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Universal scaling relation and criticality in metabolism and growth of Escherichia coli
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The metabolic network plays a crucial role in regulating bacterial metabolism and growth, but it is subject
to inherent molecular stochasticity. Previous studies have utilized flux balance analysis and the maximum
entropy method to predict metabolic fluxes and growth rates, while the underlying principles governing bacterial
metabolism and growth, especially the criticality hypothesis, remain unclear. In this study, we employ a
maximum entropy approach to investigate the universality in various constraint-based metabolic networks of
Escherichia coli. Our findings reveal the existence of universal scaling relations across different nutritional
environments and metabolic network models, similarly to the universality observed in physics. By analyzing
single-cell data, we confirm that metabolism of E. coli operates close to the state with maximum Fisher
information, which serves as a signature of criticality. This critical state provides functional advantages such
as high sensitivity and long-range correlation. Moreover, we demonstrate that a metabolic system operating at
criticality takes a compromise solution between growth and adaptation, thereby serving as a survival strategy in
fluctuating environments.

DOI: 10.1103/PhysRevResearch.6.013035

I. INTRODUCTION

Molecular stochasticity in metabolic processes is a crucial
factor in cellular physiology, impacting both bacterial growth
and physiological adaptation [1,2]. With the significant de-
velopments of single-cell technologies, it is feasible to track
protein expression, metabolic fluxes, and cellular growth and
division at the single-cell level [3–5]. Universal patterns, such
as scaling laws in protein expression [6,7], cellular growth
and division [8,9], were revealed independently of bacterial
species and nutritional environments. However, the underly-
ing general principle governing the metabolic stochasticity of
bacterial physiology remains elusive.

The tantalizing hypothesis of criticality in living sys-
tems, wherein these systems operate near critical points,
has been investigated in various biological systems, includ-
ing neural systems [10,11], natural swarms [12,13], and
gene network of morphogenesis [14]. The critical state is
a state between order and disorder, which confers evolu-
tionary advantages that enable living systems to effectively
adapt to fluctuating environmental conditions [15]. Signatures
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of criticality, such as long-range spatiotemporal correlations
and heightened sensitivity to stimuli, also contribute to bi-
ological functions [16,17], which may potentially lead to
several general trade-offs such as robustness and accuracy
[18], robustness and evolvability [19], and robustness and
flexibility [20]. In bacterial metabolism, the coordinated be-
havior of individual biomolecules is crucial for sustaining
high growth rates and minimizing lag time during nutri-
ent shifts, highlighting an inherent trade-off between growth
rate and physiological adaptation [21]. Exploring the crit-
icality in bacterial metabolism and growth will shed light
on the underlying principles governing metabolic phenotypic
heterogeneity, cell-to-cell growth rate fluctuations, and the
growth-adaptation trade-off. Universality is a fundamental
concept in critical phenomena. Different systems may exhibit
universal properties that are often irrelevant to most details of
the system, so it is also important to reveal universal laws in
biological systems.

To explore the criticality in bacterial metabolism and
growth, based on the stoichiometric modeling of metabolic
networks [22–24], we introduce a maximum entropy model
for metabolic networks of Escherichia coli. The maximum
entropy distribution of metabolic networks sampled from the
feasible space of metabolic fluxes has been used to explain
and predict the growth rate fluctuations and metabolic fluxes
[25–28]. However, the maximum entropy model of metabolic
networks still lacks systematic studies on diverse metabolic
network models. With the discovery of new genomic and
biochemical knowledge, the metabolic networks are con-
stantly updated and periodically released [29–31]. Moreover,
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simple metabolic network models can be constructed depend-
ing on the metabolic pathways of interest [32,33]. It will be
of great interest to study the universality and criticality in
these metabolic networks of varying complexity. Furthermore,
the criticality, occurring at the boundary of the order-disorder
phase transition, is regulated by an effective parameter known
as the Lagrangian multiplier in the maximum entropy model.
Inferring this effective parameter from the single-cell data
can provide insights into whether bacterial metabolism and
growth processes operate in the vicinity of the critical state.

In this study, we simulate the maximum entropy distribu-
tions across various nutritional environments and metabolic
networks, revealing universal scaling relations between
growth rate and Fisher information. We compare the pa-
rameter derived from single-cell data with the parameter
obtained through maximum Fisher information. Furthermore,
we quantitatively discuss the trade-off between growth and
adaptation. We focus on metabolic networks and experimental
data from E. coli, and our approach is applicable to studying
the metabolism and growth of other bacteria.

II. RESULTS

A. Order parameter and Fisher information

The maximum entropy distribution of metabolic network is
determined by the average growth rate and the feasible solu-
tion space of metabolic fluxes [25], depending on the specific
details of metabolic models and the nutritional environment,
written as

p(v|β ) = 1

Z (β )
eβe λ(v)

λe
max . (1)

βe as a dimensionless parameter is the product of the La-
grange multiplier β and λe

max which is the maximum growth
rate under environment e. The Lagrange multiplier β can be
understood as the regulatory capacity of a bacterial regulatory
network. In metabolic networks, higher growth rate states
require accurate matching between metabolic fluxes, implying
that more precise regulatory capacity (large β) is required to
achieve higher growth rates (large λ).

We studied several common metabolic models of E. coli:
the Core model [32], iJR904 [29], iAF1260 [30], and iJO1366
[31]. Among these models, the Core model is a simpli-
fied carbon metabolic model, the others are genome-level
metabolic models. The maximum entropy (MaxEnt) distri-
bution of metabolic fluxes is obtained by the hit-and-run
sampling method (see Appendix D). As shown in Fig. 1(a),
with the gradual increase of the dimensionless parameter βe,
the probability distribution of the normalized growth rate
gradually shifts to the right. The width of the probability
distribution is narrow when βe is extremely large or small,
and wider when βe is moderate. The MaxEnt distributions in
various nutritional environments and metabolic models have
similar trends (see Fig. 1 in the Supplemental Material [34]).

In the metabolic models, we defined the order parameter as
the degree between the uniform distribution state (disordered)
and the maximum growth rate state (ordered), which is

φ(βe) = 1

Nflux

∑
i

∣∣∣∣ vi(βe) − vi(βe = 0)

vi(βe → ∞) − vi(βe = 0)

∣∣∣∣. (2)

FIG. 1. The probability distribution of normalized growth rate
and order parameter change with βe. (a) The probability density
functions of normalized growth rate under different βe. The prob-
ability density distribution is calculated from the MaxEnt sampling
data (iJR904 model), and it gradually moves to the right as βe

increases. The exchange flux of glucose in iJR904 is set to be −10
mmol gDW−1h−1, which results in the maximum growth rate λe

max =
0.9219 h−1. The range of β is from 0 to 1500. (b) The order param-
eter φ defined in Eq. (2) as a function of βe. The order of MaxEnt
distribution in iJR904 ranges from the disordered state (φ = 0) to the
ordered state (φ = 1) by adjusting the dimensionless parameter βe.
The uniform distribution (βe = 0) corresponds to the disordered state
(φ = 0) and the maximum growth rate state (βe → ∞) corresponds
to the ordered state (φ = 1).

vi(βe) is the average of flux vi in the MaxEnt distribution, and
Nflux represents the number of fluxes in the metabolic model.
The order parameter φ = 0 indicates that the metabolic sys-
tem is in a disordered state, corresponding to the uniform
distribution with a small average growth rate. As βe ap-
proaches infinity, the order parameter φ gradually increases
to 1, corresponding to the flux balance analysis solution with
maximum growth rate [see Fig. 1(b)].

In order to quantify the characteristics of the MaxEnt distri-
butions in different models, we introduced Fisher information,
which is an important quantity not only in information theory
but also in statistical physics, e.g., in the geometric repre-
sentation of thermodynamics, where Fisher information is a
geometric metric [35]. In the MaxEnt model, Fisher informa-
tion (FI) is defined as

F = ∂λ(βe)/λe
max

∂βe
= [

λ(βe)/λe
max − λ(βe)/λe

max

]2
. (3)
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FIG. 2. The relation between Fisher information (FI) and βe in
different metabolic models. The subfigures represent the relationship
between Fisher information and βe in the Core model, iJR904 model,
iAF1260 model, and iJO1366 model, respectively. Points in the sub-
figures are the sampling results of the MaxEnt distributions, and the
lines stand for the fitted analytical results.

It can be seen that the Fisher information represents the de-
gree of the normalized average growth rate changing with
parameter βe and is also the variance of the normalized growth
rate. In Fig. 2, Fisher information increases with βe and then
decreases after reaching the maximum value FI∗ at βe∗, which
depends on the specific metabolic model. Comparing with
Fig. 1(b), the metabolic system is found to be ordered for
βe > βe∗ and disordered for βe < βe∗.

The MaxEnt distribution is determined by the parameter
βe and the uniform distribution under βe = 0. As shown
in Ref. [25], the beta distribution has a strong fitting abil-
ity to the uniform distribution of normalized growth rate
p(λ/λe

max)|βe=0, which is the state density function of the
normalized growth rate. We used the beta distribution to fit
the uniform distributions of normalized growth rate in differ-
ent metabolic models, and the relationships of λ/λe

max ∼ βe

and FI ∼ βe are obtained and consistent with the simulation
results (see Appendix E).

B. Universal scaling relations

The nutritional environment and metabolic network struc-
ture determine the feasible space P of metabolic fluxes,
resulting in significant differences in the choice of metabolic
pathways under different environments. For example, af-
ter the nutritional shift-up, metabolic pathways need to be
switched to maintain efficient cellular growth and metabolism.
Although the feasible spaces of diverse environments and

FIG. 3. Universal relations of λ/λe
max∼βe and FI∼βe. The sim-

ulated data of iJR904 model collapse together under five kinds of
carbon resources, showing universal relations of λ/λe

max∼βe (a) and
FI∼βe (b). In the same nutritional environment, after scaled by di-
mension D, the simulated data of the Core model, iJR904, iAF1260,
and iJO1366 also collapse together, showing universal relations of
λ/λe

max∼βe/D (c) and FI × D∼βe/D (d).

models are quite different, the MaxEnt models of metabolic
networks still exhibit universal laws. As shown in Fig. 3(a),
the relationships of λ/λe

max∼βe under four different carbon
sources (glucose, lactose, succinate, and glycerine) in iJR904
model collapse together, suggesting that the transition of car-
bon sources has little effect on the normalized average growth
rate λ/λe

max. As shown in Eq. (3), Fisher information is the
slope of the relationship of λ/λe

max∼βe. According to the uni-
versal scaling relation in different nutritional environments,
the relationships between FI and βe also collapse together
[Fig. 3(b)]. The normalized average growth rate and Fisher
information in these universal relations are similar to the spon-
taneous magnetization and susceptibility in magnetic systems,
which exhibit universal curves among various metals [36].
The difference is that temperature is scaled by the critical tem-
peratures of different metals, and β is scaled by the maximum
growth rate under different nutritional environments.

The dimensionality D of the metabolic model (see Ap-
pendix C), analogous to the scale of physical system,
represents the degrees of freedom of the metabolic network
model and has a large impact on the shape of feasible space
P . Therefore, even in the same nutritional environment, the
normalized growth rate distributions in different models have
large differences. However, by scaling the dimensionless pa-
rameter βe with the model dimension D, the relationships
of λ/λe

max∼βe/D in four different metabolic models col-
lapse on a universal relation [Fig. 3(c)]. The relationships
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of FI × D∼βe/D also collapse together [Fig. 3(d)], show-
ing finite-scale scaling for metabolic networks of different
scales. It is analogous to the finite-size scaling law in natu-
ral swarms [12,37]. The system scale of swarms is easy to
adjust; however, the dimensionality of metabolic network is
difficult to change due to the limited number of metabolic net-
work models of E. coli. Interestingly, the parameter with the
maximum Fisher information (MaxFI) βe/D ≈ 1 is consistent
with the critical point kc ≈ 1 of maximum entropy models
in other biological systems [11,38,39]. It indicates that there
is a universal critical point in the maximum entropy model
of biological systems, independent of the specific details of
biological systems. The mechanism of this universal feature
in biological criticality deserves further study.

C. Experimental test of criticality with single-cell data

The signature of criticality is a divergence of Fisher in-
formation in the thermodynamic limit, and a maximum of
Fisher information for the finite-size systems [40]. An in-
teresting question is whether the distributions of growth rate
measured in biological experiments are in the vicinity of the
critical state. We used previously published data [9], where E.
coli were stably grown in stable conditions for long periods
of time, to test the criticality hypothesis in the context of
metabolism and growth. The key point is whether the param-
eter βe of experimental growth rate distribution is close to the
βe in the MaxFI state.

By fitting the parameters β and λe
max, the MaxEnt dis-

tributions of growth rate in four different models and the
experimental growth rate distribution have an excellent match
[Fig. 4(a)]. The best-fitted βe vary widely across different
models, but is close to the βe in the MaxFI state, showing
a linear relationship between the best-fitted βe of single-cell
data and the parameter βe with the MaxFI [Fig. 4(b)]. It sug-
gests that the Fisher information of the experimental growth
rate distribution of E. coli is close to the MaxFI independent
of the choice of metabolic models.

According to the definition of Fisher information in Eq. (3),
the normalized average growth rate is most sensitive to the
parameter βe when the Fisher information is maximum. In
the MaxEnt model of metabolic networks, the Lagrange
multiplier β represents the regulation capability of bacterial
regulatory network [25], and the parameter λe

max corresponds
to the external nutritional environment. Therefore, when
Fisher information is maximized, the normalized average
growth rate is highly sensitive to the variation of internal
regulation and external environment, which is conducive to
the rapid adjustment of growth rate to internal and external
fluctuations, and thus has an evolutionary advantage.

D. Long-range correlation of metabolic fluxes
near the MaxFI state

The large correlation between individuals is an important
feature of criticality, which may provide living systems with
coordinated behavior across space and time. We will show
that the correlations between metabolic fluxes and growth rate
exhibits a clear structure of strong (anti-)correlation near the
MaxFI state.

FIG. 4. Comparison of measured growth rate distribution and
MaxEnt distributions of different models. (a) Fitting the MaxEnt
distributions of different metabolic models to the probability density
function of the single-cell growth rate measured in the experiment
[9]. The circles are the single-cell experimental data, and the lines are
the fitted MaxEnt distributions of metabolic models. (b) In different
metabolic models, the best-fitted parameters βe are close to the βe

with MaxFI, showing a linear relationship. The four points represent
four metabolic models which are listed in (c). The solid line is
the best-fitted linear relation between βe(Fitted) and βe(MaxFI).
The dotted line is used to indicate the case where βe(Fitted) and
βe(MaxFI) are equal. (c) The βe(Fitted), βe(MaxFI), and dimensions
of four metabolic network models for E. coli.

Since bacteria live in a constantly changing environ-
ment, the metabolic system needs to rapidly adjust metabolic
flux states in response to environmental fluctuation. Con-
sidering the large scale of the metabolic network, weak
associations between metabolic fluxes are not conducive to
information transfer in the metabolic system. Therefore, the
long-range correlation between metabolic fluxes is crucial for
the response speed of the metabolic system. The correlation
between metabolic flux and growth rate (Cov(vi, λ)) can be
calculated through the MaxEnt sampling results and written
as

C(vi, λ)|βe = 1

Ns

∑
j

[
v

j
i |βe − vi(β

e)
]
[λ j |βe − λ(βe)]. (4)

v
j
i denotes the jth sample of ith flux, and Ns is the number of

samples in the MaxEnt sampling. In Fig. 5, the correlations
between metabolic fluxes and growth rate have maximum
(or minimum) values near the MaxFI state as βe changes.
Most of the metabolic fluxes in the metabolic network do not
have a direct relationship with growth rate. Fluctuation of one
metabolic flux usually first affects the adjacent metabolites
and metabolic fluxes in the metabolic network. After informa-
tion transfer through multiple metabolites and fluxes, It can
indirectly affect the growth rate, similarly to the long-range
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FIG. 5. The correlations between metabolic fluxes and growth rate (Cov(vi, λ)) changing with βe/D. Under different βe, metabolic fluxes
in (a)–(c) and (e)–(g) are negatively correlated with growth rate and metabolic fluxes in (d) and (h) are positively correlated with growth rate.
When βe/D is close to the value with MaxFI, the Cov(vi, λ) is near the maximum or minimum value.

correlation in physical systems with short-range interaction.
The universal feature of the relationships between flux cor-
relation and βe in Fig. 5 suggests that in the MaxFI state,
large correlations between metabolic fluxes lead to long-range
correlation in the metabolic network. Variations of metabolic
fluxes caused by internal cellular noise or external environ-
mental fluctuations can significantly affect the metabolic state
and growth rate, which facilitates information transfer in
metabolic networks.

E. The trade-off between growth and adaptation

In the MaxEnt model, the large βe corresponds to the fast-
growing phenotypes that favor bacterial survival in a specific
environment. However, phenotypic heterogeneity as a general
survival strategy can provide high adaptation for biological
populations in fluctuating environments [2,41–43], suggesting
a fundamental trade-off between growth and environmental
adaptability [21]. The competition between stable growth and
flexible adaptation is reflected in physical systems as a com-
petition between energy and entropy. But on the contrary
physical systems tend to be in a state of low energy and
bacteria tend to grow fast. In order to discuss this fundamental
trade-off in the MaxEnt models of metabolic networks, we
quantified the environmental adaptability as the number of
metabolic states of the MaxEnt distribution in a given βe,
since a large number of metabolic states provide potential
capacity to speed up the response to nutritional shifts. We
will demonstrate that the MaxFI state of the metabolic system
employs a compromise solution to deal with the competition
between growth and adaptation.

Although the metabolic fluxes could in principle be in any
state of the feasible space P regardless of βe, only a small

fraction of the metabolic flux states can be taken due to the
finite sampling number or finite bacterial cells, especially the
metabolic state is unique in the maximum growth rate state.
We introduced a clustering algorithm to cluster the neighbor-
ing MaxEnt sampling points in P as a metabolic state (see
Appendix F). As shown in Fig. 6, the normalized cluster num-
ber decreases with βe, and the normalized average growth rate
increases with βe, showing a trade-off between fast growth

FIG. 6. The normalized cluster number NCβe/NC0 of metabolic
states and the normalized average growth rate λ/λe

max as functions
of βe/D. The cluster number of metabolic states shrinks as βe/D
increases. As βe/D tends to infinity, the cluster number converges to
the unique metabolic state at which the growth rate is maximized.
Compared to the normalized cluster number, the relationship be-
tween λ/λe

max and βe/D has an opposite trend. The intersection of
these relations has a moderate growth rate and cluster number of
metabolic states. The βe(Fitted) and βe(MaxFI) in iJR904 (solid
lines) are close to the intersection.
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and environmental adaptability. A large number of clusters
means that the metabolic state has greater uncertainty, that is,
the MaxEnt distribution of the metabolic network has a larger
entropy. It suggests that the growth-adaptation trade-off is a
manifestation of the universal energy-entropy competition in
bacterial metabolism and growth. The intersection of growth
rate and cluster numbers in Fig. 6 represents the balance
of energy-entropy competition, and βe/D at the intersection
is close to the βe/D with MaxFI and the fitted βe/D of
single-cell data, indicating that the metabolic system adopts a
compromise between faster growth and stronger environmen-
tal adaptability.

In summary, we illustrated the fundamental trade-off
between growth and adaptation in the MaxEnt model of
metabolic networks. A compromise strategy between these
two optimization objectives can be accomplished by the
criticality, which has the MaxFI and long-range correlation
between metabolic fluxes. It suggests that operating near crit-
icality could be a survival strategy for bacteria in fluctuating
environments.

III. DISCUSSION

In this work, we revealed universal scaling relations and
several signatures of criticality in metabolism and growth of
E. coli from the maximum entropy approach. The universal
scaling relations between growth rate and βe, as well as the
scaling relations between Fisher information and βe, emerge
independently of the metabolic network models and nutri-
tional environments. By comparing the single-cell data with
the maximum Fisher information state, it suggested that the
metabolism and growth of E. coli may operate near the critical
state. We found several functional advantages at criticality
numerically, such as high sensitivity to stimuli, the long-range
correlation between fluxes, and a compromise strategy be-
tween fast growth and environmental adaptability.

The universal scaling relations suggest the inherent scale
invariance of metabolic networks. The scaling laws of the cell-
size and division-time distributions emerge by scaling their
average values [8]. However, we scaled the parameter β by a
theoretical quantity λe

max and network dimension D, providing
a broader view to discover new scaling laws. Criticality as
a candidate general principle has been widely explored in
biological systems. We provided a metabolic version of bio-
logical criticality which is the boundary between two distinct
phases or regimes: a disordered one with many metabolic
states and an ordered one with a fast growth rate. However,
due to the limited number of effective metabolic models, it is
still difficult to systematically study the finite-size scaling of
metabolic networks.

The stochasticity of metabolism and growth is inevitable.
Noise in gene expression, signal transduction, and metabolism
affects the processes of bacterial growth and division, but also
provides a mechanism for bacterial adaptation. We show that
for bacterial metabolism and growth, the system is in a critical
state with several functional advantages. Thus, it indicates that
stochasticity in metabolic processes is delicately regulated
by biological systems through gene regulatory networks and
protein interaction networks. This general idea will contribute
to revealing the design principles of biological networks.

The constraints of flux balancing construct a feasible so-
lution space of metabolic fluxes, which can be analogized
to the state space of physical systems. The maximum en-
tropy distribution over the solution space is constrained by
the average growth rate, corresponding to the energy func-
tion in the canonical ensemble. However, the growth rate
is not always a valid objective function, just as the energy
function needs to be transformed into other quantities un-
der different ensembles. For example, the goal of metabolic
systems in multicellular organisms may be to maintain the
specific biological function, rather than to continue to grow
and divide. As another example, for the energy metabolism
network, maximizing the rate of energy metabolism is a more
appropriate goal. Therefore, in the maximum entropy model
of the metabolic network, it is necessary to select the appro-
priate flux as the objective function according to the specific
situation. Recent studies argued that thermodynamics and en-
semble theory emerge as the limiting behaviors of statistics
[44,45]. This generalized ensemble theory might be able to
provide a theoretical basis of maximum entropy model of
biological systems.

In the traditional flux balance analysis, the influence of
protein in the metabolic process is not considered. The con-
centration of enzymes is constrained by molecular crowding
[46]. For a metabolic process, a larger metabolic flux requires
more enzymes to catalyze the metabolic process, and more
protein expression has an impact on the growth of bacteria
[47]. For example, after adding protein constraints, it can
correctly predict the transition of metabolic pathways be-
tween aerobic and anaerobic conditions, denoted as overflow
phenomenon [48]. Adding more reasonable constraints will
change the feasible solution space of metabolic fluxes, so it
will be interesting to study the maximum entropy distributions
in the solution space under more constraints in the future.
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APPENDIX A: THE FEASIBLE SOLUTION SPACE P
OF METABOLIC FLUXES

The metabolic network uses a set of reactions to describe
the metabolic state. With the huge development of biochem-
istry and biological technology, metabolic networks can be
built at the genome level, which is usually termed as genome-
scale metabolic model.

Flux balance analysis is a method of analyzing the genome-
scale metabolic model, which is combined with two main
assumptions to avoid the amount of dynamic parameters. As-
suming that the metabolic reactions in cells are at steady state,
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there are constraints on the reaction rates, written as

ċμ =
∑

i

Siμvi = 0. (A1)

Here Siμ represents the stoichiometry of metabolite μ in re-
action i, cμ is the concentration of metabolite μ, and vi is the
rate of reaction i.

Making another assumption that cells would adapt reaction
rates to maximize their growth rate, which is

max : vbiomass, (A2)

subject to :
∑

i

Siμvi = 0. (A3)

The vbiomass is an artificial reaction in the metabolic model,
which equals to the growth rate λ.

Considering that the concentrations of metabolites and en-
zymes limit their reaction rates, we used vu

i and vl
i to represent

the bounds of the reaction rate vi. It can be written as

vl
i < vi < vu

i . (A4)

If the reaction rate is a negative value, then it means the
reaction direction is reversed.

We used an efficient computational method to quickly
perform flux variability analysis [49]. The result of flux vari-
ability analysis will be taken into Eq. (A4) as the upper and
lower bounds of the fluxes.

In addition to the boundary conditions, there are also
thermodynamic constraints that need to be considered [50].
Thermodynamically infeasible cycles satisfy the mass balance
but violate the second law of thermodynamics. The maximum
entropy flux distributions generated by our sampling method
are inconsistent with the second law of thermodynamics.
However, since we are mainly concerned with the distribution
of growth rates, it does not significantly affect our results.

The flux balance analysis is the integration of Eqs. (A2),
(A3), and (A4), written as

max : vbiomass, (A5)

subject to :
∑

i

Siμvi = 0, (A6)

vl
i < vi < vu

i . (A7)

Equations (A6) and (A7) construct the feasible solution space
P of the metabolic fluxes, while maximizing the growth rate
in Eq. (A5) makes the solution of the metabolic fluxes con-
centrated in the solution space where the growth rate is the
largest.

APPENDIX B: MAXIMUM ENTROPY MODEL
OF METABOLIC NETWORK

De Martino et al. [25] proposed a maximum entropy model
(MaxEnt model) which has a Boltzmann-form distribution
over the solution space constrained by metabolic flux balanc-
ing, written as

p(v|β ) = 1

Z (β )
eβλ(v). (B1)

Here v refers to a possible fluxes state in P and λ(v) is
the growth rate of state v. Z is defined as

∫
P exp[βλ(v)]dv.

This Boltzmann-form distribution is the maximum entropy
distribution constrained by the normalization

∫
p(v)dv = 1

and the average growth rate

∫
p(v|β )λ(v)dv = λ(β ) = λdata, (B2)

where λdata denotes the average growth rate obtained by mea-
suring the cell population and β is the Lagrange multiplier in
the maximum entropy model. The growth rate distribution of
the MaxEnt model has two asymptotic limit forms. β −→ 0
corresponds to the uniform distribution, and β −→ ∞ corre-
sponds to the maximum growth rate state which is the solution
of traditional flux balance analysis.

A transformation of the MaxEnt model is

p(v|β ) = 1

Z (β )
eβλe

max
λ(v)
λe

max = 1

Z (β )
eβe λ(v)

λe
max . (B3)

λe
max represents the maximum growth rate under the envi-

ronment e. βλe
max is denoted as βe which is a dimensionless

parameter.

APPENDIX C: METABOLIC NETWORK MODELS

In this study, we employ four common metabolic network
models of E. coli. The Core model [32] is reconstructed by
the selected reactions, including 54 metabolites, 95 chemical
reactions, and 20 exchange reactions. The iJR904 model [29]
is based on the annotation of the K-12 MG1655 genome
updated in 2000. It is reconstructed by 931 reactions, con-
taining 904 gene products. The iAF1260 model [30] is the
next iteration of metabolic network, reconstructed by updated
genome annotation. It contains 1260 genes, 2077 metabolic
reactions and 1039 unique metabolites. The iJO1366 [31] is
an update of iAF1260. It contains 1366 genes, 2251 metabolic
reactions, and 1136 unique metabolites.

In a metabolic network, the stoichiometry matrix usually
does not have full rank. The rank of the stoichiometry ma-
trix is the dimension D of the polytope P . In these models,
the dimensions are 24 (the Core model), 224 (iJR904), 517
(iAF1260), and 567 (iJO1366).

The results of flux balance analysis and maximum en-
tropy distributions are closely related to boundary conditions.
In these four metabolic models, we select different car-
bon sources. When one carbon source is selected, there
will be no other carbon sources. The uptake rates of dif-
ferent carbon sources are chosen as glucose = −10 mmol
gDW−1 h−1, glycerol = −20 mmol gDW−1 h−1, succinate =
−20 mmol gDW−1 h−1, lactose = −15 mmol gDW−1 h−1,
acetate = −60 mmol gDW−1 h−1. The aerobic environment
is selected as the simulation condition, but the aerobic or
anaerobic environment does not affect the results of the pa-
per. The other boundary conditions are the default values of
the models. It should be pointed out that although boundary
conditions affect the size and shape of the solution space,
the relations between growth rate and Fisher information are
universal after scaling.
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APPENDIX D: SAMPLING METHOD

We used the package COBRA Toolbox V.3.0 [51], which
includes the sampling algorithm (the coordinate hit-and-run
with rounding method [52]), to do MaxEnt sampling. The
solution space is an anisotropic polytope. Before sampling,
the solution space was rounded by a maximum volume ellip-
soid algorithm [53] to avoid the impact of the flattening of
the solution space on the sampling efficiency. The ellipsoid
algorithm is putting a high-dimensional ellipsoid in and out of
the solution space. By continuously adjusting the shape of the
inner and outer ellipsoids, two ellipsoids that are very close
to the solution space are finally obtained, and the sampling
in one of the two ellipsoids has nearly the same distribution
compared to sampling in the solution space. After doing the
ellipsoid algorithm on the solution space, we used the hit-and-
run algorithm to sample in the ellipsoid solution space, which
is defined as follows:

(1) Randomly select an initial point x1 in the high-
dimensional ellipsoid solution space;

(2) Choose a direction θ1 in the high-dimensional ellipsoid
solution space;

(3) Draw a straight line along the direction θ1 through the
point x1, and intersect the ellipsoidized solution space at two
points λ1

max and λ1
min.

(4) Generate a random number λ1 between λ1
max and λ1

min,
then calculate the new point x2 = x1 + λ1θ1.

(5) Repeat step 2 until enough sampling points were ob-
tained.

The details of uniform sampling method are discussed in
Refs. [52,54]. By modifying the probability of uniform sam-
pling in step 4, that is, setting the probability of the next point
to be consistent with the probability in the MaxEnt model by
accepting and rejecting sampling, the MaxEnt distribution is
finally obtained.

Other algorithms, such as the Gaussian analytical approxi-
mation algorithm [55], provide faster computation speeds for
large-scale metabolic networks, paving the way for the future
systematic study of the finite-size scaling law of metabolic
networks.

APPENDIX E: FITTING THE MAXENT DISTRIBUTIONS

In the maximum entropy model, β = 0 is corresponding
to the uniform distribution. For the uniform distribution ob-
tained by sampling, the beta distribution can be used to fit the
uniform distribution of normalized growth rate, written as

ρ(λe) = 1

�(a, b)
(λe)b(1 − λe)a. (E1)

λe represents λ/λe
max and �(a, b) is the normalized function.

This beta distribution contains two parameters a and b which
can be obtained by fitting the uniform distribution of normal-
ized growth rate. Starting from the uniform distribution, the
normalized function Z (βe) in the maximum entropy model
can be written as

Z (βe) =
∫ 1

0

1

�(a, b)
(λe)b(1 − λe)aeβeλe

dλe. (E2)

The distribution of normalized growth rate λe is

p(λe|βe) = 1

�(a, b)Z (βe)
(λe)b(1 − λe)aeβeλe

. (E3)

Then the normalized average growth rate in the maximum
entropy model can be written as

λe(βe) = ∂lnZ (βe)

∂βe
. (E4)

After fitting the parameters of the beta distribution in uniform
sampling, the relationship between λe and βe is calculated,
and then the relationship between Fisher information and βe

in different models can be obtained by Eq. (3). It can be seen
in Fig. 2 that the Fisher information obtained from uniform
distribution fitting is consistent with the result obtained by
sampling.

APPENDIX F: CALCULATING THE NUMBER
OF METABOLIC STATES

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) is applied to estimate the metabolic states
of the sampling points. It is a density-based clustering al-
gorithm [56]. DBSCAN has two key parameters: eps and
MinPts. The parameter eps is used to define the eps-
neighborhood of a point p, a set of points whose distance
to point p is less than eps. If a point q is in the eps-
neighborhood of the point p, and the number of points in
the eps-neighborhood of the point p is more than or equal
to MinPts, then the point p is a core point and the point q
is directly density reachable from point p. If there is a chain
of points p1, p2, . . . , pn and pi is directly density reachable
from pi−1, then the point pn is density reachable from p1. If a
point p and a point q are density reachable from another point
g, then the point p is density connected to the point q. If the
point p belongs to the cluster C, then all the points which are
density reachable from p also belong to the cluster C. Any
two points in the same cluster are density connected to each
other. That is the neighborhoods of any point in the cluster C
are also in the cluster C. Applying DBSCAN to the sampling
data, the number of clusters is used to stand for the number of
metabolic states.

Considering that the different fluxes vary widely and the
sampling points are high-dimension data, we preprocessed
the sampling data by scaling and PCR. The fluxes whose
variations among all sampling points under different β are
less than 10−4 are ignored. Other fluxes in all sampling points
under different β are scaled to a range of 1 to 10. The scaled
sampling data is obtained. Based on the scaled sampling data
under β = 0, 10 principal components are selected by the
principal component analysis [57]. It is implemented by the
Stats package of the R language. Other scaled sampling data
under different β are reduced to 10 dimensions by the same
PCR method. Thus, a group of 10-dimension datasets is ob-
tained from the sampling data under different β values. The
10-dimensional dataset for each β value were analyzed by
DBSCAN. The DBSCAN was done under eps = 6 and MinPts
= 1 by the dbscan function in fpc package of R language.
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