εF

)
(I+(z) − I+(0))

}
, (F31)

Im{δχR(2)
+− (q,�)} = − k2

F

4π2(vF q)2

∫ �

0
dω

∫ 1

0
dz z Re

{[
log

(
1 − 6ih̄ω

z3εF

)
+ 6ih̄ω

z3εF

]
(I+(z) − I+(0))

}
. (F32)

The first integral is finite because at the lower limit the quantity in the parenthesis involving I+ vanishes like z2. At finite magnetic
field, we may assume large ỹ, and we obtain

Im{δχR(1)
+− (q,�)}) ≈ − k2

F

2π2(2vF q)2

∫ �

0
dωRe

{(
−6ih̄ω

εF

) |ỹ|
[(ỹ + iη)2 − 1]5/2

}
≈ 0 . (F33)

Let us look at the second integral. Here we cannot expand in ω because the leading term, proportional to ω2, is divergent at small
z. Hence we rescale instead z ≡ ζ (6h̄ω/εF )1/3 to obtain

Im{δχR(2)
+− (q,�)} = − k2

F

4π2(vF q)2

∫ �

0
dω

(
6h̄ω

εF

)1/3 ∫ (εF /6h̄ω)1/3

0
dζ ζ

× Re

⎧⎪⎨
⎪⎩

|ỹ|
(ỹ + iη)2 − 1

[
log

(
1 − i

ζ 3

)
+ i

ζ 3

]⎛⎜⎝ 1√
ζ 2

0 − ζ 2
− 1

ζ0

⎞
⎟⎠
⎫⎪⎬
⎪⎭, (F34)
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where

ζ0 ≡
√

(ỹ + iη)2 − 1

(6h̄ω/εF )1/3
. (F35)

We are interested in the limit h̄ω/εF � 1. Therefore we can take the upper limit of the integration to infinity, and Taylor expand
the term in the round brackets since ζ0 � 1 follows. We therefore arrive at

Im{δχR(2)
+− (q,�)} = − k2

F

2π2(2vF q)2

∫ �

0
dω

(
6h̄ω

εF

)4/3

Re

{ |ỹ|
[(ỹ + iη)2 − 1]5/2

∫ ∞

0
dζ ζ 3

[
log

(
1 − i

ζ 3

)
+ i

ζ 3

]}
(F36)

= − k2
F

2π2(2vF q)2

∫ �

0
dω

(
6h̄ω

εF

)4/3

Re

{
|ỹ|

[(ỹ + iη)2 − 1]5/2

π (
√

3 + 3i)

12

}
. (F37)

Finally, performing the ω integral, we obtain

Im{δχR(2)
+− (q,�)} ≈ −64/3π

√
3

14

h̄3k2
F εF (vF q)2

4π2

(
h̄�

εF

)7/3 |h̄� − 	|
|(h̄� − 	)2 − (h̄vF q)2|5/2

. (F38)

This result leads directly to Eq. (26). The −+ component can be obtained by the replacement 	 → −	.
The technicalities presented for the transverse component can be applied to the longitudinal component. The three diagrams

in Fig. 5 are given by

Im
{
δχR

σσ (q,�)
} = kF

(4h̄)2

∫
dθ

2π

∫
dω

2π

∫
d p⊥
2π

∫
dν

2π
[sgn(ω + �) − sgn(ω)]

× Im

{[
sgn(ν)

(
dR

−p⊥ (−ν) − dA
−p⊥ (−ν)

)− sgn(ω + � + ν)dR
−p⊥ (−ν) + sgn(ω + ν)dA

−p⊥ (−ν)
]

×
(

1

(� − vF q cos θ − h̄qp⊥ sin θ/m∗ + iη)(� − vF q cos θ + iη)
− 1

(� − vF q cos θ + iη)2

)}
. (F39)

Comparing with Eq. (F25), this longitudinal correction is given by the transverse correction with 	 = 0 and therefore leads
directly to Eq. (27).

APPENDIX G: SPIN RESPONSE FUNCTIONS FOR THE XXZ ANTIFERROMAGNETIC SPIN CHAIN

In this Appendix, we provide a derivation of the spin response functions for the XXZ spin chain using Luttinger liquid theory
and bosonization. The reader may also consult, e.g., Ref. [79], for a similar derivation of these functions for a general spin-S
spin chains. We begin with Eq. (41) in the main text and first in the absence of the magnetic field, i.e., b0 = 0. The spinons
are then in a half-filled state with Fermi points at ±kF = ±π/2a, where a is the lattice constant of the spin chain, and the
interactions are responsible for creating particle-hole excitations about this half-filled state. For |ζ | � 1, only those states close
to the Fermi points are important, and we may linearize the dispersion about k = ±kF and split the fermion operator into left-
and right-moving fields. The continuum fermion fields can then be written as

ψ (x j ) = ψ j√
a

= R(x j )e
ikF x j + L(x j )e

−ikF x j , (G1)

where the two continuum chiral fields obey

R(x) = 1√
L

∑
k

Rkeikx , L(x) = 1√
L

∑
k

Lkeikx , (G2)

and {Rk, Rk′ } = δkk′ and {Lk, Lk′ } = δkk′ . The normal-ordered density operators together with their associated phonon fields are
then defined by

ρL(x) ≡ : L†(x)L(x) : = ∂xφL(x)

π
, ρR(x) ≡ : R†(x)R(x) : = ∂xφR(x)

π
, (G3)

and if we also define φ(x) ≡ φL(x) + φR(x), the total fermion density at any point x can be expressed as

ρ(x) = ρL(x) + ρR(x) = ∂xφ(x)

π
. (G4)

The chiral boson fields are then related to the continuum chiral fermion fields via

R(x) = ηR√
2πα

e2iφR (x) , L(x) = ηL√
2πα

e−2iφL (x) , (G5)
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where ηR,L are Majorana fermion variables obeying {ην, ην ′ } = 2δνν ′ , and α is a short-length UV cutoff. From Eqs. (42), (G3),
and (G5), the original spin density operators can now be expressed in terms of the boson fields as

Sz = ∂xφ(x)

π
+ ηRηL

2πα
e−2ikF xe−2iφ(x) + ηLηR

2πα
e2ikF xe2iφ(x) , (G6)

S− = e−iθ (x)

2
√

2πα
[ηRe2iφ(x) + (ηR + ηL )e2ikF x + ηLe−2iφ(x)] , (G7)

S+ = eiθ (x)

2
√

2πα
[ηLe2iφ(x) + (ηR + ηL )e−2ikF x + ηRe−2iφ(x)] , (G8)

where θ (x) = φL(x) − φR(x).
The Fourier components of the left and right density operators are given by

ρR(k) = 1√
L

∑
k′

R†
k′Rk′+k , ρL(k) = 1√

L

∑
k′

L†
k′Lk′+k , (G9)

and obey the following commutation relation:

[ρR,L(−k), ρR,L (k′)] = ∓ k

2π
δkk′ . (G10)

We may then represent the boson fields in terms of Fourier components of the left and right density operators,

φL(x) = π√
L

∑
k>0

e−αk/2

ik
[eikxρL(k) − e−ikxρL(−k)], φR(x) = π√

L

∑
k>0

e−αk/2

ik
[eikxρR(k) − e−ikxρR(−k)] . (G11)

If we then interpret φ(x) as the canonical position, the conjugate momentum is given by

�(x) = h̄
∂xθ (x)

π
, (G12)

and one may readily check that [φ(x),�(x′)] = ih̄δ(x − x′).
In terms of these variables, Eq. (41) can be written in terms of the continuum boson fields as

H = u

2

∫
dx

{
πK

h̄
�2(x) + h̄

πK
[∂xφ(x)]2

}
+ 2Jζa

(2πα)2

∫
dx cos [4φ(x)] ≡ H0 + Hu , (G13)

where the speed of sound and the Luttinger parameter are given by

u = Ja

h̄

(
1 + 4ζ

π

)1/2

, K =
(

1 + 4ζ

π

)−1/2

. (G14)

The second term in Eq. (G13) is the so-called umklapp term, which describes the scattering of two fermions from one Fermi
point (say −kF ) to the other (i.e., +kF ) accompanied by a momentum transfer of 4kF . For zero magnetic field, the umklapp term
flows to zero (i.e., it is RG irrelevant) in the critical “XY” regime |ζ | < 1. The low-energy XXZ spin chain is then described by
the Gaussian Hamiltonian H0, and the exact expressions for u and K over the entire |ζ | < 1 region can be extracted from the
Bethe-ansatz solution [60]

K = π

2(π − cos−1 ζ )
, u = πJa

√
1 − ζ 2

2h̄ cos−1 ζ
. (G15)

At a finite magnetic field, the RG flow terminates at b0. However, since the umklapp term is irrelevant for |ζ | < 1, one may still
expect the umklapp term to flow to a finite but very small value as long as b0 is much smaller than the cutoff scale. Therefore we
ignore Hu altogether in the rest of the discussion and simply take

H ≈ H0 = h̄u

2π

∫
dx

{
K[∂xθ (x)]2 + 1

K
[∂xφ(x)]2

}
. (G16)

Let us now include the magnetic field. The effect of the magnetic field is to introduce a chemical potential term to the
Hamiltonian, i.e.,

HZ = −b0

∫
dx Sz(x) = −b0

π

∫
dx ∂xφ , (G17)
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and therefore to dope the system away from half-filling. In the critical regime (where the umklapp term is irrelevant), changing
the chemical potential directly changes the magnetization,

M = 〈Sz〉 =
(

K

π h̄u

)
b0 , (G18)

where the coefficient K/π h̄u defines the compressibility of the interacting fermion gas. The magnetization M also implies an
increase in the densities of the left and the right chiral spinons by M/2, which must now be incorporated in the boson fields, cf.
Eq. (G11),

φL(x) = π√
L

∑
k>0

e−αk/2

ik
[eikxρL(k) − e−ikxρL(−k)] + M

πx

2
, φR(x) = π√

L

∑
k>0

e−αk/2

ik
[eikxρR(k) − e−ikxρR(−k)] + M

πx

2
,

(G19)
where now the last terms describe the uniform density increase of the two species. The total Hamiltonian of the spin chain and
its Zeeman coupling to the magnetic field can be written as

H + HZ = h̄u

2π

∫
dx

{
K[∂xθ (x)]2 + 1

K
[∂xφ̄(x)]2

}
− L

2

K

π h̄u
b2

0 , (G20)

where the boson field, describing the fluctuations relative to the shifted density, is given by φ̄ = φ − πMx.
We now rewrite the spin operators Eqs. (G6)–(G8) in terms of the new boson field φ̄. Since our interest is in the noise, it is

only necessary to retain the fluctuating part of the spin operators. Furthermore, Friedel terms proportional e±2ikF x only generate
a fast-oscillating response which we ignore in order to focus on the long-wavelength response. We then write

Sz ≈ ∂xφ̄(x)

π
, S± ≈ eiθ (x)

2
√

2πα
[ηLe±2iφ̄(x)e±2iπMx + ηRe∓2iφ̄(x)e∓2iπMx] . (G21)

Combining Eq. (G21) with Eq. (G20), we may now compute the zero-temperature “greater” spin correlation functions. The
longitudinal component is given by

iχ>
zz (x, t ) = 〈Sz(x, t )Sz(0, 0)〉 = K

4π2

[(
1

α − ix + iut

)2

+
(

1

α + ix + iut

)2
]

, (G22)

and the transverse components read

iχ>
±∓(x, t ) = 〈S±(x, t )S∓(0, 0)〉 = 1

8πα

[
e∓2iπMx

(
α

α − ix + iut

)K+1+1/4K(
α

α + ix + iut

)K−1+1/4K

+ e±2iπMx

(
α

α − ix + iut

)K−1+1/4K(
α

α + ix + iut

)K+1+1/4K]
. (G23)

The bosonization procedure gives the correct (anomalous) exponents for the long-distance, long-time decay of the cor-
relation functions. However, Eq. (G23) has a nonuniversal amplitude, i.e., prefactor that depends on the short-distance
cutoff α, which cannot be determined by bosonization. Therefore we introduce a phenomenological coefficient C̃ for now
and write

iχ>
±∓(x, t ) = 2C̃

[
e∓2iπMx

(
1

α − ix + iut

)K+1+1/4K( 1

α + ix + iut

)K−1+1/4K

+e±2iπMx

(
1

α − ix + iut

)K−1+1/4K( 1

α + ix + iut

)K+1+1/4K
]
. (G24)

We must now Fourier transform the above susceptibilities. In doing so, a useful integral to define is∫
dt
∫

dxe−iqxei�t e±i(�B/u)x

(
1

α − ix + iut

)μ( 1

α + ix + iut

)ν

= 2π2

u

�(uq ∓ �B + �)�(� − uq ± �B)

�(μ)�(ν)

(
uq ∓ �B + �

2u

)μ−1(
� − uq ± �B

2u

)ν−1

. (G25)

Then the Fourier transform of the longitudinal spin correlation function becomes

iχ>
zz (q,�) = �(�)δ(� − uq)

K�

u
+ �(�)δ(� + uq)

K�

u
. (G26)
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Similarly, the Fourier transform of the transverse spin correlation function becomes

iχ>
±∓(q,�) = 4π2C

u

(a/u)2K+1/2K−2

�(K + 1 + 1/4K )�(K − 1 + 1/4K )

× [�(uq ± �B + �)�(� − uq ∓ �B)(uq ± �B + �)K+1/4K (� − uq ∓ �B)K+1/4K−2

+ �(� − uq ± �B)�(� + uq ∓ �B)(� − uq ± �B)K+1/4K (� + uq ∓ �B)K+1/4K−2], (G27)

where C = C̃/(2a)2K+1/2K−2 is a dimensionless constant, and �B = 2Kb0/h̄. Noting that

Im{χR(q,�)} = − i

2
χ>(q,�) , (G28)

for � > 0 and at zero temperature, we obtain the results quoted in the main text.

APPENDIX H: AFFLECK-HALDANE FERMIONIZATION
OF THE HEISENBERG SPIN CHAIN

In this Appendix, we provide a qualitative justification for
the fermion representation of the Heisenberg spin chain intro-
duced in Sec. IV B. A more detailed version of the derivation
can be found in, e.g., Refs. [11,62].

To obtain the low-energy effective theory of the Heisen-
berg spin chain, we begin with the half-filled 1D Hubbard
model which is more general than the Heisenberg model. With
nearest-neighbor hopping amplitude t and onsite Coulomb
repulsion U > 0, the model is given by

HH =
∑
〈nm〉

∑
σ

(tψ†
nσψmσ + H.c.)

+ U
∑

n

ψ
†
n↑ψn↑ψ

†
n↓ψn↓ ≡ Ht + HU , (H1)

where n, m label the sites of the 1D lattice with lattice constant
a.

At large U , HH is known to be equivalent to the antiferro-
magnetic Heisenberg spin chain,

H eff
H = J

∑
n

Sn · Sn+1 , (H2)

where J = 4t2/U > 0. In Ref. [62], Affleck and Haldane
postulate that the equivalence between the two systems—
at least as far as the relevant low-energy excitations are
concerned—holds even when U is decreased down to the
weakly interacting regime, U � |t |. This is plausible because
Eq. (H1) is known to possess a Mott-Hubbard charge gap
	c for any positive U . Therefore, as long as one is inter-
ested in energy scales below 	c, only spin excitations remain,
and these excitations should describe the universal dynamical
properties of the Heisenberg spin chain (H2) in the continuum
limit.

To make the above statement more concrete, let us be-
gin in the weakly interacting limit U � |t | and linearize the
free-particle spectrum near the two Fermi points, i.e., ±kF =
±π/2a. If we decompose the electron field into right- and
left-moving chiral components,

ψnσ → √
a[ψRσ einπ/2 + ψLσ e−inπ/2] , (H3)

the hopping Hamiltonian Ht can be reexpressed as Eq. (53),
with the group velocity of the fermions given by u. The con-
tinuum free fermion theory (53) has chiral U(1) and SU(2)

symmetries: the charge and spin of the right- and left-moving
fermions are separately conserved. The conserved currents
corresponding to these symmetries are then given by

Jc
L,R =

∑
σ

: ψ
†
L,Rσ ψL,Rσ : , (H4)

Js,α
L,R = 1

2

∑
σσ ′

ψ
†
L,Rσ σ α

σσ ′ψL,Rσ ′ , (H5)

where the double dots denote normal ordering and α = x, y, z
label the spin components: Jc

L,R and Js,α
L,R, respectively, corre-

spond to the local charge and α-component spin densities of
the left- and right-chiral fermions.

Witten showed that the free fermion theory (53) can be
written equivalently as H0 = HU(1)

0 + HSU(2)
0 , where

HU(1)
0 = uc

2

∫
dx
[
�2

c (x) + (∂xφc(x))2] , (H6)

and HSU(2)
0 is the SU(2)-symmetric level k = 1 critical

Wess-Zumino-Witten (WZW) model [80]. The bosonized
Hamiltonian for the charge sector (H6) introduces the identi-
fication Jc

R + Jc
L = ∂xφc(x)/

√
π and Jc

R − Jc
L = −�c(x)/

√
π ,

where �c(x) is the momentum conjugate to the field
φc(x), and uc is the speed of charge density-wave
propagation.

Affleck and Haldane then add continuum interaction op-
erators to H0 that are compatible with the symmetries of the
lattice system [62]. Three such terms emerge, and they all pre-
serve the important property of charge-spin separation. One
term leads to the renormalization of the charge propagation
speed uc, while the second, umklapp term transforms HU(1)

0
into a quantum sine-Gordon model. The umklapp term is
relevant at half-filling, so it drives the U(1) charge sector to
a massive phase, with the single-soliton mass mc being the
Mott-Hubbard commensurability gap.

The one remaining term adds to the SU(2) WZW model for
the spin sector: this term is the backscattering term Eq. (55)
and is marginally irrelevant. Therefore the low-energy prop-
erties of the antiferromagnetic Heisenberg spin chain (H2)
are described essentially by the level k = 1 WZW model
HSU(2)

0 , and Eq. (55) enters this theory as the marginally ir-
relevant operator. The refermionization of the WZW model
back to the spin-1/2 fermion basis then leads directly to
Eq. (53), where ψL,Rσ (x) now represent charge-neutral spin-
1/2 fermion fields—spinons—since the U(1) charge sector
has now been gapped out during the renormalization process.
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This last statement points to a certain similarity between the
Zhou-Ng picture of the 2D QSL and the Affleck-Haldane
picture of the Heisenberg spin chain in that the parent models
in both pictures are written in terms of the usual electrons
with both charge and spin. However, in approaching the QSL

state—in 2D, this is achieved by 1 + F s
1 → 0, and in 1D, by

descending down from the lattice scale to the long-wavelength
limit—these electronic excitations transmute into charge-
less, spin-1/2 spinons through the process of charge-spin
separation.
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