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Quantum batteries are predicted to have the potential to outperform their classical counterparts and are
therefore an important element in the development of quantum technologies. Of particular interest is the role of
correlations in many-body quantum batteries and how these can affect the maximal work extraction, quantified
by the ergotropy. In this paper we simulate the charging process and work extraction of many-body quantum
batteries on noisy intermediate-scale quantum devices and devise the variational quantum ergotropy (VQErgo)
algorithm, which finds the optimal unitary operation that maximizes work extraction from the battery. We
test VQErgo by calculating the ergotropy of a many-body quantum battery undergoing transverse field Ising
dynamics following a sudden quench. We investigate the battery for different system sizes and charging times
and analyze the minimum number of ansatz circuit repetitions needed for the variational optimization using both
ideal and noisy simulators. We also discuss how the growth of long-range correlations can hamper the accuracy
of VQErgo in larger systems, requiring increased repetitions of the ansatz circuit to reduce error. Finally, we
optimize part of the VQErgo algorithm and calculate the ergotropy on one of IBM’s quantum devices.
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I. INTRODUCTION

The allure of modern quantum technologies relies on lever-
aging quantum effects such as coherence and entanglement to
outperform their classical counterparts. In recent years this has
been motivated by rapid experimental advances which have
increased the control over quantum states and have allowed
fundamental concepts to be explored in these devices. In
particular, quantum thermal machines allow the foundations
of quantum thermodynamics to be explored, with devices
such as quantum heat engines and refrigerators designed to
control work output and heat flow with quantum media [1–3].
Energy can also be stored in quantum batteries to be extracted
at a later time [4–12]; these batteries have the potential to
outperform their classical counterparts in terms of total stored
energy [13,14], charging speed [8,15–20], and energy extrac-
tion [21,22]. The maximum amount of energy that can be
extracted from quantum systems through unitary processes
is given by the ergotropy [23], which relies on finding the
optimal unitary operation which transforms the system to its
lowest energy state, known as its passive state. This can be a
difficult task as the ergotropy can be sensitive to correlations
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which can also affect device performance, notably improving
efficiency in quantum heat engines coupled to squeezed baths
[24–27], while impairing energy extraction from many-body
batteries [6,7,28–36]. Simulation of the latter problem will be
the focus of our work.

Simulating the dynamics of many-body quantum systems
in itself can be a complex problem due to the non-negligible
role of quantum correlations which arise from finite couplings
between particles. Furthermore, at the present time, numerical
calculations carried out on classical hardware are limited to
small numbers of particles. This is in contrast to algorithms
based on quantum hardware, which promise to alleviate some
of this complexity by simulating quantum wave functions in
the Hilbert space of quantum bits, rather than numerically in
classical registers. In addition to quantum physics and other
fundamental sciences [37–43], quantum computers promise
applications in various technological sectors including chem-
istry [44–49] and materials design and research [50–54]. It
is for this reason that they have seen unprecedented growth
in recent years: Reported milestones include simulation of
dynamics and calculations of accurate expectation values on
a 127-qubit device [55], demonstration of fast-converging
quantum-enhanced Markov chain Monte Carlo simulations
[56], and generation of large-scale cluster states on super-
conducting qubit devices [57]. While fault-tolerant quantum
computation (FTQC) based on error-corrected qubits is still
not technically possible, currently noisy intermediate-scale
quantum (NISQ) processors are available. However, they only
have short-lived qubits which are not protected from decoher-
ence [58–60]. In this NISQ era, quantum algorithms rely on

2643-1564/2024/6(1)/013038(16) 013038-1 Published by the American Physical Society

https://orcid.org/0000-0002-8976-7157
https://orcid.org/0000-0002-4745-7329
https://orcid.org/0000-0001-7111-3836
https://orcid.org/0000-0003-1704-2621
https://orcid.org/0000-0003-0535-2833
https://orcid.org/0000-0003-4940-5861
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013038&domain=pdf&date_stamp=2024-01-11
https://doi.org/10.1103/PhysRevResearch.6.013038
https://creativecommons.org/licenses/by/4.0/


DUC TUAN HOANG et al. PHYSICAL REVIEW RESEARCH 6, 013038 (2024)

shallow circuits where qubits are measured quickly [61,62].
There is therefore a need for quantum algorithms which can
simulate quantum systems within a limited time span while
still solving problems which exceed the capabilities of their
classical counterparts.

Variational quantum algorithms (VQAs) [63–65] have
been deemed particularly promising for NISQ devices. These
are a class of algorithms which can be used to find varia-
tional approximate solutions to problems of interest. A famous
example is the variational quantum eigensolver (VQE) [61],
which is used to determine the ground state of a Hamilto-
nian through repeated sampling of an ansatz wave function
in the eigenbases of a set of observables. Among other
purposes, VQAs have been developed to solve the max-cut
problem via the quantum approximate optimization algo-
rithm [66], to find numerous chemical properties of molecules
[67–69], and to perform machine learning tasks such as the
classification of symmetry-protected topological phases [70].
While the performance of these algorithms is limited by
barren plateaus [71], i.e., the problem of exponentially van-
ishing gradients with the system size, in recent years tools
have been developed to study and mitigate this phenomenon
[72,73]. In addition, error mitigation has been shown to offer
significant improvements when noise is an issue [74–76],
and approaches inspired by FTQC have resulted in par-
tial error correction schemes developed for NISQ devices
[77,78].

In this paper we propose a VQA called variational quantum
ergotropy (VQErgo) to calculate the ergotropy of a quantum
battery on NISQ computers. We use the transverse field Ising
spin-chain model to benchmark our algorithm, whereby the
battery is charged by a sudden quench of the interaction
among nearest-neighbor spins. The interactions will create
correlations between the spins, which results in nontrivial
dynamics of the ergotropy. In order to simulate the dynamics
we use projected variational quantum dynamics (p-VQD) [79]
to find the time-evolved quantum state, and then a variational
optimization is carried out to obtain the optimal unitary which
prepares the passive state. Although VQErgo has some ele-
ments in common with other variational quantum algorithms
such as the VQE, VQErgo does not find a variational ground
state or its energy or other static quantities relating to a
Hamiltonian. VQErgo time-evolves the input wave function
to then evaluate the ergotropy by considering a reduced state
of the full wave function. In contrast to the VQE and its
variants, which variationally prepare the pure eigenstates of
a system, VQErgo performs its state optimization on a mixed
state which can also be strongly correlated with the rest of the
system.

The performance of the algorithm is analyzed for different
system sizes and numbers of ansatz circuit repetitions, and
its accuracy is assessed by comparison with exact results. We
also analyze how the creation of correlations between spins
can negatively affect the ergotropy estimation, requiring an
increase in the number of repetitions of the variational ansatz
circuit. Finally, we evaluate the effectiveness of our scheme
in the presence of noise using a noisy simulator as well as
real hardware. Our work represents one of the first NISQ
algorithms designed specifically to calculate the ergotropy of
quantum systems, expanding the tools already available to

describe quantum thermodynamics and associated devices on
quantum computers [80–83].

This paper is organized as follows. In Sec. II, we briefly
review the operation of quantum batteries and the concept of
ergotropy. We also present the VQErgo algorithm, which is
used to calculate the ergotropy on quantum hardware, sepa-
rated into four steps: initialization, time evolution or charging,
mean energy calculation, and passive energy optimization.
Then, the transverse field Ising spin-chain Hamiltonian and
the charging protocol for our quantum battery are introduced
in Sec. III. We describe our main results in Sec. IV, including
the dynamics of the system, the measurement of the total
energy, and the ergotropy from noise-free (state-vector) simu-
lations, from noisy simulations, and from calculations run on
IBM quantum devices [84]. Finally, in Sec. V, we draw our
conclusions and discuss future prospects for this algorithm.

II. METHODS

A. The maximal extractable work: Ergotropy

We describe a quantum battery made from N identical
quantum cells which are charged through unitary dynamics
by suddenly switching on an external field V . Initially, the
battery is prepared in the ground state |�(t = 0)〉 of a local
Hamiltonian H0, and during charging it evolves according to

H1 = H0 + V. (1)

The state of the charged battery is therefore time dependent,
|�(t )〉, and energy is discharged by removing the external
field V with the total work stored in the battery at time t then
given by

W (t ) = 〈�(t )|H0|�(t )〉 − 〈�(0)|H0|�(0)〉. (2)

While this is the total energy that is stored in the entire
battery after time t , it is not necessarily all extractable, es-
pecially when only considering subsystems of the device.
This would correspond to extracting energy from M � N
cells of the battery, which could be required due to a restric-
tion on accessing the full state of the system or in order to
only partially discharge the battery. In this scenario, energy
can be locked in correlations between the M and N − M
cells thereby reducing the amount of energy that can be ex-
tracted [4,6,7]. The maximum amount of work that can be
extracted from the M-cell state ρM = trN−M{|�(t )〉 〈�(t )|} =∑

j=1 λ j |ϕ j〉〈ϕ j | (with λ j � λ j+1) through unitary transfor-
mations is given by the ergotropy [23], which is found by
optimizing over all possible unitaries such that the resulting
state has the minimum energy with respect to the M-cell
Hamiltonian HM

0 = ∑
i=1 εi|ψi〉〈ψi| (with εi � εi+1):

E = tr
{
HM

0 ρM
} − minU

{
tr
{
HM

0 UρMU †}}
= tr

{
HM

0 (ρM − Pρ )
}
. (3)

This state is known as the passive state Pρ = ∑
i λi|ψi〉〈ψi|,

and no further work can be extracted from it by unitary
transformations. The ergotropy can then be expressed in the
well-known form [23]

E =
∑

i

(pi − λi )εi, (4)
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FIG. 1. (a) Schematic depiction of the variational quantum ergotropy (VQErgo) algorithm. Initialization: The uncharged battery state
|ψ (0)〉 given by the ground state of the local Hamiltonian H0 is prepared on the quantum device, e.g., using the variational quantum eigensolver
(VQE). Time evolution or charging: The battery is charged by time-evolving the state with another Hamiltonian H1. As an example, in this
paper we consider quenches with the transverse field Ising Hamiltonian H1 = −J

∑N−1
i σ x

i σ x
i+1 − h

∑N
i σ z

i . We approximate the time evolution
unitary UTE = exp(−iH1t ) via a variational circuit UTE(ω) optimized using the projected variational quantum dynamics (p-VQD) algorithm.
We also consider the case in which the magnetic field is switched off (h = 0) and the time evolution unitary can be exactly decomposed
into a single layer of two-qubit gates. Mean energy measurement: The ergotropy is the difference between the mean energy and the passive
energy [cf. Eq. (3)]. The former can be measured as an expectation value of HM

0 on M < N qubits of the time-evolved state |�(t )〉. (b) Passive
energy optimization: The passive energy is defined as the minimum attainable expectation value of HM

0 over all unitary transformations UE
acting on the time-evolved state. We express UE (θ ) in terms of a variational circuit with parameters θ which are optimized using a typical
classical-quantum feedback loop.

where pi = ∑
j λ j |〈ϕ j |ψi〉|2 is the projection of ρM on the

eigenstates of HM
0 . To extract energy from the battery, we

therefore require that pi �= λi. If the reduced state ρM is
mixed, there can be a difference between the work

W (t ) = tr
{
HM

0 ρM (t )
} − tr

{
HM

0 ρM (0)
}

(5)

and the ergotropy, W (t ) � E (t ), which becomes an equality if
ρM is pure.

In classical simulations of quantum batteries, the ergotropy
is conventionally calculated by solving Eq. (4), i.e., by diag-
onalizing the subsystem Hamiltonian and the reduced density
matrix of the battery state and by computing the relevant
overlaps. The analogous way to run this sequence of cal-
culations using NISQ hardware would be to first obtain the
full spectrum of the Hamiltonian and its eigenstates [85–87].
Then estimates of the overlaps with the time-evolved wave
function can be obtained by measurement in the Hamiltonian
eigenbasis. However, we can instead consider the optimiza-
tion problem in Eq. (3), which is naturally expressed in terms
of expectation values that can be efficiently computed on a
quantum computer. Furthermore, the optimization over uni-
tary operators for the passive state can be naturally phrased in
the language of variational quantum algorithms [63–65] as we

detail in the following section. Hence current state-of-the-art
quantum devices allow us to readily simulate and investigate
the ergotropy and other properties of many-body quantum
batteries.

B. The variational quantum ergotropy algorithm

In the following we describe our framework for simulating
quantum batteries on quantum hardware and how to extract
interesting properties, in particular the ergotropy. We there-
fore refer to the overall algorithm as the variational quantum
ergotropy (VQErgo) algorithm. VQErgo can be divided into
four subroutines, which are (i) battery initialization, (ii) bat-
tery charging, (iii) mean energy calculation, and (iv) passive
energy optimization, as shown in Fig. 1.

Battery initialization. The battery starts off in the un-
charged state, corresponding to the ground state of the local
Hamiltonian H0. Any ground state preparation routine (e.g.,
VQE) can be employed for this task. Note that in the rest of
this paper we choose the local Hamiltonian to be of the form
H0 = −∑N

i σ z
i . Thus the ground state |0〉⊗N naturally coin-

cides with the initial computational basis state of digital-based
quantum computers allowing us to omit a state preparation
circuit.
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Battery charging. The battery is charged by time-evolving
the initial state with the Hamiltonian H1 for a total time t . On
digital quantum computers, time evolution can be achieved
by a Trotter-Suzuki decomposition of the global time evolu-
tion unitary into local gates. However, the number of Trotter
steps (the number of gates) grows with time t , and hence,
generally, only short evolution times can be simulated on
noisy hardware. To overcome this limitation, there have been
several proposals for performing the time evolution variation-
ally using parametrized circuits with a fixed, small number
of gates [88–91]. Here, we employ the projected variational
quantum dynamics (p-VQD) algorithm due to its efficiency
[79]. p-VQD iteratively evolves the parameters w(t + δt ) =
w(t ) + dw of a state ansatz |ψw(t )〉 = U (w(t ))|0〉 in short
time increments δt by minimizing the infidelity between the
ansatz state |ψw(t )+dw〉 = U (w(t ) + dw)|0〉 and the true time-
evolved state |φ(t + δt )〉 = e−iH1δt |ψw(t )〉:

dw = arg min
dw

[
1 − |〈φ(t + δt ) | ψw(t )+dw〉|2

δt2

]
. (6)

The unitary e−iH1δt is typically approximated using the
Trotter-Suzuki decomposition with a single Trotter step given
that the time step size δt that is chosen is sufficiently small.
Importantly, the repetitions of the state ansatz circuit and of
the circuits used for evaluating Eq. (6) do not grow with time
t . For further details regarding the p-VQD optimization, we
refer the reader to Appendix A 1.

Let us note here that our quantum circuit framework for
quantum battery simulation is highly modular and, in prin-
ciple, any of the subroutine algorithms can be exchanged
with other viable quantum algorithms for the respective
tasks. Specifically, for time evolution, we mention the
time-dependent variational algorithm (TDVA) [89,90] and
subspace variational quantum simulation (SVQS) [92], which
may be used in cases where the number of excited states
populated during time evolution does not exceed the number
of qubits. Additionally, one could limit the charging dynamics
to quenches with Hamiltonians composed of only commuting
terms, e.g., H1 = −∑N

i σ x
i σ x

i+1. In this case, the time evolu-
tion operator is trivially decomposed into a single layer of
two-qubit gates, and this eliminates the need for involved,
approximate time evolution algorithms (see Appendix B).
Finally, the recent advances in analog quantum computing
provide yet another promising architecture for quantum bat-
tery simulations since time evolution is naturally implemented
via global Hamiltonians [93,94].

Mean energy calculation. The ergotropy of the quantum
battery is calculated as the difference of the mean and pas-
sive energies of the charged state |ψ (t )〉 after tracing over
N − M sites [cf. Eq. (3)]. Specifically, the mean energy can
be expressed as an expectation value of the local Hamiltonian
acting only on the subsystem of M < N qubits:

Emean = 〈�(t )|HM
0 ⊗ I⊗(N−M )|�(t )〉. (7)

Passive energy optimization. The computation of the
passive energy requires us to find the optimal unitary trans-
formation UE acting on M qubits of the charged state that
minimizes the expectation value of the local Hamiltonian

within the subsystem:

Epass = min
UE

[〈�(t )|(U †
EHM

0 UE
) ⊗ I⊗(N−M )|�(t )〉]. (8)

We can efficiently perform the optimization over unitaries
on current quantum hardware using the tools of variational
quantum algorithms. In particular, we define a circuit ansatz
UE (θ ) composed of two-qubit and single-qubit gates with a
set of parameters θ . The optimization of the passive state then
amounts to finding the optimal parameters that minimize the
expectation value in Eq. (8), which can be iteratively achieved
by using a classical optimizer such as gradient descent and the
parameter-shift rule for evaluating gradients [95,96].

In order to limit the amount of noise during the quantum
simulation to a minimum, we employ a hardware-efficient
ansatz for the p-VQD and the passive state variational cir-
cuits. This means that the ansatz circuits are composed of
several layers, each containing arbitrary, parametrized single-
qubit rotations (decomposed into RY RZRY gates) followed
by a series of controlled-NOT (CNOT) gates applied only to
neighboring qubits [see Fig. 1(b)]. Note that the passive state
circuit UE is only defined on the M < N subsystem qubits.
Appendix A 2 contains additional details about the circuit
optimization.

III. MODEL

To model the quantum battery, we consider the paradig-
matic transverse field Ising spin chain [6,22,97,98]. The
competition between the nearest-neighbor interactions and an
external field can result in strongly correlated reduced states
ρM which give rise to a nontrivial dependence of the ergotropy
on the charging time t and subsystem size M as we show fur-
ther below. Moreover, the system is amenable to simulations
on currently available NISQ devices for a couple of qubits.
The discharged battery is described by the noninteracting
Hamiltonian

H0 = −h
N∑

i=1

σ z
i , (9)

where h > 0 is the external magnetic field, N is the number of
spins (cells) in the battery, and σ k

i with k = x, y, z denotes the
spin-1/2 Pauli matrices. At t = 0 the battery is initialized in
the spin-polarized ground state |�(0)〉 = |↑〉⊗N ≡ |0〉⊗N and
thus naturally coincides with the initial state of the quantum
computer.

In order to charge the battery we implement a sudden
quench H0 → H1 for t > 0, which switches on the nearest-
neighbor interaction

H1 = −h
N∑

i=1

σ z
i − J

N−1∑
i=1

σ x
i σ x

i+1, (10)

where J is the coupling strength and we consider open bound-
ary conditions. We simulate the time-evolved state |�(t )〉 =
exp(−iH1t ) |�(0)〉 on a quantum computer using the afore-
mentioned p-VQD algorithm. In Appendix B we provide
results obtained with an alternative charging protocol in which
the external field is turned off during the charging time
(h = 0). In this case, the time evolution operator can be
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FIG. 2. (a) The total injected work W , (b) the ergotropy E , and
(c) the efficiency of the battery E/W as a function of the charging
time t . The total system is composed of N = 8 spins, while each
curve corresponds to a different subsystem size M from which energy
is extracted.

trivially decomposed into a single layer of local two-qubit
gates and thus be implemented without the need for a vari-
ational optimization. Throughout the remainder of this paper
we set h̄ = 1 and consider the transverse field Ising model
with fixed parameters h = 0.6 and J = 2.

The quench dynamics of the state can be computed directly
through

|�(t )〉 =
∑

j

〈
F

j

∣∣�(0)
〉
exp

(
− iEF

j t

h̄

)∣∣F
j

〉
, (11)

where |F
j 〉 and EF

j are the eigenstates and eigenvalues of
H1. The stored work and ergotropy are then calculated using
Eqs. (5) and (4), respectively. Figure 2 shows the work W
and ergotropy E stored in M cells as a function of charging
time for a total system size of N = 8 spins. We also plot
their ratio E/W describing how efficiently the battery can be
discharged, which saturates for M = N as expected. One can
see that immediately following the quench the work and the
ergotropy rapidly increase as the quench drives the system far
out of equilibrium, while subsequent oscillations are the result
of finite-size effects. We note that the maximum ergotropy and
injected work can be achieved at short charging times t ∼ 0.4
for M > 2 and the charging process subsequently stabilizes
in the region 2 � t � 6, after which revivals induce further
oscillations.

In general, the larger the subsystem M, the more work, er-
gotropy, and efficiency can be achieved. However, for smaller
cell size M the efficiency necessarily suffers as correlated
cells in the rest of the battery (N − M) are discarded. This
is apparent for times t > 2 when the reduced state ρM is
sufficiently mixed. We also note that, for long intervals in

the M = 1 system, the ergotropy is exactly zero although the
total injected work is nonzero [see Figs. 2(b) and 2(c)]. This
is related to the equivalence of the reduced and passive states
when M = 1 and will be discussed in detail in the next section.

IV. RESULTS

A. VQErgo state-vector simulation

First we simulate the quantum battery using our proposed
VQErgo algorithm and analyze the variational optimization
in an ideal, noise-free setting via state-vector simulation. We
restrict ourselves to charging times 0 < t < 1.4 which in-
clude the first two maxima of the work and ergotropy curves
(see Fig. 2). We simulate the time evolution starting from
the polarized product state using p-VQD, which optimizes
the variational circuit parameters iteratively in small time
increments, and hence we automatically obtain the evolved
states at all intermediate times as well. The ansatz used for
the time evolution and the passive state optimization was the
hardware-efficient ansatz. All the details regarding the opti-
mization and choice of ansatz are reported in Appendix A 1.
In particular, for a given number of spins N we repeat the
optimization with different ansatz circuit repetitions, resulting
in a different number of variational parameters, and compare
the p-VQD states with the exact time-evolved states in Fig. 9
of Appendix A 1. For each simulated system size we choose a
final p-VQD ansatz circuit repetition number that gives rise to
the smallest errors with respect to the exact state.

Once the optimized time evolution circuit is obtained we
can measure the mean energy on the circuit [see Eq. (7)],
which allows us to calculate the stored work W . Next, we
perform the VQErgo optimization to prepare the passive state
on a subsystem of M < N qubits and measure the passive
energy, from which we can extract the ergotropy E . In Fig. 3
we show the results obtained for a total system size of N = 8
qubits and subsystem sizes M = 1, . . . , 7. We compare the
exact ergotropy (orange curve) to the ergotropies evaluated on
optimized circuits UE of different repetition numbers. Each
point represents an average over 100 different runs of the
algorithm (i.e., using different random seeds for the circuit
initialization). Overall, we find a good agreement of the varia-
tionally obtained ergotropies with their exact values given that
the number of repetitions that is chosen is large enough. Note
that some of the observed discrepancies have to be attributed
to the preceding p-VQD optimization, which also introduces
an error in the state.

To further understand the dynamics of the ergotropy in
Fig. 3, we examine its constituent time-dependent parts,
namely the exact probabilities pi of the reduced state and
the λi of its passive state. These are shown in Fig. 4 for
both M = 1 and M = 6. The simplest case is M = 1 as its
dynamics is that of a two-level system (there are only two
accessible states), with λi = pi for times t < 0.4, and there-
fore the ergotropy is zero. At t = 0.4 there is a crossing in the
probability distribution with p2 > p1, and finite energy can
now be extracted from the battery through reordering of these
occupancies [see Fig. 3(a)]. For t � 1.2 a subsequent crossing
restores the original ordering of the probabilities, and thus the
ergotropy again vanishes.
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(f) M = 6
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(g) M = 7
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repetitions = 1

repetitions = 2

repetitions = 3
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FIG. 3. (a)–(g) The ergotropy E as a function of the charging time t for different subsystem sizes M and a total system size of N = 8. The
gray dashed curve denotes the work W stored in the battery cells. The orange curve corresponds to the value of the ergotropy computed
numerically from exact diagonalization (ED) calculations, while the symbols show the variationally obtained ergotropies for different
repetitions of the passive state ansatz. Each point is an average over 100 optimization runs using a state-vector simulation (the standard
deviation is indicated by the error bars).

This behavior is echoed in the dynamics of larger subsys-
tems, albeit with more complexity, as the number of occupied
states pi and λi is increased. For instance, the dynamics of λi

for M = 6 possesses a similar structure [see Fig. 4(c)] with
contributions mainly from the two lowest energy eigenstates.
In contrast, the dynamics of pi is more complex and includes
contributions from higher energy eigenstates of HM

0 . This

FIG. 4. (a) and (c) The passive state probabilities λi as a function
of t for M = 1 and M = 6, respectively. (b) and (d) The correspond-
ing reduced state probabilities pi. (e)–(h) For M = 6 we plot λi at
t = 0.4 (e) and t = 0.8 (f) and pi at t = 0.4 (g) and t = 0.8 (h).
Data in all figures are obtained numerically via exact diagonalization,
with the specific times t = {0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4} denoted
by symbols.

results in a nonzero ergotropy at all times t > 0. In Figs. 4(e)
and 4(g) we show λi and pi at t = 0.4, which corresponds
to the maximum ergotropy for M = 6. The large difference
between the reduced state and its passive state is readily
apparent, as pi is distributed over all possible states, while
λi is again concentrated around the two lowest eigenstates.
However, at t = 0.8 the ergotropy has a local minimum as
the pi’s occupy lower energy states owing to less work being
stored in the battery [see Fig. 4(h)].

Similarly to other variational quantum algorithms, the
number of repetitions of the ansatz circuit is an important
hyperparameter of the optimization. Figure 3 suggests that for
VQErgo the number of required repetitions depends both on
the subsystem size M and on the charging time t . For better vi-
sualization, we plot the error in the measured ergotropies as a
function of the subsystem size in Fig. 5 at t = 0.4 and t = 0.8.
In the case of a single quantum cell M = 1, we always only
require one general single-qubit rotation to prepare the passive
state. However, with increasing subsystem size M > 1, more
layers of single- and two-qubit gates are needed to reduce
errors. This is due to correlations that are spread over larger
distances within the system, which can be quantified through
the CXX and CZZ correlations between qubit i and a second
qubit at i + l:

CXX (ZZ )(i, �) = ∣∣〈σ x(z)
i+� σ

x(z)
i

〉 − 〈
σ

x(z)
i+�

〉〈
σ

x(z)
i

〉∣∣2
, (12)

where 〈·〉 = 〈�(t )| · |�(t )〉 denotes an expectation value cal-
culated with the time-evolved state.

We take qubit i = 4 at the center of the N = 8 spin chain
as an example and plot its correlations with the other qubits
as a function of time in Figs. 6(a) and 6(b). The maximum
ergotropy coincides with the maximum correlations in the
x directions, while correlations in the z direction vanish.
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FIG. 5. The absolute error between the ergotropy calculated
variationally via a state-vector simulation and its exact value vs
the battery subsystem size M. We show the error for two distinct
charging times t = 0.4 (a) and t = 0.8 (b) for different numbers
of repetitions of the passive state ansatz. Note that the orders of
magnitude in the error for the two considered times are different,
which indicates that the required number of repetitions depends not
only on the cell size M, but also on the charging time t .

Furthermore, up to times t � 0.6 the qubit is correlated only
with its nearest neighbors at � = ±1. We observe a lack of
long-range correlations also for the other spins in the chain
(not shown here) and can thus infer that a single layer of two-
qubit gates (paired with parametrized single-qubit rotations)
is sufficient to disentangle all qubits of the subsystem and
prepare the exact passive state. However, this is not the case
for times t > 0.6 as long-range correlations and entanglement
are built up. We therefore require multiple layers of two-qubit
gates to rotate the reduced state into the uncorrelated basis
set of the passive state and, hence, to increase the accuracy
of the ergotropy estimation. This is apparent in Fig. 5(b),
which shows a significant increase in error at t = 0.8 [note
the difference in the order of magnitude between Figs. 5(a)
and 5(b)]. However, we have found that, for the particular
Ising system considered here, the errors quickly decrease with
the number of repetitions and that two repetitions are already
often sufficient. Any extra repetitions provide only a small
additional advantage, which suggests that the number of rep-
etitions of the circuit scales sublinearly with the battery cell
size M, making the optimization less prone to barren plateaus
[71,99].

B. VQErgo quantum device experiments

Following the analysis of VQErgo under ideal, noise-
free conditions, we now evaluate its performance on a real

FIG. 6. The Pauli-XX (a) and Pauli-ZZ (b) correlations in the
charged state between the fourth qubit at the center of the chain
and a qubit � sites apart as a function of the charging time t . The
insets show the respective correlations as a function of the distance
� for two specific times, t = 0.4 and t = 0.8. For charging times
t � 0.6, nearest-neighbor correlations dominate, while at later times
t > 0.6 long-range correlations also appear. All data are from exact
diagonalization calculations.

quantum device. To that end, we perform VQErgo on one of
the freely accessible quantum computers provided through the
IBM Quantum cloud. While the most recent state-of-the-art
quantum computers operate on more than 100 qubits and
feature small error rates [55], the freely available quantum
devices are still small in size and very noisy. Hence we restrict
ourselves to quantum batteries composed of only a handful
of spins that can be simulated with shallow-repetition circuits
and can be mapped to the device qubit layout without the need
for long-range gates (or SWAP gates). We also substitute our
real hardware experiments with noisy, classical simulations
that mimic the device noise model. All our experiments are
performed on the seven-qubit ibm_perth device and its clas-
sical simulator analog FAKEPERTH.

Full VQErgo results. We start by running the full VQErgo
pipeline (including the p-VQD and passive state optimiza-
tion) on the noisy classical simulator using the simultaneous
perturbation stochastic approximation (SPSA) optimizer with
250 optimization steps and 2048 shots per measurement. The
training curves and any further technical details can be found
in Appendix A 2. We report the final measured work and
ergotropy as a function of the charging time for a system
with N = 2 and M = 1 battery cells in Fig. 7. Each point is
again an average over 100 independent runs of the algorithm.
For this small battery system, the ergotropies are in good
agreement with their exact values. Any discrepancies and the
increased standard deviation compared with the state-vector
simulation can be attributed to various error sources, such as
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FIG. 7. The total amount of stored work W (dashed curve) and
the ergotropy E (solid curve) as a function of the battery charging
time t computed via exact techniques. We also show their values ex-
tracted via VQErgo using an ideal state-vector simulation and a noisy
classical simulation with FAKEPERTH, which mimics the ibm_perth
quantum device. The results are an average over 100 independently
run optimizations. The error bars indicate the corresponding standard
deviation.

shot noise, state preparation and measurement (SPAM) errors,
and coherent and incoherent noise. Note that the observed
error in the work and ergotropy increases slightly with time,
which is to be expected since p-VQD iteratively evolves the
ansatz state in time and, hence, errors naturally build up in the
charged state.

Noise-free p-VQD optimization. Using the noisy simulator
has not allowed us to obtain converged results for p-VQD
with N = 4. This can be understood from the fact that p-VQD
carries out a variational optimization for each time step that
is simulated. Therefore any error resulting from the noisy
hardware or a simulation of it compounds with every iteration.
As explained in Appendix A 1, when N = 4, the repetition
numbers of the p-VQD ansatz circuit must be increased to
twice what it is when N = 2 while still needing 14 iterations.
Although circuits of this number of repetitions can be run
without the resulting quantum state decohering totally, the
accumulated error due to noise is too great to result in accurate
time evolution. However, with the optimized p-VQD param-
eters from state-vector simulations we are still able to show
convergence of the passive state optimization using the noisy
simulator and the actual device. In the remainder of this paper
we perform the p-VQD optimization using the classical state-
vector simulation and only run the optimized time evolution
circuit on the quantum device followed by the variational pas-
sive state optimization. Note that in Appendix B we consider
a simplified charging protocol that does not require variational
time evolution and thus can be executed end to end on current
hardware.

In Fig. 8 we display the real-device and noisy simulator
results obtained for N = 4 and subsystem size M = 2. The
measured injected work is in nearly perfect agreement with
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FIG. 8. The exact stored work W (dashed curve) and ergotropy
E (solid curve) are plotted against the charging time t for a system
with N = 4, M = 2. The results were obtained using state-vector-
optimized p-VQD parameters together with a noisy simulation of
the ibm_perth backend as well as actual device results. For the
real-device experiments only a single run of the passive state op-
timization is carried out, while we display the average and standard
deviation of 100 runs in the case of the noisy classical simulator. Due
to the limited available quantum computing time, we performed the
VQErgo optimization on ibm_perth on only a subset of the shown
times.

the theoretically computed values with the exception of the
point at time t = 0.6, which is slightly lower. We believe that
this outlier can be attributed to naturally occurring fluctua-
tions in the experimental hardware over time (our simulations
were performed over several weeks). On the other hand, the
evaluated ergotropies are consistently lower than their exact
values for the noisy simulator and the real-device experi-
ments. We expect this to be the result of decoherence as the
passive state circuit contains two additional layers of CNOT

gates compared with the circuit the work was measured on.
It would be interesting to investigate whether quantum error
mitigation such as zero-noise extrapolation can improve these
results [100–102]. However, despite the small discrepancies,
the qualitative dependence of the ergotropy with time can
be successfully inferred. Importantly, VQErgo allows us to
determine the time at which the ergotropy becomes maximal,
which is crucial for designing many-body quantum batteries
that perform optimally.

V. CONCLUSIONS

In this paper, we have studied the ergotropy—the maxi-
mal extractable work—of quantum batteries. We have shown
that the calculation of the ergotropy can be naturally phrased
in terms of a variational quantum algorithm and thus the
ergotropy is readily amenable to current NISQ device com-
putations. We have embedded the ergotropy calculation in
an end-to-end variational simulation routine for quantum
batteries called VQErgo that includes battery initialization,
charging, and ergotropy estimation. Note that due to the
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modularity of the presented framework, different algorithms
for any of its subroutines such as initial state preparation or
time evolution can be chosen and adapted to the system at
hand.

We tested VQErgo on a battery undergoing transverse field
Ising dynamics. To that end, we investigated the passive state
optimization and the required number of repetitions of the
variational circuit with the battery cell size and charging time.
In particular, we showed that more than one repetition is nec-
essary beyond a critical charging time, after which long-range
correlations set in. Subsequently, we demonstrated VQErgo
using a noisy classical simulator with noise characteristics
from a current IBM quantum device and demonstrated that
the passive state optimization can be carried out on the actual
physical device. In both cases, we were able to successfully
measure the injected work and ergotropy for different charg-
ing times. While the estimated ergotropies were slightly below
their true exact values, the qualitative dependence of the er-
gotropy with time still matched the theoretical predictions.
In particular, the results allow us to infer the optimal charg-
ing time of the quantum battery that leads to the maximal
ergotropy.

While we only consider quench dynamics in this paper,
our algorithm could also be expanded to also optimize the
charging protocol for a specific charging time, allowing one
to time-dependently tune coupling terms in the Hamiltonian
to maximize the ergotropy on short times. Our algorithm is
also not restricted to the simulation of quantum batteries,
but is also amenable to other thermodynamic devices where
correlations can affect work statistics and therefore depend on
accurate estimations of the ergotropy to account for all energy
contributions. For instance, in quantum heat engines coupled
to nonclassical environments, such as squeezed baths [24–27],
both passive thermal energy and ergotropy can be transferred
to the system. Work can also be extracted from quantum
heat engines by coupling to quantum batteries or so-called
quantum flywheels [103,104], where again it is important to
distinguish between the amount of useful work quantified
by the ergotropy and thermal fluctuations that can degrade
efficiency. Finally, due to its sensitivity to correlations, the
ergotropy can also be used to measure genuine multipartite
entanglement [105], as the mixed state ρM is entangled with
the remaining N − M cells leading to a nontrivial gap between
the ergotropy and the average work. As the passive state is
diagonal in HM

0 , the entanglement spectrum λi can be recov-
ered, provided that the eigenbasis can be resolved on quantum
hardware [106].

In this paper we have shown a viable path towards studying
many-body quantum batteries using quantum hardware. It is
remarkable that the nontrivial dynamics of the transverse field
Ising model can be probed even on the relatively noisy seven-
qubit ibm_perth device as this is a device with a quantum
volume of only 32 [84,107]. In contrast, the state-of-the-art
Falcon r10 device is reported to have a quantum volume of
256 [108]. The complexity of the types of systems that can
currently be interrogated with VQErgo is therefore expected
to exceed the capabilities we have shown here. As a concrete
example, it is feasible that the p-VQD optimization, which
we had to carry out using a state-vector simulator for N = 4,
could be carried out on a quantum-volume-256 device.
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APPENDIX A: TECHNICAL DETAILS
OF THE OPTIMIZATION

All quantum simulations were performed using the QISKIT

PYTHON library [109] and the QISKIT Runtime Estimator
primitive. In all shot-based simulations, expectation values
were estimated using 2048 shots. Furthermore, we employed
readout error mitigation implemented in QISKIT in all sim-
ulations that were subject to noise. The calibration data of
the ibm_perth device that was used for the hardware ex-
periments are shown in Table I. The ansatz used for the
time-evolved state in the p-VQD algorithm was the hardware-
efficient ansatz. This circuit is composed of repeated layers of
single-qubit rotations followed by entangling CNOT gates. The
CNOT gates are applied successively on pairs of neighboring
qubits [see Fig. 1(b) for a single repetition of the ansatz circuit
in the case of M = 3 qubits]. The hardware-efficient ansatz is
used for the passive state optimization as well.

1. p-VQD

We optimize p-VQD using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) optimizer for the state-vector
simulations and the SPSA [110] for the noisy simulations.
While the SPSA only performs approximate gradient descent,
it also only requires two circuit evaluations per optimization
step independent of the number of parameters and can thus
be efficiently executed on quantum devices. Moreover, the
stochasticity in the perturbation directions make it robust in
the presence of noise. The fidelity in Eq. (6) is evaluated
via sampling and can be replaced by a local cost function to
make the optimization less prone to barren plateaus [79,99].
As a termination condition for the BFGS optimizer we set a
precision goal of 10−6 in the cost function, i.e., the infidelity
in Eq. (6). When using the SPSA, we set the number of
optimization steps per time step to 1000 instead. We run
several state-vector simulations of the evolution up to a total
time t = 1.4 with different time increments δt , different
numbers of ansatz repetitions, and three random seeds to
determine the optimal hyperparameters that minimize the
infidelity with respect to the exact state computed using the
QUSPIN package [111]. In Fig. 9 we plot the infidelity as
a function of time for four different system sizes showing
only the best out of each run. As expected, we find that the
infidelity on average increases with time as errors build up
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TABLE I. Further information about the ibm_perth device used in this paper. The table shows, from left to right, the relaxation time T1,
the dephasing time T2, the frequency f , the anharmonicity δ, the readout assignment error εreadout, the probability p(0|1) of measuring 0 if
the qubit was prepared in the |1〉 state, the probability p(1|0) of measuring 1 if the qubit was prepared in the |0〉 state, the single-qubit gate
error, the average CNOT gate error, and the average gate time tgate. The final row shows the median computed over all qubits. Note that our
experiments were performed over the course of several weeks, while the calibration data are only a snapshot of the device properties at a single
point in time (data from November 13, 2023).

Qubit T1 (µs) T2 (µs) f (GHz) δ (GHz) εreadout p(0|1) p(1|0) Single-qubit error CNOT error tgate (ns)

0 188.6 82.5 5.2 −0.34 0.39 0.070 0.701 3.8×10−4 6.3×10−3 391
1 24.6 44.7 5.0 −0.34 0.03 0.030 0.029 7.5×10−4 1.1×10−2 479
2 131.9 93.5 4.9 −0.35 0.02 0.023 0.026 2.6×10−4 2.1×10−2 604
3 158.5 201.4 5.1 −0.34 0.02 0.017 0.018 2.4×10−4 6.0×10−3 309
4 146.4 160.2 5.2 −0.33 0.12 0.123 0.122 2.9×10−4 7.2×10−3 590
5 156.7 151.0 5.0 −0.35 0.03 0.031 0.031 2.5×10−4 8.1×10−3 529
6 133.2 236.4 5.2 −0.34 0.01 0.018 0.011 3.3×10−4 1.1×10−2 604

Median 146.4 151.0 5.1 −0.34 0.03 0.030 0.029 2.9×10−4 8.1×10−3 529

in the time-evolved state. Furthermore, the infidelity also
grows with system size, and as such we require more ansatz
repetitions to faithfully represent the increasingly correlated
quantum states. For the N = 8 state-vector simulations of
Sec. IV A we use five repetitions of the hardware-efficient
gate fabric, for the N = 2 noisy simulations of Fig. 7 we set
the number of repetitions to 1, and for the N = 4 quantum
device experiments of Fig. 8 the number of repetitions is equal
to 2. Note that in the latter case, we used the preoptimized
p-VQD parameters from the state-vector simulation to
time-evolve the state on the noisy hardware. Additionally, we
experimented with different numbers of time steps and found
that the optimal number of time steps needed is 7 for N = 6
and N = 8 while it is 14 for N = 2 and N = 4.

2. Passive state optimization

Analogous to p-VQD, we use the BFGS optimizer for the
state-vector simulations and the SPSA for the noisy simulator

and real-device experiments. With the exception of the hard-
ware experiments, for which only a single data point per point
in time is collected, we repeat each classical simulation with
100 random seeds and take the average. Figure 10(a) shows
the average number of required BFGS optimization steps to
reach a precision of 10−6 in the cost as a function of the
subsystem size M for an example of a charged state at t = 0.4.
The number of repetitions was fixed to 2. Note that the number
of parameters in the circuit ansatz grow linearly in M. We
also display the observed standard deviation of the ergotropy
versus the subsystem size [see Fig. 10(b)].

In Fig. 11 we show two training curves of the passive state
optimization using the SPSA that were collected for the two
exemplary charging times t = 0.5 and t = 0.9 of Fig. 7 in the
main text. The dark (bright) color corresponds to the mean
(standard deviation) over 100 independent noisy simulations
using the FAKEPERTH backend, while the dashed line indicates
the theoretically exact ergotropy. The optimization usually
converged within the first ∼50–100 steps. However, the final
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FIG. 9. Infidelity between the p-VQD-optimized state (via ideal, noise-free state-vector simulations) and the exact time-evolved state for
system sizes N = 2 (a), N = 4 (b), N = 6 (c), and N = 8 (d) and different numbers of repetitions of the variational circuit. The optimizations
were performed using BFGS for the Ising chain dynamics defined in the main text.

013038-10



VARIATIONAL QUANTUM ALGORITHM FOR ERGOTROPY … PHYSICAL REVIEW RESEARCH 6, 013038 (2024)

FIG. 10. (a) The average number of BFGS iterations required
to achieve a final precision of 10−6 in the cost of the passive state
optimization as a function of the subsystem size M. (b) The cor-
responding standard deviation in the ergotropy over 100 runs. The
optimizations were performed using the noise-free state-vector sim-
ulator, a total system size N = 8, number of repetitions of 2, and a
charging time t = 0.4.

value can deviate from its exact prediction due to noise com-
ing from the mean and passive energy measurements as well
as errors arising in the p-VQD time evolution.

We also show two typical training curves for the real-
device experiment results (see Fig. 8 in the main text)
performed on ibm_perth in Fig. 12. Rather than measuring
the passive energy after each optimization step, which would
require additional circuit evaluations, we instead estimate its
value by averaging the two expectation values used by the
SPSA at each iteration.
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FIG. 11. The average ergotropy E over 100 runs at each SPSA
iteration for charging times t = 0.5 (a) and t = 0.9 (b) using noisy
simulation with FAKEPERTH (see also Fig. 7 in the main text). The
shaded region indicates the standard deviation. The black dashed line
corresponds to the exact result calculated using ED methods. N = 2,
M = 1.
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FIG. 12. The estimated ergotropy E at each SPSA iteration
for charging times t = 0.2 (a) and t = 0.4 (b) measured on the
ibm_perth quantum hardware (see also Fig. 8 in the main text). The
black dashed line corresponds to the exact result calculated using ED
methods. N = 4, M = 2.

APPENDIX B: ALTERNATIVE CHARGING PROTOCOL

In this Appendix we provide results obtained with a
simplified battery charging scheme that does not require Trot-
terization or variational optimization and thus can be easily
implemented on NISQ hardware. Instead of evolving the sys-
tem with the transverse field Ising Hamiltonian of Eq. (10) we
turn off the magnetic field during the quench and only evolve
with the term containing the nearest-neighbor coupling

H1 = −J
N−1∑
i=1

σ x
i σ x

i+1. (B1)

Note that H1 is composed of only commuting terms. Therefore
the time evolution operator e−iH1t can be exactly decomposed
into a single layer of two-qubit gates acting only on neighbor-
ing spins leading to

|�(t )〉 = e−iH1t |0〉 =
N−1∏
i=1

Ri,i+1
XX (θ )|0〉, (B2)

where Ri,i+1
XX (θ ) = exp(−i θ

2 σ i
x ⊗ σ i+1

x ) and θ = −2Jt . Note
that the charging time t is encoded as the angle of the RXX

gates.

1. State-vector simulation

We run VQErgo on charged states of an N = 10 spin
system and show the achieved final ergotropies for different
subsystem sizes M in Fig. 13. Interestingly, we find that a
single repetition is sufficient to achieve a high accuracy with
the exactly computed values (orange curve) for all considered
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FIG. 13. (a)–(i) The ergotropy E as a function of the charging time t for different subsystem sizes M (total system size N = 10). The
transverse magnetic field is turned off during the charging quench. The orange curve indicates the exact values, while the symbols denote
average values of 100 optimization runs using a state-vector simulation with different numbers of repetitions. The total injected work is shown
as a gray dashed curve.

cell sizes and charging times. This suggests that the evolved
state only contains nearest-neighbor correlations irrespective
of the charging time t . Moreover, we observe that the stored
work and ergotropy coincide at times t = (k + 1/2)π/J , with
k = 0, 1, 2, . . . reaching an energy W = E = 2h. At these
times the charged state is in a fully disentangled product state.
The ergotropy in this case depends solely on the number of
qubits M < N from which we want to extract the energy

instead of the full system size N . This is shown in Fig. 14
for N = 6, whereby the ergotropy and work are the same as in
the N = 10 case in Fig. 13. Note that for the case of M = 1,
it is also possible to obtain an analytical expression for the
ergotropy:

E (t ) =
{

0 if tan2(Jt ) � 1

2h[sin2(Jt ) − cos2(Jt )] if tan2(Jt ) > 1.
(B3)
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FIG. 14. (a)–(e) Same as Fig. 13, but for a total system size of N = 6 and using a noisy simulator (FAKEPERTH) instead. The number of
repetitions is fixed to 1.
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FIG. 15. The ergotropy (orange solid curve) and total work (gray
dashed curve) computed via exact techniques vs the charging time t
for a system with N = 2, M = 1 undergoing the simplified dynamics.
The symbols indicate the measured ergotropies obtained from either
a classical noisy VQErgo simulation or real-hardware experiments
performed on ibm_perth. In the case of the former, the symbols
(error bars) denote the average (standard deviation) over 100 inde-
pendent runs of the optimization.

Overall, and unsurprisingly, the dynamics in this case is more
trivial than the dynamics generated by the full transverse
field Ising Hamiltonian. The time-evolved state is entangled

only over short distances, and thus the passive state can be
prepared with at most a single layer of nearest-neighbor two-
qubit gates. It would be interesting to study the quantum
battery with charging protocols interpolating the simplified
case discussed here and the Ising dynamics from the main
text by applying a small number of quenches with alternating
noncommuting generators.

2. Noisy simulations

We have also tested VQErgo with the simplified charging
protocol on noisy simulators and hardware. We choose six
qubits of the seven-qubit ibm_perth device and plot an aver-
age of the measured ergotropies for different subsystem sizes
M obtained on the noisy classical simulator in Fig. 14. The
number of repetitions of the passive state ansatz circuit is 1.
However, extra SWAP gates are required to map the full circuit
to the underlying topology of the real device, which ultimately
introduces more noise. The error between the exact and varia-
tionally obtained ergotropies grows with the battery cell size.
On the other hand, the error is independent of the charging
time, which is in contrast to the p-VQD-based simulation,
where errors naturally built up over time. Despite the noisy
values, we can successfully infer the qualitative dependence
of the ergotropy on the charging time.

Finally, we also report two results obtained on the
ibm_perth quantum device for a system with N = 2, M = 1
in Fig. 15. Again, we find an overall good agreement between
the measured values and their exact prediction.
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