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Spatial inversion symmetry breaking of vortex current in a biased-ladder superfluid
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We investigate the quench dynamics of interacting bosons on a two-leg ladder in the presence of a uniform
Abelian gauge field. The model hosts a variety of emergent quantum phases, and we focus on the superfluid
biased-ladder phase breaking the Z2 symmetry of two legs. We observe an asymmetric spreading of vortex current
and particle density, i.e., the vortices propagate ballistically on the right and dissolve during the propagation
on the left, indicating spontaneous breaking of the spatial inversion symmetry. By decreasing the repulsion
strength, it is found that the ballistic propagating vortices are more robust than the dissolving ones on the
other side.
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I. INTRODUCTION

Lattice gauge theory (LGT), an equivalent form of gauge
field, has manifested advantages in comprehending many
effects in condensed matter physics [1]. Enormous pro-
gresses of quantum computations in the last decade have
then stimulated intense research activities to explore the
possibility of encompassing LGTs [2–7]. Currently, propos-
als have been made in a couple of platforms, including
cold atoms in optical lattices, trapped ions, Rydberg atoms,
and superconducting qubits [8–21], and proof-of-principle
experimental realizations of lattice gauge fields have been
conducted [22–28].

A specific type of gauge field, known as background (or
static) gauge field [29–32], has drawn significant attention
[33–45]. This field, together with proper interactions, generate
an extensive collection of many-body phases with remarkable
properties, such as superconductivity and Mott insulators.
With the experimental developments in synthetic dimension
and artificial gauge fields, one-dimensional quantum simu-
lators provide convenient realizations of higher-dimensional
quantum models [32,46,47], such as the Harper-Hofstadter
model [33,36,37,40,42,47]. The edge states of the two-
dimensional Hofstadter model are found to be repetitions of
ladder eigenstates with an exponential decay, indicating that
the band structure of a two-leg ladder can be traced back to
the edge states of the Hofstadter model [48]. These studies
have paved ways for investigating other scenarios including
both bosonic and fermionic ladders under Abelian fields.
Moreover, properties beyond the phase diagram of the mul-
tileg flux ladders remains active lines of research, e.g., the
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possible existence of Laughlin-like states [45,49–51] and the
calculation [52] and measurement [53–55] of Hall effect. Re-
search interests were further extended to the nonequilibrium
dynamics by imposing a quantum quench [8,21,28,54,56–60].
The dynamics of particles was simulated, e.g., two repulsively
interacting bosons on a real-space flux ladder [28]. The sensi-
tivity of model parameters and initial states has been noticed
in the short-time dynamics, which is essential in experimental
simulations [21,28,54,56,57].

As shown in a landmark study based on bosonization
in 2001 [61], the Meissner and vortex phases, which are
reminiscent of a type-II superconductor, are found in the
two-leg flux-ladder model. A variety of emergent quantum
phases are hosted by the bosonic flux ladders in presence
of on-site interaction [50,61–77], including Meissner phase,
vortex-liquid phase, vortex lattice phase, the charge-density
wave (CDW) phase, and the biased-ladder phase (BLP). The
configurations of local currents 〈 j‖�,r〉 and 〈 j⊥r 〉 serve as one
of the most important quantities to distinguish the phases
[67]. The Meissner phase possesses a finite uniform chi-
ral leg current encircling the ladder while the rung current
vanishes. Currents in CDW and BLP are very similar with
that in the Meissner phase but would break some discrete
symmetries [67]. In the vortex phases, the rung currents on
the inner rungs develop, forming vortices in the system de-
pressing the chiral current. Except CDW, other phases can
be further divided into two phases, superfluid and Mott in-
sulator, which can be characterized by calculating the central
charge, as well as the entanglement entropy [56,67]. More
interestingly, the main characteristics of BLP turns out to
be the finite leg-population imbalance, stabilized by the in-
terchain interactions [56]. In the thermodynamic limit the
ground state would thus be twofold degenerate, and the sub-
sequent Z2 symmetry in terms of inversion of two legs and
the signs of relevant flux is spontaneously broken [67]. Con-
sidering these remarkable features lead to exotic dynamical
effects, therefore, we focus on the superfluid BLP phase in the
present work.
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FIG. 1. Sketch of the rung current excitation creating asymmetric
spreading process. Typical states on the ladder at four instant points
are drawn from top to bottom. At t = 0, the rung current excitation
operator (green arrow) is applied to the BLP ground state. The
local population is denoted by the size of dots and the exhausted
population is denoted by empty circles. The deviations of the currents
from the background chiral currents are represented by black arrows.
The red and blue squares label the clockwise and counterclockwise
vortices, respectively, and the color depth indicates the magnitude of
the vortex current.

II. METHODOLOGY

A. Model

As sketched in Fig. 1, the Hamiltonian of a paradigmatic
two-leg flux-ladder model is given by

H = − J
L−1∑

r=1

2∑

�=1

(a†
�,ra�,r+1 + H.c. )

− J⊥
L∑

r=1

(e−irφa†
1,ra2,r + H.c. )

+ U

2

L∑

r=1

2∑

�=1

n�,r (n�,r − 1) + V
L∑

r=1

n1,rn2,r, (1)

which is residing on a ladder with L rungs. Herein, the lo-
cal operator a†

�,r (a�,r ) creates (annihilates) a boson on the
lower (� = 1) or the upper (� = 2) leg of the rth rung
and n�,r = a†

�,ra�,r ; J and J⊥ are nearest-neighbor hopping
constants along legs and rungs, respectively; φ is the flux
per ladder plaquette; the bosons also have on-site repul-
sion U and interchain repulsion V . We define the filling
as f = N/(2L), where N is the total number of bosons.
Throughout this work, we set φ = 0.85π , J = 1, J⊥ = 3,
U = 2, f = 0.8, the lattice constant a = 1, and h̄ = 1. By
this setting, the system has been determined to reside in the
superfluid BLP phase [67], which is essential to produce
the symmetry breaking as discussed below, and we always
choose the ground state with lower leg population larger
than upper.

It is worth noting that the model possesses a gauge
freedom that one can choose different Peierls phase factors
as long as the total flux of a single ladder plaquette remains
invariant. The chosen gauge described by Hamiltonian

Eq. (1) is a so-called rung gauge in which the hopping
matrix elements on the legs are real and on the rungs are
complex.

By the Heisenberg equation of motion dn�,r

dt = i[H, n�,r],
we define a local current operator on legs as

j‖�,r = iJ (a†
�,ra�,r+1 − a†

�,r+1a�,r ), (2)

and the current operator on the rung as

j⊥r = iJ⊥(e−irφa†
1,ra2,r − eirφa†

2,ra1,r ). (3)

It is also convenient to define a background chiral current

jch = 1

L − 1

L−1∑

r=1

〈 j‖1,r − j‖2,r〉 (4)

to characterize the average current circulating the ladder along
the legs.

B. Methods

The ground-state results are calculated by using the
density-matrix renormalization group (DMRG) method
[78–81]. We simulate the flux ladder up to L = 200 rungs
and the bond dimension is typically up to 1000. The exis-
tence of repulsive interactions allows us to employ a cutoff
for the maximum number of local boson states. We keep at
most four local boson states and have also checked that with
six and eight states, which produce consistent results (see
Appendix C). The subsequent time evolution is then sim-
ulated via time-evolving block decimation (TEBD) method
[82–84]. For the simulations in the main text, we set fixed
discarded weight cutoff = 10−6 and maximum bond dimen-
sion χ = 1000 to reach long times. Once the maximum bond
dimension is reached, we continue the simulation with fixed
bond dimension which will lead to increased numerical errors.
To quantify the uncertainties, we present the convergence tests
with respect to the number of local boson states and maximum
bond dimension χ in Appendix C. Even though deviations
of local observables already start to emerge at times t < 15,
the asymmetry is observed in the spreading throughout the
convergence tests. More data and detailed discussion can be
found in Appendix C.

C. Quantum quench

Let us first describe the main scenario we are investigating
as displayed in Fig. 1. The BLP ground state hosts a finite
uniform anticlockwise chiral leg current encircling the ladder
and vanishing rung current. A single rung in the middle is then
excited to generate vortex current at time t = 0 by applying a
rung current operator without phase factor to the superfluid
BLP ground state, i.e., i(a†

1,L/2a2,L/2 − a†
2,L/2a1,L/2)|ψ0〉. In

other relevant works [56,65] where the internal atomic states
are identified with the legs of the ladder [spin up correspond to
the upper leg (� = 2) and spin down correspond to the lower
leg (� = 1)]. a†

1,L/2a2,L/2 becomes a†
↓,L/2a↑,L/2 which flips the

local spin up to spin down. Therefore, the rung current oper-
ator used in our quench protocol i(a↓,L/2a†

↑,L/2 − a†
↑,L/2a↓,L/2)

is a spin-flip operator like σ y which could be implemented by
the lasers in the experiments. Nevertheless, the experimental
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FIG. 2. Snapshots of the time evolution of local leg current configurations 〈 j‖�,r〉 with V = 3 after the initial rung current excitation.
“Charge” current 〈 jc

r 〉 is shown in the rightmost column, whose deviation from mean values quantifies the leg currents of the vortices.

preparation of BLP ground states is difficult, making the ex-
ploration of dynamics under our quench protocol challenging.

III. RESULTS

The excitation creates accumulation of populations on the
upper leg (� = 2) which we call “particle” (bigger dots)
and three sites with exhausting populations on the lower leg
(� = 1) as we call “holes” (circles). This leads to current
change on top of background chiral currents which gen-
erates two adjacent clockwise vortices (red squares) with
current (black arrow) on the edge. On the right side, the
“particle” moves along the same direction with the upper leg
current of clockwise vortex making them constructive and

move outwards ballistically like a solitary wave or a parti-
cle. On the left side, however, the concentration of “hole”
and “particle” oscillate between two neighboring sites on
the same rung, which is similar to the recombination pro-
cess of majority and minority carriers in semiconductors.
The corresponding rung current oscillates between up and
down legs in the same fashion, giving rise to a vortex on
the initial position alternating between clockwise and coun-
terclockwise. In addition, vortices with opposite directions
are destructive, so they move forward diffusively following
with quick decay. This resembles how plane water waves
spread. In short, vortices propagate ballistically on the right
and dissolve during the propagation on the left in just one
ladder.
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FIG. 3. Snapshots of time evolution of the charge concentration
configurations 〈nc

r〉 = 〈n1,r + n2,r〉 with V = 3. The shaded region
shows the approximate location of wavepacket of vortices on the left
side and the dashed line indicates the propagation of the wavepacket
of vortices on the right side.

Snapshots of current configurations in the time evolution
after rung current excitation are shown in Fig. 2. The initial
current excitation generates deviations of the local currents
both on the upper leg 〈 j‖2,r〉 and lower leg 〈 j‖1,r〉 at t = 0.
The deviations of the current then form the vortices spreading
out towards the two directions. The deviations in the two
legs are shown to be always almost identical in magnitude
but the signs are different. Hence, in order to manifest the
symmetry breaking of spatial inversion, we define a “charge”
current 〈 jc

r 〉 = 〈 j‖1,r − j‖2,r〉 to fingerprint the vortices. It is ob-
served that the central “charge” current behaves like a source,
emitting vortices outward and moving. Positive and negative
vortices alternate and oscillate on the left side, while there is
visibly a big solitary vortex propagating ballistically on the
right side: The asymmetry appears.

We relevantly calculated the quench dynamics of the
same local rung current operator applied to the ground
states of other phases. The results (for details, see Ap-
pendix A, Fig. 5) show that the asymmetry is absent in other
phases, making it an exclusive signature of the biased-ladder
phase (BLP).

We similarly calculate the population configurations on
each leg 〈n�,r〉 (see Appendix C, Fig. 8) which symmetrically

FIG. 4. The net “charge” current jν and “charge” concentration
〈nc

r〉 = 〈n1,r + n2,r〉 in spreading of vortices with various V . The
wavepackets of the two counter-propagating vortices are shown in
different colors. (a)−(c) time evolution of jν with V = 0.125, V =
1.125, and V = 3. The maximum points of 〈nc

r〉 and jν at t = 30 are
shown in (d) and (e).

spread out from the central site. To see the asymmetric
influence of chiral current, we define the relevant “charge”
concentration as 〈nc

r〉 = 〈n1,r + n2,r〉. As shown in Fig. 3, after
the wavepacket splits into two counter-propagating parts, the
main part of the wavepacket on the left is blocked by the chiral
current and the minor spreading part decays quickly. On the
other hand, the decay of the right wavepacket is much slower.
More importantly, regardless of the slight broadening, a
distinguishable solitary wavepacket shape is always reserved.
This visible asymmetry significantly exhibiting the spreading
of “charge” is inversion symmetry broken in space. In essence,
the vortices on both sides are accompanied by local “charge”
concentrations whose deviation from mean values are
proportional to that of the local “charge” currents. Therefore,
both the “charge” concentration 〈nc

r〉 and the “charge” current
〈 jc

r 〉 can fingerprint the vortices. We can also simultaneously
define the “spin” concentration as 〈ns

r〉 = 〈n1,r − n2,r〉, which
reflects the local population imbalance between the two legs.
The spreading of the “spin” concentration is symmetric,
which differs from that of the “charge” concentration (see
Appendix C for more details). Namely, the influence that the
vortices exerted on the local leg-population imbalance is not
proportional to the local charge concentrations, indicating
the influence is almost the same for the ballistic propagating
vortices and the dissolved vortices.

To figure out the origin of this asymmetric spreading, the
parameter of interchain repulsion V is changed. Figure 4
shows the net current jν = 〈 jc

r − jch〉 and the maximum point
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of “charge” concentration 〈nc
r〉 of the two counter-propagating

vortices. From Figs. 4(a)–4(c), one can clearly see that fol-
lowing the increase of V , the net current on the left is fading
while it is fairly stable on the right. That is, with small V ,
the net current of the left wave is larger than the right one,
and with large V , the left current fades and the spreading
then prefers the right side. The asymmetric fading facilitates
the imbalance of the two sides which mainly leads to the
asymmetric spreading. In addition, the speeds on the two sides
are roughly equal and linear with time.

As described above, the excitation creates the “particle”
and “holes” which spread from the central rung creating a
counterclockwise vortex (blue in Fig. 1) moving left and a
clockwise vortex (red in Fig. 1) moving right. It is essential
that the counterclockwise vortex enlarges the chiral current
jch while the clockwise vortex suppresses it. For cases with
small V , the spreading of “particle” and “hole” will weaken
the imbalance of leg population so that the system is almost
close to the Meissner phase. Since the chiral current grows
monotonically from BLP to Meissner phase [56,67], the coun-
terclockwise vortex (blue in Fig. 1) will be mutually enhanced
with the chiral current. Following the increase of V , the chiral
current is suppressed and the imbalance of leg population
is then stabilized. As a consequence, the counterclockwise
vortex is decreased, and when V exceeds a certain value, the
“particles” and “holes” on the left side are almost blocked and
difficult to spread out. In this situation, the concentrations of
“hole” and “particle,” together with the corresponding rung
current, start to oscillate on the same rung. On the other hand,
considering that the clockwise vortex always decreases the
chiral current, V does not matter on it. Therefore, the clock-
wise vortex moving right overtakes and becomes more robust
than the counterclockwise vortex moving left. It is counterin-
tuitive, as the clockwise vortex suppressing the chiral current
jch can propagate ballistically while the counterclockwise vor-
tex enlarging the chiral current will be weakened and dissolve
in the propagation.

IV. CONCLUSION

In summary, we have studied the time evolution of vor-
tex current and concentration in a superfluid BLP phase. An
asymmetric spreading of the vortex current is found deter-
mined by the direction of background chiral current. Further
simulations reveal that, as the interchain repulsion increases,
the vortices on the left side are suppressed, while those on
the right side remain robust. This disparity directly leads to
the asymmetry of the spreading. Interestingly, the ballistically
propagating vortices are reminiscent of the ballistic mov-
ing operator front in the emergent dissipative hydrodynamics
[85–89] of operator spreading in Ref. [86], where the results
are obtained in a random quantum circuit model that is con-
strained to have a conservation law. It would be intriguing
to explore a more effective description of vortex spreading,
potentially leading to connections between our findings and
the theories of operator spreading. Besides, with the rapid de-
velopment in the experimental techniques, the ballistic prop-
agating current might prove useful in future experimental im-
plementations of flux ladders exploiting dynamical problems.
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APPENDIX A: QUENCH DYNAMICS OF OTHER PHASES

We relevantly calculated the quench dynamics of the same
local rung current operator applied to the ground states of
other phases, i.e., i(a†

1,L/2a2,L/2 − a†
2,L/2a1,L/2)|ψ0〉. In terms

of the results shown in Fig. 5, the relevant spreading patterns
for initial states in Meissner, vortex liquid, and vortex lat-
tice phases are all symmetric, even if they have some minor
differences with eachother. The asymmetric spreading is the
specific signature of BLP phase based on the current cal-
culation results we received. Comparing the details of the
relevant spreading process for different initial phases might
be an interesting study in the future but requires more compre-
hensive calculations and analyses, which is beyond the scope
of present work.

As the CDW phase exists in the regimes of large U , we
did not try to discuss the spreading process after the local
quench. The asymmetric spreading is the specific signature
of BLP phase based on the current calculation results we have
determined. Comparing the details of the relevant spreading
process for different initial phases might be an interesting
study in the future but requires more comprehensive calcula-
tions and analyses which is beyond the scope of present work.

APPENDIX B: ENTANGLEMENT ENTROPY

In this section, we present the time evolution of the
von Neumann entanglement entropy, defined as SvN =
−Tr[ρln(ρ)] with ρ being the reduced density matrix by
cutting both two legs at the same points to divide the ladder
into two halves. The results are shown in Fig. 6, which are
calculated at the fixed discarded weight (cutoff = 10−6) with
L = 80. One can find that, as well fitted by a logarithmic
function, the entropy grows logarithmically with time, which
is the typical increase brought by a local quench [90–94].

APPENDIX C: DETAILS ON NUMERICAL DATA

In this section we present additional data and give
more details on the numerical quality of the time-evolution
simulations.

The time evolution of ladder system to long times are hard
to calculate considering the system sizes are rather large, as
L = 200. We tried to use a smaller system size (L = 80) to
reduce the computational costs. In terms of our tests, even for
L = 80 keeping discarded weight cutoff = 10−6 needs maxi-
mum bond dimension χ up to 5000 at t = 8.5 and 10 000 at
t = 10 which are not affordable to continue. In this regard, the
entanglement entropy is only calculated to t = 8.0 at the fixed
discarded weight (cutoff = 10−6) with L = 80.

The observation of the spreading process will be affected
by the boundary effects in a small system as the wavefront
gets too close to the boundaries at early times. To vividly
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FIG. 5. The time evolution of 〈 j‖1,r + j‖2,r〉 for three different
initial states. From top to bottom: the Meissner phase (φ = 0.6π ,
J⊥ = 3.0, V = 2), the vortex liquid phase (φ = 0.8π , J⊥ = 1.6, V =
0), and vortex lattice phase (φ = 0.95π , J⊥ = 1.6, V = 0). U = 2,
f = 0.8 consistent with the calculation in the main text, L = 200.

depict the asymmetric spreading process, where vortices
propagate ballistically on one side and dissolve while propa-
gating to the other side, extending the simulation time and al-
lowing vortices to travel longer distances becomes necessary.
Consequently, we utilized a larger system (L = 200) and ex-
tended our simulations to longer times (t = 30 and even t =
60) for the calculations of the local observables in the main

FIG. 6. Time evolution of the von Neumann entanglement en-
tropy for the central bipartition SvN(L/2). The blue line represents
the obtained curve with the coefficients a = 3.1829, b = 3.2637, and
c = −1.4585 after fitting the data with a logarithmic function of the
form a ln (t + b) + c. The system size is L = 80 and V = 3.

text. We can only set a fixed discarded weight (cutoff = 10−6)
and restrict maximum bond dimension (χ = 1000) simultane-
ously to keep the time cost affordable. That is to say, initially,
we run the program with a fixed discarded weight of cutoff =
10−6. However, if the needed bond dimension exceeds χ =
1000, we will not longer increase the bond dimension. Instead,
we continue the simulations with the fixed bond dimension
(χ = 1000). It should be noted that this will reduce numerical
accuracy and may lead to potentially uncontrolled errors.

To quantify uncertainties, we conduct convergence tests
with respect to χ and the maximum numbers of local boson
states. The results are shown in Figs. 7–10. In Figs. 7 and 8, we
calculated the particle densities and currents for L = 200 with
different numbers of local boson states. The time evolution
of the “spin” concentration 〈ns

r〉 = 〈n1,r − n2,r〉 is shown in
Fig. 8, which reflects the local population imbalance between
the two legs. The spreading of the “spin” concentration is
symmetric, and differs from that of the “charge” concentra-
tion. The results in Figs. 7 and 8 indicate that using four local
boson states reduces accuracy, causing small deviations in cur-
rents, whereas the results obtained with six to ten local boson
states appear to converge. In Fig. 9, χ = 1500, 2000 are cal-
culated and compared with the data taken from Figs. 2 and 3
in the main text. Larger χ up to 4000 are also calculated in
a smaller system (L = 80) for comparison which is shown in
Fig. 10. In the tests with respect to χ in Figs. 9 and 10, the de-
viations in currents become increasingly pronounced as time
progresses. The comparisons indicate that employing larger
local dimensions and different numbers of local boson states
already leads to deviations in the currents at t < 15, while the
local particle densities exhibit better convergence in the com-
parison. Nevertheless, the asymmetric spreading can always
be observed among the tests with different control parameters.

Next, we tried to simulate at fixed discarded weight without
restricting the maximum bond dimension. A smaller system
L = 80 was simulated with different numbers of local boson
states (4, 6, and 8). Considering the computational costs,
our simulation was conducted up to t = 10 where keeping

013037-6



SPATIAL INVERSION SYMMETRY BREAKING OF VORTEX … PHYSICAL REVIEW RESEARCH 6, 013037 (2024)

FIG. 7. Snapshots of the time evolution of local leg current configurations 〈 j‖�,r〉 with varying numbers of local boson states: (a) 4 states,
(b) 6 states, (c) 8 states, and (d) 10 states. Here, L = 200, V = 3, χ = 1000, and other parameters consistent with the manuscript.
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FIG. 8. Snapshots of the time evolution of local particle density 〈n‖
�,r〉, the spin concentration configurations 〈ns

r〉 = 〈n1,r − n2,r〉, and the
charge concentration configurations 〈nc

r〉 = 〈n1,r + n2,r〉 with varying numbers of local boson states: (a) 4 states, (b) 6 states, (c) 8 states, and
(d) 10 states. Here, L = 200, V = 3, χ = 1000, and other parameters consistent with the manuscript.
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FIG. 9. Snapshots of the time evolution of local particle density 〈n‖
�,r〉 [(a), (c), (e)] and local leg current configurations 〈 j‖�,r〉 [(b), (d), (f)]

with varying maximum bond dimensions. (a) and (b) correspond to χ = 1000, (c) and (d) correspond to χ = 1500, and (e) and (f) correspond
to χ = 2000. Here, L = 200, V = 3, and other parameters are consistent with the manuscript.

cutoff = 10−6 requires χ up to 12 000. The results are shown
in Fig. 11. Similar to the other tests, there are also deviations
in the currents, and yet the local particle densities exhibit
better convergence. For the outwards propagating vortices on
both sides, the shape of wavepackets are vague in the currents,
while it is easier to identify them in the local particle densities.
The asymmetry between the vortices on the two sides has
emerged in Fig. 11, which remains consistent across all the
tests. Due to the tremendous time consumption, the simulation
with only fixed discarded weight in Fig. 11 cannot be extended
to longer times. For subsequent propagation, where vortices
either propagate ballistically or dissolve, increased errors in
the simulations becomes inevitable.

Based on these tests above, we conclude that the asymme-
try exists while the data for local observables has numerical
errors for the chosen control parameters in the main text.
On the one hand, the appearance of asymmetry in Fig. 11
can exclude the possibility of this asymmetry stemming from
the additional errors caused by simulating with fixed bond
dimension. On the other hand, the comparison involving vary-
ing χ , L, and maximum numbers of local boson states in
Figs. 7–11 demonstrate their independence from the emer-
gence of asymmetry. But the increased errors in the simulation
of subsequent propagation should be noted. In subsequent
quantitative studies, improved computational accuracy is
necessary.
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FIG. 10. Snapshots of the time evolution of local particle density 〈n‖
�,r〉 [(a), (c), (e)] and local leg current configurations 〈 j‖�,r〉 [(b), (d), (f)]

with varying maximum bond dimensions. (a) and (b) correspond to χ = 1000, (c) and (d) correspond to χ = 2500, and (e) and (f) correspond
to χ = 4000. Here, L = 80, V = 3, and other parameters are consistent with the manuscript.
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FIG. 11. Snapshots of the time evolution of local particle density 〈n‖
�,r〉 [(a), (c), (e)] and local leg current configurations 〈 j‖�,r〉 [(b), (d), (f)]

with varying maximum bond dimensions. (a) and (b) correspond to 4 states, (c) and (d) correspond to 6 states, and (e) and (f) correspond to
8 states. Here, we simulate to t = 10 with only fixed discarded weight cutoff = 10−6 and do not restrict maximum bond dimension. L = 80,
V = 3, and other parameters are consistent with the manuscript.
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