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Arrhenius temperature dependence of the crystallization time of deeply supercooled liquids
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Usually, supercooled liquids and glasses are thermodynamically unstable against crystallization. Classical
nucleation theory (CNT) has been used to describe the crystallization dynamics of supercooled liquids. However,
recent studies on overcompressed hard spheres show that their crystallization dynamics are intermittent and
mediated by avalanchelike rearrangements of particles, which largely differ from the CNT. These observations
suggest that the crystallization times of deeply supercooled liquids or glasses cannot be described by the CNT.
However, this point has not yet been studied in detail and this situation leads to a lack of understanding of
glass-forming ability. In this paper, we use molecular dynamics simulations to study the crystallization dynamics
of soft spheres just after an instantaneous quench. We show that although the equilibrium relaxation time
increases in a super-Arrhenius manner with decreasing temperature, the crystallization time shows an Arrhenius
temperature dependence at very low temperatures. This is contrary to the conventional formula based on the
CNT. Furthermore, the estimated energy barrier for the crystallization is surprisingly small compared to that for
the equilibrium dynamics. By comparing the crystallization and aging dynamics quantitatively, we show that
a coupling between aging and crystallization is the key for understanding the rapid crystallization of deeply
supercooled liquids or glasses.

DOI: 10.1103/PhysRevResearch.6.013040

I. INTRODUCTION

Classical nucleation theory (CNT) effectively describes
first-order phase transition dynamics. This theory predicts that
nucleation first takes place, where sufficiently large droplets
of the ordered phase are created in the sea of the disordered
phase and then the droplets grow steadily [1–3]. The nucle-
ation is driven by thermal fluctuations and the nucleation time
τN, the inverse of the nucleation rate, is given by

τN ∼ τt exp (�G/kBT ), (1)

where kB is Boltzmann’s constant and T is the temperature.
The constant τt is the characteristic time scale of the transport
process and �G is the free-energy barrier to form the critical
droplet, which is given by the maximum value of the droplet
formation energy as a function of the droplet size. In its
simplest version, the droplet formation energy is given by the
combination of the free-energy gain due to the low-energy
ordered phase and the surface tension between two phases.
The CNT has been successfully applied to a wide variety of
systems undergoing first-order phase transitions. In the Ising
model, for example, the direct numerical estimate of τN was
shown to accurately be described by Eq. (1) [4–6].

For the crystallization of slightly supercooled liquids, the
formula Eq. (1) is known to work well [7,8], although the first-
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principle theoretical prediction of τt and �G is difficult and
still under debate [9,10]. As liquids are further supercooled,
the glass transition is approached, which results in a dramatic
slowing of the particle transport process. To effectively take
this into account in the CNT, τt is conventionally approxi-
mated by the equilibrium relaxation time τα [11,12], leading
to

τN ∼ τα exp (�G/kBT ). (2)

Notably, this formula predicts that τN is a nonmonotonic
function of temperature. The nucleation time τN diverges as
the temperature increases since the first-order transition is
approached and the free-energy gain diminishes so that �G
diverges. On the other hand, τN drastically increases as the
temperature decreases since the glass transition is approached
and τα drastically increases. As a result, τN has a minimum
value at a certain temperature. Reflecting this, the CNT pre-
dicts a similar nonmonotonic temperature dependence for the
crystallization time τcry, which is the time required for crys-
talline regions to occupy a major part of the sample. Indeed,
several experimental [13–15] and numerical [16,17] studies
confirmed that the nucleation and crystallization time has a
minimum value at a certain temperature.

Despite these successes of the CNT, it has recently been
reported that the crystallization of deeply supercooled liq-
uids and glasses is qualitatively different from that in the
CNT. In highly overcompressed monodisperse hard spheres,
crystallization proceeds before the transport of particles be-
comes diffusive [18]. The crystallization is caused by small
displacements of particles, which are even smaller than the
particles’ diameter [19]. Moreover, avalanchelike crystalliza-
tion has been reported for well-annealed “mature” glasses
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in hard spheres [20] and pseudo-hard-spheres [21,22], in
which intermittent stochastic rearrangements of particles
cause crystallization. Some similarities between avalanche-
like crystallization dynamics and aging dynamics have been
reported [23]. Related to these works, a lattice model which
combines the dynamic facilitation and the crystallization was
introduced and studied [24]. An experiment of a colloidal
system also shows observations consistent with these results
[25]. These phenomena do not appear in the CNT, which
assumes equilibrium conditions and a continuum picture.

These peculiar crystallization dynamics are interesting, but
much less work has been done on the temperature dependence
of the crystallization time. This situation leads to a lack of
understanding of glass-forming ability, an important property
that characterizes supercooled liquids [26,27]. Previously, the
temperature dependence of the crystallization time at very low
temperature was studied using the lattice model [24], which
shows the Arrhenius temperature dependence. However, this
point has not been studied in detail by numerical simulations
of particle models yet. This is partly because the previous
studies focused mainly on hard spheres, where the tempera-
ture does not play any role.

In this paper, we perform molecular dynamics (MD) sim-
ulations of soft spheres. We mainly focus on the dynamics
of crystallization of a monodisperse system after an instanta-
neous quench from a high temperature to low temperatures.
This system has a low glass-forming ability and corresponds
to simple molecular glasses made by an extremely rapid tem-
perature quench [28].

We show that, while the equilibrium relaxation time de-
pends on the temperature in a super-Arrhenius manner,
the crystallization time shows an Arrhenius-like temperature
dependence at very low temperatures. Moreover, the corre-
sponding energy barrier is much smaller than that for the
equilibrium dynamics. This clearly contradicts Eq. (2). We
show that the crystallization process at low temperatures con-
sists of an early process, in which the system falls into the
nearest inherent structure, and a late process, in which tran-
sitions between inherent structures occur. The crystallization
time is dominated by the late process, which is widely dif-
ferent from the continuum picture in the CNT. Furthermore,
we show that although this late process has some similarities
with the aging dynamics, the crystallization time cannot be
directly explained by the characteristic time scales of the
aging dynamics. Instead, a coupling between the aging and
crystallization dynamics is the key for understanding the rapid
crystallization.

II. METHODS

We perform MD simulations of monodisperse and poly-
disperse soft spheres. The interaction potential is an inverse-
power-law (IPL) potential given by

v(ri j ) = ε

[(
σi j

ri j

)12

−
(

σi j

rc,i j

)12

+ A

(
ri j − rc,i j

σi j

)
+ B

(
ri j − rc,i j

σi j

)2
]
, (3)

where ε is an energy scale; ri j = |ri − r j |, with ri being the
position of particle i; and σi j ≡ (σi + σ j )/2, where σi rep-
resents the effective diameter of particle i. The coefficients
A and B force the continuity of the first and second deriva-
tives at the cutoff length rc,i j ≡ 1.5σi j . We simulate not only
the monodisperse system but also the polydisperse system
in order to discuss the equilibrium relaxation of liquids. For
polydispersity, we introduce a top-hat distribution of parti-
cle size with the average particle size σ̄ and the width �,
in which a nontrivial particle arrest is known not to occur
[29]. We consider the systems with � = 0.00, 0.12, 0.24,

and 0.36 in this work, where � = 0.00 corresponds to the
monodisperse system. To approximate a bulk system, we use
the periodic boundary condition in a cubic box (volume V ).
Mass, length, time, and temperature are measured in units of
m, σ̄ , σ̄

√
m/ε, and ε/kB, respectively, where m is the particle

mass and kB is the Boltzmann constant. Throughout this paper,
the temperature is controlled by the Nosé-Hoover thermostat,
where the thermostat mass is tuned so that unphysical tem-
perature oscillation decays sufficiently rapidly even after the
instantaneous quench. The time step of the MD simulation is
0.01. The number of particles N is 16 384 unless otherwise
noted. The packing fraction φ = (

∑
i πσ 3

i /6)/V is fixed to
be π/6 for both monodisperse and polydisperse systems. At
this density, the freezing temperature is TFreezing = 0.59 for the
monodisperse system [30].

To measure the degree of crystallization of the samples, we
use the method introduced in Refs. [18,31]. First, each particle
is assigned a vectorial bond-order parameter d6 [32]. Pairs of
neighbors are then identified by using a cutoff distance 1.4σi j ,
and a bond of a pair is deemed “solidlike” if the scalar product
of their d6 vectors exceeds 0.7. A particle is labeled solidlike
if it has at least six solid connections. Finally, we calculate the
crystallinity X (t ) of a sample as the proportion of solidlike
particles at a given time t .

III. RESULTS AND DISCUSSION

A. Equilibrium dynamics

To discuss the crystallization dynamics on firm ground,
we first clarify the equilibrium dynamics of the model.
We simulate not only the monodisperse system but also the
polydisperse system because we want to discuss only the
equilibrium relaxation of liquids here. We consider that
the dynamics of the polydisperse system is almost the same
as that of the monodisperse system except for crystallization.
We equilibrate the system at a target temperature T and poly-
dispersity � and then perform the production runs starting
from the equilibrium configurations. We perform 20 indepen-
dent runs at each state point. The overlap function Fo(t ) =
〈∑n 	(0.3 − |rn(t ) − rn(0)|)/N〉 is then calculated from the
time series of the particle configurations, where the bracket
〈〉 represents the average over 20 samples. This calculation is
performed with N = 2048.

Figure 1(a) shows the overlap functions for � = 0.36.
Clearly, the overlap function decays rapidly at higher T
and the relaxation becomes much slower with decreasing T .
It shows a two-step relaxation, which is a hallmark of the
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FIG. 1. (a) Overlap functions with � = 0.36. The
temperatures of the correlation functions correspond to
T = 1.00, 0.60, 0.40, 0.30, 0.25, 0.22, 0.20, and 0.19 from
left to right. (b) Relaxation time of equilibrium dynamics of
the liquids with � = 0.00, 0.12, 0.24, and 0.36. The inverse
temperature β ≡ 1/T is used on the horizontal axis.

dynamics of supercooled liquid. We measure the equilibrium
relaxation time τα defined as Fo(t = τα ) = 0.4 for various
state points (T , �). For some (T, �) conditions, we find that
the system undergoes crystallization during the equilibration
or production runs. Since we focus solely on the equilibrium
dynamics here, we do not calculate τα if 〈X (t = τα )〉 � 0.5.
We note that the equilibration time is always 40 times larger
than the relaxation time τα .

Figure 1(b) shows the temperature dependence of the re-
laxation time τα for various �. The relaxation time τα clearly
shows a super-Arrhenius temperature dependence, although
the relaxation time cannot be calculated with small � and
low T because of crystallization. Importantly, the relaxation
times for various � collapse onto almost the same curve,
meaning that τα does not strongly depend on �. In previous
studies, it has been reported that the fragility depends on the
polydispersity; the more polydisperse the system, the stronger
the dynamics [33]. We can indeed find such a tendency, albeit
slightly, when we closely compare � = 0.24 and 0.36. How-
ever, this effect is minor, as we focus on the small � region,
and we can regard the relaxation time as almost independent
from �.

FIG. 2. (a) Time series of crystallinity X (t ). The blue shadow
represents the average XIS of crystallinity of the inherent structures of
the equilibrium liquid configurations with T = 3.00. (b), (c) Survival
probability P(t ), which is the probability of uncrystallized samples.

B. Crystallization time

We now focus on the crystallization dynamics of the
monodisperse system. We first prepare equilibrium liquid con-
figurations at T = 3 and then perform MD simulations at the
target temperatures starting from these configurations. This
corresponds to an instantaneous quench from T = 3 to the
target temperatures. We show the results with N = 16 384,
which is free from a finite size effect [34]. Figure 2(a) shows
the time evolution of the crystallinity X (t ) of typical runs.
At T = 0.34, the crystallinity X (t ) fluctuates around X = 0
for a long time, and then it suddenly starts to increase at
very large t . This time evolution is qualitatively consistent
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with the dynamics predicted by the CNT, which consist of
rare nucleation and steady growth of the nucleus. On the
other hand, X (t ) for T = 0.20, 0.06, 0.02 is very different.
The crystallinity X (t ) shows an increase up to 10% in the
short-time region t � 102, which we call the early process of
the crystallization. Interestingly, X (t ) for various temperatures
coincides in this time region, meaning that the early process
does not strongly depend on the temperature if the temperature
is sufficiently low. At larger time t � 102, gradual and slow
increases are observed, which we call the late process of the
crystallization. Unlike the early process, the late process be-
comes slower and slower with decreasing temperature. At the
lowest temperature, X (t ) fluctuates around 10% and increases
intermittently. Then, it finally grows at very large t . These
results mean that the intermittent crystallization takes place
not only in overcompressed hard spheres [20] but also in soft
spheres at low temperature. These crystallization dynamics
clearly differ from that described by the CNT.

To discuss the statistical law that governs the crystalliza-
tion, we calculate the survival probability [8]. We repeat the
simulations described above for 100 independent samples and
calculate the crystallinity X (t ) for each of them. We label the
samples as “crystallized” at a given time t if the crystallinity
X (t ) becomes larger than 0.5 [35]. Then, we calculate the
survival probability P(t ), which is defined as the proportion of
noncrystallized samples at time t . Figures 2(b) and 2(c) show
the survival probability P(t ) at each temperature. Figure 2(c)
shows that P(t ) does not decrease from 1 in a certain time,
called a lag time, and then decays exponentially at larger t .
This means that crystallization of a given sample can be seen
as a random event with a constant rate, although there is a
minimum latency time. Note that similar behavior of P(t ) was
previously reported for the liquid-gas condensation dynamics
in the Lennard-Jones system, where the CNT works well [8].
In this case, the lag time was identified as the time required
for the growth of the nucleus, and the exponential decay time
was identified as the nucleation time.

We now extract the characteristic time scales of the crystal-
lization. The simplest definition of the crystallization time is
the time at which the survival probability reaches some thresh-
old value. In practice, we define τcry as P(t = τcry) = 0.4, the
time at which 60% of samples become crystallized. Addition-
ally, we can define the lag time τlag and the exponential decay
time τexp by fitting P(t ) to exp(−(t − τlag)/τexp) [36]. These
three time scales are plotted in Fig. 3(a). At approximately the
freezing temperature, the exponential decay time τexp is much
larger than the lag time τlag and then τcry ≈ τexp. This means
that rare nucleation is the rate-controlling process and growth
is much quicker. With decreasing temperature, τexp drops
more sharply than τlag and then τlag dominates τcry. In this
temperature range, nucleation becomes fast and comparable
to the microscopic time scale, which may be called “spin-
odal nucleation” [31]. Finally, at the lowest temperatures, the
exponential decay time τexp increases rapidly, while the lag
time τlag does not, and as a result, τcry is again dominated
by τexp. Therefore, our results establish that the exponential
decay time τexp is the unique time scale of crystallization in the
low-temperature regime where the intermittent crystallization
takes place, and this time scale can be well captured by τcry.
The irrelevance of the lag time suggests that any deterministic

FIG. 3. (a) Temperature dependence of τcry, τexp, and τlag.
(b) Temperature dependence of the crystallization time and equi-
librium relaxation time. The inverse temperature β ≡ 1/T is used
on the horizontal axis. The time scale τcry,late represents the crys-
tallization time when the initial configurations were the ISs of the
liquids with T = 3.0. The three black lines represent the slope of
exp(�E/T ).

process, such as the crystal growth, is absent or at least is not
a rate-controlling process in this temperature regime.

Finally, we quantitatively discuss the temperature de-
pendence of the crystallization time. For comparison, the
equilibrium relaxation time of polydisperse system � = 0.36
is also plotted in Fig. 3(b). From the viewpoint of Eq. (2),
τcry of the monodisperse system should be compared with τα

of the monodisperse system, but this cannot be done because
τα cannot be measured for the monodisperse system at low
temperatures due to rapid crystallization. However as shown
in Sec. III A, τα does not strongly depend on the polydis-
persity in our model, so τα of the monodisperse system can
be well approximated by those of polydisperse systems [18].
The crystallization time τcry diverges not only at the freez-
ing point Tfreezing = 0.59 but also at lower temperatures and
thus has a minimum at a finite temperature [see Fig. 3(b)].
This is qualitatively consistent with the conventional crystal-
lization theory. However, at sufficiently low temperature, the
crystallization time becomes much smaller than the equilib-
rium relaxation time, τα � τcry. Importantly, the temperature
dependence of the crystallization time is Arrhenius-like,
while that of the equilibrium relaxation time increases in a
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super-Arrhenius manner. This is contrary to Eq. (2). By fitting
the crystallization time and the equilibrium relaxation time
with τ ∼ exp(�E/T ), we estimate the characteristic energy
barrier �E for these processes. The energy barrier �E for the
crystallization is 0.16 while �E for the equilibrium relaxation
of the high-temperature and low-temperature liquids are 1.0
and 6.5, respectively [see Fig. 3(b)]. The energy barrier
�E for the crystallization is surprisingly small, which is
even smaller than that for the equilibrium dynamics of
high-temperature liquids. This is a part of our main claim.
Therefore, we conclude that crystallization in deeply su-
percooled liquids proceeds by crossing energy barriers that
are much smaller than those experienced by the equilibrium
liquids.

C. Early process and late process

The early and late processes, which we have divided
the crystallization dynamics into above, can be qualitatively
distinguished from the viewpoint of the potential energy land-
scape. We apply the optimization method FIRE [37] to the
equilibrium configurations at T = 3 and obtain their inherent
structures (ISs). For 20 independent samples, we measure the
crystallinity X of these ISs and define their average as XIS.
While the crystallinity X of the original equilibrium liquid
configurations is almost zero, XIS is approximately 8%. This
value is almost equal to the crystallinity reached by the early
process [see Fig. 2(a)]. This suggests that the early process
corresponds to the dynamics in which the system falls into the
nearest IS. This is consistent with the observation that the dy-
namics in the early process hardly depend on the temperature.

The observation above also suggests that the late process
of crystallization consists of transitions between the ISs. To
directly access these dynamics, we perform simulations that
mimic the late process; namely, we perform MD simula-
tions at the target temperatures starting from the ISs. Here,
the initial momenta are generated following the Maxwellian
distribution at the target temperatures. We perform 20 inde-
pendent runs, monitor the time evolution of X (t ) and analyze
the survival probabilities as described in the previous section.
By this, we obtain the crystallization time for these dynamics,
which we call τcry,late. As shown in Fig. 3(b), this crystalliza-
tion time τcry,late is equal to the original crystallization time
τcry. Therefore, we conclude that the early process (falling into
ISs) is not relevant for the crystallization time and that the late
process (transitions between ISs) dominates the crystallization
time in deeply supercooled liquids.

D. Aging and crystallization

The inequality τα � τcry implies that the deeply super-
cooled liquid crystallizes before equilibration. This naturally
explains the reason why Eq. (2) does not work because it
assumes that the transport of particles is controlled by the
equilibrium dynamics. This observation suggests that the
crystallization time would be better compared with the relax-
ation time of the system just after an instantaneous quench,
which is the aging dynamics. To discuss this possibility, we
perform the following analysis. For monodisperse � = 0.00
and polydisperse � = 0.36 systems, we first prepare the equi-

FIG. 4. (a) Overlap functions of nonequilibrium dynamics with
T = 0.080. The black line shows the fitting curve of Fo(t ) of a
monodisperse system with exp(−t/τini,mono). (b) Relaxation times
of nonequilibrium dynamics and crystallization time. The inverse
temperature β ≡ 1/T is used on the horizontal axis. The two black
lines represent the slope of exp(�E/T ).

librium configurations at T = 3, apply FIRE to obtain the
corresponding ISs, and perform MD simulations at target
temperatures starting from these ISs as described in the pre-
vious section. We then measure the overlap function Fo(t ) to
monitor the relaxation dynamics. This protocol is similar to
the one used in the studies of the aging dynamics for zero
waiting time, although crystallization is expected to take place
during the simulation runs in the monodisperse case. Note that
we perform simulations for 20 independent samples and the
results are averaged over them.

Figure 4(a) shows the overlap functions Fo(t ) of the
monodisperse and polydisperse systems with T = 0.08. We
first focus on the polydisperse case where crystallization does
not occur. The correlation function has two properties that
are not observed for the equilibrium dynamics. (i) The short-
time relaxation t � 102. The overlap function Fo(t ) starts to
decrease at approximately t = 10. This short-time relaxation
is not due to the vibrations of particles but the rearrangements
of particles; we checked that the amplitude of the vibrations
is too small to affect the overlap function since the target
temperature is very low. To extract the time scale τini,poly

characterizing these earliest rearrangements, we fit Fo(t ) with
exp(−t/τini,poly ) in the short-time region. It is clear that the
fitting works well in the region Fo(t ) � 0.8, namely for the
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rearrangement of approximately the first 20% of particles.
(ii) The long-time relaxation t � 102. The overlap function
Fo(t ) becomes widely separated from the exponential function
and has a tail in the long-time regime. This means that the
relaxation of the majority of particles is qualitatively different
from that of the first 20% of particles and the former cannot
be seen as the repetition of the latter. Note that a similar
long-time tail in the aging dynamics was reported in Ref. [38].
We introduce the relaxation time in this time regime as
Fo(t = τaging,poly ) = 0.4.

The two relaxation times obtained for the polydisperse sys-
tem, τini,poly and τaging,poly, are plotted in Fig. 4(b). Unlike the
equilibrium relaxation time, the relaxation time in the long-
time regime τaging,poly shows an Arrhenius-like temperature
dependence at low temperatures. However, they are still larger
than the crystallization time. An Arrhenius fit of this relax-
ation time yields the energy barrier �E = 0.8, which is far
from that for crystallization. On the other hand, the relaxation
time in the short-time regime τini,poly is much smaller than the
crystallization time. We find that its temperature dependence
is almost linear in 1/T rather than Arrhenius-like, suggesting
that the corresponding energy barrier is vanishingly small.
Therefore, we conclude that the relaxation times in the aging
dynamics do not give a direct explanation of the crystallization
time; namely, one cannot improve Eq. (2) by replacing τα with
τini,poly or τaging,poly.

Finally, we focus on the monodisperse case. The overlap
function is shown in Fig. 4(a). We define the relaxation time
in the short-time τini,mono and long-time regimes τaging,mono

in the same way as the polydisperse case and plot them in
Fig. 4(b) [39]. Since crystallization occurs in the dynamics
of the monodisperse system, this time scale simply implies
the time scale of particle rearrangements rather than that of
aging, although we use the symbol τaging,mono for simplic-
ity. For the short-time decay, the overlap function of the
monodisperse system is almost the same as that in the polydis-
perse system. Also, the relaxation times τini,mono and τini,poly

coincide at all the temperatures studied. Therefore, crystal-
lization does not affect the first rearrangements of particles
in glasses. However, this relaxation time is widely separated
from the crystallization time. On the other hand, in the long-
time regime, the overlap function of the monodisperse system
decays much faster than that in the polydisperse system.
This means that the crystallization itself accelerates the re-
laxation dynamics. Moreover, the relaxation time τaging,mono

has a similar temperature dependence as the crystallization
time. Indeed, a fitting of τaging,mono with exp(�E/T ) yields
�E = 0.16, which coincides with that for τcry. Therefore, the
crystallization itself accelerates the relaxation dynamics, and
the resulting relaxation time gives the crystallization time.
This suggests that a coupling between the relaxation and
crystallization dynamics is the key for understanding the rapid
crystallization of glasses. We also find that the crystallinity
X (t ) begins to increase on this time scale τaging,mono, which is
consistent with the discussion above.

We additionally mention that the equivalence between
τaging,mono and τcry is not trivial because the former is mea-
sured from the overlap function, which does not monitor
the crystallinity or other orders. It monitors only the small
displacement (up to 0.3) of particles. This observation is con-

sistent with Ref. [18], where the crystallization due to small
displacements was reported.

IV. CONCLUSION

In this paper, we used MD simulations to study the dy-
namics of monodisperse and polydisperse soft spheres, with
a particular focus on the crystallization dynamics just after
the instantaneous quenching from a high temperature to low
temperatures. The equilibrium relaxation time increases in a
super-Arrhenius manner with decreasing temperature. Despite
this, the crystallization time shows an Arrhenius temperature
dependence at very low temperature, and as a result, the
crystallization becomes much faster than the equilibrium re-
laxation. This is contrary to the conventional expression of the
crystallization time Eq. (2) based on the CNT. Furthermore,
the estimated energy barrier for the crystallization is surpris-
ingly small compared to those for the equilibrium dynamics.

To discuss this result, we first performed an energy topo-
graphic analysis. This analysis reveals that the crystallization
process can be divided into an early process, in which the
system falls into the nearest IS, and a late process, in which
transitions between ISs occur. We show that the temperature
dependence of the crystallization time is dominated by the
late process. Second, we analyze the relaxation dynamics with
and without the crystallization process. In both cases, the
dynamics consist of short-time relaxation, in which only the
fastest particles undergo rearrangements, and the correlation
function decays exponentially, and the long-time relaxation, in
which the majority of particles undergo rearrangements, and
the correlation function shows a long-time tail. In the case of
the relaxation without crystallization, the characteristic time
scales of these dynamics are far from the crystallization time.
Instead, in the relaxation with crystallization, the rearrange-
ments are accelerated by crystallization, and the resulting
relaxation time is quantitatively equivalent to the crystalliza-
tion time. These results mean that the relaxation times in
the aging dynamics do not directly explain the rapid crystal-
lization in deeply supercooled liquids or glasses; instead, a
coupling between aging and crystallization is essential.

Previously, the crystallization of hard spheres at high den-
sity was studied, and various peculiar properties of crystalliza-
tion dynamics have been reported, including the intermittent
and avalanchelike crystallization dynamics and similarities
between crystallization and aging dynamics [18–23,31]. Our
work is partly consistent with these reports: intermittent crys-
tallization takes place not only in hard spheres but also soft
spheres. Moreover, our work reveals several new aspects of
this crystallization. Most importantly, we could discuss the
role of temperature in the crystallization dynamics and find
the Arrhenius temperature dependence of the crystallization
time with a very small energy barrier. On this point, we note
that the lattice model introduced in Ref. [24] also exhibits the
Arrhenius temperature dependence of the crystallization time
at low temperature. A quantitative comparison between the
MD simulation and this lattice model in the crystallization
dynamics would be an interesting future work. Our find-
ings would be relevant to understanding the crystallization of
atomic and molecular glasses, where the temperature is the
key control parameter. Since the model studied in this paper is
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a glass made by instantaneous quench from high temperature,
it can be seen as a model of simple molecular glasses made
by extremely fast cooling [28]. Our results suggest that the
crystallization in such systems proceeds very rapidly with an
Arrhenius temperature dependence even if they are fragile
glass formers.

In this paper, we focus solely on the instantaneous quench
of the monodisperse system. It is interesting to discuss the
intermittency of crystallization and the temperature depen-
dence of crystallization time of glasses made by different
preparation protocols and various types of glass-forming liq-
uids. Such studies would enable us to understand the role of
the maturity of glasses on the crystallization dynamics and
the glass-forming ability at very low temperatures. It is also
interesting to analyze the intermittency of the crystallization

dynamics. In the case of the yielding of sheared glasses, the
intermittency and avalanche formation have been studied in
detail [40–42], but a similar analysis seems to be lacking
for systems driven by small thermal agitation. Such studies
would provide more microscopic understandings of the crys-
tallization and aging at very low temperatures. The connection
between the crystallization of glass in particle systems and
glass in lattice models is also an interesting issue [24,43,44].

ACKNOWLEDGMENTS

We thank Koji Hukushima for useful discussions. This
work is supported by JSPS KAKENHI (Grants No.
18H05225, No. 20H00128, No. 20H01868, No. 22K03543,
and No. 23H04495).

[1] P. G. Debenedetti, Metastable Liquids (Princeton University
Press, Princeton, 1997).

[2] A. Onuki, Phase Transition Dynamics (Cambridge University
Press, 2002).

[3] K. Binder, Theory of first-order phase transitions, Rep. Prog.
Phys. 50, 783 (1987).

[4] D. Stauffer, A. Coniglio, and D. W. Heermann, Monte carlo
experiment for nucleation rate in the three-dimensional Ising
model, Phys. Rev. Lett. 49, 1299 (1982).

[5] V. A. Shneidman, K. A. Jackson, and K. M. Beatty, On the ap-
plicability of the classical nucleation theory in an Ising system,
J. Chem. Phys. 111, 6932 (1999).

[6] S. Ryu and W. Cai, Validity of classical nucleation theory for
Ising models, Phys. Rev. E 81, 030601(R) (2010).

[7] S. E. M. Lundrigan and I. Saika-Voivod, Test of classical
nucleation theory and mean first-passage time formalism on
crystallization in the Lennard-Jones liquid, J. Chem. Phys. 131,
104503 (2009).

[8] G. Chkonia, J. Wölk, R. Strey, J. Wedekind, and D. Reguera,
Evaluating nucleation rates in direct simulations, J. Chem. Phys.
130, 064505 (2009).

[9] S. Auer and D. Frenkel, Prediction of absolute crystal-
nucleation rate in hard-sphere colloids, Nature (London) 409,
1020 (2001).

[10] T. Kawasaki and H. Tanaka, Formation of a crystal nucleus from
liquid, Proc. Natl. Acad. Sci. 107, 14036 (2010).

[11] A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep.
476, 51 (2009).

[12] Although the inverse of the diffusion constant D−1 is a better ap-
proximation of τt [10,45], we omit the difference between D−1

and τα . These two quantities show slightly different temperature
dependences due to the Stokes-Einstein violation [11], but their
difference is still minor for our later discussion.

[13] A. Masuhr, T. A. Waniuk, R. Busch, and W. L. Johnson,
Time scales for viscous flow, atomic transport, and crys-
tallization in the liquid and supercooled liquid states of
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Phys. Rev. Lett. 82, 2290 (1999).

[14] Y. J. Kim, R. Busch, W. L. Johnson, A. J. Rulison,
and W. K. Rhim, Experimental determination of a
time–temperature-transformation diagram of the undercooled
Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy using the containerless

electrostatic levitation processing technique, Appl. Phys. Lett.
68, 1057 (1996).

[15] J. Schroers, Y. Wu, R. Busch, and W. Johnson, Transition from
nucleation controlled to growth controlled crystallization in
Pd43Ni10Cu27P20 melts, Acta Mater. 49, 2773 (2001).

[16] E. V. Levchenko, A. V. Evteev, I. V. Belova, and G. E. Murch,
Molecular dynamics determination of the time–temperature–
transformation diagram for crystallization of an undercooled
liquid Ni50Al50 alloy, Acta Mater. 59, 6412 (2011).

[17] E. B. Moore and V. Molinero, Structural transformation in su-
percooled water controls the crystallization rate of ice, Nature
(London) 479, 506 (2011).

[18] E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, M. E. Cates,
and P. N. Pusey, Crystallization of hard-sphere glasses, Phys.
Rev. Lett. 103, 135704 (2009).

[19] E. Sanz, C. Valeriani, E. Zaccarelli, W. C. K. Poon, P. N. Pusey,
and M. E. Cates, Crystallization mechanism of hard sphere
glasses, Phys. Rev. Lett. 106, 215701 (2011).

[20] E. Sanz, C. Valeriani, E. Zaccarelli, W. C. K. Poon, M. E. Cates,
and P. N. Pusey, Avalanches mediate crystallization in a hard-
sphere glass, Proc. Natl. Acad. Sci. 111, 75 (2014).

[21] P. Montero de Hijes, P. Rosales-Pelaez, C. Valeriani, P. N.
Pusey, and E. Sanz, Brownian versus newtonian devitrifi-
cation of hard-sphere glasses, Phys. Rev. E 96, 020602(R)
(2017).

[22] P. Rosales-Pelaez, P. M. de Hijes, E. Sanz, and C. Valeriani,
Avalanche mediated devitrification in a glass of pseudo hard-
spheres, J. Stat. Mech.: Theory Exp. (2016) 094005.

[23] T. Yanagishima, J. Russo, and H. Tanaka, Common mechanism
of thermodynamic and mechanical origin for ageing and crys-
tallization of glasses, Nat. Commun. 8, 15954 (2017).

[24] M. R. Hasyim and K. K. Mandadapu, Theory of crystallization
versus vitrification, arXiv:2007.14968.

[25] D. Ganapathi, D. Chakrabarti, A. K. Sood, and R. Ganapathy,
Structure determines where crystallization occurs in a soft col-
loidal glass, Nat. Phys. 17, 114 (2021).

[26] W.-H. Wang, C. Dong, and C. Shek, Bulk metallic glasses,
Mater. Sci. Eng., R 44, 45 (2004).

[27] Y.-C. Hu, W. Jin, J. Schroers, M. D. Shattuck, and C. S. O’Hern,
Glass-forming ability of binary Lennard-Jones systems, Phys.
Rev. Mater. 6, 075601 (2022).

013040-7

https://doi.org/10.1088/0034-4885/50/7/001
https://doi.org/10.1103/PhysRevLett.49.1299
https://doi.org/10.1063/1.479985
https://doi.org/10.1103/PhysRevE.81.030601
https://doi.org/10.1063/1.3216867
https://doi.org/10.1063/1.3072794
https://doi.org/10.1038/35059035
https://doi.org/10.1073/pnas.1001040107
https://doi.org/10.1016/j.physrep.2009.03.003
https://doi.org/10.1103/PhysRevLett.82.2290
https://doi.org/10.1063/1.116247
https://doi.org/10.1016/S1359-6454(01)00159-8
https://doi.org/10.1016/j.actamat.2011.07.004
https://doi.org/10.1038/nature10586
https://doi.org/10.1103/PhysRevLett.103.135704
https://doi.org/10.1103/PhysRevLett.106.215701
https://doi.org/10.1073/pnas.1308338110
https://doi.org/10.1103/PhysRevE.96.020602
https://doi.org/10.1088/1742-5468/2016/09/094005
https://doi.org/10.1038/ncomms15954
https://arxiv.org/abs/2007.14968
https://doi.org/10.1038/s41567-020-1016-4
https://doi.org/10.1016/j.mser.2004.03.001
https://doi.org/10.1103/PhysRevMaterials.6.075601


TAKAHA, MIZUNO, AND IKEDA PHYSICAL REVIEW RESEARCH 6, 013040 (2024)

[28] S. Tatsumi, S. Aso, and O. Yamamuro, Thermodynamic study
of simple molecular glasses: Universal features in their heat
capacity and the size of the cooperatively rearranging regions,
Phys. Rev. Lett. 109, 045701 (2012).

[29] E. Zaccarelli, S. M. Liddle, and W. C. K. Poon, On polydisper-
sity and the hard sphere glass transition, Soft Matter 11, 324
(2015).

[30] We calculated the free energy of the equilibrium liquid and
crystal with Monte Carlo simulations. The calculations were
conducted according to the method described in Ref. [46],
which we do not describe in detail.

[31] P. N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K.
Poon, and M. E. Cates, Hard spheres: Crystallization and
glass formation, Philos. Trans. R. Soc. London A 367, 4993
(2009).

[32] P.-R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Simu-
lation of homogeneous crystal nucleation close to coexistence,
Faraday Discuss. 104, 93 (1996).

[33] T. Kawasaki, T. Araki, and H. Tanaka, Correlation be-
tween dynamic heterogeneity and medium-range order in
two-dimensional glass-forming liquids, Phys. Rev. Lett. 99,
215701 (2007).

[34] Note that the crystallization dynamics become slower in much
smaller systems at lower temperatures. This slowing is a finite-
size effect due to the collisions of the crystalline regions which
the periodic boundary condition facilitates. We confirmed that
N = 16 384 is large enough for the focused temperature range.

[35] We confirmed that an increase or decrease in the threshold value
0.5 only causes a constant-fold change in the crystallization
time, barely altering its temperature dependence.

[36] This fitting was done for the data in 0.3 < P(t ) < 0.8. Note
that the error of the estimate of τlag became larger when τexp

became much larger than τlag, and we could not estimate τlag at
the lowest temperature.

[37] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch,
Structural relaxation made simple, Phys. Rev. Lett. 97, 170201
(2006).

[38] D. El Masri, L. Berthier, and L. Cipelletti, Subdiffusion and
intermittent dynamic fluctuations in the aging regime of con-
centrated hard spheres, Phys. Rev. E 82, 031503 (2010).

[39] For simplicity, we use the symbol τaging,mono, although not only
aging but also crystallization take place in this case.

[40] N. Oyama, H. Mizuno, and A. Ikeda, Unified view of avalanche
criticality in sheared glasses, Phys. Rev. E 104, 015002 (2021).

[41] C. E. Maloney and A. Lemaitre, Amorphous systems in ather-
mal, quasistatic shear, Phys. Rev. E 74, 016118 (2006).

[42] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Scaling description
of the yielding transition in soft amorphous solids at zero tem-
perature, Proc. Natl. Acad. Sci. 111, 14382 (2014).

[43] A. Cavagna, I. Giardina, and T. S. Grigera, Glass and poly-
crystal states in a lattice spin model, J. Chem. Phys. 118, 6974
(2003).

[44] A. Cavagna, I. Giardina, and T. S. Grigera, Glassy dynamics,
metastability limit and crystal growth in a lattice spin model,
Europhys. Lett. 61, 74 (2003).

[45] H. Tanaka, Possible resolution of the Kauzmann paradox in
supercooled liquids, Phys. Rev. E 68, 011505 (2003).

[46] S. Prestipino, F. Saija, and P. V. Giaquinta, Phase diagram of
softly repulsive systems: The Gaussian and inverse-power-law
potentials, J. Chem. Phys. 123, 144110 (2005).

013040-8

https://doi.org/10.1103/PhysRevLett.109.045701
https://doi.org/10.1039/C4SM02321H
https://doi.org/10.1098/rsta.2009.0181
https://doi.org/10.1039/fd9960400093
https://doi.org/10.1103/PhysRevLett.99.215701
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevE.82.031503
https://doi.org/10.1103/PhysRevE.104.015002
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1063/1.1560937
https://doi.org/10.1209/epl/i2003-00247-9
https://doi.org/10.1103/PhysRevE.68.011505
https://doi.org/10.1063/1.2064639

