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Quantum process tomography is a powerful tool for understanding quantum channels and characterizing the
properties of quantum devices. Inspired by recent advances using classical shadows in quantum state tomography
[H.-Y. Huang, R. Kueng, and J. Preskill, Nat. Phys. 16, 1050 (2020).], we have developed ShadowQPT, a
classical shadow method for quantum process tomography. We introduce two related formulations with and
without ancilla qubits. ShadowQPT stochastically reconstructs the Choi matrix of the device allowing for an a
posteri classical evaluation of the device on arbitrary inputs with respect to arbitrary outputs. Using shadows,
we then show how to compute overlaps, generate all k-weight reduced processes, and perform reconstruction
via Hamiltonian learning. These latter two tasks are efficient for large systems as the number of quantum
measurements needed scales only logarithmically with the number of qubits. A number of additional approx-
imations and improvements are developed, including the use of a pair-factorized Clifford shadow and a series
of postprocessing techniques that significantly enhance the accuracy for recovering the quantum channel. We
have implemented ShadowQPT using both Pauli and Clifford measurements on the IonQ trapped ion quantum
computer for quantum processes up to n = 4 qubits, and we achieved good performance.
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I. INTRODUCTION

Quantum technologies have been developing rapidly in re-
cent years. Quantum devices are used for various applications,
such as quantum metrology, quantum teleportation, and quan-
tum simulation [1–5]. One important task in the development
of near-term quantum devices is their characterization.

For noisy intermediate-scale quantum (NISQ) technology,
a first step to characterization is to use quantum state to-
mography (QST), which attempts to characterize the output
state of the quantum circuit. A next crucial step, quantum
process tomography (QPT), characterizes not just one output
state but the entire quantum dynamics of the device. Ear-
lier attempts at QPT used the linear inversion method [6,7].
Later various statistical methods were developed, includ-
ing maximum-likelihood methods [8–12], Bayesian methods
[13–15], compressed sensing methods [16], tensor network
methods [17], and other optimization techniques [18–24].
Theoretically, quantum process tomography can be related
to quantum state tomography through the Jamiołkowski
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process-state isomorphism [25,26]. One recent important ad-
vancement in QST comes from classical shadow tomography
[27], which allows for the prediction of multiple observables
with few quantum measurements both theoretically and ex-
perimentally [28–41].

In this work, we propose a classical shadows algorithm
for quantum process tomography on near-term quantum
computers giving both a theoretical analysis and explicit
implementations on an IonQ quantum computer. Using
Jamiołkowski process-state isomorphism and techniques in
process tomography, we develop the first classical shadow
quantum process tomography (ShadowQPT).

In Sec. II, we prove two theorems related to the effec-
tiveness of ShadowQPT. Theorem II.2 bounds the amount
of ShadowQPT data needed to compute the overlap between
any target density matrix σ with the output of the measured
quantum process on any input ρ. Theorem II.1 discusses the
complexity of process matrix tomography. In Sec. III, we
show Corollary [cor1], which describes the sample complex-
ity scaling of applying ShadowQPT to Hamiltonian learning,
which is logarithmic in system size, following from Theorem
II.1. In Sec. IV, we develop shadow algorithms with both Pauli
and Clifford measurements. Both an ancilla-based scheme
as well as a two-sided scheme which applies unitaries both
before and after the channel are introduced. We proceed to
show practical improvements to these algorithms for near-
term devices by using two qubit Clifford unitaries instead of
a global Clifford and using multiple repetitions per circuit.
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Furthermore, we develop a series of postprocessing tech-
niques, such as projecting into the space of physical channels
and purifying outputs, which significantly improve our results.
In Sec. V, we implement our algorithms on IonQ quantum
computers for both unitary and nonunitary process tomogra-
phy on n = 2, 3, 4 qubits systems. We benchmark the process
matrix construction, and we test predicting the overlap for
pairs of input and output pure states and compare to direct
measurement outcomes. In Sec. VI, we numerically simulate
Hamiltonian learning and reconstruct a random one dimen-
sional (1D) Ising model using ShadowQPT, showing efficient
scalability with system size. We conclude in Sec. VII with a
discussion on opportunities for and future explorations of our
ShadowQPT algorithms.

II. THEORETICAL ANALYSIS OF SHADOWQPT

In this work, we have developed shadow tomography al-
gorithms for quantum process tomography. The key idea
is based on the recent development of shadow tomography
on a quantum state [27] and the Jamiołkowski process-state
isomorphism [25]. An important result in classical shadow
tomography states that [27] classical shadows of size N suffice
to predict M linear functions {tr(Oiρ)}i=1,...,M up to additive
error ε given that N � (order) log(M) maxi ||Oi||2shadow/ε2.

To connect quantum process tomography with quantum
state tomography, we utilize the Jamiołkowski process-state
isomorphism [25]. It provides a positive-semidefinite operator
representation �E for an n-qubit process E , which is the Choi
matrix representation [26]

�E = (I ⊗ E )(|φ+〉〈φ+|⊗n), (1)

where |φ+〉 = |00〉 + |11〉. For an input density matrix ρ to
the channel E , we have E (ρ) = tr[(ρT ⊗ I)�E ]. In the rest of
the paper, we implicitly denote �E as �. Notice that tr(�ε ) =
2n, and we further denote the normalized process matrix �

with trace 1 as ρ� = 1
2n �. We notate a reduced k-qubit (k �

n) process Choi matrix as the Choi matrix representation for
the quantum channel on a particular k-qubit subsystem where
the other n − k qubits are traced out.

Based on the classical shadow tomography property and
the Choi matrix representation, we state the following two
informal versions of the theorems for classical shadow tomog-
raphy for a quantum process.

Theorem II.1. For an n-qubit process Choi matrix ρ� and
ε, δ ∈ (0, 1), the number of random global Clifford measure-
ments N that suffice to simultaneously predict any reduced
k-qubit process Choi matrix ρ�(k) with Frobenius norm error
up to ε with probability 1 − δ is of order 4n+k

ε2 log(2(8n)2k/δ).
Meanwhile, the number of Pauli-6 positive operator-valued

measurements (POVMs) N that suffice to simultaneously
predict any reduced k-qubit process Choi matrix ρ�(k) with
Frobenius norm error up to ε with probability 1 − δ is of
order 36k

ε2 log(2(8n)2k/δ), and trace norm error up to ε with

probability 1 − δ is of order 144k

ε2 log((24n)2k/δ).
The Pauli-6 POVM measurement includes

{ 1
3 |0〉〈0|, 1

3 |1〉〈1|, 1
3 |+〉〈+|, 1

3 |−〉〈−|, 1
3 |r〉〈r|, 1

3 |l〉〈l|}, where
(|0〉, |1〉), (|+〉, |−〉), (|r〉, |l〉) are eigenvectors of σz, σx,
and σy. We note that the Pauli-6 POVM and the random

single-qubit Clifford measurement usually share similar
results since the two measurements have the same shadow
norm for factorized Pauli observables [27,36]. In this
work, the term “random Pauli measurement” or “Pauli”
in the figures refers to a Pauli-6 POVM, though one
can also apply a random single-qubit Clifford in those
contexts.

Notice that for any fixed k, the shadow methods allow
simultaneous prediction of all

(n
k

)
reduced k-qubit processes in

time logarithmic in n. This is useful for learning quantum dy-
namics of local observables, and it provides a foundation for
us to develop an efficient k-local Hamiltonian learning scheme
(see Sec. III). For full process tomography (k = n), Theo-
rem II.1 states that the quantum measurement complexity of
ShadowQPT scales exponentially, which is consistent with the
known lower bound. We note that each measurement of Shad-
owQPT gives a full unbiased (potentially noisy) stochastic
representation of the entire Choi matrix; this stands in contrast
with standard maximum-likelihood estimation (MLE), which
requires exponential classical postprocessing to generate the
Choi matrix even from small amounts of data.

Theorem II.1 focuses on predicting the complete set of
reduced k-qubit process Choi matrices. Instead, one can ask
about computing the result of the quantum channel run on a
series of (input ρ, output σ ) pairs, i.e., the quantum device run
on the density matrix ρ and traced against the observable σ .

Theorem II.2. For an n-qubit quantum process ρ�

and ε, δ ∈ (0, 1), given a set of density matrix pairs
{(ρ in

1 , σ1), . . . , (ρ in
M , σM )}, the number of measurements

N that suffice to predict tr((ρ in T
i ⊗ σi )ρ�) for any i up to error

ε with probability 1 − δ is of order

log(2M/δ)

ε2
maxi

∣∣∣∣
∣∣∣∣Oi − tr(Oi )

2
I

∣∣∣∣
∣∣∣∣
2

shadow

, (2)

where Oi = ρ in
i ⊗ σi, and || · ||shadow is the shadow norm (see

Theorem A.1 in the Appendix for the definition).
For random global Clifford measurement, it requires order

log(2M )
ε2 maxitr(O2

i ). In particular, if ρ in
i and σi are all pure

states, then tr(O2
i ) = 1. For random single-qubit Clifford mea-

surement, it requires order log(2M )
ε2 maxi4ki ||Oi||2∞, where Oi

acts nontrivially on ki-qubits, and || · ||∞ is the spectral norm.
If ρ in

i and σi are all pure states, then ||Oi||2∞ = 1.
If σi and ρ in

i are k-qubit reduced density matrices with the
same support, then the overlap between σi and ρ in

i through the
channel corresponds to tr(E (ρ in

i )σi ) = 2ktr(ρ�(k) (ρ in T
i ⊗ σi )).

Note that the Clifford ShadowQPT allows us to compute the
overlap of pairs of pure states (ρ in, σ ) using a number of
measurements which scale logarithmically with the number
of pairs being considered. If ρ in and σ are stabilizer states,
the classical resources required to compute are also efficient
as one can use the stabilizer algorithm [42].

Notice that to compute M pairs of tr(E (ρ in
i )σi ), Shad-

owQPT requires time independent of n and scales as log(M ),
when ρ in

i and σi have support over a k-qubit system. The
detailed proofs for Theorems II.1 and II.2 and are given in
Appendix 1.
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III. HAMILTONIAN LEARNING VIA SHADOWQPT

A corollary of Theorem II.1 implies that certain ap-
plications of ShadowQPT can also be efficient. One such
application is Hamiltonian learning [43,44], which seeks to
determine an unknown Hamiltonian given access to a time
evolution operator U (t ). In this context, we consider appli-
cations of ShadowQPT to Hamiltonian learning. For a k-local
Hamiltonian H = ∑

i cihi, hi is a k-body operator as a Pauli
string and ci is the coefficient to learn.

One scheme that we develop is to learn ci through Shad-
owQPT on e−iHt . Notice that access to e−iHt also gives us
an ability to time evolve to all t ′ which are integer multiples
of t . Consider t sufficiently small such that U = e−iHt ≈
I − iHt = I − it

∑
i cihi, then U can be approximated by a

sum of k-local operators. To characterize U , we first perform
ShadowQPT on U and attain a representation of ρ�(k) . To learn
ci, we set �(ρ) = UρU † and we choose a k′-local operator pi

where k′ < k such that qi ≡ [hi, pi] 
= 0, and then classically
evaluate

tr(�(pi )qi ) = tr((pi − it[H, pi])qi ) + O(t2) (3)

= tr

⎛
⎝

⎛
⎝pi − it

∑
j

c jq j

⎞
⎠qi

⎞
⎠ + O(t2);(4)

tr
((

pT
i ⊗ qi

)
ρ�

) = −it

⎛
⎝ci +

∑
j 
=i

g jc j

⎞
⎠ + O(t2), (5)

where g j = tr(q jqi )/tr(qiqi ) = tr(q jqi )/2n. Hence we can at-
tain ci from evaluating data from ShadowQPT and solving
a system of equations. Note that if tr(q jqi ) = δi j ∀i, j,
then tr((pT

i ⊗ qi )ρ�) = −itci + O(t2). We focus on this case,
which is true for, e.g., the transverse field Ising model.
According to Theorem II.1, the sampling complexity S of
estimating ci is given by the following.

Corollary III.1. Consider an unknown k local Hamiltonian
H = ∑

i cihi, where hi is a k-body operator and ci are real
coefficients. Given access to U (t ) = eiHt , then ShadowQPT
can estimate ci up to error ε with probability 1 − δ with
sample complexity S,

S ∼ 36k

t2ε2
2k log(8n) log(1/δ), (6)

where t is sufficiently small that the linear approximation error
is much smaller than ε.

Thus for fixed k, ShadowQPT can efficiently predict ci in
O( log(n)) samples. Note that one can systematically reduce
the (currently linear) approximation error by a higher-order
Taylor expansion at the cost of additional classical processing.
We also note that our approach is related to the latest version
of Ref. [44] on real-time dynamics of Hamiltonian learning,
which is proved in an alternative way by extending the results
of finite-temperature Hamiltonian learning.

IV. SHADOWQPT POSTPROCESSING ALGORITHMS

In this work, we perform classical shadow process tomog-
raphy algorithms on a unitary process as well as a nonunitary

FIG. 1. (a) Unitary channel E , which is the GHZ process that can
create a GHZ state for n qubits from |0〉⊗n. (b) Circuit for two-sided
quantum process tomography to produce a Choi matrix � of a quan-
tum channel E . The application of two unitary circuits, denoted U †

L

and UR (e.g., random Pauli/Clifford), can be applied to reconstruct
the channel. (c) Circuit for ancilla-based quantum process tomog-
raphy to produce a Choi matrix � of a quantum channel E . After
preparation of a Bell state input (dashed box) to E , a unitary rotation
U (e.g., random Pauli/Clifford) is applied before measurement.

reduced process. We exemplify our approach on the unitary
channel �, which is the Greenberger-Horne-Zeilinger (GHZ)
process and its reduced process. The GHZ process � is
shown in Fig. 1(a) and it generates an n-qubit GHZ state
[45] |GHZn〉 = (|0〉⊗n + |1〉⊗n)/

√
2 from |0〉⊗n. The GHZ

processes are constructed such that the circuits have a depth
of 2,3,3 for n = 2, 3, 4 qubits, respectively [46].
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A. Unitary full process classical shadows

In this section, we will introduce two schemes for Shad-
owQPT, namely the two-sided scheme and the ancilla-based
scheme. The two-sided scheme is shown in Fig. 1(b), where
random unitary circuits U †

L and UR are applied to the left- and
right-hand side of the channel. For the ancilla-based scheme,
we use the circuit shown in Fig. 1(c). This circuit produces a
2n qubit output density matrix which represents the n qubit
normalized Choi matrix ρ�, for the n qubit process E . This
approach is often called ancilla-assisted quantum process to-
mography [47] (AAPT). In our work, for the ancilla-based
approach we perform shadow tomography on this 2n qubit
state. It turns out that the two-sided scheme can be viewed as
a special case of the ancilla-based scheme, where the random
unitary is factorized into a product of two unitaries UR and
UL, respectively, which act on the top and bottom n wires
each. The details for the proof of equivalence can be found
in Appendix 2.

Both schemes can realize a random Pauli measurement
scheme. For the ancilla-based scheme, the Pauli-6 POVM
measurement can be realized by randomly applying a se-
ries of basis rotation gates chosen from GR = {I, H, SH}
as the unitary U after the channel and measuring in the
computational basis, where H is the Hadamard gate, S is
the phase gate, and I is the identity. For the two-sided
scheme, one can realize the Pauli-6 POVM measurements
by randomly selecting UL,UR as a tensor product from G =
{I, H, SH, X, HX, SHX }, where X is the Pauli X gate. In
practice, this selection from G only needs to be done for
UL; for UR we can still randomly draw from GR, just as in
the ancilla-based scheme, since the application of the last
X is irrelevant if a measurement is immediately performed
afterwards. It is also possible to replace the Pauli-6 POVM
measurements with random single-qubit Clifford gates (k =
1). This may be advantageous on certain quantum devices
[33]. We numerically simulate their equivalence in Fig. 14.

Additionally, both schemes can utilize random Clifford
measurements, which can have better performance or scaling
compared to Pauli measurements. Since most NISQ devices
have limited gate depth, a global n or 2n qubit random Clifford
unitary needs gate depth O(n2/ log n) in general, which could
be challenging to implement accurately; instead, we use a ten-
sor product of two-qubit Clifford unitaries (k = 2) to realize
the improved scaling of the Clifford group while minimizing
the additional gate depth to the circuit. Random Clifford cir-
cuits are generated via the Qiskit library [48], which uses an
optimal number of control-NOT gates for two qubits [49].

After we attain the random Pauli/Clifford measurements,
we can construct a Choi matrix from the classical shadows
(denoted Pauli or Clifford in figures). To be precise, after ap-
plying a unitary U and measuring in the computational basis
a bitstring |bi〉 ∈ {0, 1}⊗n, we form the ith classical shadow
�̂i as

�̂i = 2nM−1(U †
i |bi〉〈bi|Ui

)
, (7)

where the inverse channel is M−1
n (X ) = (2n + 1)X − I for

n-qubit Clifford circuits or M−1
n (X ) = ⊗iM−1

k (X ) for Pauli
(k = 1) and two-qubit Clifford (k = 2) circuits. These objects
can be held in memory efficiently, as Clifford circuits and

bitstrings have a polynomial representation as well as poly-
nomial evaluation cost [42]. We average over all classical
shadows �̂i to obtain the final shadow reconstructed Choi
matrix �O. Note that it is suggested in Ref. [27] to utilize a
median-of-means rather than direct mean. Our data have little
dependence on this difference after projection (see Fig. 8),
which agrees with the observations of Ref. [32].

We add an additional extension in which a given unitary
is repeatedly measured under some number of repetitions. In
practice, it is often the case that loading a different unitary
on a quantum computer is significantly slower than taking
additional measurements over the same unitary. The above
theorems do not directly apply in this case, but we show via
simulations (see Fig. 12) that including additional repetitions
improves the quality of the result, up to a saturation threshold.

B. Nonunitary reduced process classical shadows

An interesting additional extension is the ability to charac-
terize a nonunitary quantum process. By separating the n qubit
process into subsystems of size 1 and up to size n − 1, we
can produce a reduced process on a subsystem of up to n − 1
qubits. All subsets of the GHZ process are then nonunitary.
Note that a general process �E need not be unitary, nor must
all subsystems be nonunitary. In this work, we focus on a
unitary GHZ process � and simultaneously measuring all cor-
responding nonunitary reduced processes on each subsystems.

In a Pauli measurement based tomography scheme, in-
cluding Pauli shadow tomography, we can directly use the
operators that act over the relevant subsystem. Here, the par-
tial trace over the Choi matrix is equivalent to this direct
scheme, although for many expensive postprocessing schemes
it is far easier to optimize in the subsystem space directly.

For a Clifford shadows scheme, however, a general n-qubit
Clifford (or 2n) will not be separable in the same manner
as a Pauli-based scheme. Despite this, if a particular subsys-
tem or set of subsystems is known beforehand, the Clifford
unitaries can be chosen to respect separability. However, the
tradeoff between the benefits of using nonseparable large n-
qubit Clifford gates or using separable ones has not been
well-studied.

C. Postprocessing of classical shadows

A physical quantum process � is a completely positive
trace-preserving (CPT P) map between density matrices. For
any positive-semidefinite density matrix ρ in with trace 1,
E (ρ in ) should also be positive-semidefinite with unit trace.
Even though the shadow reconstructed Choi matrix in Eq. (1)
has the correct trace, it is not a valid CPT P map in general.
We further explore various postprocessing projection tech-
niques for improving the classical shadow reconstruction in
this section.

We denote the projection of �O as �′. To project �O into
the space of completely positive preserving (CP) matrices,
we use the technique of Ref. [12], which removes negative
eigenvalues and rescales the remaining non-negative eigen-
values. We find this operation has the biggest reduction of
trace distance from the target density matrix in our data. This
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does not guarantee that �′ is CPT P , but it ensures that the
resulting �′ is normalized and positive-semidefinite.

In cases in which we know that the true underlying process
should be unitary, we can remove extraneous statistical noise
by purifying the shadow reconstructions to create a unitary
shadow Choi matrix. Purifying in this manner can also be
seen as an extreme CP-projection method, in which all but
the dominant eigenvectors are thrown out. We find that this
approach significantly improves our result in the case in which
the target process is indeed unitary.

D. Predicting overlaps

Given a set of density matrix pairs (ρ in
i , σi ) as in Theorem

II.2, we can utilize shadow reconstructed Choi matrices to
obtain predictions of the overlap tr[E (ρ in

i )σi]; we work with
the pure state σi(θ ) = U (θ)†|0〉, where θ is a set of parameters
which specify the quantum circuit that generates U , and we
use |0〉 as a placeholder for |0〉⊗n.

When evolving an initial density matrix ρ in through the
process generated by �O to produce ρout, we additionally
project a CP-projected Choi matrix into the trace-preserving
(T P) space using the method outlined in Ref. [18], followed
by projecting ρout into CP space. To be precise, we have
�′ = T P (CP[�O]) and ρout = CP[tr(ρ in T ⊗ I)�′].

We then take the pure state density matrix σi to calculate
the overlap tr[ρout

i σi] = 〈0|U (θ)ρ ′out
i U (θ)†|0〉. For this to be

classically efficient (even without postprocessing), σi has to be
representable as a short tensor network for Pauli or be within
the Clifford group for Clifford unitaries, respectively.

When scaling to large numbers of qubits, the postpro-
cessing required to generate �′ becomes infeasible, so we
introduce a more efficient routine. To compute the overlap,
we consider tr[(ρ in T

i ⊗ σi ) �′O], where �′O here represents a
purified �O without any additional projection.

V. EXPERIMENTAL RESULTS OF SHADOWQPT ON
QUANTUM HARDWARE

We exemplify our ShadowQPT methods via quantum cir-
cuit measurements on the IonQ trapped ion quantum device.
The IonQ system consists of 11 trapped ion qubits [50], avail-
able via Amazon Braket on Amazon Web Services (AWS).
At the time of simulation, the machine was reported1 to have
a one-qubit gate average fidelity of 0.997 17, a two-qubit
gate average fidelity of 0.9696, and a state preparation and
measurement (SPAM) mean of 0.9961, which agrees with the
data presented in Ref. [50]. We use 51 200 shadows each
for n = 2, 3, 4 in the experiments with at most 1024 unitary
circuits; see Appendix 3.

Included against our ShadowQPT results is a maximum-
likelihood estimation (MLE) for reconstructing the Choi
matrix using our random Pauli measurements. We use the
iterative method outlined in Ref. [10]. Due to the size of
the Clifford POVM, Clifford-MLE reconstructions are done
within the space of observed measurements, as is n = 4 Pauli
data. Notice that the MLE method is classically exponen-

1This information can be found via the AWS status page.

tially costly in general. To perform MLE, we begin with a
random complex matrix, taking at least 100 iteration steps
such that the iteration has converged, i.e., ‖ρk − ρk−1‖ �
10−3, or that the L2-norm of the difference between steps
has reached a small value. We include purification of the
resulting Choi matrix alongside our shadow reconstructions
as well.

We explore the effect of using “fixed” and “nonfixed”
schemes by using either a number of random Clifford uni-
taries or a set of random Clifford unitaries that are separable
between the first qubit and the rest of the system. For a “non-
fixed” unitary, a two-qubit Clifford unitary may be applied
to any two wires of the circuit. For the “fixed” unitary, one
Clifford is applied to qubits 1 and N + 1 (its corresponding
ancilla), and the remaining Clifford unitaries are randomly
applied in the “nonfixed” scheme. Our data have 0%, 50%,
and 43.75% of the Clifford unitaries manually fixed for n =
2, 3, 4, respectively. These various schemes alternatively tar-
get, respectively, a situation in which one might ask about
any reduced density matrix a posteriori (i.e., the nonfixed
scheme), or target density matrices on a particular fixed set
of qubits (i.e., the fixed scheme).

A. Full process

Using classical shadows, we directly reconstruct the Choi
matrix and compare it using the normalized trace distance in
Fig. 3,

T (�1,�2) = 1

2n+1
tr[

√
(�1 − �2)†(�1 − �2)]. (8)

First, to illustrate the scaling of ShadowQPT, a compar-
ison of the Pauli and Clifford shadow measurements using
a uniform number of shadows is shown by solid lines in
Fig. 3. While each method is inherently exponential in scaling
across process size, k = 2 Clifford measurements perform
better than Pauli measurements, where a full k = 2n Clifford
measurement scheme should have performed the best.

In dashed lines, we then show the results when using all of
our available measurements (i.e., multiple repetitions of the
same unitary). A visualization of each of these Choi matrices
is shown in Fig. 2 (see Fig. 9 for a 3D version of the plot). We
see that even in the regime where all possible Pauli strings are
measured (n = 2, 3), the Clifford circuits have a smaller trace
distance.

If we consider that our underlying process should be
unitary, we can additionally purify our noisy Choi matrix
(dash-dotted lines). Purification appears to have an enormous
effect, improving the trace distance by up to a factor of 34×.
For all n, purified Clifford shadows have a smaller trace dis-
tance compared to the Pauli shadows, but this is followed
closely by the purified Clifford MLE reconstruction, which
has a narrowly smaller distance for n = 3, 4 (see a further
comparison in Fig. 10).

Here we have selected only the purification postpro-
cessing step, but there are additional projections, namely
CP-projection of Ref. [12], that one may do. Shown in the
right of Fig. 3 is an example of the effects on the trace distance
each postprocessing method has for n = 3. We see a dra-
matic improvement in the trace distance after purification or
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FIG. 2. Visualization of the GHZ process Choi matrix for various numbers of qubits (rows) constructed exactly or via classical shadow
quantum process tomography. The first column corresponds to the exact unitary process �, which has no imaginary component. The next
columns correspond to real and imaginary parts of the Pauli/Clifford shadow reconstructed Choi matrix �O followed by their corresponding
purification. The N = 4 visualization is zoomed into the first 60 × 60 elements.

projection, with Pauli shadows marginally performing better
than the Clifford shadows for this system size.

As an additional comparison, we compare ShadowQPT
with both an ancilla-based scheme and a two-sided scheme,
shown in Fig. 4. On the left, we show simulations of both
Pauli and k = n Clifford measurements for a single and mul-
tiple repetitions. The simulations use 512 unitaries and 1 (50)
repetitions for single (multiple) repetitions. In the case of
single repetitions, we find nearly identical exponential scaling
but with Clifford measurements with a smaller trace distance.
With the addition of multiple repetitions, however, the ancilla
schemes obtain a smaller trace distance than their two-sided
counterparts. As each repetition effectively changes both the
left and right unitary for the ancilla scheme but only changes
the right unitary for the two-sided version, this result is un-

FIG. 3. Left: Normalized trace distance T (�, �O) between the
unitary Choi matrix � and a Pauli/Clifford shadow reconstructed
Choi matrix �O. Solid lines represent single repetition shadows
with 512 unitaries on IonQ for Pauli/Clifford measurements, and
in green, simulated 2n-Clifford circuits; dotted lines includes all
data/repetitions collected; dot-dashed lines are purified. The cor-
responding purified MLE results are shown in blue/orange stars
for Pauli/Clifford measurements, respectively. Right: Trace distance
for various postprocessing for n = 3. The projection/postprocessing
method is shown in parentheses above the bar.

surprising. We provide more details on the equivalence of the
schemes in Appendix 2.

Then on the right of Fig. 4, we compare two examples
of Pauli and Clifford measurements and the effect of post-
processing methods. For the two-sided scheme, we use 512
Clifford unitaries at 50 repetitions for each run on the IonQ
device, and for the ancilla scheme we randomly resample
our IonQ data to match. Note that our ancilla measurements
are with randomized k = 2 Clifford unitaries. Pauli measure-
ments are done with 25 600 random measured Pauli strings.
We find that for both Pauli and Clifford measurements, the
ancilla-based scheme has a lower normalized trace distance
without postprocessing and under purification, and a larger
trace distance for Clifford CP-projection.

B. Nonunitary reduced process

We further study two examples of a nonunitary reduced
process on a subset of the qubits. In Figs. 5(a) and 5(b)
we show the average over all one- and two-qubit processes.
Analogous to the previous section, we show a reduced data
set by solid lines, and the fully postprocessed data, here CP-
projection, by dot-dashed lines. In general, we expect the
full 2n-Clifford measurements, simulation shown in green, to
grow exponentially with system size. As we have fixed the
size of the process, we see that Pauli measurements do not
scale with respect to system size, and there is a weak scaling
for the two-qubit Clifford measurement scheme.

For all system sizes n, a classical shadow routine produces
comparable or better trace distance compared with MLE, with
an application of CP-projection after evolution. In addition,
despite having limited separability compared to the Pauli ma-
trices, the performance of the Clifford shadows is competitive
with the Pauli shadows.

C. Predicting overlaps

We can also compute overlaps using the shadow recon-
structions formalism of Theorem II.2. For the choice of σi,
we use circuits parametrized by Rx(θ ) or Ry(θ ) as input to a
GHZ circuit; see the Appendix for more details on the choices
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FIG. 4. Left: Simulated normalized trace distance T (�, �O) scaling for 512 unitaries with a single repetition (top) and 50 repetitions
(bottom) between the unitary Choi matrix � and a reconstruction via Pauli/Clifford ancilla based ShadowQPT or two-sided ShadowQPT.
Ancilla results are nearly identical to the two-sided results with a single repetition, but with multiple repetitions ancilla simulations (squares)
have lower trace distance than their two-sided counterparts (circles). Middle: Normalized trace distance between (IonQ measured) Pauli
two-sided ShadowQPT and ancilla ShadowQPT with 512 unitaries and 50 repetitions for a three-qubit GHZ process. Right: Normalized
trace distance between (IonQ measured) Clifford two-sided ShadowQPT and ancilla ShadowQPT with 512 unitaries and 50 repetitions for a
two-qubit GHZ process. The ancilla Cliffords are decomposed into k = 2 as in Fig. 3.

of states. We compare to both the underlying unitary process
and overlaps computed on the IonQ by constructing the trace
circuit shown in Fig. 6(a); each circuit is measured with 1000
repetitions. Note that this latter approach requires additional
quantum measurements for each target overlap, whereas the
shadow tomography uses the same ShadowQPT data for the
overlap of any output state.

In Fig. 6(b) we show the overlap prediction wO
i =

tr[(ρ in T
i ⊗ σi )�O] to the shadow reconstruction data �O with-

out postprocessing. For n = 2, 3, we are able to reasonably
reconstruct the correct overlap, but for n = 4 there is not
enough data to obtain the correct pure state behavior. Note
that in each case the correct qualitative behavior is evident,
despite predicting much smaller overlap values.

Then in Fig. 6(c) we use the the most efficient postpro-
cessing approach to purify the Choi matrix. Purified Pauli and
Clifford overlap predictions are now nearly identical with the
expected noise-free values, even for the case of n = 4.

VI. NUMERICAL SIMULATION OF SHADOWQPT
HAMILTONIAN LEARNING

Here we present simulation results with Hamiltonian
learning. We study a 1D transverse field Ising model H =∑

i JiXiXi+1 + hiZi with uniform random couplings Ji, hi ∈
[−1, 1) over 10 disorder realizations. When applying Shad-
owQPT, we apply the unitary e−itH and sample N random
Pauli measurements with no additional postprocessing. For
the Ji terms we use pi = Zi, qi = [hi, pi] = −YiXi+1, and for
the hi terms pi = Xi, qi = [hi, pi] = Yi.

Using the methods described in Sec. III, we plot the be-
havior of the average error in Fig. 7. In Fig. 7(a), we show
the average absolute error 〈|c̃i − ci|〉 between the ShadowQPT
learned couplings c̃i and the original couplings ci (ci ≡ {J, h})
with a simulation of N = 100 000. Given a fixed t , the average
error scales nearly independently of system size n [and should
be bounded by O( log(n)) scaling at large n]. For small t ,
while the first-order expansion of the time evolution operator
is a good approximation, one needs many measurements to
determine the couplings beyond statistical noise as the chan-
nel is very close to the identity. For large t , the higher-order
terms generated by the exponential become important, and the
learned couplings c̃i ≈ crenorm

i (t ) = i tr(ρ�t (pi )qi )/t 
≈ ci. At
intermediate t , we find a favorable regime where there are
enough measurements to learn the random couplings to an
average error of 10−1.

In Fig. 7(b) (see the Appendix for further details) we more
carefully analyze the errors in this process, particularly as we
change the number of measurements and time. There are two
sources of error in Hamiltonian learning using ShadowQPT.
A systematic error occurs due to the linear approximation
of the time evolution operator and is given by εs(t ) ≡ 〈|ci −
crenorm

i (t )|〉 and scales as O(t2). Notice that this error does
not depend on the number of measurements. There is also
a statistical error coming from the stochastic nature of the
ShadowQPT process, which scales as ε ∝ 1/

√
N [see t = 0.1

in Fig. 7(b)] and empirically ε ∝ 1/t (see Fig. 17). For a fixed
t , we can therefore make the error better by increasing the
number of measurements until we reach an error of εs(t ). The
optimal error, found when the systematic error is approxi-
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FIG. 5. Normalized trace distance T (�B, �O
B ) of all subsystems

of k = 1 qubit (a) and k = 2 qubits (b) between the unitary Choi
matrix �B and a Pauli/Clifford shadow reconstructed Choi matrix
�O

B . Solid lines represent single repetition shadows with 512 unitaries
on IonQ for Pauli/Clifford measurements, and in green, simulated
2n-Clifford circuits; dot-dashed lines are CP-projected after the par-
tial trace. The corresponding MLE results are shown in blue/orange
stars for Pauli/Clifford measurements, respectively. Pauli MLE is
done directly in the reduced problem space of k qubit reconstruction.

mately the same as the statistical error, is shown in purple dia-
monds in Fig. 7(b) and scales as O(1/ε3). Despite the increase
in scaling, the number of measurements required is overall
fewer than from the O(1/ε2) results of using a fixed time. As
we also noted earlier in Sec. III, the systematic error can be
further reduced by higher Taylor expansion and classical pro-
cessing to achieve better overall scaling. Our study provides a
prescription for choosing the number of measurements needed
for a given value of ε with a weak dependence of n.

VII. CONCLUSION

In this work, we have developed classical shadow al-
gorithms for quantum process tomography. We discuss the

FIG. 6. (a) Trace circuit measurement of the overlap
tr[�′O(ρ in T

i ⊗ σi )], where σ = U (θ )†|0〉〈0|U (θ ). We measure
this circuit on IonQ to compare with a prediction from ShadowQPT.
(b) Comparison of the overlap wO

i = tr[(ρ in T
i ⊗ σi )�O] for Pauli

and Clifford data on systems of size n = 2, 3, 4 for pairs of density
matrices [ρ in, σ ] formed from the state [Oin

ρ |0〉, Oσ |0〉] for operators
[I, Ry(θ )], [I, Rx (θ )], [⊗ jRx (φ j ), Ry(θ )], [⊗ jRx (φ j ), Ry(θ )] (each
column, respectively) over 50 different angles. For comparison, we
include trace circuit measurements performed on the IonQ using
1000 repetitions per point; error bars are generated by using 10
batches of data. (c) Overlap predictions as in (b) but purifying �O.
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FIG. 7. (a) Hamiltonian learning simulation results for a 1D
transverse field Ising model with n sites and random couplings be-
tween [−1, 1]. We average over 10 disorder realizations and use
N = 100 000 random Pauli measurements with no additional post-
processing. The average error is given by average absolute error
〈|c̃i − ci|〉 to the original Hamiltonian coupling ci. (b) Dependence on
the number of Pauli measurements N vs average error of Hamiltonian
learning both for fixed t and the optimal t (shown in purple). Notice
at fixed t , as the error decreases it approaches the minimum error
at that t , shown by the vertical dot-dashed line, coming from the
systematic error caused by the linear approximation to the time
evolution operator.

power of classical ShadowQPT in Theorems II.1 and II.2.
Interestingly, ShadowQPT can be applied to low-weight in-
puts and outputs at a cost in quantum measurements which
scales only logarithmically with N . To realize the ShadowQPT
on near-term quantum devices, we study the effects of both
random Pauli measurements and Clifford measurements. In
addition, we explore different postprocessing techniques. We
further benchmark our methods and achieve good perfor-
mance for the unitary process, the nonunitary reduced process,
and overlap estimation on IonQ quantum hardware up to
n = 4 qubits. We find that our postprocessing techniques,
particularly purification, result in the ability to simultaneously
compute very accurate overlaps for any state. Our method not
only provides a theoretical foundation, but also effectively

applies to NISQ quantum devices. Additionally, we show
the equivalence between the ancilla-based ShadowQPT and a
two-sided scheme, and we find both via simulations and mea-
surements that the ancilla scheme under multiple repetitions
achieves better performance.

We additionally develop Hamiltonian learning using Shad-
owQPT, and we discuss its scaling in Corollary [cor1]. Then
using numerical simulations we show that there is a loga-
rithmic dependence on system size, as expected, and using
intermediate time propagators can be advantageous for mini-
mizing the total number of samples needed for a given error
threshold. For future exploration, one can consider integrat-
ing our methods with recently developed Hamiltonian driven
shadow methods [35,40] or full Clifford circuit decomposition
[39], which could allow for more flexible choices for unitaries
as well as applications to different experimental platforms.
ShadowQPT can further study the dynamics of observables
and correlation functions, which is explored in the concurrent
work of Ref. [51], which also studied the use of classical
shadows in QPT. We anticipate that ShadowQPT will be an
important tool for future exploration and validation of quan-
tum devices.
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APPENDIX: CLASSICAL SHADOWS OF QUANTUM
PROCESS TOMOGRAPHY ON NEAR-TERM QUANTUM

COMPUTERS

1. Proofs for shadow process tomography

We first review the formal version of a classical shadow
quantum state tomography theorem in Ref. [27].

Theorem A.1. Fix a measurement primitive U , a collec-
tion {Oi}i=1,...,M of 2n × 2n Hermitian matrices and accuracy
parameters ε, δ ∈ (0, 1). Set K = 2 log(2M/δ) and N =
34
ε2 maxi||Oi − tr(Oi )

2 I||2shadow, where ||.||shadow is the shadow
norm defined with the inverse channel M−1 induced by the
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measurement primitive as follows:

||O||shadow = maxσ

⎛
⎝EU∼U

∑
b∈{0,1}n

〈b|UσU †|b〉〈b|UM−1

× (O)U †|b〉2

⎞
⎠

1/2

. (A1)

Then, a collection of NK independent classical shadows
allows for accurately predicting all features via median of
means prediction ôi:

|ôi(N, K ) − tr(Oiρ)| � ε (A2)

for all 1 � i � M with probability at least 1 − δ.
In particular, for random global Clifford measure-

ment primitive, ||O − tr(O)
2 I||2shadow � 3 tr(O2). For random

single-qubit Clifford measurement primitive, ||O − tr(O)
2

I||2shadow � 4k||O||2∞, where k is the locality of the operator
O and ||.||∞ is the spectral norm. Furthermore, if O is a single
k-local Pauli observable, ||O − tr(O)

2 I||2shadow � 3k .
We now combine the above theorem and the Jamiołkowski

process-state isomorphism [25] to reach the following two
theorems for shadow quantum process tomography.

Theorem A.2. For an n-qubit quantum process ρ�

and ε, δ ∈ (0, 1), given a set of density matrix pairs
{(ρ in

1 , σ1), . . . , (ρ in
M, σM )}, the number of measurements

N that suffice to predict the overlaps tr(ρ�(ρ in T
i ⊗ σi )) for

any i up to error ε with probability 1 − δ is

N = 68

ε2
log(2M/δ)maxi

∣∣∣∣
∣∣∣∣Oi − tr(Oi )

2
I

∣∣∣∣
∣∣∣∣
2

shadow

, (A3)

where Oi = ρ in T
i ⊗ σi. For random global Clifford measure-

ment, N = 68
ε2 log(2M/δ)maxitr(O2

i ). If ρ in
i and σi are all pure

states, then tr(O2
i ) = 1. For random single-qubit Clifford mea-

surement, N = 68
ε2 log(2M/δ)maxi4ki ||Oi||2∞, where Oi acts

nontrivially on ki-qubits. If ρ in
i and σi are all pure states, then

||Oi||2∞ = 1.
Proof. Under the Jamiołkowski process-state isomorphism

[25],

tr
(
ρ�

(
ρ in T

i ⊗ σi
)) = tr(ρ�(Oi )), (A4)

The result follows directly from applying Theorem A.1
with M measurements. For random global Clifford measure-
ment and pure states ρ in

i and σi, Oi = ρ in T
i ⊗ σi is also a

pure state of rank 1 so that tr(O2
i ) = 1. This implies that

||Oi − tr(Oi )
2 I||2shadow � 3 tr(O2

i ) = 3. For random single-qubit
Clifford measurement and pure states ρ in

i and σi, Oi = ρ in T
i ⊗

σi is also a pure state so that ||Oi||2∞ = 1. �
Theorem A.3. For an n-qubit process Choi matrix ρ and

ε, δ ∈ (0, 1), the following statements hold:
(i) The number of measurements N that suffice to simul-

taneously predict any reduced k-qubit process Choi matrix ρk

up to error ε in the Frobenius norm and probability 1 − δ is

N = 68

ε2
4klog(2(8n)2k/δ)maxi

∣∣∣∣
∣∣∣∣O(2k)

i − tr(O(2k)
i )

2
I

∣∣∣∣
∣∣∣∣
2

shadow

,

(A5)

where O(2k)
i is any 2k-qubit Pauli observable.

FIG. 8. Normalized trace distance T (�,�O ) between the unitary
Choi matrix � and a Pauli/Clifford shadow reconstructed Choi ma-
trix �O for the n = 3 GHZ process. The construction is either via
mean, median of means via randomizing and batching individual
shadows (with many derived from the same unitary), or median
of means for each unique unitary (which has 50/ ≈ 70 repetitions
each). We include the effects of CP projection on the resulting Choi
matrices for comparison.

In particular, for random global Clifford measurement,
N = 204

ε2 4n+k log(2(8n)2k/δ) and for Pauli-6 POVM measure-

ment, N = 68
ε2 36k log(2(8n)2k/δ)maxi||O(2k)

i ||2∞.
(ii) The number of Pauli-6 POVM measurements N that

suffice to simultaneously predict any reduced k-qubit process
Choi matrix ρk up to error ε in the trace norm and probability
1 − δ is

N = 8

3

144k

ε2
log((24n)2k/δ). (A6)

Proof. (i) According to the Jamiołkowski process-state
isomorphism [25], a quantum process on an n-qubit system
can be represented by a density matrix ρ on a 2n-qubit system.
Any reduced k-qubit process matrix ρk could be expressed as

ρk = 1

4k

16k∑
αiO

(2k)
i , (A7)

where αi = tr(ρkO(2k)
i ) = tr(ρO(2k)

i ⊗ I2n−2k ).
Denote the estimated k-qubit reduced density matrix from

the shadow tomography as ρ̂k and ρ̂k = 1
4k

∑16k

α̂iO
(k)
i , where

α̂i is the shadow estimation of observable O2k
i . It follows that

〈ρ̂k − ρk, ρ̂k − ρk〉F =
〈

1

4k

16k∑
(α̂ j − α)O(2k)

j ,

1

4k

16k∑
(α̂i − α)O(2k)

i

〉
F

= 1

4k

16k∑
(α̂i − αi )

2, (A8)

where 〈·, ·〉F is the Frobenius inner product.
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FIG. 9. (a) Choi matrix visualization using Pauli (left two) and Clifford (right two) shadows, separated into real and imaginary components.
(b) Purification of matrices in (a).

According to Theorem A.1, with N given in Eq. (5), we
have

|α̂i − αi| = |α̂i − tr
(
ρO(2k)

i ⊗ I2n−2k
)| � ε

2k
∀ i. (A9)

This implies that 〈ρ̂k − ρk, ρ̂k − ρk〉F � 16k

4k
ε2

4k = ε2, so
that ||ρ̂k − ρk||F � ε, where || · ||F is the Frobenius norm.
For random global Clifford measurement, the result follows
from ||O − tr(O)

2 I||2shadow � 3 tr(O2) = 3 × 4n for O = O(2k)
i .

For Pauli-6 POVM measurement, the result follows from
||O − tr(O)

2 I||2shadow � 9k for O = O(2k)
i [36].

(ii) For a given ε, δ ∈ (0, 1), the Pauli-6 POVM measure-
ment of size N = 8

3ε2 12r (log(pr12r/δ)) is sufficient to predict
all reduced density matrices on subsystem size r � p on a
p-qubit system with trace norm error ε and probability at
least 1 − δ according to Lemma 1 in Ref. [41]. With the
Jamiołkowski process-state isomorphism [25], a k-qubit pro-

cess Choi matrix is equivalent to a 2k-qubit density matrix on
a 2n-qubit system. The result follows from choosing r = 2k
and p = 2n, which implies that with probability 1 − δ, N =
8
3

144k

ε2 log((24n)2k/δ) number of Pauli-6 POVM measurements
is sufficient to simultaneously predict any reduced k-qubit
process Choi matrix ρk up to error ε in the trace norm, i.e.,
any estimator ρ̂k from the shadow measurement is closer to
the exact ρk by ||ρ̂k − ρk||1 < ε. �

2. Equivalence of two-sided scheme with the top-bottom
factorized ancilla-based scheme

We would like to show that the two-sided scheme is equiv-
alent to the top-bottom factorized ancilla-based scheme. To
be precise, consider a top-bottom factorized ancilla-based
scheme with unitaries {Uj} acting on the top half and unitaries
{Ui} acting on the bottom half, where Uj , Ui are sampled
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uniformly from a set G. Up to permutation, the reconstruction
formula for the Choi matrix is the following:

ρa
� = EUj∼GEUi∼GEb j ,bi∼P(i, j) M−1

n (U †
i |bi〉〈bi|Ui )

⊗ M−1
n (U †

j |b j〉〈b j |Uj ), (A10)

where b j, bi are measurement outcome with respect to Uj,Ui

in the computational basis, P(i, j) = tr(ρ�(U †
i |bi〉〈bi|Ui ⊗

U †
j |b j〉〈b j |Uj )). M−1

n is the inverse channel defined by
M−1

n (X ) = (2n + 1)X − I for n-qubit Clifford unitaries or
M−1

n (X ) = ⊗iM
−1
k (X ) for Pauli (k = 1) for smaller k qubit

Cliffords.
Meanwhile, consider a two-sided scheme where the in-

put state is |0〉, followed by {U †
i }, process channel E , {Uj},

and finally measurement in the computational basis shown in
Fig. 1(b). Uj , Ui are also sampled uniformly from group G.
The reconstruction formula for the Choi matrix is given as
follows:

ρt
� = EUj∼GEUi∼GEb j∼P( j|[U †

i |0〉]) M−1
n ((U †

i |0〉〈0|Ui )
T )

⊗ M−1
n (U †

j |b j〉〈b j |Uj ), (A11)

where P( j|[U †
i |0〉]) = tr(E (U †

i |0〉〈0|Ui )U
†
j |b j〉〈b j |Uj ) = 2ntr

(ρ�((U †
i |0〉〈0|Ui )T ⊗ U †

j |b j〉〈b j |Uj )). The last line comes
from the Choi matrix identification. For any set G that is
right invariant with respect to any Pauli-X matrix such that
GX = G, we have

ρt
� = EUj∼GEUi∼GEbi∼ 1

2n
Eb j∼P( j|[U †

i |bi〉]) M
−1
n ((U †

i |bi〉〈bi|Ui )
T)

⊗ M−1
n (U †

j |b j〉〈b j |Uj ). (A12)

This is true because |bi〉 = ⊗{
}X |0〉, where {
} are the
locations where the measurement outcome is 1, and hence for
any U †

i |0〉 there exists U ′
i from G such that U ′

i |bi〉 = Ui|0〉.
Notice that this condition is true for random global Clifford
measurement, random single-qubit Clifford measurement, as
well as Pauli-6 measurement. It follows that

ρt
� = EUj∼GEUi∼GEb j ,bi∼Pt (i, j) M−1

n ((U †
i |bi〉〈bi|Ui )

T )

× ⊗M−1
n (U †

j |b j〉〈b j |Uj ), (A13)

where Pt (i, j) = 1
2n P( j|[U †

i |bi〉]) = tr(ρ�((U †
i |bi〉〈bi|Ui )T ⊗

U †
j |b j〉〈b j |Uj )). For a Pauli-6 POVM, we have

(U †
i |bi〉〈bi|Ui )T = U †

i |bi〉〈bi|Ui, which implies ρt
� = ρa

�.
For Clifford group G and any fixed |b〉, we have
{U †

i |b〉〈b|Ui|Ui ∈ G} = {(U †
i |b〉〈b|Ui )T |Ui ∈ G}, which also

implies ρt
� = ρa

�.

FIG. 10. Normalized trace distance T (�,�O ) between the uni-
tary Choi matrix � and a Pauli/Clifford shadow reconstructed
Choi matrix �O. Included are two projections of the �O into
the space of positive-semidefinite (PSD) matrices, the iterative
maximum-likelihood estimator (MLE) method of Ref. [10], and the
eigenvalue rescaling method of Ref. [12], as well as the correspond-
ing purification.

We remark that the above argument holds for a single
repetition measurement. For multiple repetition measure-
ments with respect to one Ui, the equivalence breaks because
multiple |bi〉 are generated with respect to one Ui in the
ancilla-based scheme while the two-sided scheme always has
input |0〉 fixed for one Ui.

3. Details on shadow measurements

We present the number of random unitary circuits used for
both Clifford and Pauli measurements. For those with unitary
entries with *, all possible unitaries have been used:

Repetitions/
Qubits Type Unitaries Unitary (Total)

2 Pauli 81* ≈632 (51 200)
Clifford 1024 50 (51 200)

3 Pauli 729* ≈70 (51 200)
Clifford 1024 50 (51 200)

4 Pauli 1024 50 (51 200)
Clifford 1024 50 (51 200)

4. Comparison between median-of-means and mean

In Ref. [27], the authors suggest a median-of-means pro-
cedure for the classical shadows, or more precisely taking the
median of K averaged shadows. Then in Ref. [32] they show
that most of their results are unaffected by using the direct
mean over a median-of-means.

To understand the role of the procedure in ShadowQPT, we
first distinguish between two median-of-means procedures.
The first is a median on the “shadow” level: take each clas-
sical shadow, many of which are from the same unitary, and
perform the median-of-means procedure using this data set.
An alternative procedure is to first average the repetitions
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FIG. 11. Normalized trace distance T (�B,�O
B ) of the subsystem of the first qubit (k = 1) (a) and (b) the remaining n − 1 qubits (k = n − 1)

between the unitary Choi matrix �B and a Pauli/Clifford shadow reconstructed Choi matrix �O
B .

corresponding to each unitary, and then obtain the median by
using sets of K averaged unitaries.

In Fig. 8 is shown the results of using the mean and
the two median-of-mean procedures for n = 3 data, with a
batch size of K = 23. While using a median-of-means at
the shadow level does show a slight improvement for both
Pauli and Clifford measurements without projection, after
projection we find that there is little difference between
the mean and median-of-means results. Given the weak de-
pendence on the differences after postprocessing and the
potential introduction of a tunable variable (K), we chose to
utilize the mean for our computing results of the classical
shadows.

5. 3D choi matrix plots

In Fig. 9 we present a 3D representation of n = 2, 3 in
Fig. 2. The axes are shown enumerated in binary for the Choi
matrices 4n index values.

6. Postprocessing dependence

To show the dependence on the postprocessing method,
Fig. 10 shows the normalized trace distance between MLE
reconstruction, CP-projection, and purification, while Fig. 11
shows the same for a subsystem of k = 1. Overall the re-
sults are roughly consistent across system size n, in that
purified shadows are competitive with purification of (Clif-
ford) MLE results. Just considering CP projection and

FIG. 12. (a) Normalized trace distance T (�, �O) between the unitary Choi matrix � and various simulated reconstruction methods.
Simulated data include a prefix of “Sim.” The vertical line represents saturation of all Pauli strings. (b) Normalized trace distance T (�,�O )
between the unitary Choi matrix � and a Clifford shadow reconstruction from resampled data (markers) on top of simulated data (dotted lines
with shading). A star marks the full IonQ data set; error bars represent an average of five resampling trials. Resampled IonQ data consist of
equal fixed and random Clifford orderings.
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FIG. 13. (a) Left: Normalized Frobenius norm ‖� − �O‖F /2n between the unitary Choi matrix � and a Pauli/Clifford shadow recon-
structed Choi matrix �O. Solid lines represent single repetition shadows with 512 unitaries on IonQ for Pauli/Clifford measurements, and in
green, simulated 2n-Clifford circuits; dotted lines includes all data/repetitions collected; dot-dashed lines are purified. The corresponding
purified MLE results are shown in blue/orange stars for Pauli/Clifford measurements, respectively. Right: Frobenius norm distance for
various postprocessing for n = 3. The projection/postprocessing method is shown in parentheses above the bar. (b) k = 1 qubit and (c)
k = 2 qubits reduced process reconstruction between the unitary Choi matrix �B and a Pauli/Clifford shadow reconstructed Choi matrix
�O

B using the Frobenius norm. Solid lines represent single repetition shadows with 512 unitaries (including simulated 2n-Clifford circuits),
dotted lines includes all data/repetitions, and dot-dashed lines are CP-projected after the partial trace. The corresponding MLE results are
shown in blue/orange stars for Pauli/Clifford measurements, respectively. Pauli MLE is done directly in the reduced problem space of k qubit
reconstruction.

standard MLE, Pauli measurements have the minimal trace
distance.

7. Repetition dependence on trace distance

Next we compare the dependence on the trace distance
with the number of unitaries and classical shadows for n = 3
in Fig. 12.

Second, we resample the Clifford measurements from the
IonQ alongside simulated data, computing the normalized
trace distance in Fig. 12(b). We find that the measured data
track the simulation very closely for a number of chosen
unitary Clifford measurements. Although we predict per-
formance could be increased by increasing the number of

repetitions/circuits [i.e., we had not reached instability in
trace distance seen in the low unitary counts, shown by the
blue and orange lines of Fig. 12(b)], the number of indi-
vidual circuits and repetitions/circuits chosen appears to be
reasonable in the study of our method. Although there is an
instability in the regime where the number of repetitions is
greater than the number of unitary, the trace distance remains
improved compared to a single measurement.

8. Distance using the frobenius norm

We provide additional plots of Figs. 3, 4, 5(a), and 5(b)
using a Frobenius norm distance shown in Figs. 13 and 14.
We find nearly the same qualitative behavior for both distance
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FIG. 14. Left: Simulated Frobenius norm ‖� − �O‖F /2n scaling for 512 unitaries with a single repetition (top) and 50 repetitions (bottom)
between the unitary Choi matrix � and a reconstruction via Pauli or Clifford ancilla based ShadowQPT or two-sided ShadowQPT. “Sim-
Clifford/Pauli” corresponds to single-qubit Clifford measurements (k = 1) for UL and Pauli measurements on the right, which is nearly
identical to Pauli two-sided measurements. Ancilla results are nearly identical to the two-sided results with a single repetition, but with
multiple repetitions ancilla simulations (squares) have a lower trace distance than their two-sided counterparts (circles). Middle: Normalized
trace distance between (measured) Pauli two-sided ShadowQPT and ancilla ShadowQPT with 512 unitaries and 50 repetitions for a three-qubit
GHZ process. Right: Normalized Frobenius norm between (measured) Clifford two-sided ShadowQPT and ancilla ShadowQPT with 512
unitaries and 50 repetitions for a two-qubit GHZ process. The ancilla Cliffords are decomposed into k = 2 as in Fig. 13.

measures. This is unsurprising as, at least for the Pauli case,
there are similar scaling bounds of log(n) for fixed k (see
Theorem II.1).

9. Details on overlap estimation

To illustrate Theorem II.2, we compute tr[�′(ρ in T ⊗
σ (θ ))] for several sets of ρ and σ (θ ). The input to the channel,
ρ in can be represented by an initial state of which there are

three categories: |0〉⊗n, | + i〉⊗n, and ⊗ jRx(φ j )|0〉⊗n states.2

The first two states are already measured within the Choi
matrix, and they effectively measure the reconstruction of the
channel process. After running the circuit in Fig. 6(a), we
measure |0〉⊗n or P(|0〉⊗n) to obtain the value of the overlap.

2where Rx (φ j ) acts on the jth qubit and φ j =
{0.1717, 0.1234, 0.9876, 0.888}

FIG. 15. Average overlap error 〈�〉 = 〈|wO
i − wi|〉i for Pauli reconstruction data (left), Clifford data (middle), and simulated Clifford data

(right) for systems of size n = 2, 3, 4. We average over three different ρ in and four different σ each with 51 different angles. For comparison,
we include trace circuit measurements (Tr circuit) performed on the IonQ using the data shown in Fig. 6(b).
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FIG. 16. Normalized purity measurement tr[�2]/4n of the CP-
projected Pauli/Clifford measured Choi matrices as well as the MLE
reconstructions shown as a star. We use the BBA algorithm run
directly on the IonQ with 1000 repetitions shown in diamonds to
compute tr[ρ2

GHZn
], where ρGHZn = E (|0〉〈0|⊗n); error bars are done

by batching the measurements into 10 sets.

We only display |0〉⊗n and ⊗ jRx(φ j )|0〉⊗n states in the main
work.

We compute the average overlap error in Fig. 15 compared
to the trace circuit measurements performed on the IonQ de-
vice. We use 51 pairs for each ρ in for the shadow reconstructed
data iterating uniformly θ ∈ [0, 2π ] and ≈5 − 8 pairs for each
ρ in. Error bars represent the standard error over the overlap
data set. We see that our reconstructed shadow data have
similar trends to the trace circuit measurement, with a signif-
icant range of values. With purification, we can significantly
decrease the error to the noiseless case even compared to the
trace circuit, particularly in the n = 4 case.

Purity of the channel and GHZ state can also be calcu-
lated. The Bell-basis algorithm (BBA) swap test [53] provides
an algorithm to determine the overlap between two gen-
eral quantum states. We compute the overlap of two GHZ
states tr[ρ2

GHZn
], where ρGHZn = E (|0〉〈0|⊗n), using the BBA

algorithm, alongside computing the shadow reconstructed
tr[�2]/4n in Fig. 16. When measuring the purity, we find a
much higher value than our shadow reconstructions. A noise-
less quantum computer should produce unit purity for the
full GHZ process. These large measurements further motivate
our choice to use purification as a postprocessing technique.
Note that purity has a strong dependence on postprocessing
techniques.

10. Hamiltonian learning optimal error fits

In Fig. 17 we show for a fixed number of Pauli
measurements (shadows) N the average error versus t of
the unitary operator exp(−iHt ). These points have been
simulated and averaged over the same 10 trials as in Fig. 7.
For a given value of t , because of the linear approximation
to exp(−iHt ), the error of which is shown in blue, the error
grows as O(t2) and is the minimum achievable error for a
given t . ShadowQPT reconstructed couplings c̃i are inherently
measuring crenorm

i , however, with an error as O(1/t ) shown
in green. Thus as these two approach, the true absolute error
between c̃i and ci is shown in orange, which mostly follows
either the linear approximation error or the renormalized
error except near their crossing. The minimum error can
then be found for a given t , shown in a dashed gray line. We
additionally fit this line for N = 1000, 1 000 000, which are
not shown.

FIG. 17. Hamiltonian learning simulation results for a 1D transverse field Ising model with n sites and random couplings between [−1, 1].
We average over 10 disorder realizations and use N = 100, 10 000, and 100 000 random Pauli measurements, respectively, with no additional
postprocessing. The average error is given by average absolute error 〈|bi − ci|〉 to the original Hamiltonian coupling ci, where bi is either
crenorm

i (the renormalized couplings), c̃i (the ShadowQPT reconstructed couplings), or c̃i + ci − crenorm
i , or the error between ShadowQPT and

the renormalized couplings. A dashed line shows the optimal error where the linear approximation error is approximately the same as the
renormalized error.
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