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Quantum simulation of the one-dimensional Fermi-Hubbard model as a Z2 lattice-gauge theory
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The Fermi-Hubbard model is one of the central paradigms in the physics of strongly correlated quantum
many-body systems. Here we propose a quantum circuit algorithm based on the Z2 lattice gauge theory (LGT)
representation of the one-dimensional Fermi-Hubbard model, which is suitable for implementation on current
NISQ quantum computers. Within the LGT description there is an extensive number of local conserved quantities
commuting with the Hamiltonian. We show how these conservation laws can be used to implement an efficient
error-mitigation scheme. The latter is based on a postselection of states for noisy quantum simulators. While
the LGT description requires a deeper quantum-circuit compared to a Jordan-Wigner (JW) based approach,
remarkably, we find that our error-correction protocol leads to results being on par with a standard JW
implementation on noisy quantum simulators.
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I. INTRODUCTION

In recent years there has been remarkable progress in the
development of new quantum computation technologies. The
availability of NISQ quantum computers in combination with
new quantum computation algorithms has offered new possi-
bilities for simulations of quantum many-body systems [1,2].
While the technology is arguably in its infancy, there is a
growing effort in the development of new computational al-
gorithms which could help to mitigate the inevitable presence
of noise and errors on currently available quantum hardware
[3–6]. Recent research in this field resulted in new efficient
error-mitigation schemes [7–13], bringing NISQ forward as
a powerful tool for studying many-body quantum problems.
Most prominent is the simulation of nonequilibrium prob-
lems, which are otherwise very hard to study using other
theoretical and numerical techniques. Some remarkable ex-
amples of recent achievements include quantum simulations
of time crystals [14], lattice gauge theories [15–17], confine-
ment dynamics [18–20], and quantum spin liquids showing
topological order [21].

One of the simplest, yet one of the most versatile, examples
of a strongly interacting many-body quantum system is given
by the Fermi-Hubbard model (FHM) [22]. It has been used as
a minimal model for a large variety of physical systems, from
high-Tc superconductors to cold atomic gases in optical lat-
tices [23]. However, exact results for this model are restricted
to isolated fine-tuned points of the parameter space [24,25]
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and except for the one-dimensional (1D) case [26,27] under-
standing its physics remains one of the grand challenges of
condensed matter physics. In this context, the Fermi-Hubbard
model has been extensively studied and benchmarked with
numerical methods [28–30] and recently algorithms for digital
quantum simulations have been discussed [31–35].

In this paper we propose and benchmark a quantum sim-
ulation protocol for the Fermi-Hubbard model which can be
implemented on NISQ quantum computers. Our approach
is based on a mapping to a Z2 lattice-gauge theory, which
describes a system of lattice fermions coupled to spin-1/2
degrees of freedom defined on the links of the lattice [36,37].
This mapping has been used in quantum Monte Carlo studies
of the 2D Hubbard model with attractive interactions, where it
allows one to use determinant QMC without the sign problem
[38,39], and played an important role in the discovery of the
physics of disorder-free localization [40–42]. In the context
of quantum simulation the implementation of LGTs itself has
seen many recent advances [43–47].

The LGT description of the Fermi-Hubbard model is ob-
tained by introducing auxiliary spin-1/2 degrees of freedom,
so one has to introduce constraints on every lattice site in
order to remove the redundancy of the description. These
constraints fix the eigenvalues of a set of local operators to ±1
depending on the sign of the interaction term in the Hubbard
model. These operators are further conserved under the time
evolution with the LGT Hamiltonian. From a quantum simula-
tion perspective, the LGT representation allows us to propose
and implement an efficient error-correction protocol based on
postselection of states utilizing a macroscopic number of these
conserved quantities.

We focus on studying the real time quench dynamics using
the LGT mapping for the 1D Hubbard model and compare
these results with the ones obtained by a direct simulation of
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the FHM using a spin-1/2 representation (via Jordan-Wigner
transformations). Remarkably, in the presence of the noise we
find that despite the fact that the LGT approach requires a
much larger number of CNOT gates compared with the direct
simulation (six gates vs two gates per hopping term) it offers
results whose error is on par with or better than that obtained
from a direct simulation. We note that, as long as the number
of simulation runs is not an issue, the power of our error-
mitigation scheme based on local conserved quantities of the
LGT can outperform noisy simulations utilizing only global
conservation laws. This unexpected observation suggests fur-
ther exploration of the LGT approach to models of strongly
correlated systems, e.g., a 2D FHM.

The structure of the paper is the following. In Sec. II we
define the model and its mapping to a Z2 LGT. In Sec. III
we show how to implement the LGT in terms of quantum
circuits with a minimum number of CNOT gates and explain in
particular the quantum-circuit representation of the three-spin
coupling terms. In Sec. IV we describe the details of our
error-mitigation protocol. The results of the simulations are
discussed in Sec. V.

II. 1D FERMI-HUBBARD MODEL AND ITS MAPPING
TO A Z2 LGT

We consider a system of spin-1/2 lattice fermions on
a general lattice in any dimension. The fermion operators
are defined by ĉiσ , where i, σ are the site and spin indices
correspondingly, and obey standard anticommutation rela-
tions {ĉiσ , ĉ†

jσ ′ } = δi jδσσ ′ . The kinetic energy is given by the
nearest-neighbor hopping term with strength J and the Hub-
bard interaction strength is denoted by U ,

Ĥ = −J
∑

〈i j〉σ
(ĉ†

iσ ĉ jσ + H.c.) + U

2

∑

i

(n̂i − 1)2. (1)

Here the summation in the first term on the right-hand side
(RHS) goes over nearest-neighbor sites; the operator n̂i =∑

σ ĉ†
iσ ĉiσ describes the total number of fermions on site i.

Let us first present the details of the mapping of the
Hamiltonian (1) to a Z2 LGT, where we follow the slave-spin
representation of Ref. [36]. We introduce pseudospin opera-
tors Î on each site, having eigenstates Î z|±〉 = ± 1

2 |±〉, where
the state |+〉 with a positive eigenvalue denotes both doubly
occupied and empty states on the lattice and |−〉 corresponds
to states with a single fermion. In other words, the eigenvalues
of these operators are in one to one correspondence with the
absence/presence of a local magnetic moment. One has to also
define another set of spin-1/2 fermion operators f̂iσ on each
lattice site. In terms of these operators and the pseudospins
the physical fermion operators ĉ†

iσ can then be written as ĉ†
iσ =

2Î x
i f̂ †

iσ . The FHM Hamiltonian (1) in slave-spin representation
now reads

ˆ̃H = −4J
∑

〈i j〉σ

(
Î x
i Î x

j f̂ †
iσ f̂ jσ + H.c.

) + U

2

∑

i

(
Î z
i + 1/2

)
. (2)

Because the slave-spin representation requires an enlarged
Hilbert space, one has to introduce constraints. Therefore, the
Hamiltonian (2) is equivalent to the FHM Hamiltonian (1)
only in the physical subspace, i.e., when the operators satisfy

FIG. 1. Schematic picture of the mapping to a LGT (6). In the
FHM model the spin-1/2 fermions live on the sites of the lattice
(circles) connected by hopping and the Hubbard term contributes to
the energy whenever there are two fermions with opposite spins on
the same lattice site. In the lattice gauge theory description we have
additional spin-1/2 degrees of freedom on every link (squares). The
sign of the fermion hopping is given by the direction of bond spins
(green, spin up; blue, spin down) in the z representation. The bond
spins interact via transverse Ising interactions (red dotted line).

the following equations:

Î z
i + 1

2 − (n̂i − 1)2 = 0, ∀i. (3)

Using this representation one can now transform the Hamil-
tonian into a LGT form, where the next step is to carry out
a duality transformation of the operators Î z

i by introducing
spin-1/2 operators τ̂ jk living on the bonds between adjacent
sites,

τ̂ z
jk = Î x

j Î x
k , Â j = Î z

j . (4)

It is worth noting that all the steps above are valid in arbi-
trary dimension and we can write Â j = ∏

i∈star( j) τ̂
x
i j . Here the

“star” of the lattice site j denotes the set of the sites being
nearest neighbors of the site j connected to it by a hopping
term. In the 1D case this simply becomes

Î z
j = τ̂ x

j−1, j τ̂
x
j, j+1. (5)

After performing this duality transformation, we arrive at the
following Z2 LGT Hamiltonian which we write below for the
1D case:

ĤLGT = − 4J
∑

j,σ

(
τ̂ z

j, j+1 f̂ †
jσ f̂ j+1σ + H.c.

)

+ U

2

∑

j

τ̂ x
j−1, j τ̂

x
j, j+1, (6)

where we omitted a constant UN/2 term because it does not
affect the time evolution of the system.

The Hamiltonian now describes spin-1/2 fermions hop-
ping on a lattice with the sign of the hopping defined by
the eigenvalue of the τ z

i j ; see Fig. 1. The bond spins in-
teract via a transverse-field Ising term. In two dimensions
the LGT Hamiltonian is related to the toric code coupled to
fermions with hopping, under additional constraints arising
from the projection to the physical subspace. The defining
feature of the Hamiltonian (6) is the presence of a local Z2

gauge invariance, namely that the fermion operators are in-
variant under the following transformations: f̂iσ → θi f̂iσ and
τ̂ z

i,i+1 → θiτ̂
z
i,i+1θi+1 with θi = ±1. Therefore, this model is

indeed an example of a Z2 LGT.
It is important to note that, because we employed a duality

transformation, we have to select one of the disconnected sub-
spaces of the model, where every such subspace is enumerated
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by a set of conserved quantities defined by the products of
τ̂ z along closed loops. Since here we study a 1D model with
periodic boundary conditions, the only operator of this type is
the following Wilson loop:

�̂ =
N∏

i=1

τ̂ z
i,i+1, (7)

where N is the number of sites. This operator has eigenvalues
±1 and, since the choice of a corresponding sector is arbitrary,
we fix it to be �̂ = +1 in the calculations.

III. QUANTUM CIRCUIT REPRESENTATION

A. Fermion encoding

In order to encode both the fermionic Hamiltonian (1) and
the LGT Hamiltonian (6) in terms of qubits, we first have to
represent fermion operators as spin 1/2. In the 1D case this
can be done using the Jordan-Wigner (JW) transformation.
In order to preserve the canonical anticommutation relations
between the operators related to fermions with different spins,
we are going to employ the following version of the JW
transformation [48]:

f̂ †
i↑ = K̂i↑Ŝ+

i↑, f̂i↑ = K̂i↑Ŝ−
i↑,

f̂ †
i↓ = P̂↑K̂i↓Ŝ+

i↓, f̂i↓ = P̂↑K̂i↓Ŝ−
i↓, (8)

and n̂iσ = Ŝz
iσ + 1/2. Here Ŝi,↑ and Ŝi,↓ are two flavors of

spin-1/2 operators, which encode spin-up and spin-down
fermions correspondingly, and we also introduced string op-
erators K̂iσ = eiπ

∑i−1
k=1 n̂kσ as well as spin-up fermion parity

operator P̂↑ = eiπ
∑N

k=1 n̂k↑ , whose eigenvalues are +1 and −1
when the total number of spin-up fermions is even/odd corre-
spondingly.

After application of the Jordan-Wigner transformation we
obtain the spin representation of the Hubbard Hamiltonian (1),

Ĥ = −J
∑

jσ

(Ŝ+
jσ Ŝ−

j+1σ + H.c.) + U

2

∑

j

(
Ŝz

j↑ + Ŝz
j↓

)2
. (9)

Taking into account the conservation of up-spin and down-
spin magnetization, which follows from the corresponding
particle conservation laws, one can further simplify this ex-
pression and we obtain

Ĥ = −J
∑

j,σ

(Ŝ+
jσ Ŝ−

j+1σ + H.c.) + U
∑

j

Ŝz
j↑Ŝz

j↓. (10)

Having carried out the same JW transformation for the
LGT Hamiltonian, we obtain a representation of (6) in terms
of spin operators

ĤLGT = − 4J
∑

j,σ

(
τ̂ z

j, j+1Ŝ+
jσ Ŝ−

j+1σ + H.c.
)

+ U

2

∑

j

τ̂ x
j−1, j τ̂

x
j, j+1. (11)

It is worth noting that the boundary conditions for the spin
representation depend on the parity of the total number of
fermions. Namely, for even total number of fermions peri-
odic boundary conditions (PBC) transform into antiperiodic

boundary conditions (APBC), while in the case of odd total
number of fermions, APBC transform into PBC.

B. Implementation of the time evolution

Our goal is the quantum simulation of a quench dynamics;
see, e.g., Ref. [3]. We implement the time evolution under
the Hamiltonians discussed above using the standard Suzuki-
Trotter decomposition. In other words we discretize time by
splitting the entire time evolution into N = t/�t steps with
the fixed length �t . For the evolution operator Û = e−iĤt , this
procedure gives Û (t ) = [Û (�t )]N . Each application of Û (�t )
is referred to as a Trotter step.

Now one can approximate the evolution operator for each
Trotter step by the sequence of relatively simple operators.
Let us consider a Hamiltonian of the form Ĥ = Â + B̂, where
[Â, B̂] 
= 0. The application of the Trotter decomposition is
based on the following expansion for small �t :

e−iĤ�t = e−iÂ�t e−iB̂�t + O[(�t )2], (12)

but in practice one can use sizable step sizes to reach longer
times [49].

Both Hamiltonians Ĥ and ĤLGT are naturally divided into
two noncommuting terms—a hopping term and an on-site
interaction term. Therefore, the time evolution governed by
the Hubbard Hamiltonian (10) can be approximated in the
following way:

e−iĤ�t ≈
∏

jeven↑
Â j↑ ×

∏

jodd↑
Â j↑ ×

∏

jeven↓
Â j↓ ×

∏

jodd↓
Â j↓

×
∏

j

B̂ j + O[(�t )2], (13)

where we have introduced the following operators:

Â jσ = eiJ�t (Ŝ+
jσ Ŝ−

j+1σ +H.c.), B̂ j = e−iU�t Ŝz
j↑Ŝz

j↓ . (14)

In a similar way we can write the corresponding Trotterized
time evolution operator for the LGT Hamiltonian (11) for a
single time step as

e−iĤLGT �t =
∏

jeven↑
Ĉj↑ ×

∏

jodd↑
Ĉj↑ ×

∏

jeven↓
Ĉj↓ ×

∏

jodd↓
Ĉj↓

×
∏

jeven

D̂ j ×
∏

jodd

D̂ j + O[(�t )2], (15)

where we have introduced the following operators:

Ĉjσ = e4iJ�t (τ̂ z
j, j+1Ŝ+

jσ Ŝ−
j+1σ +H.c.),

D̂ j = e−i(U/2)�t τ̂ x
j−1, j τ̂

x
j, j+1 . (16)

C. Quantum circuits

The final step towards the implementation of the time evo-
lution of the aforementioned systems on a quantum simulator
is to express both the states and the operators in terms of quan-
tum circuits. The quantum circuit representation is therefore
given by an array of qubits and a series of one- and two-qubit
quantum gates [50]. The computational basis is taken as a
tensor product of single-qubit states in the z representation.
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In this work, we provide an implementation based on the
IBM quantum computer architecture. Therefore, we imple-
ment the quantum circuit using CNOT gates, which reverse the
state of the second qubit depending on the state of the first
one, as the only gates which generate entanglement,

CNOT = • =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ . (17)

We also employ the following single-qubit gates, which are
provided by the IBM quantum computing architecture.

(i) Pauli matrices:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)

Z =
(

1 0
0 −1

)
, (18)

(ii) Phase gates:

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, (19)

(the Hadamard and the S-phase gate).
(iii) Rotation gates:

RX(θ) =
(

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

)

RY (θ) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)

RZ(θ) =
(

e−i θ
2 0

0 ei θ
2

)
.

(20)

The optimal decomposition of arbitrary two-qubit gates
[51] can be used to express the operators Â, B̂, and D̂. The
hopping operator Â related to the Hubbard Hamiltonian can
be written as the following circuit:

Siσ

F

Ry(+JΔt/2)
G

Si+1σ Ry(−JΔt/2)
(21)

where the blocks F and G denote the circuits

F
= Siσ H S H • S H

Si+1σ H S H H Z S H
(22)

G
= Siσ H Z S • H Z S H

Si+1σ H S H H Z S H
(23)

The operator B̂ related to the on-site interaction term in the
Hubbard Hamiltonian can be written as

Sj↑ • •
Sj↓ Rz(2UΔt)

(24)

Finally, the operator D̂ describing the interaction of the bond
spins in the LGT Hamiltonian is written as

τj,j−1 • Rx(UΔt) •
τj,j+1

(25)

In order to implement the three-qubit operator Ĉ, which is
related to the fermion hopping term in the LGT Hamiltonian,
we have constructed the following minimal quantum circuit
(with the blocks F and G defined above):

τi,i+1 • • • •
Siσ

F

Ry(+J2Δt)
G

Si+1σ Ry(−2JΔt)

(26)

and we note that this representation of the three-spin coupling
term requires six CNOT gates in total. One can compare this
with the representation of two-spin interactions, which re-
quires only two CNOT gates.

D. Resource estimation

According to their name, the noisy intermediate scale
quantum (NISQ) devices are currently suffering from consid-
erable errors and for the moment still have a relatively small
number of qubits. One of the main sources of errors are the
gate errors. Since the two-qubit error rate tends to be an order
of magnitude above the single qubit error rate, the number of
CNOTs can be used as a representative of these errors.

Above we have presented two approaches for quantum
simulations of the Fermi-Hubbard model. The first approach
is based on the Hamiltonian (10) (further referred to as the “di-
rect method”), while the second is based on the Hamiltonian
(11) (further referred to as the “LGT method”). It is useful to
compare the corresponding computational resources required
for the implementation of each of these strategies in terms of
the number of qubits and CNOT gates. In order to carry out
simulations for a system of N sites, one needs 2N qubits for
the implementation of the direct method and 3N qubits for
the LGT method, where the presence of auxiliary bond spins
accounts for the increase in the required number of qubits.

In Tables I and II we present the error estimates for the
implementation of both models in terms of the number of
CNOT gates. One can see that the introduction of auxiliary
spins in the LGT case results in a more than twofold in-
crease in the number of CNOTs for the corresponding circuit,
due to the cost of introducing three-qubit gates. From this
comparison one would naively expect that the LGT approach
would perform much worse (in terms of errors) than the direct
method. However, we show below that the LGT approach
provides additional ways to mitigate errors on NISQ devices,
which may result in its performance being on par with or even
better than that of the direct method.
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TABLE I. Implementation cost in terms of two-qubit gates for
the direct method.

Term Number of terms Cost per term Total cost

Hopping 2N 2 4N
Interaction N 2 2N
Total 6N

IV. ERROR MITIGATION

The problem of dealing with errors is one of the central
challenges in the task of carrying out quantum simulations on
NISQ architectures. Below we outline several error mitiga-
tion strategies which we used for the simulation of the FHM
model. We benchmark their performance on a noisy simulator.

First, one can notice that both Hamiltonians (1) and (6)
have a number of conserved quantities. Therefore, the Hilbert
space in both cases can be separated into several subspaces
which do not couple under the time evolution. These sub-
spaces can be labeled by the eigenvalues of these conserved
quantities. Therefore, if the initial state lies in a certain
subspace, all the states obtained by the application of an
ideal (noiseless) time-evolution operator will remain in this
physical subspace. Of course, a general error would violate
these conservation laws, which suggest the following error-
mitigation strategy. Namely, we disregard any measurements
outside the physical subspace [3].

Evidently, both approaches (the direct one and the LGT)
have global conservation laws as both Hamiltonians con-
serve the number of spin-up and spin-down fermions. In
terms of Jordan-Wigner transformation this corresponds to
the conservation of the net magnetization Ŝz

σ = ∑
j Ŝz

jσ for
both subsystems of spins, encoding spin-up and spin-down
fermions correspondingly.

Our key observation is that the LGT method provides an
extensive number of local conservation laws which can be
used in the error mitigation. The local Z2 gauge invariance
of the Hamiltonian (11) results in an extensive number N
of conserved quantities, which we will denote as charges,
q̂i = (−1)n̂i τ̂ x

i−1,iτ̂
x
i,i+1, where n̂i is the number of fermions

on the ith lattice site. These charges take on eigenvalues
±1. Therefore, due to the presence of these charges, the
physical subspace for the Hamiltonian (11) is constrained by
a larger number of conserved quantities compared with the
Hamiltonian (10), so that, if an accidental spin flip occurs,
the probability that this measurement will be disregarded is
higher.

Apart from the postselection error mitigation, the second
error mitigation strategy we employ is based on the idea that
the noise in our quantum circuit depends weakly on the value

TABLE II. Implementation cost in terms of two-qubit gates for
the LGT method.

Term Number of terms Cost per term Total cost

Hopping 2N 6 12N
Interaction N 2 2N
Total 14N

FIG. 2. Schematic picture of the initial state of the fermion
subsystem.

of the Trotter step size �t . We can then measure the decay
of an arbitrary local operator, e.g., the number of particles
or magnetization A(t ) on an arbitrary site with t = n�t for
n Trotter steps. We consider the Trotterized time evolution
of this value, keeping the number of Trotter steps (and con-
sequently the depth of the corresponding quantum circuit)
constant, but decreasing the Trotter step size. In the limit
(without noise) �t going to zero the average of this operator
should approach its average in the initial state. In a circuit with
noise, the ratio of the measured value at time t and its value
in the initial state decreases for increasing number of Trotter
steps [we noticed that even if J�t = 10−6, the value of A(t )
decays]. The decay becomes independent of t and we can then
normalize the results of the measurements by this decay.

V. NUMERICAL RESULTS

In order to compare the two methods discussed above we
study the time evolution of a system of spin-1/2 fermions
described by the FHM model on a lattice with N = 6 sites. In
this paper we use a classical simulator of a quantum computer
with Qiskit [and compare the results of these simulations with
the exact diagonalization (ED) results]. We prepare the initial
state of the fermion subsystem in a domain wall configuration
(see Fig. 2). Namely half of the sites of the system are occu-
pied by spin-up fermions, whereas the other half is occupied
by spin-down fermions. For the bond-spin subsystem for the
LGT method, in order to make use of the advantage of having
a large number of local constraints, the initial state should be
chosen as an eigenstate of all charge operators q̂i. In addition
to that, this state should also be an eigenstate of the Wilson
loop operator (7). Consequently, our initial state for the LGT
method is the tensor product |S〉 ⊗ |ψ〉 of the domain-wall
state for the fermion subsystem |ψ〉 and has the following
form for the bond-spin subsystem:

|S〉 = 1√
2

(| + − + − + −〉 + | − + − + − +〉). (27)

Here |+〉 and |−〉 denote a bond spin polarized along the x axis
with the eigenvalue equal to +1/2 and −1/2 correspondingly.

First, we show results for a noise-free ideal quantum simu-
lator and compare the continuous time evolution calculated
via ED with our LGT quantum circuit implementation for
different Trotter time steps �t in Fig. 3. Second, we study
the effect of the noise on the Qiskit quantum simulator and
show how our postselection protocol based on global and
local conserved quantities can efficiently mitigate errors. We
benchmark the fidelity of the numerical results by measuring
a connected two-point magnetization correlator on opposite
sides of the domain wall,

χ3,4 = 〈Ŝ3Ŝ4〉 − 〈Ŝ3〉〈Ŝ4〉, (28)
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FIG. 3. Magnetization correlator χ34(t ) computed via exact di-
agonalization (black line) and using the LGT quantum circuit via
Trotterized time evolution (dots) implemented on a Qiskit’s Aer
Simulator (without noise), shown for different values of a Trotter
step �t . The results are presented for a FHM on a lattice with N = 6
sites, and J = 1.0, U = 2.0.

where Ŝi = n̂i,↑ − n̂i,↓. Strong oscillations of this quantity al-
low one to visualize the difference in the fidelity of the results
obtained via direct and LGT quantum simulation methods.
In order to keep the statistical error small and roughly the
same for all data points we take as many measurements as
needed to obtain 10 000 measurements per data point after the
postselection. In this case, the statistical error for these local
correlators is around ∼0.01, which is too small to be shown
in the figures. It is important to note that, as the number of
discarded measurements is much higher for the LGT method,
the total number of measurements required is several times
higher than that for the direct method.

We present the results obtained using the LGT and the
direct methods for various noise levels (see figure caption) in
Fig. 4. To illustrate the influence of the noise, we use a simple
noise model with depolarizing error on single- and two-qubit
gates. Specifically, we employ the noise model class for Qiskit
Aer 0.12.2. The standard depolarizing channel is defined as
follows:

E (ρ) = (1 − λ)ρ + λ Trρ
I

2n
, (29)

where ρ is a density matrix, λ is a depolarizing error pa-
rameter, and n is the number of qubits on which the channel
acts (the trace is meant as the partial trace on the number of
qubits, similar to the identity). Therefore, the noise level can
be characterized by two depolarizing error parameters—η for
two-qubit gates and κ for single-qubit gates. Data obtained
from actual IBMQ hardware, which can be found on the
IBMQ website, shows that the noise on two-qubit gates is
normally an order of magnitude stronger than the noise on
single-qubit gates. Therefore, we put κ = 0.1η for concrete-
ness and can tune a single noise parameter. To benchmark
the accuracy of the simulations, we compare the obtained
data with the results of a noise-free simulation carried out via
ED. The unmitigated simulations with noise show a decay
of the amplitude with increasing simulation time as errors
accumulate with time. Note, as expected from our CNOT count

FIG. 4. Magnetization correlator χ3,4(t ) computed with the
quantum circuit via Trotterized time evolution, which we imple-
mented using Qiskit’s QasmSimulator with different noise levels
(denoted by η; see main text) without error mitigation. The results
are presented for a chain of N = 6 sites, with J = 1.0 and U = 2.0.
Trotter step �t = 0.3.

of the two different circuits, this decay is significantly stronger
for the LGT method.

Next, we show in Fig. 5 the performance of the error mit-
igation strategy based on the normalization of the results by
the decay factor A(t ), which clearly shows the improvement
of the results. Of course, this error mitigation strategy does not
and cannot completely cure the errors; see, e.g., the results for
a relatively strong noise (η = 0.01). However, the comparison
with unmitigated results clearly demonstrates the efficiency of
this strategy. Finally, the combination of both error mitigation
strategies—based on postselection and the normalization—

FIG. 5. Magnetization correlator χ3,4(t ) computed with the
quantum circuit via Trotterized time evolution, which we imple-
mented using Qiskit’s QasmSimulator with different noise levels
(denoted by η; see main text). These curves are shown after division
by the aforementioned normalization factor A(t ). No postselection
was applied. The results are presented for a chain of N = 6 sites,
with J = 1.0 and U = 2.0. Trotter step �t = 0.3.
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FIG. 6. Magnetization correlator χ3,4(t ) computed with the
quantum circuit via Trotterized time evolution, which we imple-
mented using Qiskit’s QasmSimulator. The results are presented
for a chain of N = 6 sites, with J = 1.0 and U = 2.0. Trotter step
�t = 0.3. The blue curve shows the results of an ideal machine
(Trotterized quantum circuit implementation with the same time step
but without noise); the red and yellow curves represent the results
of noisy simulations with η = 0.001 for the LGT method and the
direct method correspondingly. These curves are shown after our
error mitigation. The inset shows the corresponding deviations from
the results of an ideal machine.

can result in almost complete restoration of the noise-free
results (see Figs. 6 and 7), at least at short times. Remarkably,
for our choice of the noise levels, the LGT method is on par
with the direct one despite having a much deeper circuit.

FIG. 7. Imbalance I (t ) computed with the quantum circuit via
Trotterized time evolution which we implemented using Qiskit’s
QasmSimulator. The results are presented for a chain of N = 6 sites,
with J = 1.0 and U = 2.0. Trotter step �t = 0.3. The blue curve
shows the results of an ideal machine (Trotterized quantum circuit
implementation with the same time step but without noise); the red
and yellow curves represent the results of noisy simulations with η =
0.001 for the LGT method and the direct method correspondingly.
These curves are shown after our error mitigation. The inset shows
the corresponding deviations from the results of an ideal machine.

FIG. 8. Logarithm of the ratio between the numbers of circuit
runs required for efficient postselection in the LGT and direct simu-
lation, respectively, as a function of system size at various points in
time. Time evolution was implemented via Qiskit’s QasmSimulator
with the noise level η = 0.005. The results are presented for chains
of L = 4, 6, and 8 sites, with J = 1.0 and U = 2.0. Trotter step
�t = 0.3.

VI. DISCUSSION AND CONCLUSION

We have presented a LGT approach for the quantum
simulation of the 1D Fermi-Hubbard model on a digital
quantum computer. We presented the exact mapping of the
Hubbard Hamiltonian to a Z2 LGT and the corresponding
quantum-circuit representation for the Trotterized time evolu-
tion operator. We then introduced an error-mitigation strategy
based on the conserved quantities inherent to the LGT, which
allowed us to use an efficient postselection of measurement
results obtained in the presence of noise. We compared both
the LGT and the direct simulation of the model in terms of
spins and find that despite a much larger number of CNOT

gates required for the LGT simulation, this method may be on
par with the direct implementation. It is worth noting that for
increasing system sizes the number of circuit runs needed for
an efficient postselection, e.g., keeping the number of shots
within the physical subspace constant, scales exponentially
(see Fig. 8). However, as long as runs can be parallelized and
the system sizes remain small a LGT type implementation can
be useful and may also profit from hardware developments for
multiqubit interactions. Moreover, to avoid the exponential
scaling with system size it would be interesting to explore
sampling over a fixed number of charge sectors or average
charge conservation for postselection. Hence our benchmark
results call for further investigation of LGT-based represen-
tations of models for strongly correlated systems for NISQ
quantum computing architectures.

In our numerical simulations we implemented only in-
coherent noise, based on the available Qiskit simulator. A
possible strategy to mitigate coherent errors could be based
on the recently developed methods of linear gauge protectors
and local pseudogenerators [52–54]. Moreover, these methods
have proven to be effective in the case of incoherent 1/ f
noise [55]. We expect that such a stabilization of conserved
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quantities of the LGT description could further increase the
resilience to errors.

The accuracy of quantum simulation results depends on
two major factors, i.e., the circuit depth and the efficiency of
the error mitigation strategy. We argue that the deeper circuit
does not always lead to less accurate results if there is an
efficient and controlled way for postselecting the data. In other
words, an appropriate error mitigation strategy might be able
to compensate for the lower quality of raw data. In our case,
the presence of an extensive number of local conserved quan-
tities within a LGT description of the Hubbard model makes it
possible to carry out a much more stringent postselection and
to obtain better results.
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