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Game-theoretical approach to minimum entropy productions in information thermodynamics
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In a situation where each player has control over the transition probabilities of each subsystem, we game-
theoretically analyze the optimization problem of minimizing both the partial entropy production of each
subsystem and a penalty for failing to achieve a given state transition. In the regime of linear irreversible
thermodynamics, we obtain the Nash equilibrium solution of the probability flow and calculate each partial
entropy production for this solution. We find a trade-off such that a partial entropy production should be larger
if we want the other partial entropy production to be smaller. The total entropy production can be minimized if
each subsystem equally shares the penalty. We identify that this trade-off is due to the interacting contribution of
the probability flow and discuss a possible biological validity for Escherichia coli chemotaxis.
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I. INTRODUCTION

In physical systems such as living systems, there univer-
sally exist situations where many-body systems cooperatively
perform a state transition to achieve a given task. Achievement
of a given task generally takes a physical cost. When the
state transition is performed by physical stochastic processes
[1], the cost can be introduced as the entropy production in
stochastic thermodynamics [2–4]. Minimizing this entropy
production might be crucial for the many-body systems to
maintain their performance.

The minimization problem of the entropy production has
been known in the context of optimal control in stochastic
thermodynamics. Historically, this minimization problem was
discussed to improve the efficiency of a stochastic heat engine
and the work extraction [5–8]. Recent progress in stochastic
thermodynamics clarified that such a minimization problem
is related to differential geometry [9–23], such as the optimal
transport theory [24–31] and information geometry [32–35].
This minimization problem has not been frequently discussed
for many-body systems because we consider the total entropy
production for a single whole system in a stochastic heat
engine.

For many-body systems, the entropy production for the
whole system can be partitioned into partial entropy pro-
ductions of the subsystems [19,35–46]. This partitioning
was originally introduced for nonautonomous systems in in-
formation thermodynamics [47–49] and has been applied
to autonomous information processing in living systems
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[42,50–58]. Although the minimization problem of the par-
tial entropy production is important to achieve an efficient
information-to-free-energy conversion [59–63], a situation of
the two-body system is often seen wherein the one partial
entropy production should be increased to reduce the other
partial entropy production in living systems. The total entropy
production for the whole system is not minimized in this
situation, and this situation is not well treated in the conven-
tional minimization problem of the total entropy production.
Therefore a framework has been required to deal with a certain
kind of thermodynamic optimality when many-body systems
cooperatively achieve a given task. Such optimality is often
discussed in the field of game theory [64–70] or the mean-field
game theory [71–75]. For example, the prisoner’s dilemma
game is used to analyze a cooperative behavior of multiagent
systems in game theory [76], and the Nash equilibrium [77]
gives the optimality for multiagent systems.

In this paper, we introduce a game-theoretic framework
for a conflict between minimizations of the partial entropy
productions of two subsystems X and Y with a given task
on the whole system. We treat this optimization problem
with Markov jump processes for the bipartite system under
the near-equilibrium condition and introduce the concept of
Nash equilibrium into stochastic thermodynamics to explain
this conflict. This Nash equilibrium solution shows a trade-
off such that the partial entropy production of X should
be increased when the partial entropy production of Y is
reduced. Moreover, this conflict provides an inevitable dissi-
pation in the Nash equilibrium solution, and this dissipation
is expressed by the interacting contribution of the probability
flow. We illustrate these facts using numerical calculations
and discuss a possible biological validity for Escherichia
coli (E. coli) chemotaxis in terms of evolutionary processes.
We also remark on our game-theoretic minimization of the
partial entropy productions in terms of the optimal transport
theory.
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II. SETUP

A. Markov jump process in bipartite model

We consider a system consisting of two subsystems X and
Y , with binary states x ∈ {0, 1} and y ∈ {0, 1}. A probability
distribution of state z = (x, y) ∈ {0, 1}2 at time t is denoted
as p(t )

z . In this system, a Markov jump process from t = t0 to
t = t1 is described as a master equation;

d

dt
p(t )

z =
∑

z′
J (t )

z′→z, (1)

J (t )
z′→z := W (t )

z′→z p(t )
z′ − W (t )

z→z′ p(t )
z , (2)

where W (t )
z′→z and J (t )

z′→z are a transition rate and a probability
flow in a state transition from z′ = (x′, y′) ∈ {0, 1}2 to z at time
t . By assuming a bipartite condition [38,39,78–80] that the
state transition is independently performed in the subsystems
X and Y , the transition rate satisfies

W (t )
z′→z

{= 0 (x �= x′, y �= y′)

�= 0 (otherwise).

(3a)

(3b)

Because W (t )
z′→z should not be zero if W (t )

z→z′ �= 0, the abso-
lute irreversible transitions are not assumed.

To simplify the notation, we introduce a matrix representa-
tion as (p(t ) )i = p(t )

vi
and the probability flow as (J (t ) )i = J (t )

ei
,

where v := ((0, 0), (1, 0), (1, 1), (0, 1)) represents a state z =
(x, y) and (e)i = vi → vσ (i) represents a directed pair of states
(z → z′) which has a nonzero transition rate. Here, σ (i) de-
notes a permutation of node, i.e., σ (1) = 2, σ (2) = 3, σ (3) =
4, and σ (4) = 1. Then, the master equation is rewritten as

d

dt
p(t ) = BJ (t ), (4)

Bi j = δiσ ( j) − δi j, (5)

where δi j is the Kronecker delta and B is an incidence matrix.
We remark that v implies a set of nodes and e implies a set of
directed edges in terms of Markov networks.

FIG. 1. Schematics of settings. Blue bars indicate a probability
distribution on space v, which changes with time from an initial state
p(t0 ) to a final state p(t1 ). Player X (Y) controls probability flows of
e1, e3 (e2, e4), which generate its partial entropy production �X (�Y ).
In the final state, both the players take a penalty D generated by an
error between the final state p(t1 ) and the target state pf (black bars).

B. Game-theoretical formulation

We further introduce players X and Y (see Fig. 1). A player
X can control the set of the transition rates ŴX = {W (t )

e |t0 �
t � t1, e ∈ EX , e† ∈ EX } that are relevant to transitions in sub-
system X , i.e., EX = {e1, e3}. In the same way, a player Y can
control ŴY = {W (t )

e |t0 � t � t1, e ∈ EY , e† ∈ EY } with EY =
{e2, e4}, where e† = z → z′ indicates a directed edge in the
opposite direction of e = z′ → z.

This study proposes the problem of how the players coop-
eratively bring the final state p(t1 ) closer to the target pf from
a given initial condition p(t0 ) = pi as efficiently as possible
(see Fig. 1). To deal with this problem, we now introduce
two types of costs. The first cost is relevant to the ongoing
processes of state transition in each subsystem. The players X
and Y independently cost amounts of �X and �Y , given by the
partial entropy productions for a bipartite condition [38,39]

�X :=
∑

ei∈EX

∫ t1

t0

dtJ (t )
ei

F (t )
ei

, (6)

�Y :=
∑
ei∈EY

∫ t1

t0

dtJ (t )
ei

F (t )
ei

, (7)

F (t )
z′→z := ln

W (t )
z′→z p(t )

z′

W (t )
z→z′ p

(t )
z

. (8)

Here, F (t )
z′→z is called a thermodynamic force. �X (�Y ) is

always non-negative and gives 0 if and only if J (t )
ei

= F (t )
ei

= 0
for ei ∈ EX (ei ∈ EY ). We can also define the total entropy
production as the sum of the partial entropy productions
�tot = �X + �Y . This total entropy production quantifies the
dissipation in the total system during the time interval from
t = t0 to t = t1 [2,4] because the non-negativity of the total
entropy production �tot � 0 can be regarded as the second
law of thermodynamics. The entropy production is widely
discussed in terms of the stability of the system [2,81–84],
the fluctuation of the observable [85,86], the speed of the
time evolution [10,18,19,23], the accuracy of the information
transmission [36–39,47,48], and so on. The partial entropy
productions �X and �Y can also be interpreted as the dissi-
pation in the subsystems X and Y , respectively.

The other cost is an error penalty of D to both players
due to failing to achieve the target state at the end. We intro-
duce this penalty as the Pearson’s chi-square divergence [87],
which is used in a statistical test as a degree of current state
p(t1 ) achieving the target pf ,

D := 1

2

∑
i

∣∣p(t1 )
vi

− pf
vi

∣∣2
pf

vi

. (9)

Here, D is always non-negative and gives 0 if and only if
the final and target states match, i.e., p(t1 ) = pf . We remark
that this error penalty D is regarded as the standard f -
divergence [34], which provides the Fisher information 2D =∑

i(d pf
vi

)2/pf
vi

+ O((d pf
vi

)3) for the small change d pf
vi

=
|p(t1 )

vi
− pf

vi
|. Thus, the result in this study is robust against

the choice of the error penalty, at least if the error penalty
is given by the standard f -divergence and we only con-
sider the small change d pf

vi
. For example, we can replace

the error penalty D with the Kullback-Leibler divergence
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DKL =∑i p(t1 )
vi

ln(p(t1 )
vi

/pf
vi

) � D + O((d pf
vi

)3), which is also
regarded as the standard f -divergence widely used in ther-
modynamics. Especially, the Kullback-Leibler divergence
between the current distribution and the steady-state distribu-
tion is often used in thermodynamics [2,83,84,88–90].

For such costs �X , �Y , and D, we now consider a problem
in which each player aims to achieve the target state with as
small partial entropy production as possible. Such a problem
is given by two minimizations,

min
ŴX

[�X + λX D]︸ ︷︷ ︸
=:CX

(10a)

min
ŴY

[�Y + λY D]︸ ︷︷ ︸
=:CY

. (10b)

Here, we introduce the penalty parameter, λX or λY , as the
importance of achieving the target state for each subsystem.
This study aims to find a Nash equilibrium solution [77] that
satisfies the minimization of costs CX and CY simultaneously.
We remark that −CX and −CY correspond to the payoffs in
game theory; we consider the game that maximizes −CX and
−CY by changing the rate matrices ŴX and ŴY , and its optimal
solution is obtained by a Nash equilibrium solution.

III. OVERVIEW OF MAIN RESULT

We now overview the main results of this study. In order
to obtain the Nash equilibrium solution, we assume a near-
equilibrium condition, where (the reciprocal of) the Onsager
coefficient αei is defined for the transition ei [2]. We also
define summations for each subsystem as αX =∑ei∈EX

αei

and αY =∑ei∈EY
αei .

We remark that the words “equilibrium” and “near-
equilibrium condition” without the word “Nash” are used only
for thermal equilibrium introduced by the detailed balance
condition. To avoid confusion, we also use the term “Nash
equilibrium” every time without abbreviation for distinction.

Our goal is to compute the partial entropy productions of
the subsystems X and Y in the Nash equilibrium, i.e., �N

X and
�N

Y , especially when the given state transition is completely
achieved, p(t1 ) = pf , in the limit λX → ∞ with the fixed ratio
of importance r := λX /λY , or equivalently in the limit λY →
∞ with the fixed ratio r. In the limit λX → ∞ with fixed r, �N

X
means the minimum partial entropy production of X during
the finite-time transition from p(t0 ) = pi to p(t1 ) = pf under the
constraint minŴY

CY . In the limit λY → ∞ with fixed r, �N
Y

means the minimum partial entropy production of Y during
the finite-time transition under the constraint minŴX

CX . Thus
�N

X and �N
Y are minimum partial entropy productions in the

presence of the conflict between two subsystems for achieving
a given state transition.

We obtained the main results as follows:

�N
X = �min

X + fX (r; γ )�XY � �min
X , (11)

�N
X = �min

X (r → 0), (12)

�N
Y = �min

Y + fY (r; γ )�XY � �min
Y , (13)

�N
Y = �min

Y (r → ∞), (14)

where �min
X (�min

Y ) is the minimum partial entropy production
of X (Y ) and �XY is the shared minimum entropy production,
which is given by the minimum total entropy production

�N
tot := �N

X + �N
Y � �min

X + �min
Y + �XY =: �min

tot , (15)

�N
tot = �min

tot (r = 1). (16)

The factor fX (r; γ ) (� 0) [ fY (r; γ ) (� 0)] is the function of
γ := αX /αY , which satisfies fX (0; γ ) = fY (∞; γ ) = 0. The
function fX (r; γ ) (� 0) [ fY (r; γ ) (� 0)] is monotonically
increasing (decreasing) with r. Thus the minimum partial
entropy production �min

X (�min
Y ) is achieved when r → 0

(r → ∞). fX (r; γ ) and fY (r; γ ) are also functions of γ :=
αX /αY . For r = 1, the factor is given by fX (1; γ ) = 1/(γ +
1), fY (1; γ ) = γ /(γ + 1), and the minimum total entropy
production is achieved, �N

tot = �min
tot , when r = 1 because

fX (1; γ ) + fY (1; γ ) = 1.
The above result implies that a trade-off relation exists

between the partial entropy productions such that a partial en-
tropy production should be larger if we want the other partial
entropy production to be smaller. Moreover, the total entropy
production can be minimized if each subsystem equally shares
the penalty. That implies that an equivalent penalty in two
subsystems reduces the dissipation in the total system, and the
minimization of dissipation in only one subsystem increases
the dissipation of the total system.

IV. PHYSICAL IMPORTANCE AND EXAMPLE

A. Physical interpretations based on information-energy
conversion

The lower bound on the partial entropy productions can
be immediately applied to the topic of the efficiency of the
information-energy conversion in terms of Maxwell’s demon.
To discuss the information-energy conversion, we first de-
compose the thermodynamics force, i.e., Eq. (8), into the
thermodynamic part (T) and the information part (I) as

F (t )
z′→z = F T(t )

z′→z + F I(t )
z′→z, (17)

F T(t )
z′→z = ln

W (t )
z′→z

W (t )
z→z′

, (18)

F I(t )
z′→z = ln p(t )

z′ − ln p(t )
z . (19)

The partial entropy production is also decomposed into two
contributions [38,80]

�X = �T
X + �I

X , (20)

where the thermodynamic contribution

�T
X =

∑
ei∈EX

∫ t1

t0

dtJ (t )
ei

F T(t )
ei

(21)

means the entropy change of the heat bath, while the informa-
tional contribution

�I
X =

∑
ei∈EX

∫ t1

t0

dtJ (t )
ei

F I(t )
ei

(22)

means the sum of the entropy change of the system and infor-
mation flow because F I(t )

ei
is given by the stochastic Shannon
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entropy change. For a bipartite system, the sum �I
X + �I

Y is
regarded as the change of the Shannon entropy in the total
system (X,Y ), which is given by the sum of the Shannon
entropy in X and Y , and the mutual information between two
subsystems X and Y .

Because the partial entropy production �X � 0 is non-
negative, we obtain the inequality

�T
X � −�I

X , (23)

which is called the second law of information thermodynam-
ics. This result can explain the information-energy conversion
by Maxwell’s demon because this inequality explains a
trade-off between the thermodynamic contribution �T

X and
the informational contribution −�I

X , and the thermodynamic
contribution �T

X can be negative due to the information contri-
bution −�I

X . The value of the partial entropy production �X

is regarded as the dissipation in the information-energy con-
version. For example, the equality �T

X = −�I
X (or �X = 0)

holds for the Szilard engine, which is an optimal heat engine
driven by Maxwell’s demon to achieve the maximal efficiency
for information-energy conversion [60].

Thus a minimization problem of �X can be interpreted
as a maximization problem of the efficiency for information-
energy conversion, and our study can be regarded as tackling
a problem to maximize the efficiency for information-heat
conversion under a restriction that the subsystems coopera-
tively achieve a given task within a finite time. In terms of
the information-energy conversion, these two subsystems can
be interpreted as the engine and the demon. In the presence
of the conflict between subsystems, we obtained the lower
bound on the Nash equilibrium solution of the partial entropy
production

�N
X � �min

X ⇔ �T
X � �min

X − �I
X , (24)

which means that there is an inevitable dissipation �min
X in

the information-energy conversion caused by the finite-time
task where �I

X and �T
X satisfy the condition �N

X = �I
X + �T

X .
The main result also means that inevitable dissipation �N

X � 0
exists in the information-energy conversion due to the conflict
between two subsystems.

B. Example: E. coli chemotaxis and game-theoretic
interpretation of E. coli evolution

This study might be applied to how E. coli evolves in its
adaptation process in chemotaxis. To discuss the applicability,
we first explain E. coli chemotaxis based on the bipartite
model [91] (see Fig. 2 for visualization). The bipartite model
of E. coli chemotaxis is organized by the activity of a kinase
(CheA), the methylation level of its receptor, and the ligand
concentration in the environment. Let subsystem X denote
whether the kinase is inactive (x = 0) or active (x = 1). On
the other hand, let subsystem Y denote whether the receptor is
demethylated (y = 0) or methylated (y = 1). The activation of
the kinase and the methylation of the receptor independently
occurred stochastically. Thus Eqs. (3a) and (3b) are satisfied,
and the master equation is given by Eqs. (1) and (2).

FIG. 2. A physical example of a bipartite system, signal trans-
duction of E. coli chemotaxis. Subsystem X takes an active
(orange-colored dot) or inactive (uncolored dot) state of a kinase.
The other subsystem Y takes a methylated (green-colored dot) or
demethylated (uncolored dot) state of the receptor. During a state
transition, heat dissipation emerges for each subsystem as the partial
entropy production.

In stochastic thermodynamics, heat dissipation can be
introduced based on the following local detailed balance con-
ditions:

ln
W (t )

(x′,y)→(x,y)

W (t )
(x,y)→(x′,y)

= −βX 	Q(x′,y)→(x,y)
X , (25)

ln
W (t )

(x,y′ )→(x,y)

W (t )
(x,y)→(x,y′ )

= −βY 	Q(x,y′ )→(x,y)
Y , (26)

where βX and βY are inverse temperatures in the kinase and
the receptor, 	Q(x′,y)→(x,y)

X is the heat dissipation of the kinase
from a state x′ to a state x under the condition of y, and
	Q(x,y′ )→(x,y)

Y is the heat dissipation of the receptor from a
state y′ to a state y under the condition of x. The heat dis-
sipation 	Q(x′,y)→(x,y)

X can be given by the difference between
the energy and chemical potential [80]. Because the activation
of the kinase is driven by the receptor-ligand binding, the
heat dissipation 	Q(x′,y)→(x,y)

X generally depends on the ligand
concentration in the environment.

We here explain typical dynamics of adaptation in E.
coli chemotaxis with this four-state model [50,51,53,91]. The
adaptation is transient dynamics after the ligand concentration
is changed. At time t = t0, we assume that the initial state
stochastically tends to be (1,0). This means that the kinase
tends to be active, and the receptor tends to be demethylated.
We here assume that the ligand concentration is changed from
L = 0 to L = 1 at time t = t0, where L = 0 means that the
ligand concentration is relatively low and L = 1 means that
the ligand concentration is relatively high. At time t > t0, the
kinase activity can change from the active state x = 1 to the
inactive state x = 0 rapidly, and this change activates another
kinase, CheY. The activity of CheY changes the mode of the
flagellar motor from the tumbling mode to the run mode, and
this mode change in the flagellar motor explains the behavior
of chemotaxis. From time t = t0 to t = t1, the kinase activity
gradually returns to the active state x = 1, and the mode of the
flagellar motor returns to the tumbling mode. This behavior
is regarded as the adaption in E. coli chemotaxis because E.
coli adapts to the environmental change from L = 0 to L = 1.
In summary, the state stochastically tends to change in this
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adaptation dynamics as

(1, 0) → (0, 0) → (0, 1) → (1, 1), (27)

when the ligand change from L = 0 to L = 1 occurs.
In terms of probability distribution, the adaptation dynam-

ics is given by the state transition from the initial distribution
pi to the final distribution pf . For the initial distribution
p(t0 ) = pi, we assume the condition that p(t0 )

v2
= p(t0 )

(1,0) is rela-

tively large rather than other probabilities p(t0 )
v1

= p(t0 )
(0,0), p(t0 )

v3
=

p(t0 )
(1,1), and p(t0 )

v4
= p(t0 )

(0,1). For the final distribution p(t1 ) = pf ,

we assume the condition that p(t0 )
v3

= p(t0 )
(1,1) is relatively large

rather than other probabilities p(t0 )
v1

= p(t0 )
(0,0), p(t0 )

v2
= p(t0 )

(1,0), and

p(t0 )
v4

= p(t0 )
(0,1).

We now consider evolutionary processes to minimize dis-
sipation in the kinase and the receptor under the constraint of
precise adaptation. Because the partial entropy productions,
especially the thermodynamic contributions �T

X and �T
Y , are

related to the heat dissipation

�T
X = −

∑
ei∈EX

∫ t1

t0

dtJ (t )
ei

βX 	Qei
X , (28)

�T
Y = −

∑
ei∈EY

∫ t1

t0

dtJ (t )
ei

βY 	Qei
Y , (29)

and �X = �T
X + �I

X (�Y = �T
Y + �I

Y ) can be interpreted as
the local thermodynamic dissipation under the condition of
the other system Y (X ), the minimization of the partial en-
tropy production is related to the savings of thermodynamic
resources such as the chemical potential change locally. For
E. coli, the origin of the thermodynamics resource such as
feed can be obtained as a consequence of chemotaxis. Thus E.
coli is motivated to achieve, by consuming the thermodynamic
resource, the task of chemotaxis precisely to gain the origin of
the thermodynamic resource. The achievement of this task is
measured by an error penalty D given by Eq. (9) for adaptation
dynamics from t = t0 to t = t1. To gain feed as the origin of
the thermodynamic resource from the environment, E. coli
would like to minimize this error penalty D, and thermody-
namic contributions of the penalty D for the kinase (X ) and
the receptor (Y ) may be treated independently by multiplying
the importance of achieving the target state in the adaptation
dynamics such as λX D and λY D. Thus CX = [�X + λX D] and
CY = [�Y + λY D] correspond to the sum of thermodynamic
dissipation for the kinase and the receptor, respectively.

The minimization problems of CX and CY are needed for
E. coli to survive an environment with low feed efficiently
because E. coli want to obtain the origin of the thermodynamic
resource with smaller dissipation CX and CY by achieving
precise chemotaxis via reducing D.

In evolutionary processes, the phenotype of the kinase and
the phenotype of the receptor may be changed accidentally
and independently. The set of the transition rates ŴX and ŴY

may depend on the phenotype of the kinase and the phenotype
of the receptor, respectively. In evolutionary processes, the
phenotype can be changed to maximize the fitness of E. coli.
To survive an environment with low feed, the fitness can be
−CX and −CY because −CX and −CY quantify the reduc-
tion of dissipation. Because mutations of the phenotype can

happen independently for the kinase and the receptor, we can
consider two minimization problems, which are equivalent to
the maximization problems of the fitness

min
ŴX

CX = − max
ŴX

(−CX ), (30)

min
ŴX

CY = − max
ŴY

(−CY ). (31)

If we assume that the current phenotype of the receptor and the
kinase, which is related to ŴX and ŴY in adaptation dynamics,
is obtained as a consequence of evolutionary processes, we
may assume that the local dissipation in the kinase �X and
the local dissipation in methylation �Y may be discussed in
terms of the Nash equilibrium solutions �N

X and �N
Y for two

minimization problems, Eqs. (30) and (31).
Based on the above assumption for evolutionary processes,

we can discuss a possible validity of our game-theoretic
framework in E. coli chemotaxis. Now, we assume that the
transition from the initial state to the final state for the
methylation level of the receptor (the subsystem Y ) is more
important than that for the kinase activity (the subsystem X )
in adaptation dynamics. That is because the methylation level
tends to be changed from the demethylated state y = 0 at time
t = t0 to the methylated state y = 1 at time t = t1 during the
adaptation dynamics. On the other hand, the kinase activity is
only instantaneously changed during the adaptation dynamics,
and the initial state x = 1 at time t = t0 tends to be the same
as the final state x = 1 at time t = t1. Thus achievement of
the target state p(t1 )

vi
may be more important for the receptor

than for the kinase in adaptation dynamics. In our game-
theoretic framework, the difference in the importance may
be quantified as λY 	 λX . Experimentally, �Y 	 �X can be
seen in adaptation dynamics of E. coli because the relaxation
time of the receptor is relatively slower than the relaxation
time of the kinase [42,91,92]. This fact is consistent with our
main result that �N

Y 	 �N
X for λY 	 λX . Thus our main result

may provide a possible explanation of the huge difference in
thermodynamic dissipation of each subsystem in the signal
transduction of E. coli chemotaxis.

V. NASH EQUILIBRIUM SOLUTION IN LINEAR
IRREVERSIBLE THERMODYNAMICS

In general, the problem of Eqs. (10a) and (10b) does not
give a nontrivial conclusion without any constraint on the
transition rate because the entropy production can be zero
without any constraint on the transition rate for Markov jump
processes. In this paper, we consider a constraint of the near-
equilibrium condition in linear irreversible thermodynamics
[2,81]. In linear irreversible thermodynamics, we assume that
the transition rate is given by W (t )

z′→z = W eq
z′→z + O(δW ), where

δW is the small change of the transition rate and W eq
z′→z satis-

fies the detailed balance condition W eq
z′→z peq

z′ = W eq
z→z′ p

eq
z with

the equilibrium distribution peq
z for all pairs of z and z′. We

also assume that the initial state satisfies the near-equilibrium
condition. For example, p(t0 ) is the steady-state distribution for
W eq

z′→z + O(δW ). In the above setup, we can confirm J (t ) =
O(δW ) and p(t ) = peq + O(δW ) during the transition process
t0 � t � t1 := t0 + τ .
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We here explain the Nash equilibrium solution (see also
Appendixes A–C for a detailed derivation). Let αz′→z :=
(W eq

z′→z peq
z′ )−1 = (W eq

z→z′ p
eq
z )−1 be (the reciprocal of) the On-

sager coefficient. �X and �Y become quadratic functions by
ignoring terms O(δW 3), and thus the lower bounds are given
by �X � τ

∑
ei∈EX

αei (J̄
(t )
ei

)2 and �Y � τ
∑

ei∈EY
αei (J̄

(t )
ei

)2,
where J̄ei is the time-averaged flow defined as J̄ei :=
(
∫ t0+τ

t0
dtJ (t )

ei
)/τ . The penalty D is also given by the quadratic

function of J̄ei . Thus we can describe the lower bounds of
cost C̄X (J̄X , J̄Y ) (� CX ) and C̄Y (J̄X , J̄Y ) (� CY ) as functions
of time-averaged flows J̄X := {J̄ei |ei ∈ EX } and J̄Y := {J̄ei |ei ∈
EX }. Optimal time-averaged flows to minimize the cost are
described by

J̄∗
X (J̄Y ) = arg min

J̄X

C̄X (J̄X , J̄Y ) (32a)

J̄∗
Y (J̄X ) = arg min

J̄Y

C̄Y (J̄X , J̄Y ). (32b)

Thus the Nash equilibrium solution for time-averaged
flows (J̄N

X , J̄N
Y ) = ({J̄N

e1
, J̄N

e3
}, {J̄N

e2
, J̄N

e4
}) satisfies

J̄N
X = J̄∗

X

(
J̄N

Y

)
(33a)

J̄N
Y = J̄∗

Y

(
J̄N

X

)
, (33b)

as the fixed point of Eqs. (32a) and (32b).
The analytical calculation of the Nash equilibrium so-

lution is as follows (see also Appendixes A–C). From
Eqs. (32a), (32b), (33a), and (33b), J̄N

X and J̄N
Y satisfy extreme

value conditions for CX (J̄X , J̄Y ) and CY (J̄X , J̄Y ), respectively.
Because CX (J̄X , J̄Y ) and CY (J̄X , J̄Y ) are quadratic functions of
(J̄N)i := J̄N

ei
, the solutions of the extreme value conditions J̄N

are analytically obtained. Especially in the limit λX →∞ with
the fixed ratio r, J̄N are given by

J̄N
ei

= 1

τ (αX + rαY )

[−rαe
σ3(i)

δpvi

+ (rαeσ (i) + αe
σ2 (i)

)
δpvσ (i) + αe

σ2 (i)
δpv

σ2 (i)

]
, (34)

for ei ∈ EX , and

J̄N
ei

= 1

τ (αX + rαY )

[−αe
σ3 (i)

δpvi

+ (αeσ (i) + rαe
σ2 (i)

)
δpvσ (i) + rαe

σ2 (i)
δpv

σ2 (i)

]
, (35)

for ei ∈ EY , where the permutations σ 2(i) and σ 3(i) are

defined as σ 2(i) = σ (σ (i)) and σ 3(i) = σ (σ (σ (i))), respec-
tively.

VI. PARTIAL ENTROPY PRODUCTIONS
IN THE NASH EQUILIBRIUM

We discuss the partial entropy productions in the
Nash equilibrium, that is, (�N

X , �N
Y ) := (�X , �Y )|J (t )=J̄N . In

the limit λX →∞ with the fixed ratio r, �N
X = �min

X +
fX (r; γ )�XY and �N

Y = �min
Y + fY (r; γ )�XY in Eqs. (11) and

(13) are analytically given by

�min
X =

(∫ t0+τ

t0
dtJ̄ N

X

)2
τ
(∑

ei∈EX
α−1

ei

) , �min
Y =

(∫ t0+τ

t0
dtJ̄ N

Y

)2
τ
(∑

ei∈EY
α−1

ei

) , (36)

�XY =
(∫ t0+τ

t0
dtJ̄ N

XY

)2
τ (α−1

X + α−1
Y )

, (37)

fX (r; γ ) = r2(γ + 1)

(γ + r)2
, fY (r; γ ) = γ (γ + 1)

(γ + r)2
, (38)

where the flows J̄ N
X , J̄ N

Y , and J̄ N
XY are the linear transforma-

tions of J̄N defined as

J̄ N = TJ̄N
, (39)

J̄ N
:= (J̄ N

X , J̄ N
Y , J̄ N

XY , J̄ N
rot

)T
, (40)

T :=

⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 0 −1
αe1
αX

−αe2
αY

αe3
αX

−αe4
αY

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎠. (41)

Here, J̄ N
X (J̄ N

Y ) implies the probability flow for the marginal
distribution of X (Y ). J̄ N

XY represents the probability flow of
the interaction between X and Y , which cannot be written
by J̄ N

X and J̄ N
Y . The probability flow J̄ N

rot does not con-

tribute to the time evolution d p(t )/dt = BT−1J̄ N
because

BT−1(0, 0, 0, J̄ N
rot )

T = 0, and thus J̄ N
rot can be interpreted in

terms of the optimal transport theory [30], which explains the
minimization of the entropy production in a finite time [23]
(see Appendix D).

The terms �min
X , �min

Y , and �XY are proportional to 1/τ ,
and this fact is consistent with the thermodynamic speed
limit based on the optimal transport theory [10,15,18,19,23].
Indeed, Eq. (36) can be interpreted as thermodynamic speed
limits for the partial entropy productions in the Nash equilib-
rium (see also Appendix D),

�N
X � �min

X =
∣∣P (t0 )

X − P (t0+τ )
X

∣∣2
τ
(∑

ei∈EX
α−1

ei

) , (42)

�N
Y � �min

Y =
∣∣P (t0 )

Y − P (t0+τ )
Y

∣∣2
τ
(∑

ei∈EY
α−1

ei

) , (43)

where P (t )
X and P (t )

Y are the marginal distributions defined as
P (t )

X :=∑y p(t )
(1,y) = p(t )

v2
+ p(t )

v3
and P (t )

Y :=∑x p(t )
(x,1) = p(t )

v3
+

p(t )
v4

. These results are similar to the thermodynamic speed
limits for the partial entropy production, which have been
discussed in Ref. [19]. We remark that Eqs. (42) and (43) have
a similar form of thermodynamic speed limits [93,94], which
may not be based on the optimal transport theory, because the
total variation, that is, |P (t0 )

X − P (t0+τ )
X | (or |P (t0 )

Y − P (t0+τ )
Y |),

also appears in Refs. [93,94]. We remark that a crucial dif-
ference between the results in Refs. [93,94] and Eqs. (42)
and (43) is the difference of the constants in the denominator.
In Refs. [93,94], the constant called the dynamical activity is
used instead of the Onsager coefficient. Indeed, the Onsager
coefficient appears in the thermodynamic speed limit based
on the optimal transport theory for Markov jump processes
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FIG. 3. (a) Probability flows and (b) partial entropy produc-
tions under λX = λY = ∞. We give the environmental parameters
as (αe1 , αe2 , αe3 , αe4 ) = (3, 4, 5, 6), pf = (0.1, 0.2, 0.3, 0.4), δp =
(0.7, −0.4, 0.2, −0.5) × 10−4, and (t0, t1) = (0, 1). The horizontal
axis is log10 r. In (a), orange, green, blue, and red curves indicate
J̄ N

X , J̄ N
Y , J̄ N

XY , and J̄ N
rot, respectively. In (b), orange, green, and black

curves indicate �N
X , �N

Y , and �N
tot, respectively. Then, each color dot

indicates a minimum value of the cost.

[23], and our setup is related to the optimal transport theory
for Markov jump processes [30] (see Appendix D).

Our main results also provide the partial entropy produc-
tions in the Nash equilibrium,

�N
X = 1

τ

⎡
⎣∣∣P (t0 )

X − P (t0+τ )
X

∣∣2∑
ei∈EX

α−1
ei

+ fX (r; γ )
(∫ t0+τ

t0
dtJ̄ N

XY

)2
α−1

X + α−1
Y

⎤
⎦,

(44)

�N
Y = 1

τ

⎡
⎣∣∣P (t0 )

Y − P (t0+τ )
Y

∣∣2∑
ei∈EY

α−1
ei

+ fY (r; γ )
(∫ t0+τ

t0
dtJ̄ N

XY

)2
α−1

X + α−1
Y

⎤
⎦,

(45)

in the presence of a conflict between two subsystems. Again,
the partial entropy productions in the Nash equilibrium are
proportional to 1/τ . This result can be regarded as a variant
of the thermodynamic speed limits, which may have not been
discussed before, because �N

X and �N
Y are the minimum partial

entropy productions in the presence of the conflict between
two subsystems for achieving a given state transition.

Moreover, there is a one-to-one correspondence between
J̄ N

rot and r (see Appendix B). Thus the minimization of the
partial entropy production �N

X = �min
X (�N

Y = �min
Y ) and the

minimization of the total entropy production �N
tot = �min

tot are
achievable by changing J̄ N

rot because the factors fX (r; γ ) and
fY (r; γ ) are determined by the flow J̄ N

rot.
In Fig. 3, we illustrate a trade-off relation between �N

X and
�N

Y by a behavior of probability flows J̄ N
X and the minimum

entropy productions �N
X , �N

Y , �N
tot for the Nash equilibrium

solution in the case of λX →∞ with fixed r := λX /λY . As
seen in Fig. 3(a), only J̄ N

rot monotonically changes with r, and

J̄ N
X , J̄ N

Y , and J̄ N
XY do not depend on r (see also Appendix B).

As seen in Fig. 3(b), there is a trade-off relation between
�N

X and �N
Y in terms of r. We can see that �N

tot = �min
tot

when r = 1, �N
X = �min

X when r→0, and �N
Y = �min

Y when
r→∞.

We briefly summarize results for cases of finite values of
λX and λY discussed in Appendix E. For finite λX and λY ,
J̄ N

X , J̄ N
Y , and J̄ N

XY generally depend on r. Nevertheless, we
can see a trade-off relation between �N

X and �N
Y for finite λX

and λY because the dependence of J̄ N
rot, �N

X , and �N
Y on r is

similar to the case of λX →∞ with the fixed ratio r.

VII. CONCLUSION AND DISCUSSION

This study incorporates a game-theoretic approach in the
minimization problems of the partial entropy productions.
As a representative example, we consider bipartite systems,
where two minimization problems of the partial entropy pro-
ductions can be conflicted. We consider a problem in which
the partial entropy productions should be minimized for each
subsystem with a given state transition for whole systems. We
formulated the solution to this problem as a Nash equilibrium
and analytically calculated it. We found that both subsystems
inevitably take their necessary partial entropy productions to
achieve the task in a finite time. Lower bounds of the partial
entropy productions for each subsystem and the total system
are analytically derived. Interestingly, there is a trade-off rela-
tion between the minimum partial entropy productions of the
subsystems. Furthermore, the minimum values of these partial
entropy productions and the total entropy production cannot
be achieved at the same time.

Our findings may apply to several interesting topics in
thermodynamics. For example, our result may explain the
minimum thermodynamic cost and optimal protocol in the
finite-time information-energy conversion. The analytical ex-
pressions of the minimum entropy productions in Eqs. (36)
and (37) can be interpreted as the thermodynamic speed limit
of information thermodynamics based on the optimal trans-
port theory. The above findings may also explain how large
the dissipation of each subsystem is in the signal transduction
of E. coli chemotaxis as a consequence of the evolutionary
processes.

In general, such a game-theoretic conflict of the mini-
mum partial entropy productions arises in a more complex
system such as a living organism, whereas this study only
considered a simple bipartite system. In particular, how the
trade-off of the minimum partial entropy productions between
several subsystems emerges for complex systems is still un-
der question. For example, thermodynamics of the membrane
transport [95,96] and its information transmission [58] can
be discussed by using more complex models. To understand
a game-theoretic conflict in other living systems, such as
membrane transport, we may need to consider multibody
interactions and conflicts between several subsystems. We
believe that such a game-theoretic minimization of the partial
entropy productions is important to explain the thermody-
namic structure of complex living systems as a consequence
of evolutionary optimization.
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APPENDIX A: CALCULATION OF THE NASH
EQUILIBRIUM SOLUTION

In this Appendix, we concretely calculate the Nash equi-
librium solution given by Eqs. (33a) and (33b) under the
near-equilibrium condition in linear irreversible thermody-
namics [2].

In linear irreversible thermodynamics (the reciprocal of)
the Onsager coefficient defined as αz′→z := (W eq

z′→z peq
z′ )−1 =

(W eq
z→z′ p

eq
z )−1 leads to the linear relation F (t )

ei
= αei J

(t )
ei

+
O(δW 2) [2,80]. By using this Onsager coefficient, the partial
entropy production is approximated as

�X =
∑

ei∈EX

αei

∫ t0+τ

t0

dt
(
J (t )

ei

)2
, (A1)

�Y =
∑
ei∈EY

αei

∫ t0+τ

t0

dt
(
J (t )

ei

)2
(A2)

by ignoring the term O(δW 3).
To introduce a time-averaged probability flow J̄z′→z :=

(
∫ t0+τ

t0
dtJ (t )

z′→z )/τ , we solve the minimization problem of

Eq. (10a). Because
∫ t0+τ

t0
dt (J (t )

ei
)
2 = ∫ t0+τ

t0
dt[(J̄ei )

2 + (J (t )
ei

−
J̄ei )

2] �
∫ t0+τ

t0
dt (J̄ei )

2
, the lower bound on �X is given by

�̄X (J̄X ) := τ
∑

ei∈EX

αei

(
J̄ei

)2 � �X , (A3)

where J̄X := {J̄ei |ei ∈ EX } and J̄Y := {J̄ei |ei ∈ EX } are the sets
of J̄ei . The penalty D is also given by the function of J̄ei ;

D = 1

2

∑
i

∣∣τ∑ j Bi j J̄e j − δpvi

∣∣2
pf

vi

:= D̄(J̄X , J̄Y ), (A4)

where δpvi := pf
vi

− pi
vi

. Thus the minimization problem of
Eq. (10a) is rewritten as

min
ŴX

[�X + λX D] = min
J̄X

CX (J̄X , J̄Y ), (A5)

CX (J̄X , J̄Y ) := �̄X (J̄X ) + λX D̄(J̄X , J̄Y ), (A6)

under the near-equilibrium condition. For the subsystem
Y , we also rewrite the minimization problem given by
Eq. (10b) as

min
ŴY

[�Y + λY D] = min
J̄Y

CY (J̄X , J̄Y ), (A7)

CY (J̄X , J̄Y ) := �̄Y (J̄X ) + λY D̄(J̄X , J̄Y ), (A8)

�̄Y (J̄Y ) := τ
∑
ei∈EY

αei

(
J̄ei

)2
. (A9)

The above minimization problem for the player X (Y) is
bounded by the minimization on the time-averaged probabil-
ity flows J̄X (J̄Y ).

The Nash equilibrium solution for the time-averaged prob-
ability flow (J̄N

X , J̄N
Y ) is given by

J̄N
X = J̄∗

X

(
J̄N

Y

)
(A10a)

J̄N
Y = J̄∗

Y

(
J̄N

X

)
, (A10b)

as the fixed point of the following two solutions in the mini-
mization problems in Eqs. (A5) and (A7):

J̄∗
X (J̄Y ) = arg min

J̄X

CX (J̄X , J̄Y ) (A11a)

J̄∗
Y (J̄X ) = arg min

J̄Y

CY (J̄X , J̄Y ). (A11b)

Equations (A11a) and (A11b) show that CX (J̄X , J̄Y ) and
CY (J̄X , J̄Y ) take extreme values under the Nash equilibrium
condition in the directions of J̄X and J̄Y , respectively. Thus, by
using

Cek (J̄X , J̄Y ) :=
{

CX (J̄X , J̄Y ) (ek ∈ EX )

CY (J̄X , J̄Y ) (ek ∈ EY ),

λek :=
{
λX (ek ∈ EX )
λY (ek ∈ EY ),

(A12)

we calculate the extreme value conditions as

∂Cek (J̄X , J̄Y )

∂ J̄ek

∣∣∣∣
J̄X =J̄N

X ,J̄Y =J̄N
Y

= 0,

⇔ 2αek J̄N
ek

+ λek

∑
i

Bik

pf
vi

⎛
⎝τ
∑

j

Bi j J̄
N
e j

− δpvi

⎞
⎠ = 0.

(A13)

By using the vector notation (J̄N)i := J̄N
ei

, these extreme
value conditions are rewritten as

MJ̄N = δq, (A14)

Mk j := 2
αek

λek

δk j − τ

(
δkσ ( j) − δk j

pf
vk

)
+ τ

(
δσ (k)σ ( j) − δσ (k) j

pf
vσ (k)

)
,

(A15)

(δq)k := δpvσ (k)

pf
vσ (k)

− δpvk

pf
vk

, (A16)

where we used Bi j = δiσ ( j) − δi j and
∑

i BikBi j/pf
vi

=
(δσ (k)σ ( j) − δσ (k) j )/pf

vσ (k)
− (δkσ ( j) − δk j )/pf

vk
. Therefore the

Nash equilibrium solution is analytically solved by using
Cramer’s rule (J̄N)i = det(Mi)/det(M). Here, Mi denotes a
matrix M whose ith column is replaced by δq.

To calculate this Cramer’s rule, we use the following nota-
tions for simplicity:

p̃i := pf
vi
, δ̃i := δpvi

τ
, α̃i := 2αei

τλei

. (A17)
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The matrices M and Mi are given by

M = τ

⎛
⎜⎜⎜⎜⎝

α̃1 + p̃−1
1 + p̃−1

2 −p̃−1
2 0 −p̃−1

1

−p̃−1
2 α̃2 + p̃−1

2 + p̃−1
3 −p̃−1

3 0

0 −p̃−1
3 α̃3 + p̃−1

3 + p̃−1
4 −p̃−1

4

−p̃−1
1 0 −p̃−1

4 α̃4 + p̃−1
4 + p̃−1

1

⎞
⎟⎟⎟⎟⎠, (A18)

M1 = τ

⎛
⎜⎜⎜⎜⎝

δ̃2 p̃−1
2 − δ̃1 p̃−1

1 −p̃−1
2 0 −p̃−1

1

δ̃3 p̃−1
3 − δ̃2 p̃−1

2 α̃2 + p̃−1
2 + p̃−1

3 −p̃−1
3 0

δ̃4 p̃−1
4 − δ̃3 p̃−1

3 −p̃−1
3 α̃3 + p̃−1

3 + p̃−1
4 −p̃−1

4

δ̃1 p̃−1
1 − δ̃4 p̃−1

4 0 −p̃−1
4 α̃4 + p̃−1

4 + p̃−1
1

⎞
⎟⎟⎟⎟⎠, (A19)

M2 = τ

⎛
⎜⎜⎜⎜⎝

α̃1 + p̃−1
1 + p̃−1

2 δ̃2 p̃−1
2 − δ̃1 p̃−1

1 0 −p̃−1
1

−p̃−1
2 δ̃3 p̃−1

3 − δ̃2 p̃−1
2 −p̃−1

3 0

0 δ̃4 p̃−1
4 − δ̃3 p̃−1

3 α̃3 + p̃−1
3 + p̃−1

4 −p̃−1
4

−p̃−1
1 δ̃1 p̃−1

1 − δ̃4 p̃−1
4 −p̃−1

4 α̃4 + p̃−1
4 + p̃−1

1

⎞
⎟⎟⎟⎟⎠, (A20)

M3 = τ

⎛
⎜⎜⎜⎜⎝

α̃1 + p̃−1
1 + p̃−1

2 −p̃−1
2 δ̃2 p̃−1

2 − δ̃1 p̃−1
1 −p̃−1

1

−p̃−1
2 α̃2 + p̃−1

2 + p̃−1
3 δ̃3 p̃−1

3 − δ̃2 p̃−1
2 0

0 −p̃−1
3 δ̃4 p̃−1

4 − δ̃3 p̃−1
3 −p̃−1

4

−p̃−1
1 0 δ̃1 p̃−1

1 − δ̃4 p̃−1
4 α̃4 + p̃−1

4 + p̃−1
1

⎞
⎟⎟⎟⎟⎠, (A21)

M4 = τ

⎛
⎜⎜⎜⎜⎝

α̃1 + p̃−1
1 + p̃−1

2 −p̃−1
2 0 δ̃2 p̃−1

2 − δ̃1 p̃−1
1

−p̃−1
2 α̃2 + p̃−1

2 + p̃−1
3 −p̃−1

3 δ̃3 p̃−1
3 − δ̃2 p̃−1

2

0 −p̃−1
3 α̃3 + p̃−1

3 + p̃−1
4 δ̃4 p̃−1

4 − δ̃3 p̃−1
3

−p̃−1
1 0 −p̃−1

4 δ̃1 p̃−1
1 − δ̃4 p̃−1

4

⎞
⎟⎟⎟⎟⎠. (A22)

The analytical solutions of det M and det Mi are given by

det M = τ 4

(∑
i

α̃i

)⎛⎝∑
j

p̃ j

⎞
⎠(∏

k

p̃−1
k

)
+ τ 4

[∑
i

p̃−1
i p̃−1

σ (i)α̃σ 2(i)(α̃i + α̃σ (i) + α̃σ 3(i) )

]

+ 1

2
τ 4

[∑
i

p̃−1
i p̃−1

σ 2(i)(α̃i + α̃σ 3(i) )(α̃σ (i) + α̃σ 2(i) )

]
+ τ 4

[∑
i

p̃−1
i α̃σ (i)α̃σ 2(i)(α̃σ 3(i) + α̃i )

]
+ τ 4

(∏
k

α̃k

)
(A23)

and

det Mi = τ 4[−δ̃i{(α̃σ (i) + α̃σ 2(i) + α̃σ 3(i) ) p̃σ (i) + (α̃σ 2(i) + α̃σ 3(i) ) p̃σ 2(i) + α̃σ 3(i) p̃σ 3(i)}]
(∏

k

p̃−1
k

)

+ τ 4[δ̃σ (i){(α̃σ (i) + α̃σ 2(i) + α̃σ 3(i) ) p̃i + α̃σ (i) p̃σ 2(i) + (α̃σ (i) + α̃σ 2(i) ) p̃σ 3(i)}]
(∏

k

p̃−1
k

)

+ τ 4[δ̃σ 2(i){(α̃σ 2(i) + α̃σ 3(i) ) p̃i − α̃σ (i) p̃σ (i) + α̃σ 2(i) p̃σ 3(i)}]
(∏

k

p̃−1
k

)

+ τ 4[δ̃σ 3(i){α̃σ 3(i) p̃i − (α̃σ (i) + α̃σ 2(i) ) p̃σ (i) − α̃σ 2(i) p̃σ 2(i)}]
(∏

k

p̃−1
k

)

+ τ 4 p̃−1
i p̃−1

σ (i)α̃σ 2(i)(−α̃σ 3(i)δ̃i + α̃σ (i)δ̃σ (i) ) + τ 4 p̃−1
i p̃−1

σ 2(i)α̃σ 3(i)(−α̃σ (i)δ̃i − α̃σ 2(i)δ̃i )

+ τ 4 p̃−1
σ (i) p̃−1

σ 2(i)α̃σ 3(i)(α̃σ (i)δ̃σ (i) + α̃σ 2(i)δ̃σ (i) + α̃σ 2(i)δ̃σ 2(i) ) − τ 4 p̃−1
i p̃−1

σ 3(i)α̃σ (i)(α̃σ 2(i)δ̃i + α̃σ 3(i)δ̃i + α̃σ 2(i)δ̃σ 3(i) )

+ τ 4 p̃−1
σ (i) p̃−1

σ 3(i)α̃σ (i)(α̃σ 2(i) + α̃σ 3(i) )δ̃σ (i) + τ 4α̃σ (i)α̃σ 2(i)α̃σ 3(i)

(− p̃−1
i δ̃i + p̃−1

σ (i)δ̃σ (i)
)
. (A24)

Thus (J̄N)i = det(Mi )/det(M) is analytically obtained.
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In particular, we consider (J̄N)i in the limit λX → ∞ for fixed r = λX /λY . Because α̃i = O(λ−1
ei

) = O(λ−1
X ), the second order,

the third order, and the fourth order of α̃i give O(λ−2
X ). Thus we obtain

det M(
∏

k p̃k )

τ 4
=
∑

i

α̃i + O
(
λ−2

X

)
(A25)

and

detMi
(∏

k p̃k
)

τ 4
= −δ̃i{(α̃σ (i) + α̃σ 2(i) + α̃σ 3(i) ) p̃σ (i) + (α̃σ 2(i) + α̃σ 3(i) ) p̃σ 2(i) + α̃σ 3(i) p̃σ 3(i)}

+ δ̃σ (i){(α̃σ (i) + α̃σ 2(i) + α̃σ 3(i) ) p̃i + α̃σ (i) p̃σ 2(i) + (α̃σ (i) + α̃σ 2(i) ) p̃σ 3(i)}
+ δ̃σ 2(i){(α̃σ 2(i) + α̃σ 3(i) ) p̃i − α̃σ (i) p̃σ (i) + α̃σ 2(i) p̃σ 3(i)}
+ δ̃σ 3(i){α̃σ 3(i) p̃i − (α̃σ (i) + α̃σ 2(i) ) p̃σ (i) − α̃σ 2(i) p̃σ 2(i)} + O

(
λ−2

X

)
= α̃σ (i)(−p̃σ (i)δ̃i + p̃iδ̃σ (i) + p̃σ 2(i)δ̃σ (i) + p̃σ 3(i)δ̃σ (i) − p̃σ (i)δ̃σ 2(i) − p̃σ (i)δ̃σ 3(i) )

+ α̃σ 2(i)(−p̃σ (i)δ̃i − p̃σ 2(i)δ̃i + p̃iδ̃σ (i) + p̃σ 3(i)δ̃σ (i) + p̃iδ̃σ 2(i) + p̃σ 3(i)δ̃σ 2(i) − p̃σ (i)δ̃σ 3(i) − p̃σ 2(i)δ̃σ 3(i) )

+ α̃σ 3(i)(−p̃σ (i)δ̃i − p̃σ 2(i)δ̃i − p̃σ 3(i)δ̃i + p̃iδ̃σ (i) + p̃iδ̃σ 2(i) + p̃iδ̃σ 3(i) ) + O
(
λ−2

X

)
= {α̃σ (i)δ̃σ (i) + α̃σ 2(i)(δ̃σ (i) + δ̃σ 2(i) ) − α̃σ 3(i)δ̃i}

⎛
⎝∑

j

p̃ j

⎞
⎠

× {−α̃σ (i) p̃σ (i) − α̃σ 2(i)( p̃σ (i) + p̃σ 2(i) ) + α̃σ 3(i) p̃i}
⎛
⎝∑

j

δ̃ j

⎞
⎠+ O

(
λ−2

X

)
= −α̃σ 3(i)δ̃i + (α̃σ (i) + α̃σ 2(i) )δ̃σ (i) + α̃σ 2(i)δ̃σ 2(i) + O

(
λ−2

X

)
, (A26)

where we used p̃i + p̃σ (i) + p̃σ 2(i) + p̃σ 3(i) =∑ j p̃ j = 1 and δ̃i + δ̃σ (i) + δ̃σ 2(i) + δ̃σ 3(i) =∑ j δ̃ j =∑ j (pi
v j

− pf
v j

)/τ = 0.

By using these equations and substituting the definitions of Eqs. (A17) into Eq. (A26), we compute the flow J̄N
ei

as

J̄N
ei

= lim
λX →∞|λX /λY =r

detMi

detM

= lim
λX →∞|λX /λY =r

(
detMi

(∏
k p̃k
)

τ 4

)(
detM

(∏
k p̃k
)

τ 4

)−1

= lim
λX →∞|λX /λY =r

−α̃σ 3(i)δ̃i + (α̃σ (i) + α̃σ 2(i) )δ̃σ (i) + α̃σ 2(i)δ̃σ 2(i) + O
(
λ−2

X

)∑
j α̃ j + O

(
λ−2

X

)
= lim

λX →∞|λX /λY =r

−(λ−1
e
σ3(i)

αe
σ3 (i)

)
δpvi + (λ−1

eσ (i)
αeσ (i) + λ−1

e
σ2 (i)

αe
σ2 (i)

)
δpvσ (i) + (λ−1

e
σ2 (i)

αe
σ2 (i)

)
δpv

σ2 (i)
+ O
(
λ−2

X

)
τ
(∑

j λ
−1
e j

αe j

)+ O
(
λ−2

X

) . (A27)

By using αX = αe1 + αe3 , αY = αe2 + αe4 , λe1 = λe3 = λX , and λe2 = λe4 = λY = λX /r, we concretely compute the flows as

J̄N
e1

= lim
λX →∞|λX /λY =r

−rλ−1
X αe4δpv1 + (rλ−1

X αe2 + λ−1
X αe3

)
δpv2 + λ−1

X αe3δpv3 + O
(
λ−2

X

)
τ
(
λ−1

X αe1 + rλ−1
X αe2 + λ−1

X αe3 + rλ−1
X αe4

)+ O
(
λ−2

X

)
= −rαe4δpv1 + (rαe2 + αe3 )δpv2 + αe3δpv3

τ (αX + rαY)
, (A28)

J̄N
e2

= lim
λX →∞|λX /λY =r

−λ−1
X αe1δpv2 + (λ−1

X αe3 + rλ−1
X αe4

)
δpv3 + rλ−1

X αe4δpv4 + O
(
λ−2

X

)
τ
(
λ−1

X αe1 + rλ−1
X αe2 + λ−1

X αe3 + rλ−1
X αe4

)+ O
(
λ−2

X

)
= −αe1δpv2 + (αe3 + rαe4 )δpv3 + rαe4δpv4

τ (αX + rαY )
, (A29)
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J̄N
e3

= lim
λX →∞|λX /λY =r

−rλ−1
X αe2δpv3 + (rλ−1

X αe4 + λ−1
X αe1

)
δpv4 + λ−1

X αe1δpv1 + O
(
λ−2

X

)
τ
(
λ−1

X αe1 + rλ−1
X αe2 + λ−1

X αe3 + rλ−1
X αe4

)+ O
(
λ−2

X

)
= −rαe2δpv3 + (rαe4 + αe1 )δpv4 + αe1δpv1

τ (αX + rαY )
, (A30)

J̄N
e4

= lim
λX →∞|λX /λY =r

−λ−1
X αe3δpv4 + (λ−1

X αe1 + rλ−1
X αe2

)
δpv1 + rλ−1

X αe2δpv2 + O
(
λ−2

X

)
τ
(
λ−1

X αe1 + rλ−1
X αe2 + λ−1

X αe3 + rλ−1
X αe4

)+ O
(
λ−2

X

)
= −αe3δpv4 + (αe1 + rαe2 )δpv1 + rαe2δpv2

τ (αX + rαY )
, (A31)

which corresponds to Eqs. (34) and (35),

J̄N
ei

=
−rαe

σ3(i)
δpvi + (rαeσ (i) + αe

σ2 (i)
)δpvσ (i) + αe

σ2 (i)
δpv

σ2 (i)

τ (αX + rαY )
, (A32)

for ei ∈ EX , and

J̄N
ei

=
−αe

σ3 (i)
δpvi + (αeσ (i) + rαe

σ2 (i)
)δpvσ (i) + rαe

σ2 (i)
δpv

σ2 (i)

τ (αX + rαY )
, (A33)

for ei ∈ EY .

APPENDIX B: ANALYTICAL EXPRESSIONS OF J̄ N

In this Appendix, we calculate J̄ N
in the limit λX → ∞ with the fixed ratio r. From the definition of J̄ N

in Eqs. (39)–(41),
we obtain

J̄ N
X = J̄N

e1
− J̄N

e3

= −(αe1 + rαe4 )(δpv1 + δpv4 ) + (rαe2 + αe3 )(δpv2 + δpv3 )

τ (αX + rαY )

= (αX + rαY )(δpv2 + δpv3 ) − (αe1 + rαe4 )
(∑

i δpvi

)
τ (αX + rαY )

= δpv2 + δpv3

τ
, (B1)

J̄ N
Y = J̄N

e2
− J̄N

e4

= (αe3 + rαe4 )(δpv3 + δpv4 ) − (αe1 + rαe2 )(δpv1 + δpv2 )

τ (αX + rαY )

= (αX + rαY )(δpv3 + δpv4 ) − (αe1 + rαe2 )
(∑

i δpvi

)
τ (αX + rαY )

= δpv3 + δpv4

τ
, (B2)

J̄ N
XY = αe1

αX
J̄N

e1
− αe2

αY
J̄N

e2
+ αe3

αX
J̄N

e3
− αe4

αY
J̄N

e4

= 1

αX αY

{−αe4αe1

(
J̄N

e4
− J̄N

e1

)+ αe1αe2

(
J̄N

e1
− J̄N

e2

)− αe2αe3

(
J̄N

e2
− J̄N

e3

)+ αe3αe4

(
J̄N

e3
− J̄N

e4

)}
= −αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4

ταX αY
, (B3)

where we used
∑

i δpvi = 0, αX = αe1 + αe3 , αY = αe2 + αe4 , and J̄N
ei

− J̄N
eσ (i)

= δpvσ (i)/τ . Here, J̄N
ei

− J̄N
eσ (i)

= δpvσ (i)/τ can be
obtained from Eq. (A27) as follows:

J̄N
ei

− J̄N
eσ (i)

=
−(λ−1

e
σ3(i)

αe
σ3 (i)

)
δpvi + (λ−1

eσ (i)
αeσ (i) + λ−1

e
σ2 (i)

αe
σ2 (i)

)
δpvσ (i) + (λ−1

e
σ2 (i)

αe
σ2 (i)

)
δpv

σ2 (i)

τ
(∑

i λ
−1
ei

αei

)
−

−(λ−1
ei

αei

)
δpvσ (i) + (λ−1

e
σ2 (i)

αe
σ2 (i)

+ λ−1
e
σ3(i)

αe
σ3 (i)

)
δpv

σ2 (i)
+ (λ−1

e
σ3(i)

αe
σ3 (i)

)
δpv

σ3 (i)

τ
(∑

j λ
−1
e j

αe j

)
013023-11
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=
(∑

j λ
−1
e j

αe j

)
δpvσ (i)

τ
(∑

j λ
−1
e j

αe j

)
= δpvσ (i)

τ
, (B4)

where we used
∑

i δpvi = δpvi + δpvσ (i) + δpv
σ2 (i)

+ δpv
σ3 (i)

= 0. This result, J̄N
ei

− J̄N
eσ (i)

= δpvσ (i)/τ , is consistent with δp =
τBJ̄

N
where (δp)i = δpvi . We can see that these flows are determined only by the state transition δp and are independent

of r.
We next discuss J̄ N

rot. To calculate J̄ N
rot, we obtain J̄N

ei
|r=1 and J̄N

ei
− J̄N

ei
|r=1 from Eqs. (A28)–(A31) as follows:

J̄N
ei

∣∣
r=1

=
−αe

σ3 (i)
δpvi + (αeσ (i) + αe

σ2 (i)

)
δpvσ (i) + αe

σ2 (i)
δpe

σ2 (i)

τ (αX + αY )
, (B5)

J̄N
e1

− J̄N
e1

∣∣
r=1

= −rαe4δpv1 + (rαe2 + αe3

)
δpv2 + αe3δpv3

τ (αX + rαY )
− −αe4δpv1 + (αe2 + αe3

)
δpv2 + αe3δpv3

τ (αX + αY )

= −(r − 1)αX αe4δpv1 + (r − 1)αX αe2δpv2 − (r − 1)αY αe3δpv2 − (r − 1)αY αe3δpv3

τ (αX + rαY )(αX + αY )

= (r − 1)
{−αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4 − αe3αe4

(∑
i δpvi

)}
τ (αX + αY )(αX + rαY )

= (r − 1)αX αY

(αX + αY )(αX + rαY )
J̄ N

XY , (B6)

J̄N
e2

− J̄N
e2

∣∣
r=1

= −αe1δpv2 + (αe3 + rαe4 )δpv3 + rαe4δpv4

τ (αX + rαY )
− −αe1δpv2 + (αe3 + αe4 )δpv3 + αe4δpv4

τ (αX + αY )

= (r − 1)αX αe4δpv3 + (r − 1)αX αe4δpv4 + (r − 1)αY αe1δpv2 − (r − 1)αY αe3δpv3

τ (αX + rαY )(αX + αY )

= (r − 1)
{−αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4 + αe4αe1

(∑
i δpvi

)}
τ (αX + αY )(αX + rαY )

= (r − 1)αX αY

(αX + αY )(αX + rαY )
J̄ N

XY , (B7)

J̄N
e3

− J̄N
e3

∣∣
r=1

= −rαe2δpv3 + (rαe4 + αe1

)
δpv4 + αe1δpv1

τ (αX + rαY )
− −αe2δpv3 + (αe4 + αe1

)
δpv4 + αe1δpv1

τ (αX + αY )

= −(r − 1)αX αe2δpv3 + (r − 1)αX αe4δpv4 − (r − 1)αY αe1δpv4 − (r − 1)αY αe1δpv1

τ (αX + rαY )(αX + αY )

= (r − 1)
{−αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4 − αe1αe2

(∑
i δpvi

)}
τ (αX + αY )(αX + rαY )

= (r − 1)αX αY

(αX + αY )(αX + rαY )
J̄ N

XY , (B8)

J̄N
e4

− J̄N
e4

∣∣
r=1

= −αe3δpv4 + (αe1 + rαe2

)
δpv1 + rαe2δpv2

τ (αX + rαY )
− −αe3δpv4 + (αe1 + αe2

)
δpv1 + αe2δpv2

τ (αX + αY )

= (r − 1)αX αe2δpv1 + (r − 1)αX αe2δpv2 + (r − 1)αY αe3δpv4 − (r − 1)αY αe1δpv1

τ (αX + rαY )(αX + αY )

= (r − 1)
{−αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4 + αe2αe3

(∑
i δpvi

)}
τ (αX + αY )(αX + rαY )

= (r − 1)αX αY

(αX + αY )(αX + rαY )
J̄ N

XY , (B9)

013023-12



GAME-THEORETICAL APPROACH TO MINIMUM ENTROPY … PHYSICAL REVIEW RESEARCH 6, 013023 (2024)

where we used αX = αe1 + αe3 , αY = αe2 + αe4 , and
∑

i δpvi = 0. From these equations, we obtain

J̄ N
rot = 1

4

∑
i

J̄N
ei

= 1

4

∑
i

(
J̄N

ei
− J̄N

ei

∣∣
r=1

)+ 1

4

∑
i

J̄N
ei

∣∣
r=1

= (r − 1)αX αY

(αX + αY )(αX + rαY )
J̄ N

XY +
∑

i

(
2αei + αeσ (i) − αe

σ3 (i)

)
δpvi

4τ (αX + αY )
, (B10)

where we used
∑

i αe
σ2 (i)

δpvσ (i) =∑i αeσ (i)δpi and
∑

i αeiδpvi =∑i αeσ (i)δpvσ (i) =∑i αe
σ2 (i)

δpv
σ2 (i)

. Here, we can see that J̄ N
rot

depends on r and the strength of this dependence is determined by J̄ N
XY . This J̄ N

rot means a counterclockwise rotation of
probability flows, and J̄ N

rot does not contribute to the time evolution of probability distribution δp. Because detT = 1, T has
the inverse matrix

T−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
4 + αe3

2αX

1
4 − αe4

2αY

1
2 1

1
4 − αe3

2αX

1
4 + αe4

2αY
− 1

2 1

− 1
4 − αe1

2αX
− 1

4 + αe2
2αY

1
2 1

− 1
4 + αe1

2αX
− 1

4 − αe2
2αY

− 1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠, (B11)

and J̄N = T−1J̄ N
. By using

B =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎠, (B12)

J̄N = T−1J̄ N
, and δp = τBJ̄N, we can describe δp as the linear function of J̄ N

δp =τBT−1J̄ N = τ

⎛
⎜⎜⎜⎜⎜⎜⎝

−αe3
αX

−αe2
αY

−1 0
αe3
αX

−αe4
αY

1 0
αe1
αX

αe4
αY

−1 0

−αe1
αX

αe2
αY

1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

J̄ N
X

J̄ N
Y

J̄ N
XY

J̄ N
rot

⎞
⎟⎟⎟⎟⎟⎠, (B13)

which implies that J̄ N
rot does not contribute to δp.

Whereas J̄ N
rot does not contribute to δp, we note that J̄ N

X , J̄ N
Y , and J̄ N

XY contribute to the time evolution δp. In Eqs. (B1) and
(B2), we obtain

J̄ N
X = δPX

τ
, (B14)

J̄ N
Y = δPY

τ
, (B15)

if we define total probability flows in the marginal distributions δPX :=∑y δp(1,y) = δpv2 + δpv3 and δPY :=∑x δp(x,1) =
δpv3 + δpv4 . Thus J̄ N

X and J̄ N
Y correspond to the probability flows in the marginal distributions of subsystems X and Y ,

respectively. Here, J̄ N
XY represents probability flows concerning the interaction between the subsystems, which cannot be written

only by the contribution of J̄ N
X and J̄ N

Y .

APPENDIX C: CALCULATION OF PARTIAL ENTROPY PRODUCTIONS IN NASH EQUILIBRIUM

In this Appendix, we calculate �N
X and �N

Y in the limits λX → ∞ with the fixed ratio r = λX /λY and derive Eqs. (11) and
(13). To calculate �N

X , we use the following notations:

k1 = −αe4δpv1 + αe2δpv2 , (C1)

k3 = −αe2δpv3 + αe4δpv4 . (C2)
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By using these notations, we obtain

k1 − k3 = (−αe4δpv1 + αe2δpv2

)− (−αe2δpv3 + αe4δpv4

)
= αe2

(
δpv2 + δpv3

)− αe4

(
δpv4 + δpv1

)
= (αe2 + αe4

)(
δpv2 + δpv3

)− αe4

(∑
i

δpvi

)

= αY τ J̄ N
X , (C3)

where we used J̄ N
X = (δpv2 + δpv3 )/τ , αY = αe2 + αe4 , and

∑
i δpvi = 0. We also obtain

αe1 k1 + αe3 k3 = αe1

(−αe4δpv1 + αe2δpv2

)+ αe3

(−αe2δpv3 + αe4δpv4

)
= −αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4

= αX αY τ J̄ N
XY , (C4)

where we used Eq. (B3). By using these equations, J̄ N
X = (δpv2 + δpv3 )/τ ,

∑
i δpvi = 0, αX = αe1 + αe3 , and Eqs. (A28) and

(A30), we calculate �N
X as follows:

�N
X = τ

{
αe1

(
J̄N

e1

)2 + αe3

(
J̄N

e3

)2}

= αe1

{
αe3

(
δpv2 + δpv3

)+ r
(−αe4δpv1 + αe2δpv2

)}2 + αe3

{
αe1

(
δpv1 + δpv4

)+ r
(−αe2δpv3 + αe4δpv4

)}2

τ (αX + rαY )2

= αe1

{
ταe3J̄ N

X + rk1
}2 + αe3

{−ταe1J̄ N
X + rk3 + αe1

(∑
i δpvi

)}2

τ (αX + rαY )2

= αe1αe3αX τ 2
(
J̄ N

X

)2 + 2αe1αe3τ J̄ N
X r(k1 − k3) + r2

{
αe1 k2

1 + αe3 k2
3

}
τ (αX + rαY )2

= αe1αe3αX τ 2
(
J̄ N

X

)2 + 2αe1αe3 rαY τ 2
(
J̄ N

X

)2 + r2α−1
X

{
αe1αe3

(
k2

1 + k2
3

)+ α2
e1

k2
1 + α2

e3
k2

3

}
τ (αX + rαY )2

= αe1αe3αX τ 2
(
J̄ N

X

)2 + 2αe1αe3 rαY τ 2
(
J̄ N

X

)2 + r2α−1
X

{
αe1αe3 (k1 − k3)2 + (αe1 k1 + αe3 k3

)2}
τ (αX + rαY )2

= αe1αe3αX τ 2
(
J̄ N

X

)2 + 2αe1αe3 rαY τ 2
(
J̄ N

X

)2 + r2α−1
X

{
αe1αe3α

2
Y τ 2
(
J̄ N

X

)2 + α2
X α2

Y τ 2
(
J̄ N

XY

)2}
τ (αX + rαY )2

= τ

{
αe1αe3α

−1
X

(
α2

X + 2rαX αY + r2αY
)2(J̄ N

X

)2
(αX + rαY )2

+ r2αX α2
Y

(αX + rαY )2

(
J̄ N

XY

)2}

= τ

{
1∑

ei∈EX
α−1

ei

(
J̄ N

X

)2 + r2αX α2
Y

(αX + rαY )2

(
J̄ N

XY

)2}
. (C5)

By using γ = αX /αY , fX (r; γ ) = r2(γ + 1)/(γ + r)2, �min
X = (

∫ t0+τ

t0
dtJ̄ N

X )2/[τ (
∑

ei∈EX
α−1

ei
)] = τ (J̄ N

X )2/(
∑

ei∈EX
α−1

ei
), and

�XY = (
∫ t0+τ

t0
dtJ̄ N

XY )2/[τ (α−1
X + α−1

Y )] = τ (J̄ N
XY )2/(α−1

X + α−1
Y ), we obtain Eq. (11),

�N
X = τ

{
1∑

ei∈EX
α−1

ei

(
J̄ N

X

)2 + r2αX α2
Y

(αX + rαY )2

(
J̄ N

XY

)2}

= �min
X + r2

(
αX αY + α2

Y

)
(αX + rαY )2

�XY

= �min
X + r2(γ + 1)

(γ + r)2
�XY

= �min
X + fX (r; γ )�XY . (C6)
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To calculate �N
Y , we use the following notations:

k2 = −αe1δpv2 + αe3δpv3 , (C7)

k4 = −αe3δpv4 + αe1δpv1 . (C8)

By using these notations, we obtain

k2 − k4 = (−αe1δpv2 + αe3δpv3

)− (−αe3δpv4 + αe1δpv1

)
= αe3

(
δpv3 + δpv4

)− αe1

(
δpv1 + δpv2

)
= (αe1 + αe3

)(
δpv3 + δpv4

)− αe1

(∑
i

δpvi

)

= αX τ J̄ N
Y , (C9)

where we used J̄ N
Y = (δpv3 + δpv4 )/τ , αX = αe1 + αe3 , and

∑
i δpvi = 0. We also obtain

αe2 k2 + αe4 k4 = αe2

(−αe1δpv2 + αe3δpv3

)+ αe4

(−αe3δpv4 + αe1δpv1

)
= −(−αe4αe1δpv1 + αe1αe2δpv2 − αe2αe3δpv3 + αe3αe4δpv4

)
= −αX αY τ J̄ N

XY , (C10)

where we used Eq. (B3). By using these equations, J̄ N
Y = (δpv3 + δpv4 )/τ ,

∑
i δpvi = 0, αY = αe2 + αe4 , and Eqs. (A29) and

(A31), we calculate �N
Y as follows:

�N
Y = τ

{
αe2

(
J̄N

e2

)2 + αe4

(
J̄N

e4

)2}

= αe2

{
rαe4

(
δpv3 + δpv4

)− αe1δpv2 + αe3δpv3

}2 + αe4

{
rαe2

(
δpv1 + δpv2

)− αe3δpv4 + αe1δpv1

}2

τ (αX + rαY )2

= αe2

{
rαe4τ J̄ N

Y + k2
}2 + αe4

{−rαe2τ J̄ N
Y + k4 + rαe2

(∑
i δpvi

)}2

τ (αX + rαY )2

= αe2αe4 r2αY τ 2
(
J̄ N

Y

)2 + 2αe2αe4τ J̄ N
Y r(k2 − k4) + {αe2 k2

2 + αe4 k2
4

}
τ (αX + rαY )2

= αe2αe4 r2αY τ 2
(
J̄ N

Y

)2 + 2αe2αe4 rαX τ 2
(
J̄ N

Y

)2 + α−1
Y

{
αe2αe4

(
k2

2 + k2
4

)+ α2
e2

k2
2 + α2

e4
k2

4

}
τ (αX + rαY )2

= αe2αe4 r2αY τ 2
(
J̄ N

Y

)2 + 2αe2αe4 rαX τ 2
(
J̄ N

Y

)2 + α−1
Y

{
αe2αe4 (k2 − k4)2 + (αe2 k2 + αe4 k4)2

}
τ (αX + rαY )2

= αe2αe4 r2αY τ 2
(
J̄ N

Y

)2 + 2αe2αe4 rαX τ 2
(
J̄ N

Y

)2 + α−1
Y

{
αe2αe4α

2
X τ 2
(
J̄ N

Y

)2 + α2
X α2

Y τ 2
(
J̄ N

XY

)2}
τ (αX + rαY )2

= τ

{
αe2αe4α

−1
Y

(
r2α2

Y + 2rαX αY + αX
)2(J̄ N

Y

)2
(αX + rαY )2

+ α2
X αY

(αX + rαY )2

(
J̄ N

XY

)2}

= τ

{
1∑

ei∈EY
α−1

ei

(
J̄ N

Y

)2 + α2
X αY

(αX + rαY )2

(
J̄ N

XY

)2}
. (C11)

By using γ = αX /αY , fY (r; γ ) = γ (γ + 1)/(γ + r)2, �min
Y = (

∫ t0+τ

t0
dtJ̄ N

Y )2/[τ (
∑

ei∈EY
α−1

ei
)] = τ (J̄ N

Y )2/(
∑

ei∈EY
α−1

ei
), and

�XY = τ (J̄ N
XY )2/(α−1

X + α−1
Y ), we obtain Eq. (13),

�N
Y = τ

{
1∑

ei∈EY
α−1

ei

(
J̄ N

Y

)2 + α2
X αY

(αX + rαY )2

(
J̄ N

XY

)2}

= �min
Y +

(
αX αY + α2

X

)
(αX + rαY )2

�XY
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= �min
X + γ (γ + 1)

(γ + r)2
�XY

= �min
Y + fY (r; γ )�XY . (C12)

APPENDIX D: RELATIONSHIP BETWEEN THE OPTIMAL
TRANSPORT THEORY AND THE MAIN RESULT

Here, we remark on a relationship between the optimal
transport theory and the main result.

At first, we explained the conventional optimal transport
theory [26] for the continuous state. The optimal transport the-
ory for the continuous state has been discussed in terms of the
minimization of the entropy production for the overdamped
Fokker-Planck equation,

∂t P
(t )(x) = −∇ · (ν(t )(x)P(t )(x)), (D1)

ν(t )(x) = μF (t )(x) − T ∇ ln P(t )(x), (D2)

where x ∈ Rd is a d-dimensional continuous state, P(t )(x)
is the probability density that satisfies

∫
dxP(t )(x) = 1 and

P(t )(x) � 0, T is the temperature, μ is the mobility, and
F (t )(x) is the force at the position x. The entropy production
is obtained as the quadratic functions [4],

�tot =
∫ t1

t0

∫
dxν(t )(x) · ν(t )(x)

P(t )(x)

μT
, (D3)

and its minimization for the fixed initial and final states
P(t0 )(x) and P(t1 )(x) is given by

�tot � min
∫ t1

t0

dt
∫

dx
(ν(t )(x)P(t )(x)) · (ν(t )(x)P(t )(x))

P(t )(x)μT
,

(D4)

where the minimum is taken among all paths (ν(t ), P(t ) )t0�t�t1
satisfying the Fokker-Planck equation

∂t P
(t )(x) = −∇ · (ν(t )(x)P(t )(x)), (D5)

with the fixed boundary conditions P(t0 )(x) = Pi (x) and
P(t1 )(x) = Pf (x). In the optimal transport theory, this mini-
mization is given by the 2-Wasserstein distance W (Pi, Pf )
[25] defined as

W (Pi, Pf ) =
√

minτ

∫ t1

t0

dt
∫

dxν∗(t )(x) · ν∗(t )(x)P∗(t )(x),

(D6)

where the minimum is taken among all paths
(ν∗(t ), P∗(t ) )t0�t�t1 satisfying the continuity equation

∂t P
∗(t )(x) = −∇ · (ν∗(t )(x)P∗(t )(x)), (D7)

with the fixed boundary conditions P∗(t0 )(x) = Pi(x) and
P∗(t1 )(x) = Pf (x). Thus the lower bound on the entropy pro-
duction [10] is obtained as

�tot �
[W (Pi, Pf )]2

μT τ
. (D8)

This result was also recently discussed in terms of the thermo-
dynamic speed limit [19,20]. The thermodynamic speed limit
provides the lower bound on the entropy production, which is

proportional to 1/τ . In Ref. [19], the thermodynamic speed
limits for the partial entropy production �X and �Y are also
obtained.

To generalize the above fact for dynamics of the discrete
state described by Markov jump processes, Maas proposed a
correspondence of the 2-Wasserstein distance [30] for Markov
jump processes. We also discussed the minimum entropy pro-
duction based on this correspondence of the 2-Wasserstein
distance for Markov jump processes [23]. For general Markov
jump networks (e.g., a bipartite model), we can use the inci-
dence matrix as follows:

d

dt
p(t ) = BJ (t ), (D9)

where B is the incidence matrix and (J (t ) )ρ = J (t )
ρ =

J+(t )
ρ − J−(t )

ρ is the vector of the flow on each edge with

J+(t )
ρ = W (t )

z′→z p(t )
z′ and J−(t )

ρ = W (t )
z→z′ p(t )

z for the directed edge
ρ = z′ → z. We only assume that d p(t )/dt = BJ (t ) satisfies
the boundary conditions p(t0 ) = pi and p(t1 ) = pf as discussed
in this paper. The entropy production is obtained as the prod-
uct of the force (F (t ) )ρ = F (t )

ρ = ln(J+(t )
ρ /J−(t )

ρ ) and the flow
J (t )
ρ ,

�tot =
∫ t0+τ

t0

dt
∑

ρ

F (t )
ρ J (t )

ρ =
∫ t0+τ

t0

dtJ (t )
ρ αρJ (t )

ρ , (D10)

where αρ = F (t )
ρ /J (t )

ρ is (the reciprocal of) the edgewise On-
sager coefficient that satisfies F (t )

ρ = αρJ (t )
ρ . For fixed αρ ,

the minimum entropy production cannot be zero for the
given transition from p(t0 ) to p(t1 ). This condition is satisfied
automatically in the framework of linear irreversible thermo-
dynamics. The minimum entropy production is given by

�tot � min
∫ t1

t0

dt
∑

ρ

J (t )
ρ αρJ (t )

ρ , (D11)

where the minimum is taken among all paths (J(t ), p(t ) )t0�t�t1
satisfying the master equation

d

dt
p(t ) = BJ (t ), (D12)

with the fixed boundary conditions p(t0 ) = pi and p(t1 ) = pf .
We also can define a correspondence of the 2-Wasserstein
distance [30] as

W̃ (pi, pf ) =
√√√√min τ

∫ t0+τ

t0

dt
∑

ρ

J∗(t )
ρ αρJ∗(t )

ρ , (D13)

where the minimum is taken among all paths
(J∗(t ), p∗(t ) )t0�t�t1 satisfying the equation

d

dt
p∗(t ) = BJ∗(t ), (D14)
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with the fixed boundary conditions p∗(t0 ) = pi and p∗(t1 ) = pf .
This definition provides the thermodynamic speed limit for
Markov jump networks [23],

�tot �
[W̃ (pi, pf )]2

τ
. (D15)

If we compare this result for Markov jump networks with
the result for the Fokker-Planck equation, we can find that
the incidence matrix B corresponds to −div(· · · ) = −∇ ·
(· · · ), J (t ) corresponds to ν(t )(x)P(t )(x), and αρ corresponds
to 1/[μT P(t )(x)], respectively. If we assume that τ = t1 − t0
is small enough, we obtain the condition

d

dt
p(t ) = pf − pi

τ
+ O(τ ) = d

dt
p∗(t ). (D16)

This condition and Eqs. (D9) and (D12) lead to the relation

B[J (t ) − J∗(t )] = 0, (D17)

which means J (t ) − J∗(t ) ∈ KerB.
Here, we consider our result for the bipartite model from

the viewpoint of the optimal transport theory and the min-
imization of the entropy production. The concept of the
rotation flow, i.e., J̄ N

rot, which does not contribute to the time
evolution of the probability distribution, is related to the quan-
tity J (t ) − J∗(t ) in the above discussion. Indeed, the probability
flow J̄ N

rot does not contribute to the time evolution:

d p(t )

dt
= BT−1J N = BT−1

(
J̄ N

X , J̄ N
Y , J̄ N

XY , J̄ N
rot

)T
= BT−1

(
J̄ N

X , J̄ N
Y , J̄ N

XY , 0
)T

. (D18)

Thus the contribution of the rotational flow
T−1(0, 0, 0, J̄ N

rot )
T ∈ KerB corresponds to J (t ) − J∗(t ) in

the optimal transport theory. This rotational flow J̄ N
rot can be

identified with the cycle flow for the bipartite system, and
the minimum entropy production can be achieved when the
contribution of the rotational flow, which is quantified by the
housekeeping entropy production rate [23], vanishes during
the transition.

In this paper, we consider a more complicated problem of
the minimum entropy productions by focusing on the Nash
equilibrium solution, which is not discussed in Ref. [23]. Thus
it is not so obvious that the quantity J̄ N

rot ∈ KerB is related to
the minimum entropy productions. However, the minimum to-
tal entropy production �min

tot and the minimum partial entropy
productions �min

X and �min
Y can be achieved when the mode of

rotation flow J̄ N
rot is changed.

We also remark on the thermodynamic speed limit for
partial entropy production. In the main result, we showed that

�N
X � �min

X =
(∫ t0+τ

t0
dtJ̄ N

X

)2
τ
(∑

ei∈EX
α−1

ei

) (D19)

and

�N
Y � �min

Y =
(∫ t0+τ

t0
dtJ̄ N

Y

)2
τ
(∑

ei∈EY
α−1

ei

) . (D20)

The conditions of λX → ∞ and λY → ∞ mean the fixed
boundary conditions p(t0 ) = pi and p(t1 ) = pf . Here, the time

FIG. 4. (a) Probability flows and (b) entropy productions in λX =
10 and 10−4 � r � 104. The other various parameters are equal to
those in Fig. 3. The horizontal axis indicates log r again. In (a), the
orange, green, blue, and red curves indicate J̄ N

X , J̄ N
Y , J̄ N

XY , and J̄ N
rot,

respectively. In (b), the orange, green, and black curves indicate �N
X ,

�N
Y , and �N

tot, respectively.

evolution of the marginal distributions, defined as P (t )
X :=∑

y p(t )
(1,y) = p(t )

v2
+ p(t )

v3
and P (t )

Y :=∑x p(t )
(x,1) = p(t )

v3
+ p(t )

v4
, is

given by

d

dt

(
P (t )

X

P (t )
Y

)
=
(
J N

X

J N
Y

)
. (D21)

From Eqs. (B14) and (B15), we also have J̄ N
X = δPX /τ

and J̄ N
Y = δPY /τ . Thus the terms (

∫ t0+τ

t0
dtJ̄ N

X )2 and

(
∫ t0+τ

t0
dtJ̄ N

Y )2 can be interpreted as

(∫ t0+τ

t0

dtJ̄ N
X

)2

= ∣∣P (t0 )
X − P (t0+τ )

X

∣∣2, (D22)(∫ t0+τ

t0

dtJ̄ N
Y

)2

= ∣∣P (t0 )
Y − P (t0+τ )

Y

∣∣2. (D23)

FIG. 5. Dependence of �N
X on λX . The various parameters other

than λX are equal to those in Fig. 3. The horizontal axis is log r again.
The color difference represents the difference in λX , and the closer
it gets from blue to orange, the larger λX is. Finally, the curve for
λX = 1015 almost matches the limit value of λX → ∞ represented
by the dashed curve in black.
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Finally, we obtain the lower bounds on the Nash equilibrium
solutions of the partial entropy productions

�N
X �

∣∣P (t0 )
X − P (t0+τ )

X

∣∣2
τ
(∑

ei∈EX
α−1

ei

) , (D24)

�N
Y �

∣∣P (t0 )
Y − P (t0+τ )

Y

∣∣2
τ
(∑

ei∈EY
α−1

ei

) . (D25)

APPENDIX E: NASH EQUILIBRIUM SOLUTION
ON FINITE WEIGHTS OF THE ERROR PENALTY

In the main text, we considered the Nash equilibrium solu-
tion and the partial entropy productions on infinite weights of
the error penalty, i.e., λX → ∞ with the fixed ratio r, where
the final state completely matches the target state p(t1 ) = pf . In
this Appendix, we consider cases of finite values of λX and λY .

Figure 4 considers the Nash equilibrium when λX is
fixed to a finite value whereas λY varies. Figure 4(a) shows

probability flows J̄ N
. Unlike the case in λX → ∞ with fixed

ratio r, J̄ N
X , J̄ N

Y , and J̄ N
XY are not invariant on r. Figure 4(b)

shows the entropy productions of �N
X , �N

Y , and �N
tot. We can

also see the trade-off relation between partial entropy produc-
tions for the finite values of λX and λY . The minimum partial
entropy production in X is achieved when r → 0, and the
minimum partial entropy production in Y is achieved when
r → ∞. However, the minimum total entropy production is
not always achieved when r = 1.

Figure 5 shows the dependence of �N
X on λX . From this

figure, we see that �N
X is almost zero in the limit λX → 0. The

partial entropy production �N
X monotonically increases as λX

becomes larger. This monotonic behavior implies the effect
of the penalty of a given state transition in the minimization
problem of the partial entropy productions. If the penalty
is smaller, the partial entropy production can be minimized
much more. In the limit λX → 0, a state transition in the
subsystem X does not occur to maintain the partial entropy
production at zero.
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