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Quantum advantage of time-reversed ancilla-based metrology of absorption parameters
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Quantum estimation of parameters defining open-system dynamics may be enhanced by using ancillas that
are entangled with the probe but are not submitted to the dynamics. Here we consider the important problem of
estimation of transmission of light by a sample, with losses due to absorption and scattering. We show, through
the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision
in single-mode estimation—the one obtained for a Fock-state input—through joint photon counting of probe and
ancilla, which are modes of a bimodal squeezed state produced by an optical parametric amplifier. This proposal
overcomes the challenge of producing and detecting high-photon-number Fock states, and it is quite robust in
the presence of additional noise: We show that it is immune to phase noise and the precision does not change
if the incoming state gets disentangled. Furthermore, the quantum gain is still present under moderate photon
losses of the input beams. We also discuss an alternative to joint photon counting, which is readily implementable
with present technology and approaches the quantum Fisher information result for weak absorption, even with
moderate photon losses of the input beams before the sample is probed: a time-reversal procedure, placing the
sample between two optical parametric amplifiers, with the second undoing the squeezing produced by the first
one. The precision of estimation of the loss parameter is obtained from the average outgoing total photon number
and its variance. In both procedures, the state of the probe and the detection procedure are independent of the
value of the parameter.
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I. INTRODUCTION

Quantum sensing involves the use of quantum resources,
such as entanglement and squeezing, for the estimation of
parameters characteristic of a physical process, through its
action on a probe that, upon a proper measurement, allows
the estimation of the value of the parameters [1,2], It has
become one of the most active areas of quantum information,
with important theoretical developments and useful devices
[3]. Entanglement of the probe with an ancilla that is not sub-
mitted to the physical process may increase the precision of
estimation [4,5]. This is true, however, only for open-system
dynamics. Here we apply the ancilla protocol to the estimation
of the photon-loss coefficient of a sample, due to absorption
and scattering of light. The probe and the ancilla correspond to
two modes of a bimodal squeezed state, produced by an opti-
cal parametric amplifier (OPA). Relevant aspects of the ancilla
protocol for estimating absorption were studied theoretically
[6–8] and experimentally [9,10]. Here we show, through a
clarifying analytical procedure, that, for a given input inten-
sity through the sample, this scheme leads to precision of
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estimation identical to the best possible one for single-mode
estimation, obtained by using Fock states [11–13]. This has
the advantage of avoiding the preparation of Fock states with
high photon numbers, though in principle such states can be
heralded from a two-mode squeezed vacuum state via the
use of photon-number-resolving detectors, as demonstrated
in Ref. [14] for up to five photons. Our derivation allows
us to determine the corresponding best measurement: a joint
photon counting of the outgoing probe and the ancilla. Since
this measurement could be challenging with current technolo-
gies, except for joint Fock-state spaces of very small size,
we present a time-reversal detection alternative, consisting in
placing the sample between two bimodal squeezing transfor-
mations (two OPAs), such that the second squeezing is the
inverse of the first one. The precision in the estimation of
the loss parameter is obtained from the averaged total photon
number and its variance after the second transformation.

Time reversal has been shown to increase the precision
of estimation of parameters characterizing unitary processes,
beyond the classical limit, such as displacements [15–18]
and phases [18–22]. For absorption estimation, time reversal
must be complemented by the use of ancilla. We show that,
for small absorption, the estimation obtained with this ap-
proach is very close to the best possible precision, obtained
from single-mode probes prepared in a Fock state [12,13],
and it is superior to proposals based on a single probe (no
ancilla), prepared in a squeezed state [11]. It has the further
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advantage that neither the input state nor the detection proce-
dure depends on the value of the parameter, which simplifies
the experimental realization, avoiding resource-consuming
adaptive measurements, and should motivate the development
of useful applications. While adaptive strategies require addi-
tional measurements, they can be useful in several situations
[23–26], especially when the number of probes is small [27].
Our method has the advantage of avoiding the adaptation
of the apparatus throughout the measurement. We show that
quantum advantage is still present under moderate photon
losses of the input beam.

Measuring the probe, after it undergoes the parameter-
dependent dynamics, leads to an estimation of the parameter
through a function—an estimator—that maps an experimental
data set to a possible value of the parameter. There are four
basic questions that one would like to answer: (i) How can
the precision of the estimate be defined? (ii) How can the pre-
cision be obtained from the experimental results? (iii) What
is the best initial state of the probe, in order to get the best
precision? (iv) What is the best measurement procedure?

For unbiased estimations, the average of the estimator over
a large number of realizations of the measurement coincides
with the true value of the parameter. In this case, the precision
of the estimation may be quantified by the standard deviation
of the measured values of the parameter with respect to the av-
erage: �X =

√
〈X 2〉 − 〈X 〉2. Within the classical framework,

a lower bound for the variance was obtained by Cramér [28]
and Rao [29], and it was shown by Fisher [30] to be attainable
when the distribution of the possible values of the parameter
is Gaussian or when the number of repetitions of the mea-
surement is much larger than 1. The Cramér-Rao bound is
expressed in terms of the Fisher information,

F (X ) =
∑

j

1

Pj (X )

[
dPj (X )

dX

]2

, (1)

where Pj (X ) is the probability of getting an experimental
result j if the value of the parameter is X . One has then
�X � 1/

√
NF (X ), where N is the number of independent

measurements.
Generalization of this early work to quantum mechanics,

through maximization of F (X ) over all possible quantum
measurements, leads to the inequality

�X � 1/
√
NFQ(X ), (2)

where FQ(X ) is the quantum Fisher information (QFI). This
relation implies that the precision in the estimation of pa-
rameters can be increased beyond the minimum uncertainty
obtained by classical means, usually referred to as the stan-
dard limit [1,2,31]. Quantum advantage has been proven
for estimations of displacements or rotations [17,18,32–
36], phases [37–43], electromagnetic fields [16,35,36,44,45],
damping and temperature [11–13], the gravitational field
[46–48], and even the squeezing parameter of electromag-
netic fields [49,50]. More recently, interesting applications
have been demonstrated, among them gravimeters [51], ac-
celerometers [52], gyroscopes [53], magnetometers [54],
high-resolution spectroscopy [55], detection of gravitational
waves [33,56], and ultraprecise atomic clocks [57]. Quantum
metrology also concerns conceptual questions related to the

foundations of quantum mechanics, such as, for instance, the
meaning of number-phase and energy-time uncertainty rela-
tions [58], this last one being related to the quantum speed
limit [59,60].

For noiseless quantum processes, with probe dynamics
governed by unitary evolution, and unbiased estimators, sim-
ple expressions are obtained for the quantum Cramér-Rao
bound. This is not so, however, for open systems, that is,
systems in the presence of an environment. Exact solutions
can be found for one or two qubits [4,5], but for higher
dimensions it is not possible, in general, to find analytical
solutions. Lower bounds for the variance can be found through
purification of the nonunitary dynamics, by adding an ad hoc
environment, such that the dynamics of the enlarged system
is unitary and the reduced dynamics, obtained by tracing out
the added environment, coincides with the original dynamics
of the system [42,44,60,61]. Lower bounds for the precision
have also been obtained via tools based on the geometry of
quantum channels and semidefinite programming [62]. Also,
exact solutions for the Cramér-Rao bound can be found for
Gaussian systems [11,63–65].

Parameter estimation is closely related to quantum channel
identification, that is, the distinguishability of quantum chan-
nels upon a change of one or more of the parameters defining
the channel [1]. In quantum information, a quantum chan-
nel is a completely positive trace-preserving map between
spaces of operators, where a map � acting on operators in
a Hilbert space H1 is completely positive if the map � ⊗ I
is positive when acting on all possible extensions H1 ⊗H2

of H1. It is known that entanglement of the probe with an
ancilla, with the channel acting only on the probe, may im-
prove parameter estimation and the discrimination of quantum
channels [4,5,66–73]. The quantum advantage of this strategy
is not universal, but it was demonstrated in some specific
examples. In particular, it does not hold for unitary channels.
Error correction, through the addition of multiple ancillas,
has also been shown to increase the precision of estimation
[74–76].

Here we consider the quantum sensing of photon loss
due to absorption and scattering by a material [6,8–13,77].
It has direct application to the estimation of the trans-
missivity of light by a sample, especially for weak losses
and when low intensities are desirable, which may be the
case for fragile materials. Quantum metrology of absorp-
tion is also important in absorption imaging. Reference
[78] demonstrated sub-shot-noise quantum imaging using
entangled photons produced by a downconverter. Refer-
ence [79] demonstrated that the use of an ancilla in
quantum illumination increases the signal-to-noise ratio
beyond the classical value, in an entanglement-breaking
environment.

The absorption constant α, to be estimated, is defined so
that if I0 and I1 are the intensities of light before and after the
absorbing sample, then I1 = (1 − α)I0.

While we concentrate here on the estimation of the ab-
sorption from a single-mode probe, this strategy is of broader
application. For instance, it can be extended to the important
spectroscopic technique that determines differential absorp-
tion of two orthogonal polarized modes, which has recently
been investigated [80,81].
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FIG. 1. Experimental setup for attaining a precision of estimation
of an absorption coefficient α equivalent to the one obtained by a
Fock state, using, however, a bimodal squeezed state produced by an
optical parametric amplifier as input. The estimation of α is obtained
from the joint photon counting of the two outgoing modes: a probe
plus an ancilla.

II. REACHING THE ULTIMATE-PRECISION LIMIT

The ultimate-precision limit for the estimation of absorp-
tion of a sample in the setup considered here is obtained
through the quantum Fisher information for the system probe
plus an ancilla, which correspond to the signal and idler
beams of a bimodal squeezed state, produced by an optical
parametric amplifier (OPA). Since the input state is Gaussian,
the techniques used in Refs. [11,63–65] can be applied to this
case. This is done in Appendix A. Here, we adopt, however,
a different procedure, which clarifies the physical meaning of
our results and leads to the QFI derived in Appendix A.

The system to be considered is pictured in Fig. 1. The OPA
implements a bimodal squeezing transformation Ŝ(ξ ) on a
vacuum field [82],

Ŝ(ξ ) = exp(ξ â†b̂† − ξ ∗âb̂) (3)

leading to the squeezed state

|ξ 〉 = Ŝ(ξ )|0, 0〉 =
∞∑

n=0

cn|n, n〉, (4)

where cn = einϕ (tanh r)n/ cosh r. The average number of
photons in either of the two modes is 〈n〉 = sinh2 r.

The probability pnm of finding n photons in the signal mode
and m photons in the idler mode, before the sample, is thus
pnm = δnm|cn|2, while the probability of finding m photons
in the ancilla is |cm|2. After the sample is tested, the joint
probability is pnm = |cm|2 p(m)

n , where p(m)
n is the probability

of counting n photons in the output probe beam for the input
of m photons. The corresponding Fisher information for the
estimation of the absorption α is then, according to Eq. (1),
since only p(m)

n depends on α,

F (α) =
∞∑

m=0

m∑
n=0

1

|cm|2 p(m)
n

[
∂|cm|2 p(m)

n

∂α

]2

=
∞∑

m=0

|cm|2
m∑

n=0

1

p(m)
n

[
∂ p(m)

n

∂α

]2

=
∞∑

m=0

|cm|2F (m)(α), (5)

where F (m)(α) is the Fisher information for an m-photon
Fock state probing the absorbing sample, obtained through
photon counting. One knows, however, that photon counting
actually leads to the quantum Fisher information for a Fock-
state input [12,13]; so F (m)(α) = F (m)

Q (α) = m/[α(1 − α)].
Therefore F (α) is a weighted average of QFIs corresponding

to Fock states:

F (α) =
∑∞

m=0 |cm|2m

α(1 − α)
= n̄

α(1 − α)
, (6)

since the sum in the first term on the right-hand side of
the above equation is the average number of photons n̄ in
either the probe or the ancilla, before probing the sample.
For the incoming two-mode squeezed state considered here,
n̄ = sinh2 r. In Appendix A, Eq. (A9), it is shown that the
Fisher information above coincides with the QFI of the probe-
plus-ancilla output state. Therefore

FQ(α) = n̄

α(1 − α)
. (7)

The Fisher information (6) coincides with the upper bound,
derived in Ref. [11], on the QFI for the estimation of absorp-
tion, for any single-mode quantum state with mean photon
number n̄. This was accomplished by replacing the absorption
medium by a beam splitter, with transmissivity equal to the
absorption coefficient, thus turning the open-system dynamics
into a unitary one, involving the two modes of the beam split-
ter. The corresponding quantum Fisher information should be
an upper bound on the corresponding quantity for the open
system, since having access to the environment should result
in better precision of estimation of the absorption parameter
[42]. Consequently, no single-mode quantum state with a
mean photon number n̄ can beat the precision reached with
a bimodal squeezed vacuum state with the same mean photon
number in the probe beam. This can be generalized to the sys-
tem probe plus ancilla considered here. If one replaces the
absorbing medium by a beam splitter, as was done for the
single-mode case, the system will have a unitary evolution,
and therefore the ancilla will not play any role: The upper
bound is the same as in the single-mode case! It is reached
by the the two-mode squeezed state considered here, when
the probe-plus-ancilla output is detected through joint photon
counting.

Equation (7) leads to two important conclusions: (i) Joint
photon counting on probe and ancilla is an optimal measure-
ment, leading to the QFI corresponding to the parameter α,
and (ii) the QFI related to the bimodal squeezed input state
coincides with a Fock-state QFI for which the photon number
is replaced by n̄.

The resulting bound for the precision �α in the estimation
is given by Eq. (A2):

�α =
√

α(1 − α)

n̄
, (8)

setting N = 1 in Eq. (A2).
As shown in Refs. [12,13], Fock states lead to the best

precision in the estimation of the absorption, for a fixed pho-
ton number. This implies that, through the use of an ancillary
system and for a given average number of photons probing
the sample, it is possible to achieve the best precision in
the estimation of the parameter α, not only outperforming
the Gaussian states but also overcoming the challenge of
producing high-photon-number eigenstates.

This interesting result stems from the perfect correlation
of the photon numbers of the probe and the ancilla, as shown
in Eq. (4). Although the bimodal squeezed state describing
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FIG. 2. Uncertainty in the estimation of the absorption constant,
for α = 0.05. Comparison between the bound for the uncertainty �α

obtained from the quantum Fisher information for probe plus ancilla
corresponding to two modes of an incoming bimodal squeezed state
(red curve) and the bound from the best single-mode Gaussian state
[11] (pink dots), for the same average number of photons testing the
absorption. The green curve represents the standard limit, obtained
for a single-mode coherent state testing the sample. For the probe-
plus-ancilla setup with n̄ = 10 the increase in precision from the
standard limit is about 5 dB.

the ancilla-plus-probe system does not have a well-defined
number of photons, photon counting on the ancilla tells us
that a Fock state with the same number of photons probed
the sample. The result of photon counting in the probe then
allows one to get information about the parameter α as if the
input state of the probe was a Fock state, leading to the best
possible precision in the estimation of α. Several runs of joint
photon counting lead to quantum Fisher information of a Fock
state for which the photon number is replaced by n̄.

A. Resilience of the joint photon counting procedure

The discussion above, stemming from the derivation of
the Fisher information in Eq. (5), leads to important con-
sequences: Any state, pure or mixed, with photon-number
correlation between probe and ancilla could lead to Eq. (8).
Not even entanglement is needed. Indeed, the mixed product
state of probe and ancilla,

ρ̂ =
∑

n

pn|n, n〉〈n, n|, (9)

has the same QFI as a two-mode vacuum squeezed state
with the same average number of photons. This implies
that the preparation of the input state via OPA is resilient
in the presence of phase noise. Furthermore, it also allows
one to understand and generalize the numerical results pub-
lished in Ref. [6], where it was shown that the state |ψ〉d =
(1/d )

∑d
k=1 |k, k〉 with 3 � d � 6 has the same QFI as a two-

mode vacuum squeezed state with the same average number
of photons, and that there are states with less entanglement
than |ψ〉d with similar performance.

B. Quantum advantage of the probe-plus-ancilla setup

Figure 2 compares the result for �α obtained from the
ancilla-based QFI equation (7) with the one corresponding
to the best single-mode Gaussian state [11], which is a
parameter-dependent squeezed and displaced vacuum state,

FIG. 3. Experimental SU(1,1) setup for squeezed vacuum time-
reversal metrology. The absorption medium is placed between two
optical parametric amplifiers (OPAs), on the upper arm of the inter-
ferometer. The first one, with vacuum input, produces a two-mode
squeezed state, the signal beam probing the medium and the idler
playing the role of an ancilla. The second OPA reverses the squeezing
transformation, so that in the absence of the absorption medium,
there is no outgoing field. Detection of the total number of outgoing
photons leads to the estimation of the photon-loss coefficient α.

for the same average number of photons probing the sample.
The bound obtained from Eq. (6) prevails, as expected from a
QFI for a Fock-state expression with photon number equal to
n̄ = sinh2 r. This result is in conformity with Ref. [6], which
pointed out the nonoptimal nature of single-mode Gaussian
states. One should note that neither the input state nor the
detection procedure in the probe-plus-ancilla setup depends
on the (unknown) parameter to be estimated, which is not the
case for the procedure in Ref. [11].

In Fig. 2, these results are compared with the standard
limit, which corresponds to probing the sample with an in-
coming coherent state, with the same average number of
photons as in the previous setups, and measuring the intensity
of the field after its interaction with the sample. It can be
derived from the corresponding single-mode quantum Fisher
information [11]:

�α =
√

1 − α

n̄1
, (10)

where n̄1 is the incoming average number of photons probing
the sample. One should note that for α → 1, that is, for strong
absorption, one has �α → 0. This is also the limit of van-
ishing outgoing intensity. Figure 2 shows that for α = 0.05
and n̄ = 10 the increase in precision from the standard limit is
about 5 dB. In the limit of strong absorption, α → 1, both the
quantum Fisher information for the single-mode setup and the
quantum Fisher information for the probe-plus-ancilla setup
converge to the standard limit, expressing the environment-
induced emergence of classicality [83,84]. This can be verified
by comparing Eqs. (8) and (10) when α → 1.

III. TIME-REVERSAL STRATEGY

One should note, however, that joint photon counting is
challenging, with present technologies. We show now that for
weak absorption there is an interesting and useful alternative,
which does not rely on joint photon counting and involves
a time-reversal detection scheme, illustrated in Fig. 3. It is
based on an SU(1,1) interferometer [85–99], consisting of
two OPAs, with the probed sample between them. The first
one generates a two-mode squeezed state from a vacuum
input, with the signal mode probing the sample and the idler
beam playing the role of an ancilla. The second OPA reverses
the transformation implemented by the first one, so that in
the absence of photon losses, there is no outgoing field. The

013034-4



QUANTUM ADVANTAGE OF TIME-REVERSED … PHYSICAL REVIEW RESEARCH 6, 013034 (2024)

time-reversed operation can be carried out in many different
ways [91–93]. The simplest is to have a π phase difference
between the beams pumping the first and second OPAs. We as-
sume that proper calibration compensates for the difference in
the optical paths of the two arms due to the presence of the
sample. Detection of the total number of outgoing photons
leads to the estimation of the absorption, defined, as before,
by the constant α, so that if I1 and I2 are the intensities of light
in the upper arm of the interferometer, before and after the
absorbing medium, then I2 = (1 − α)I1. Figure 3 displays the
annihilation operators corresponding to the electromagnetic
fields in several regions of the device. The relations between
them are obtained from the squeezing transformations and the
absorption. Thus, from the first OPA, one has [82]

â1 = âin coshr + b̂†
ineiφ sinhr,

b̂1 = b̂in coshr + â†
ineiφ sinhr, (11)

where [âin, â†
in] = 1, [b̂in, b̂†

in] = 1 and the squeezing transfor-
mation is

Ŝ(ξ ) = exp(ξ â†b̂† − ξ ∗âb̂), (12)

where ξ = reiφ is the squeezing parameter, with
â1 = Ŝ−1âinŜ, b̂1 = Ŝ−1b̂inŜ.

The second OPA applies the time-reversed transformation
(ξ → −ξ ), resulting in the output operators (see Fig. 3):

âout = â2 coshr − b̂†
1eiφ sinhr,

b̂out = b̂1 coshr − â†
2eiφ sinhr. (13)

The photon loss, due to absorption and scattering, can be
described by

â2 = â1

√
1 − α + ĉ

√
α, (14)

where ĉ stands for the annihilation operator corresponding
to the vacuum noise mode. The presence of ĉ preserves
the commutation relation of the field operators: [â2, â†

2] =
[â1, â†

1] = 1.
From Eqs. (11), (13), and (14), it follows that

âout = âin(cosh2 r
√

1 − α − sinh2 r)

− b̂†
ineiφ sinh r cosh r(1 − √

1 − α) + ĉ cosh r
√

α,

b̂out = b̂in(cosh2 r − sinh2 r
√

1 − α)

+ â†
ineiφ sinh r cosh r(1 − √

1 − α)

− ĉ†eiφ sinh r
√

α. (15)

In the absence of the sample, it is easy to check that âout = âin,
b̂out = b̂in.

From Eq. (15), one gets the average total number of output
photons:

N̄out = 〈â†
outâout + b̂†

outb̂out〉
= 2 sinh2r cosh2r(1 − √

1 − α)2 + α sinh2 r. (16)

The variance �2Nout is displayed in Appendix B, Eq. (B6).
We calculate �α through the sensitivity, which can be

related in this case to photon-number fluctuations:

�α = �Nout

|dN̄out/dα| , (17)

FIG. 4. Uncertainty bounds for the probe-plus-ancilla QFI and
SU(1,1) result. The uncertainty bounds from the quantum Fisher
information corresponding to the probe and ancilla associated with
the two modes of a bimodal squeezed state (red curve), given by
Eq. (6), and the one resulting from a sensitive calculation for the
total number of outgoing photons in the SU(1,1) setup illustrated in
Fig. 3 (dashed blue curve). For weak absorption (α 	 1), the results
are practically indistinguishable for the range of n̄ considered here.

where

�2Nout = 〈(Nout − N̄out )
2〉 (18)

is the variance of the total number of photons.
From these expressions, the sensitivity can be calculated.

Details are given in Appendix B, Eqs. (B7)–(B9). The cor-
responding uncertainty is plotted in Fig. 4 and compared with
the one obtained from the QFI in Eq. (7). For weak absorption,
the result obtained from the time-reversal procedure is prac-
tically indistinguishable from the probe-plus-ancilla quantum
Fisher information bound.

Since only the measurements of the total output photon
number and its variance are needed here, they can be ob-
tained through measurement of the intensity of photocurrents
produced by the output fields and their cross correlations,
which does not require reconstructing the photon-number
distribution [100].

In the next section, we demonstrate another advantage of
this method: the resilience in the presence of moderate photon
losses of the incoming probe plus the ancilla beam.

IV. RESILIENCE OF TIME REVERSAL IN THE PRESENCE
OF EXTRA PHOTON LOSSES

General optical parametric amplifiers (OPAs) can produce
impure entanglement due to various factors, leading to a
reduction in the quality of the generated entanglement. We
have already shown that the joint photon counting proce-
dure is not affected if the input state becomes a mixture of
photon-correlated probe-plus-ancilla states. We consider now
the effect of extra photon losses.

It is worth noting that while losses can introduce impurities
in the entanglement produced by general OPAs, it is still
possible to have quantum gain for the joint photon counting
and the time-reversal setup. In Fig. 5, additional loss is in-
troduced to both modes of the two-mode squeezed vacuum
before it passes through the sample. For simplicity, we assume
the degree of loss α0 to be the same for both modes. The
calculations are similar to those in Appendix B.

As shown in Fig. 6, where the QFI for estimation of α

corresponding to the two-mode squeezed state is compared
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FIG. 5. (a) The impurity of the two-mode squeezed state gener-
ated by general optical parametric amplifiers is modeled by adding
additional loss to the two-mode squeezed vacuum before passing
through the sample α. (b) For comparison, the corresponding sensing
protocol with a coherent beam is shown.

with the QFI for a single-mode coherent state input with the
same additional loss α0, quantum advantage persists even after
undergoing significant loss (advantage of 3 dB with α0 ∼ 5α).
This actually refers to the joint photon counting procedure,
since the second OPA does not change the QFI.

The resilience of the time-reversal procedure in the pres-
ence of noise is illustrated in Fig. 7. Even for extra noise equal
to the sample absorption constant, there is still significant
advantage, as compared with the estimation corresponding to
a coherent state input, subject to the same extra noise. This is
an important and useful property of the time-reversal strategy
proposed here.

V. DISCUSSION

Optimal quantum sensing of open-system dynamics may
require strategies that differ markedly from those applied to
lossless systems. Entanglement of the probe with an ancilla
may enhance the precision of estimation, even though the
ancilla does not interact with the parameter-dependent system,
a property that is absent for unitary dynamics. Here we have
considered the estimation of photon loss for a light beam prop-
agating in a sample or, more generally, of the loss coefficient
in a bosonic channel, due to absorption or scattering by the
sample.

The probe and ancilla are the modes of a bimodal squeezed
state, produced by an optical parametric amplifier. We cal-
culated the corresponding quantum Fisher information for

FIG. 6. The ratio between the quantum Fisher information cor-
responding to a two-mode squeezed vacuum (2MSV) and that
corresponding to a coherent state, QFI2MSV/QFIcoh, in decibels, for
α = 0.05 and n̄ = 25, as a function of the impurity loss α0.

FIG. 7. Resilience of the time-reversal procedure: Precision �α

in the estimation of the sample absorption constant as a function of
the extra loss α0 in both probe and conjugate beams, as in Fig. 5(a).
For comparison, the standard quantum limit, corresponding to a
single-mode coherent state input, as in Fig. 5(b), is also shown. The
scale on the x axis is the number of photons produced by the OPA in
each beam.

estimation of the absorption coefficient and showed that the
respective uncertainty bound coincides with the one for a
Fock state, being saturated by joint photon counting for
the outgoing probe and ancilla, a detection procedure that
does not depend on the value of the parameter. The an-
cilla strategy benefits therefore from the extreme precision
associated with Fock states of the probe, surpassing the
sensing obtained with the best parameter-dependent single-
mode Gaussian state [11], while overcoming the challenge of
producing high-photon-number eigenstates.

Joint photon counting is, however, challenging with present
technologies [7]. We have therefore described an approach
that does not require this procedure. It is based on the con-
junction of the ancilla strategy with a time-reversal strategy,
implemented with an SU(1,1) interferometer consisting of two
optical parametric amplifiers, so that the first one generates a
two-mode squeezed state, corresponding to the probe and the
ancilla, and the second one undoes the squeezing produced by
the first one, after the probe has interacted with the sample.
The addition of the second optical parametric amplifier does
not change the quantum Fisher information, which is invariant
under unitary transformations. An estimation based on a sen-
sitivity relation for the total number of outgoing photons and
its variance leads to an uncertainty in the absorption coeffi-
cient with a precision that is, for weak absorption, practically
indistinguishable from the bound obtained from the quantum
Fisher information for the probe-plus-ancilla system. This de-
tection setup is also independent of the (unknown) parameter
to be estimated, implying that phase stabilization and mode
matching for the two optical parametric amplifiers can be
done once and for all: The device is then ready to be used,
independently of the value of the parameter. Interestingly,
quantum gain is still achieved for this protocol under moderate
photon losses of the probe-plus-ancilla input beam, even for
losses comparable to the estimated absorption parameter.

The quantum advantage in the precision of estimation
obtained with the ancilla-and-time-reversal strategy, demon-
strated here, relies on available technology and opens the way
to increased precision of a diversity of metrological tasks
involving open systems.
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APPENDIX A: QUANTUM FISHER INFORMATION
OF THE ABSORPTION CONSTANT FOR THE

TIME-REVERSED ANCILLA-BASED METROLOGY

We note that the two-mode squeezed state has a Gaussian
Wigner function. It can be shown that if one of the modes
goes through an absorber, the output is still a Gaussian Wigner
function, though it corresponds to a mixed state of the output
field [101]. The general method for calculating the quantum
Fisher information (QFI) for a Gaussian system has been de-
veloped in Refs. [63–65,102–107]. We apply specifically the

method in Ref. [65] to obtain the quantum Fisher information
of the system described by Fig. 1. For a two-mode bosonic
system, we may define a vector of annihilation and creation
operators given by

Â = (a1, a2, a†
1, a†

2)T . (A1)

Gaussian states can be fully characterized by their first mo-
ments (the displacement vector) dm = tr[ρÂm] and the second

moments (the covariance matrix) σmn = tr[ρ̂ {�Âm,�Â
†
n}],

where �Â := Â − d . The subscripts m and n stand for the
components of the vector defined in Eq. (A1). The QFI is
given by

FQ(α) = limv→1
1

2
vec

(
∂σ

∂α

)†

M−1vec

(
∂σ

∂α

)
, (A2)

where the matrix M can be expressed by

M = v2σ̄ ⊗ σ − K ⊗ K, (A3)

for the system considered here, with a zero displacement vec-
tor. Other notations in Eq. (A2) include the symplectic form
K = diag(1, 1,−1,−1) and the operator vec(�). Applying
vec(�) on a matrix � = (�1,�2) will transform it into a
vector vec(�) = (�T

1 ,�T
2 )T . Replacing the operators a1 and

b1 in Eq. (A1) by âout and b̂out, we obtain

σ =

⎛
⎜⎜⎜⎜⎝

〈âoâ†
o + â†

oâo〉 2〈âob̂†
o〉 2〈âoâo〉 2〈âob̂o〉

2〈â†
ob̂o〉 〈b̂ob̂†

o + b̂†
obo〉 2〈âob̂o〉 2〈b̂ob̂o〉

2〈â†
oâ†

o〉 2〈â†
ob̂†

o〉 〈â†
oâo + âoâ†

o〉 2〈â†
ob̂o〉

2〈â†
ob̂†

o〉 2〈b̂†
ob̂†

o〉 2〈âob̂†
o〉 〈b̂†

obo + b̂ob̂†
o〉

⎞
⎟⎟⎟⎟⎠, (A4)

where for brevity, we note âout and b̂out by âo and b̂o. These are given by

âo = â1

√
1 − α + ĉ

√
α, b̂o = b̂1, (A5)

where â1 and b̂1 are given by Eq. (11). In the system considered here, many of the off-diagonal terms are zero:

〈âoâo〉 = 〈â†
oâ†

o〉 = 〈b̂ob̂o〉 = 〈b̂†
ob̂†

o〉 = 〈âob̂†
o〉 = 〈â†

ob̂o〉 = 0. (A6)

Thus we obtain

σ =

⎛
⎜⎜⎜⎜⎝

2〈â†
oâo〉 + 1 0 0 2〈âob̂o〉

0 2〈b̂†
obo〉 + 1 2〈âob̂o〉 0

0 2〈â†
ob̂†

o〉 2〈â†
oâo〉 + 1 0

2〈â†
ob̂†

o〉 0 0 2〈b̂†
obo〉 + 1

⎞
⎟⎟⎟⎟⎠, (A7)

where

〈â†
oâo〉 = (1 − α) sinh2 r,

〈b̂†
obo〉 = sinh2 r,

〈âob̂o〉 = 〈b̂oâo〉 = eiφ sinh r cosh r
√

1 − α,

〈â†
ob̂†

o〉 = 〈b̂†
oâ†

o〉 = e−iφ sinh r cosh r
√

1 − α. (A8)

From Eqs. (A2), (A6), and (A7), we obtain the quantum Fisher information corresponding to the absorption constant α, for
the ancilla-based metrology,

FQ(α) = sinh2 r

α(1 − α)
, (A9)
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which coincides with Eq. (6) of the main text. We note that
this result can be derived from the quantum Fisher information
obtained in Ref. [6], where it was shown that input two-
mode squeezed states outperform any other class of Gaussian
states, for the estimation of the time-dependent parameter
γ = �t , where � is the coupling of the channel to a ther-
mal reservoir. The connection with Fock states, through the
expression (A9), was not discussed in Ref. [6], nor was the
resilience of these states in the presence of additional noise,
which are direct consequences of our derivation method in
the main text. Since the time-reversal procedure is a unitary
transformation, which does not change the quantum Fisher
information, Eq. (A9) also applies to the time-reversed ancilla
system. This can be checked explicitly for the arrangement of
Fig. 3 for which âout and b̂out are given by Eq. (15). We can
derive

〈â†
oâo〉 = sinh2 r cosh2 r(1 − √

1 − α)2,

〈b̂†
obo〉 = sinh2 r cosh2 r(1 − √

1 − α)2 + α sinh2 r,

〈âob̂o〉 =〈b̂oâo〉 = −eiφ sinh r cosh r(1 − √
1 − α)

× (cosh2 r − sinh2 r
√

1 − α),

〈â†
ob̂†

o〉 = − e−iφ sinh r cosh r(1 − √
1 − α)

× (cosh2 r − sinh2 r
√

1 − α). (A10)

On substituting Eq. (A10) into Eq. (A7) and using Eqs. (A2)
and (A3), we do obtain Eq. (A9).

APPENDIX B: SENSITIVITY FOR THE
TIME-REVERSED SCHEME

Here we present the expressions needed for the evaluation
of �α in Eq. (17). For simplicity, we express Eq. (15) in the
main text as

âout = c11âin + c12b̂†
in + c13ĉ,

b̂out = c21â†
in + c22b̂in + c23ĉ†, (B1)

where c11, c12, c13, c21, c22, and c23 are given by

c11 = √
1 − α cosh2 r − sinh2 r,

c12 = −(1 − √
1 − α)eiφ cosh r sinh r,

c13 = cosh r
√

α,

c21 = (1 − √
1 − α)eiφ cosh r sinh r,

c22 = cosh2 r − √
1 − α sinh2 r,

c23 = −eiφ sinh r
√

α. (B2)

We obtain the average total number of output photons

N̄out = 〈â†
outâout + b̂†

outb̂out〉 = |c12|2 + |c21|2 + |c23|2 (B3)

and its variance

�2Nout = 〈(Nout − N̄out )
2〉

= |c12|2(|c11|2 + |c13|2 + |c22|2) + |c22|2|c23|2
+ 2|c12c22(c11c21 + c13c23)|. (B4)

Defining η := (1 − √
1 − α), we obtain

dN̄out

dα
= 2 cosh2 r sinh2 r

η

1 − η
+ sinh2 r (B5)

and

�2Nout = η2 cosh2 r(2η − 1 + 3η2 cosh2 r sinh2 r)

+ 2αη cosh2 r(1 + η sinh2 r)

+ (1 + η sinh2 r)2(2η cosh2 r − α sinh2 r). (B6)

From these expressions, the sensitivity can be calculated:

�α =
√

A

B
, (B7)

where

A = η2(n̄ + 1)[2η − 1 + 3η2(n̄ + 1)n̄]

+ 2αη(n̄ + 1)(1 + ηn̄)

+ (1 + ηn̄)2[2η(n̄ + 1) − αn̄] (B8)

and

B = √
n̄

[
1 + 2η√

1 − α
(n̄ + 1)

]
, (B9)

in terms of the average number of photons interacting with the
sample, n̄ = 〈â†

1â1〉 = sinh2 r, and η := (1 − √
1 − α). For

small values of α such that α 	 1 and αn̄ � 1, Eq. (B7) can
be expanded to

�α =
√

α
[
1 + αn + 1

8α3n3 + 1
2α

(
1 + 1

2αn + 1
2α2n2

)]
√

n̄
[
1 + αn̄ + α

(
1 + 3

4αn̄
)] ,

(B10)
where the leading term is �α ∼ √

α/n̄, showing that the
SU(1, 1) sensitivity estimate goes over the result in Eq. (8),
for α 	 1.
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