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The demonstration of quantum error correction (QEC) is one of the most important milestones in the
realization of fully-fledged quantum computers. Toward this, QEC experiments using the surface codes have
recently been actively conducted. However, it has not yet been realized to protect logical quantum information
beyond the physical coherence time. In this work, we performed a full simulation of QEC for the rotated surface
codes with a code distance 5, which employs 49 qubits and is within reach of the current state-of-the-art quantum
computers. In particular, we evaluate the logical error probability in a realistic noise model that incorporates not
only stochastic Pauli errors but also coherent errors due to a systematic control error or unintended interactions.
While a straightforward simulation of 49 qubits is not tractable within a reasonable computational time, we
reduced the number of qubits required to 26 qubits by delaying the syndrome measurement in simulation. This
and a fast quantum computer simulator, QULACS, implemented on GPU allows us to simulate full QEC with an
arbitrary local noise within reasonable simulation time. Based on the numerical results, we also construct and
verify an effective model to incorporate the effect of the coherent error into a stochastic noise model. This allows
us to understand what the effect coherent error has on the logical error probability on a large scale without full
simulation based on the detailed full simulation of a small scale. The present simulation framework and effective
model, which can handle arbitrary local noise, will play a vital role in clarifying the physical parameters that
future experimental QEC should target.
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I. INTRODUCTION

Quantum error correction (QEC) is essential for the real-
ization of quantum computers because physical qubits suffer
from errors due to decoherence caused by undesirable inter-
actions with the environment. QEC protects them from such
errors by encoding logical information of qubits on many
physical qubits [1]. With the progress of quantum hardware,
it is becoming possible to precisely control tens to a hundred
qubits, leading to experimental demonstrations of simple QEC
codes on a variety of physical systems [2–7]. Surface codes
proposed by Kitaev [8] has attracted much attention as a
method to implement an error correction with superconduct-
ing qubits due to their relatively high threshold for local errors
and their implementability using a two-dimensional lattice of
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qubits. By using the rotated surface code [9], we can make
one logical qubit with code distance d using only 2d2 − 1
qubits. This means that we can implement d = 3 and d = 5
surface codes with 17 and 49 physical qubits, respectively.
Currently available devices such as the ones presented in
[10,11] can handle qubits of this scale. Experimental efforts
are underway to demonstrate QEC with the surface codes
using the superconducting qubits. Ref. [7] has achieved ex-
ponential suppression of the logical error probability with the
one-dimensional repetitive code, which is a one-dimensional
substructure of the surface code. Moreover, Refs. [12–14]
have implemented all of the operations necessary for the im-
plementation of QEC in a two-dimensional surface code with
d = 3, while they do not achieve the break-even point, that is,
the logical error probability is smaller than the physical error
probability.

To demonstrate that QEC can actually achieve a logical
error probability lower than the physical one, it is essential
to implement a surface code with a code distance of d = 5
that can correct up to two errors. This is because two-qubit
operations inevitably introduce two-qubit correlated errors
on physical qubits. Recently, successful experimental realiza-
tions of surface codes [7,12–16] are demonstrated for the case
of d = 3 [12–14] and d = 5 [16]. However, attempts to extend
the lifetime of logical qubits by quantum error correction
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using these codes beyond that of physical qubits have not yet
been realised. More precisely, the lifetime of a logical qubit
can be estimated by the product of the inverse of the logical
error probability per cycle and the duration taken per cycle.
In Google’s case, the logical error rate per cycle is 2.94 %
and the time taken per cycle is 921 ns, so the lifetime of
the logical qubit in this case is estimated to be 31 µs. This
is comparable to the 20 and 30 µs of the T1 and T2 times
of the qubits they use. Furthermore, Google’s experimental
result that errors during the dynamical decoupling occupies
a large proportion of error budgets implies there are huge
effect of coherent error. To clarify what ultimately limits the
experimental implementation of the error correction, detailed
numerical analyses are required; we need to determine how
much performance is necessary for which parameters, and
how much the logical error probability can be reduced if they
are achieved.

Numerical experiments of surface codes have been carried
out under various noise models. The simplest, albeit not truly
realistic, model is the stochastic Pauli errors where Pauli op-
erators act on the qubits probabilistically. In this case, the
Gottesman-Knill theorem [17] allows us to simulate even
large systems efficiently. In real experimental systems, un-
fortunately, there is a noise that has coherence and cannot
be described by stochastic Pauli errors originating from, for
example, over-rotation with a systematic control error, global
external fields, cross-talk and so on.

Simulating QEC with these noises is as difficult as sim-
ulating a universal quantum computer in general. However,
in certain limited cases, it is possible to numerically evaluate
their performance. For example, a mixture of coherent and
incoherent noise on the one-dimensional repetition code has
been analysed in detail by making use of its exact solvabil-
ity mapping it to free-fermionic dynamics [18]. The d = 3
rotated surface code with amplitude damping and dephasing
[19] has been analysed by exact simulation of the system,
which is possible due to its small number of qubits. A so-
phisticated technique for contraction of 2D tensor networks
has been used to simulate surface codes with arbitrary local
noise on the data qubits, while the syndrome measurements
are assumed to be ideal [20]. It is not clear if this method
can be extended to simulate circuit-level noise, where each
elementary operation is subject to noise. Recently, quasiprob-
ability decomposition of non-Clifford channels into Clifford
channels is utilized to simulate surface codes with a small
coherent noise [21]. This method is, however, not applicable
to arbitrary noise because the coherence of the noise increases
its sampling overhead exponentially. More recently, a Google
research team published simulation results for d = 3 and 5
rotated surface codes that take coherent leakage noise into
account. Given the finite precision of control systems in actual
experiments, the existence of coherent errors is inevitable. A
detailed simulation of the surface code with d = 5, which
is the near-term milestone of QEC, is still challenging for
classical computers. A framework to realize such simulations
and to obtain knowledge on the impact of a coherent error, not
just leakage noise, on QEC is highly demanded.

In this work, we fully simulate the QEC under a real-
istic noise model, including incoherent and coherent noise,
in the d = 5 rotated surface code with 49 physical qubits,

and analyzed the effect of coherent errors on the logical
error probability. The main obstacle to its analysis is that
a straightforward simulation of 49 qubits would require a
complex vector of dimension 249. This prevents us from sim-
ulating the dynamics with a realistic computational resource.
We overcome this obstacle by exploiting the structure of the
syndrome measurement and reusing the measured qubits in
the simulation. This allows us to achieve a full simulation of
the d = 5 rotated surface code by simulating only 26 qubits,
thus making it feasible to analyze the effects of arbitrary
local noise models on this QEC code. In particular, assum-
ing its implementation on superconducting qubits, we use a
realistic gate set and noise model, such as coherent errors in
one-qubit operations and cross resonance gates in addition
to naive stochastic Pauli errors. Moreover, we develop an
effective model of physical error probability for incorporat-
ing the effects of coherent errors in rotated surface codes
combining the simulation results and the previous analysis of
coherent errors in 1D repetitive codes [18]. Using this model,
we investigate the possible regime of coherence time, gate
time, coherent error ratio, etc., required for maintaining the
quantum information of a logical qubit beyond the coherence
time of a physical qubit. The results show that if the ratio
of gate operation time to coherence time is below 0.005, the
lifetime of the logical qubit exceeds that of the physical qubit,
even if coherent errors occur with the same magnitude as their
incoherent counterparts. On the other hand, it was also found
that if the magnitude of the coherent error can be reduced
to 20% of the incoherent one, the ratio of gate operation
time to coherence time is acceptable up to 0.007. The present
simulation framework for QEC would provide an important
guideline for future experimental demonstrations of QEC to
extend the lifetime of logical qubits.

II. SIMULATION METHODS FOR d = 5 ROTATED
SURFACE CODE

A. Circuits for syndrome measurements

The d = 5 rotated surface code, which is the target in this
work, is shown in Fig. 1(a). White circles and black circles
in Fig. 1(a) represent data qubits and ancilla qubits for the
sydrome measurements, respectively. The list of stabilizers of
this code is summarized in Table I. In this table, Xi, Zi mean
Pauli operators acting on the i-th data qubit. These stabilizers
are also illustrated in Fig. 1(a). X -type stabilizers correspond
to yellow plaquettes, and Z-type stabilizers do to ocher ones.
These stabilizers are measured with the circuits shown in
Figs. 1(b) and 1(c), respectively.

The order of CNOT gates is important to determine the
minimum depth of the syndrome measurement circuit. In this
work, we choose the following order. In the case of X -type
stabilizers, they are applied clockwise from the bottom right,
while in the case of Z-type it is clockwise from the top
right. For example, if Z1Z2Z6Z7 is to be measured, we apply
CNOT gates with the order of 2, 7, 6, and 1. We have to
make a special treatment for the measurement qubits on the
boundary as they have fewer CNOT gates than the other mea-
surement qubits. In this work, we make them “wait” if their
target data qubit doesn’t exist. While “waiting“, one-qubit
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(a)

(b)

(c)

FIG. 1. (a) The d = 5 rotated surface codes. Yellow faces(�)
corresponds to X -type stabilizer and ocher ones(�) corresponds to
Z-type stabilizer. White circles(©) means data qubits with their in-
dex, and black circles(•) means ancilla qubits used for measurement
and the order in which the measurement circuits are run. (b) Circuit
for the X -type stabilizer measurement. (c) Circuit for the Z-type
stabilizer measurement.

noise is applied. For example, the sequence for measuring
X1X2 is “2, 1, wait, wait”, and for measuring X22X23 is “wait,
wait, 22, 23”.

B. Reducing the number of qubits for simulation

If we straightforwardly simulate 49 qubits, we need to
reserve a 249-dimensional complex vector on a classical mem-
ory. It prohibits us to simulate the error correction procedure

TABLE I. List of stabilizers of the d = 5 rotated surface code.

Index X stabilizer Z stabilizer

1 X1X2 Z16Z21

2 X3X4 Z6Z11

3 X2X3X7X8 Z11Z12Z16Z17

4 X4X5X9X10 Z1Z2Z6Z7

5 X6X7X11X12 Z17Z18Z22Z23

6 X8X9X13X14 Z7Z8Z12Z13

7 X12X13X17X18 Z13Z14Z18Z19

8 X14X15X19X20 Z3Z4Z8Z9

9 X16X17X21X22 Z19Z20Z24Z25

10 X18X19X23X24 Z9Z10Z14Z15

11 X22X23 Z15Z20

12 X24X25 Z5Z10

with a practical computational resource. To overcome this
obstacle, we reduce the number of qubits that have to be
simulated by reusing the measured qubits. As an illustrative
example of this, we show the case for the one-dimensional
repetition code in Fig. 2. While in the actual experiment,
the syndrome measurements are done in parallel for each
measurement qubit, we delay them so that one syndrome mea-
surement runs at a time. This strategy allows us to reuse one
measurement qubit for multiple stabilizer measurements with-
out changing the system to be simulated. In addition, in order
not to change the simulation outcome, the order of CNOT
gates are essential. Fortunately, in the case of the standard
syndrome measurement circuit for the surface code shown in
Fig. 3, we can delay the timing of each syndrome measure-
ment virtually in a serial way, without swapping any CNOT
gates, which allows us to avoid any error propagation changes
during this process. Note that the same effect can be obtained
by analytically calculating a set of POVM operators corre-
sponding to each syndrome measurement and applying them
with appropriate probabilities. However, the circuit-based
noise model with coherent error considered here is somewhat
complicated and hence we avoid this approach. When apply-
ing the proposed method to surface codes, we have to take care
of the order of the two-qubit gates in the three-dimensional
arrangement so that each syndrome measurement circuit can
be delayed without any collision. A three-dimensional unit
block corresponding to the syndrome measurements for X -
and Z-type stabilizers is shown in Fig. 3(a). The unit block
consists of two types of rectangular blocks stacked on a time
axis. The rectangle block of 1 × 1 × 1 represents a one-qubit
gate applied to a measurement qubit and the rectangle block of
2 × 1 × 1 represents a two-qubit gate between a measurement
qubits and an adjacent data qubit. Using these 3D blocks,
we construct a syndrome measurement circuit for the whole
surface code as in Fig. 3(b). As you can see, the blocks are
assembled in such a way that they can be delayed without
any collision. This indicates that the measurement qubits can
be reused as same as the one-dimensional case by delaying
the syndrome measurements appropriately. Specifically, the
numbers written in black circles in Fig. 1(a) correspond to the
order in which the measurements are to be executed.
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FIG. 2. A method to reduce the number of qubits in simulation in the case of the one-dimensional repetition code. (a) The original syndrome
measurement circuit. (b) A time-shifted version of the original one.

III. NUMERICAL EXPERIMENT

A. Simulated system

The simulation method in Sec. II allows us to effectively
perform the full-vector simulation of d = 5 rotated surface
code, and therefore to evaluate its performance under any
local noise model. We consider a situation where two types
of noise, incoherent and coherent, act on physical qubits in
a syndrome measurement circuit. Here, we describe the con-
crete gateset and noise model that are used in the simulation.

To conduct a realistic simulation, we consider a
hardware-native gateset common to the superconducting
devices and compile the syndrome measurement circuit
with those gates. More concretely, we use a gateset
{Rx(π/2), R†

x (π/2), Rzx (π/2), R†
zx (π/2), Rz(π/2)}, where

Rx(π/2) = e−iπX/4, (1)

Rz(π/2) = e−iπZ/4, (2)

Rzx(π/2) = e−iπX⊗Z/4, (3)

to perform the syndrome measurements. This gateset is
commonly used in the superconducting qubits with cross
resonance gate [22,23]. With these gate sets, the syndrome
measurement circuit can be rewritten as in Fig. 4, where
three changes are made from the circuit shown in Figs. 1(b)
and 1(c). Firstly, we replace CNOT gates in Fig. 1(c) with
Rzx(π/2) gates. Second, for the two Hadamard gates in the
circuit of Fig. 1(b), we replaced the former one by the R†

x (π/2)
gate and the latter one by the Rx(π/2) gate. Finally, we apply
Rx(π/2) gates to the data qubits after the circuit shown in
Fig. 1(b) and Rz(π/2) gates to the data qubits after the circuit
in Fig. 1(c). These one-qubit rotation gates restore the errors
transformed to Y error by Rzx(π/2) gates.

Next, let us define the noise model used in the simulation
and see how incoherent noise is incorporated. We assume the
existence of relaxation and approximate it with single-qubit
depolarizing noise,

E1(ρ) = (1 − p)ρ + p

3

∑

A∈{X,Y, Z}
AρA, (4)
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(a)

(b)

FIG. 3. (a) Left and right blocks represent the syndrome mea-
surement circuits for X and Z stabilizers, respectively. (b) Each
syndrome measurement circuit is complied for parallel X - and Z-
type syndrome measurements on the surface codes. Note that each
syndrome measurement circuit can be delayed without any collision
following the order shown in each block so that the syndrome mea-
surements are done sequentially to reduce the number of qubits in
simulation.

acts on every qubit at each step of the measurement circuit in
Fig. 4. It is out-of-scope to simulate relaxation with amplitude
damping and phase damping noise because we have to men-

tion to the Hamiltonian dynamics of each gates. Same noise
occurs in the “waiting” qubit where the gate does not act. For
the two qubits after the cross-resonance gates, we apply the
two-qubit depolarizing noise in order to incorporate effects of
remaining errors in two-qubit gates:

E2(ρ) = (1 − p)ρ + p

15

∑

A,B∈{I,X,Y,Z}
(A ⊗ B)ρ(A ⊗ B). (5)

We call the parameter p the physical error probability. In this
paper, the probability of each Pauli error is set to be equal, but
it is not difficult to reflect the actual distribution of stochastic
errors.

Next, we describe coherent noise. One example of coherent
noise is obtained from over-rotation errors. That noise was
modelled as an (unintentional) increase in the rotation angle
of each rotation gate. This increase is referred to as an over-
rotation error. Since this is associated with the rotation gate,
it does not act on the “waiting” data qubit. In this study, we
want to model the error probability with the single parameter
p. To this end, we introduce a coherent error ratio c and set
the over-rotation angle to be θ = 2c

√
p. In other words, for

a rotation gate generated by a Pauli operator A, we add the
coherent noise channel in the form of:

Ec(ρ) = e−ic
√

pAρeic
√

pA. (6)

We set all over-rotation angles to a same value θ in order to
keep parameters simple and the reason why we set θ = 2c

√
p

is as follows. Consider the expectation value of P1 = |1〉〈1|
when Rx(θ ) = e−i θ

2 X is applied to |0〉. It is calculated as

〈0|R†
x (θ )P1Rx(θ )|0〉 = sin2 θ

2
. (7)

Since θ � 1, the bit-flip probability pflip associated with this
over-rotation is

pflip = c2 p. (8)

Or equivalently, if the coherence of noise is destroyed at each
step, for example, by using the twirling operation, then such
a decohered noise map corresponds to a probabilistic Pauli
error with probability c2 p. If the coherent errors experience
constructive or destructive interferences, then the effect of the
coherent error would be increased or decreased against c2 p.
The parameter c controls the magnitude of the coherent error
compared to the incoherent one.

B. Numerical simulation

We employ one of the fastest classical simulators of quan-
tum circuits, QULACS [24]. In the simulation, all data qubits
are first initialised to |0〉 and projected to the surface code
state by performing noise-free syndrome measurements with
zero outcomes. Next, we run syndrome measurement circuits
with circuit-level noise as explained above for five rounds.
After completing five rounds of measurements, all data qubits
were subjected to projective measurements in the Pauli Z
basis. The above procedure was repeated 10000 times. In
decoding, as usual, we took the XOR of the syndrome of
the adjacent rounds to determine the position where the syn-
drome is flipped. With this information, we estimated the
error positions using the minimum weight perfect matching

013024-5



KATSUDA, MITARAI, AND FUJII PHYSICAL REVIEW RESEARCH 6, 013024 (2024)

FIG. 4. A syndrome measurement circuit for the rotated surface codes consisting of cross resonance gates and virtual-Z gates. The rotation
angle of the Rx, Rz, Rzx gates is π/2 and that of the R†

x gate is −π/2. We added the over-rotation error after the ideal RZ (π/2), RX (π/2), and
RZX (π/2) gates in order to assess the effect of over-rotation noise on the logical error probability. The rotation angle of the over-rotation error
is proportional to the square root of the physical error probability p of the qubit and the parameter c, which represents the magnitude of the
coherent error.

(MWPM) algorithm implemented in NETWORKX [25]. After
applying the recovery operation using the estimated errors, we
finally calculate the eigenvalue of the logical Pauli Z operator
ZL = Z1Z7Z13Z19Z25 from the final projective measurement.
The logical error probability pL is estimated by dividing the
number of ZL = 1 occurrences by 10 000. We varied p from
10−3 to 7.0 × 10−2 and c from 0.0 to 1.0 by 0.25. For each
parameter pair (p, c), the calculation took 18 hours in the
absence of coherent errors and up to 80 hours in their presence
using an NVIDIA A100 GPU. The obtained pL is shown
in Fig. 5. For p smaller than about 3.0 × 10−3, we can see
that pL decreases if p is decreased. Furthermore, pL satisfies
pL = Apξ at any value of c within the statistical error. By
fitting the numerical values of pL at c = 0 for p = 1.0 × 10−3

to 3.0 × 10−3 with pL = Apξ using two parameters (A, ξ ),
we obtain A = 6.5 × 105 and ξ = 2.92. The value of ξ is
consistent with the expectation that it should be d+1

2 = 3. One
might think that the contribution of the coherent error is small

FIG. 5. The logical error probability is plotted as a function
of the physical error probability p with coherent-noise parameters
c = 0, 0.25, 0.5, 0.75, and 1.0. The dotted lines correspond to the
results of the fitting.

because such a small angle rotation can be frozen by repetitive
projections for the syndrome measurements. However, even
for a small ratio c = 0.25, it has a negligible contribution to
the logical error probability. This result clearly shows that
the effect of the coherence error is important to estimate the
experimentally achievable logical error probability accurately.

C. Effective model incorporating the coherent error

In order to understand the effect of coherent noise on
pL, we consider how to effectively incorporate the effect of
coherent error as a leading order correction to the incoherent
error p. Since we expect that the leading-order contribution of
the coherent error to the effective error peff is proportional to
c2 p, we model peff as,

peff = (1 + αc2)p. (9)

This is because while the probability amplitude for the coher-
ent error is ∼c

√
p, such an error becomes a detectable event

if and only if such an error occurs twice on either ket or bra
spaces in the density operator picture [18]. The coefficient α

takes into account the fact that the coherent errors can interfere
with each other and therefore their contribution to peff can
be not exactly c2 p. As mentioned before, if the coherence is
destroyed at each step, then α should be a unit.

Then, we assume that the logical error probability under
the coherent error is given by replacing the physical proba-
bility p in the case of c = 0 with peff . More precisely, the
logical error probability pL should be obtained by replacing
p in Eq. (9) with peff :

pL = A [(1 + αc2) p]ξ , (10)

where A and ξ are thought to be the same as those with
c = 0. The validity of this model is confirmed by detailed
numerical calculations carried out on the 1D repetition codes
in the previous study [18]. To test this assumption for the
two-dimensional case, we estimate the value of α by the
following procedure. First, we fit pL obtained at various c’s in
the range of p = 1.0 × 10−3 to 3.0 × 10−3 with pL = A(Bp)ξ
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FIG. 6. The ratio peff/p is plotted as a function of the coherence
parameter c. The dotted curve represents 1 + αc2 with the fitted value
α = 0.872.

using B as the fitting parameter while using the fixed A and ξ

obtained at c = 0. Then, we fit B with 1 + αc2. As a result we
obtain α = 0.872 and the ratio peff/p shown in Fig. 6 implies
that this fitting goes well supporting our assumption. Another
interesting fact is the coefficient α = 0.872 is smaller than a
unit meaning the coherent error interferes in a destructive way.
This implies that the coherent error modelled in this work is
not so damaging for QEC, since the logical error probability
is increased when the coherence is destroyed at each step by
twirling.

Since this behavior of the leading order contribution of the
coherent error is a local property of the noise, the effective
model obtained here is expected to be valid not only when
p is reduced for d = 5, but also when the code distance d is
further increased. If this is true, we can estimate the logical
error probability under the coherent error by combining a
limited size of full simulation and a large size of simulation
with stochastic Pauli noise.

D. Experimental consideration

As a concrete usage of this model, here we argue in what
situation an experimental QEC can achive a longer lifetime
tL of logical quantum information against a physical coher-
ence time tc by calculating tL/tc. First, we rewrite the error
probability p using the coherence time tc and time tg required
for each gate operation. For clarity, we assume that the error
probability is well approximated by:

p 
 1 − e− tg
tc . (11)

This is the situation where a quantum gate is well-calibrated
and the coherence-time-limited fidelity is achieved. Second,
we rewrite the logical lifetime tL using the logical error
probability pL. Letting Nsteps = 11 be the number of steps
in one cycle of the syndrome measurement (see Fig. 4), it
takes physical time dNstepstg to conduct d cycles of syndrome
measurements. Since the logical error occurs with probability
pL in this time, the logical lifetime is roughly given by

tL = dNstepstg
pL

. (12)

FIG. 7. The lifetime tL of a logical qubit, calculated from the
coherent noise parameter c, the gate operation time tg and the co-
herent time tc of the physical qubit, divided by tc. The upper graph
is a three-dimensional representation of tL/tc, while the lower graph
shows the relationship between tg/tc and c in more detail. The red
area in the upper graph and the shaded area in the lower graph show
the area where tL < tc.

Finally, combining Eqs. (10)–(12), we obtain the following
relation:

tL
tc

= d Ngates

A [β(1 + αc2) (1 − e− tg
tc )]ξ

tg
tc

. (13)

A graph plotting tL/tc as a function of c and tg/tc is shown
in the Fig. 7. The part of the graph marked in red is the pa-
rameter region where tL/tc is below 1. In this region, the error
correction procedure itself damages the lifetime and therefore
is meaningless for protecting the quantum information. To
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TABLE II. Parameters of experiments which are implemented by
three different groups.

Krinner Zhao Google
Parameter [12] [13] [16]

1Q gate duration Tg,1(ns) 40 25 25
2Q gate duration Tg,2(ns) 98 32 32
Lifetime T1(µs) 32.5 26.1 20
Coherence Time T ∗

2 (µs) 37.5 3.6 30
1Q gate error p1Q(%) 0.09 0.098 0.1
2Q gate error p2Q(%) 1.5 1.035 0.6
Measurement duration TM (ns) 300 1500 500
Measurement error pM (%) 0.9 4.752 2
Logical Lifetime T1,L (µs) 16.4 64.4 30
Logical Coherence Time T ∗

2,L (µs) 18.2 69.0 –

achieve tL/tc > 1, the gate and coherence time ratio tg/tc de-
pends on the amount of coherent error and ranges from 0.005
to 0.007. If the ratio is reduced to tg/tc = 0.001, the lifetime
of the logical qubit is improved by a factor of tens against the
coherence time even in the presence of the coherence error
with c = 1. In this case, the over-rotation angle is θ ∼ 0.06,
which would be experimentally detectable and hopefully can
be calibrated [26]. Finally, let us discuss the experiments on
the rotated surface code with code distance 3 carried out
by different research groups in 2021 [12,13] and with code
distance 5 in 2022 [16]. The main parameters of each ex-
perimental system are given in Table II. For p1Q, p2Q in the
table, Krinner’s group evaluated it by Interleaved Randomized
Benchmarking (Interleaved RB) and Zhao’s group evaluated it
by Cross Entropy Benchmarking (XEB). Note that while these
are great progress toward experimental QEC, neither group
has succeeded in QEC in a strict sense. Krinner’s group has
implemented a QEC protocol, but was unable to make the
lifetime of the logical qubit T1,L longer than the lifetime of
the physical one T1. Zhao’s group has only implemented the
error detection and postselection. Finally, the research group
at Google Quantum AI achieved to make the logical lifetime
as long as the physical coherence time. The main reason for
the lack of successful error correction would be the short
code distance. The distance 3 code cannot correct two-qubit
errors that occur during two-qubit gates. Indeed, results have
been obtained by a research group at Google suggesting that
the logical error probability is suppressed by extending the
code distance. On the other hand, however, there has not been
exponential suppression against code distance.

Let us see whether or not a successful QEC is reachable
if the code distance is increased to 5 and consider what el-

ements should be improved if it is not the case. Since p2Q

is 1.5 %, 1.035 %, 0.6 %, which is outside the region where
pL = Ap

d+1
2 holds in Figure 5, QEC is expected to fail even if

the code distance is increased to 5. The ratios of the two-qubit
gate and coherence time are Tg,2/T1 = 0.003, 0.001, 0.0006
for Krinners’, Zhaos’, and Google groups, respectively. This
is sufficiently small from our analysis. This implies that this
infidelity caused by a systematic control error or cross-talk
resulting in coherent errors. Indeed, experimental results on
[16] suggests errors in dynamical decoupling account for con-
siderable portion of the error budget. From the fact Tg,2/T1 are
much smaller than break-even point shown in Fig. 7 and there
are residual coupling between adjacent qubits, we can infer
that there are a kind of coherent error and it accumulates over
time. However, simulation method introduced at [16] cannot
fully estimate the effect of coherent errors because they ap-
proximate these errors to Pauli noises. On the other hand, our
methods enables to straightforwardly simulate these coherent
error and can give more helpful guidelines to improve control
strategies for future experiment.

IV. CONCLUSION

In this study, we constructed a framework to fully sim-
ulate QEC on the distance 5 rotated surface code under an
arbitrary local noise. Furthermore, we have constructed an
effective model that explains the behavior of the logical error
probability under the coherent errors within the stochastic
Pauli noise model with an appropriate modification. There-
fore, combining our numerical result and the effective model,
we can analyze the behavior of the logical error probability
with smaller a physical error probability or larger code dis-
tance. While we only modelled the over-rotation with fixed
angle caused by a systematic control error, there are plenty of
sources of coherent errors need to be taken account into such
as unintended interactions in Hamiltonian, cross-talk, global
fields, time-correlated coherent rotation and so on. These
sources of noise would be straightforwardly incorporated into
our framework. The performance analysis under more realistic
noise models is becoming increasingly important, and our
framework will provide a vital guideline for future improve-
ments on experimental sides.
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