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Ming-Yang Li ,1 Xiao-Yu Cao ,1 Yuan-Mei Xie,1 Hua-Lei Yin ,2,1,* and Zeng-Bing Chen1,†

1National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation
Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

2Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials
and Micro-nano Devices, Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education),

Renmin University of China, Beijing 100872, China

(Received 23 September 2023; accepted 11 December 2023; published 8 January 2024)

Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has
been implemented experimentally and deployed in practical products due to its simple equipment requirements.
However, existing security analyses of COW-QKD either provide a short transmission distance or lack immunity
against coherent attacks in the finite-key regime. In this paper, we present a tight finite-key security analysis
within the universally composable framework for a variant of COW-QKD, which has been proven to extend the
secure transmission distance in the asymptotic case. We combine the quantum leftover hash lemma and entropic
uncertainty relation to derive the key rate formula. When estimating statistical parameters, we use the recently
proposed Kato’s inequality to ensure security against coherent attacks and achieve a higher key rate. Our paper
confirms the security and feasibility of COW-QKD for practical application and lays the foundation for further
theoretical study and experimental implementation.
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I. INTRODUCTION

Quantum theory has been playing a significant role in
the field of communications, leading to the development of
primitives such as quantum repeaters [1–3], quantum confer-
ence key agreement [4–10], quantum secret sharing [11–18],
and quantum digital signatures [19–22]. Among these prim-
itives, quantum key distribution (QKD) [23,24] has received
considerable attention due to its ability to provide two re-
mote users with a secret key with unconditional security
guaranteed by the laws of quantum mechanics. Since the
first QKD protocol, the Bennett-Brassard 1984 protocol [23]
was proposed, various QKD schemes have been developed
[25–27] to improve its practicality. Among these develop-
ments, measurement-device-independent QKD [28,29] is of
vital importance for its immunity against one of the most
threatening attacks, detector attacks [30], which enable ex-
perimental operations over a long distance [31,32]. However,
due to channel loss, the key rates of most QKD proto-
cols are bounded by the secret-key capacity of repeaterless
QKD [33–36]. A protocol called the twin-field QKD [37]
and its variants [38–43], which are based on single-photon
interference instead of two-photon interference, break this
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bound and increase the secure distance to 833 km [44] and
1002 km [45] experimentally. Moreover, the recently pro-
posed asynchronous measurement-device-independent QKD
[46,47] (also named mode-pairing QKD) has become a prac-
tical approach for long-distance quantum communication
systems [48–51] because it breaks the linear bound with
its simple experimental implementation compared with twin-
field QKD. The photon number splitting attack [52] is another
critical limitation of practical QKD that has been overcome by
several means like decoy-state methods [53–55], nonorthogo-
nal coding methods [56–58], strong reference methods [59],
and distributed-phase-reference methods [60–63], including
differential-phase-shift (DPS) QKD and coherent-one-way
(COW) QKD.

DPS protocol [60,61] is becoming more significant for its
excellent key rate performance achieved by the simple setup
of equipment. The experimental progress [64–67] shows the
status of DPS-QKD as a promising protocol for realizing the
quantum communication process in the real world. Theoret-
ically, long-term security analyses of DPS-QKD have been
proposed to establish a solid foundation to guarantee its un-
conditional security in reality. Assuming a single photon to
be in each of the blocks, the analysis in Ref. [68] provided
security proof of DPS-QKD, and this impractical assumption
was changed to use a blockwise phase-randomized coherent
photon source in later developments [69,70]. Furthermore,
recently proposed proofs [71–73] give more practical analy-
ses, removing the requirement of a special photon source and
covering more general cases. Finally, Refs. [74,75] provide
information-theoretic secure analyses to show the practica-
bility of DPS-QKD in the finite-key regime, which builds a
complete theoretic scheme for this protocol. We note that the
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security proof in Ref. [74] results in a key rate that scales in
the order of O(η2) without relativistic constraint and has im-
munity against coherent attacks, which is of vital importance
in realistic implementation.

COW-QKD [62] is another type of distributed-phase-
reference protocol that has been implemented in practical
quantum information processing [76] with its easily achiev-
able experimental requirements [77–84], which are similar to
those of DPS-QKD. Contrary to the DPS-QKD, the security
proof for the COW protocol remains incomplete, primarily
due to the absence of a finite-key secure analysis that si-
multaneously offers robust key rate performance and security
against coherent attacks. Typically, the security of COW-QKD
is proven by measuring the interference visibility to estimate
information leakage [85,86]. However, when considering the
zero-error attack [87,88], which enables eavesdropping by
Eve without introducing bit errors, COW-QKD is insecure if
its key rate scales as O(η) [89], which is the scale of the key
rate used in many COW-QKD experiments [79,81–84,90]. In
Ref. [91], the authors introduced an innovative method for
calculating the key rate of a variant of COW-QKD, resulting
in an improved key rate in high-loss channels. However, the
security of this protocol in the finite-key regime, particularly
its immunity to coherent attacks, has yet to be proven. This
is a crucial step in ensuring its practicality in real-world
environments. In summary, the lack of a finite-key analysis
for COW-QKD that offers both a high key rate and secu-
rity against coherent attacks remains a significant challenge
in enhancing the practicality of this technology. Recently, a
security proof for COW-QKD was proposed [92] based on an
innovative practical implementation that retains the simplicity
of the original version. By estimating the upper bound on the
phase error rate instead of measuring the visibility of inter-
ference, it was shown that the secure transmission distance
can be over 100 km, and an analytic formula for the key rate
was provided. Nevertheless, a practical QKD protocol only
involves finite resources, which means only a finite number of
states are sent, leading to statistical fluctuations between ob-
served values and expected values. Consequently, before we
promote this protocol into reality, finite key analysis must be
completed to lay the theoretical foundation. The uncertainty
relation of smooth entropies [93] has been utilized to prove the
finite-key security of the BB84 protocol [94] with composable
security [95] against general attacks. This entropic uncertainty
relation framework has been further extended to other finite-
key cases of QKD, even with imperfect light sources [96,97].
This demonstrates its robust capability to underpin finite-key
security analysis for various protocols.

In this paper, we extend the security proof in Ref. [92]
to the finite-key domain with composable security [95] to
demonstrate its real-world applicability. We employ the quan-
tum leftover hash lemma [98] and the entropic uncertainty
relation [93,94] to derive a formula for the secure key length
in the finite-key regime. When dealing with correlated ran-
dom variables, we apply Kato’s inequality [99] to estimate
statistical fluctuations, ensuring security against coherent at-
tacks and resulting in a higher key rate compared to Azuma’s
inequality [100]. We simulate the performance of the key rate
under different conditions, such as varying values of misalign-
ment error and different choices of basis, to demonstrate the

flexibility of our protocol. The simulation results and com-
parison with existing analyses and another similar protocol
confirm the advantages of our approach. Additionally, our
protocol is employed to show the exceptional capability of
Kato’s inequality in providing significantly tighter bounds
when addressing events with an extremely low probability
of occurrence. The comparison of key rates with previous
COW variants and a summary of differences in many aspects
are presented as well, serving to clearly highlight the unique
advantages of our protocol.

This paper is organized as follows: Sec. II introduces the
assumptions on devices and our COW-QKD protocol scheme.
Section III presents details of the key rate calculation. Nu-
merical simulations of key rate performance under different
conditions and some comparisons are shown in Sec. IV, and
we conclude in Sec. V.

II. ASSUMPTIONS AND PROTOCOL DESCRIPTIONS

A. Assumptions on devices

For the completeness of this paper, the assumptions on
the devices of sender Alice and receiver Bob are introduced
here before we describe our variant of the COW-QKD. In this
protocol, Alice encodes a random bit with a quantum state
consisting of two pulses sent in adjacent time windows and
extracts a string of secret bits from these states together with
Bob.

1. Assumptions on Alice’s devices

The assumptions on Alice’s devices are presented below:
(1) Alice employs her sending equipment, which includes

a mode-locked continuous-wave laser and an intensity mod-
ulator, to create weak coherent pulses. Alternatively, she can
completely block the output to generate a vacuum state;

(2) In our variant of COW-QKD, Alice randomly selects
her initial bit string and encodes each bit into a two-pulse
state. Additionally, she randomly determines which two ad-
jacent time windows will be used to transmit decoy states.
Consequently, the probability of the emitted state being a
weak coherent pulse or a vacuum state in each time window
is independent of the states sent previously.

2. Assumptions on Bob’s devices

The assumptions on Bob’s devices are summarized as fol-
lows:

(1) Bob’s detection devices receive optical pulses trans-
mitted through a quantum channel with a transmittance of η.
These incoming states are then divided into a data line or a
monitoring line using a beam splitter with a transmittance of
tB. Alternatively, an optical switch can be used in place of the
beam splitter, allowing Bob to actively distribute the quantum
states.

(2) On the data line, the quantum states are directly trans-
mitted to a single-photon detector which measures the arrival
time of the pulses. On the monitoring line, Bob utilizes an
asymmetric Mach-Zehnder interferometer, which includes a
one-bit delay and two single-photon detectors, to record which
detector clicks within certain time windows. We note that all
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FIG. 1. Experimental implementation of COW-QKD protocol in this paper. With an intensity modulator (IM), Alice can prepare quantum
states |0〉 and |α〉 in each time window experimentally to randomly sends a sequence of pulses that consists of states |0〉2k−1 |α〉2k , |α〉2k−1 |0〉2k ,
|α〉2k−1 |α〉2k , and |0〉2k−1 |0〉2k to Bob. After passively distributing these states into the data line or the monitoring line with a beam splitter of
transmittance tB, Bob records the detector’s click in each round. DT , DM0 , and DM1 are single-photon detectors. Compared to the original version
of COW QKD, our protocol adds state |0〉2k−1 |0〉2k as another decoy state, which maintains the requirements for experimental equipment. We
note that on the monitoring line, Bob is only required to record the clicks that occur within specific time windows. These clicks are a result of
interference involving two pulses from the same round, as illustrated in the provided figure.

the single-photon detectors are threshold detectors, designed
to simply determine the presence or absence of a photon.

(3) We assume the detection efficiency ηd and dark-count
rate pd of each detector to be the same and reasonable values
of them are employed in Sec. IV to numerically present the
performance of our protocol.

B. Detailed steps

In COW-QKD protocol, sender Alice uses two-pulse states
|0k〉 = |0〉2k−1 |α〉2k and |1k〉 = |α〉2k−1 |0〉2k at two time win-
dows 2k − 1 and 2k (k = 1, 2, . . . , N) to encode logic bits
0 and 1 in the kth round, respectively. Here we use |0〉 to
denote the vacuum state and |α〉 to denote the coherent state
whose mean photon number is μ = |α|2. As shown in Fig. 1,
the COW-QKD scheme used in this paper takes both the
two-pulse coherent state |α〉2k−1 |α〉2k and two-pulse vacuum
state |0〉2k−1 |0〉2k as decoy states to estimate the phase error
rate instead of using visibility to reflect the broken coherence.

The detailed steps of this scheme are:
(1) Alice randomly sends a sequence of pulses that con-

sists of states |0〉2k−1 |α〉2k , |α〉2k−1 |0〉2k , |α〉2k−1 |α〉2k , and
|0〉2k−1 |0〉2k with probability pz, pz, pd1 , and pd2 , respectively,
to Bob where pz = 1

2 (1 − pd1 − pd2 ). She records her choice
of sending in each round. This step is repeated for N rounds
so we have k = 1, 2, . . . , N .

(2) Bob uses a beam splitter of transmittance tB to pas-
sively distribute incoming states into the data line or the
monitoring line. On the data line, he measures the click time of
each signal to determine which logic bit Alice encodes in this
round and gets the raw key. On the monitoring line, he records
which detector clicks in each round. As illustrated in Fig. 1,
the clicks that are recorded are specifically those resulting
from interference involving two pulses from the same round.

Any other clicks should be disregarded. Here we note that if
multiple detectors click in one round, Bob records one of these
detector clicks randomly.

(3) Bob announces in which round he records a click on
the data line. Alice only keeps her logic bits in those rounds
and discards the rest to get the raw key.

(4) Bob announces his click records of the monitoring
line. Alice calculates the following click counts: nMi

0α , nMi
α0, nMi

αα ,
and nMi

00 (i = 0 or 1). nMi
u (u = 0α, α0, αα, 00) are the click

counts of states |0〉2k−1 |α〉2k , |α〉2k−1 |0〉2k , |α〉2k−1 |α〉2k , and
|0〉2k−1 |0〉2k , respectively, where the superscript Mi refers to
the clicking detectors on the monitoring line. By applying
Kato’s inequality, she can estimate the upper bound on phase
error rate Ep. The bit error rate Ez can be calculated by reveal-
ing some bits from the raw key. If either Ep or Ez exceeds the
preset values, the protocol aborts.

(5) After an error correction step is performed, at most
leakEC bits of information are revealed. Then Alice and Bob
verify whether the error correction step succeeds and perform
privacy amplification to get the final key string.

III. THE KEY-LENGTH FORMULA

A. Security definition

Before we present the security proof in the finite-key
regime, we introduce the universally composable framework
of QKD [95]. Typically, performing a QKD protocol either
generates a pair of bit strings ŜA and ŜB for Alice and Bob, re-
spectively, or aborts so ŜA = ŜB = ∅. A secure QKD protocol
must satisfy the two criteria below.

The first is the correctness criterion which is met if two bit
strings are the same, i.e., ŜA = ŜB. In practical experiments,
however, as it is not always possible to perfectly satisfy the

013022-3



LI, CAO, XIE, YIN, AND CHEN PHYSICAL REVIEW RESEARCH 6, 013022 (2024)

correctness criterion, a small degree of error is typically al-
lowed. Instead, we require that the probability of the two bit
strings not being identical does not exceed a predetermined
value, denoted as εcor, In this case, we say that the protocol is
εcor-correct.

The second is the secrecy criterion which is met if there
is no correlation between the system of the eavesdropper Eve
and the bit strings of Alice. We assume the orthonormal basis
which consists of Alice’s quantum system and corresponds
to each possible bit string of Alice to be {|s〉}s. The secrecy
criterion requires the joint quantum state of Alice and Eve
to be ρAE = ρ ideal

AE ≡ UA ⊗ ρE, where UA = ∑
s

1
|S| |s〉〈s| is a

uniform mixture which indicates that the probability of gener-
ating each possible bit string of Alice is uniformly distributed,
and ρE is Eve’s system, which does not correlate with Alice’s
system. However, it is not always possible to perfectly satisfy
this criterion in practice. This means that a small deviation
between the actual joint quantum state of Alice and Eve and
the ideal state is permissible. The trace distance measures the
difference and we say the protocol is εsec-secret if the trace
distance between the actual joint quantum state ρAE and the
ideal state ρ ideal

AE does not exceed �, i.e.,

1
2

∥∥ρAE − ρ ideal
AE

∥∥
1 � �, (1)

and (1 − pabort )� � εsec, where pabort is the probability for
aborting this protocol and ‖ · ‖1 denotes the trace norm.

Finally, a protocol is εs-secure if it is both εcor-correct and
εsec-secret with εcor + εsec � εs.

B. Security proof

Here, a virtual entanglement-based protocol is introduced
to obtain the secure key rate in the finite-key regime, which is
based on the virtual entanglement-based protocol in Ref. [92].
To simplify the presentation, we ignore the label k and ex-
press the state sent in the kth round as |0z〉 and |1z〉. Let
|0x〉 = (|0z〉 + |1z〉)/

√
N+ and |1x〉 = (|0z〉 − |1z〉)/

√
N− be

the logic bits 0 and 1 in the X basis, where N± = 2(1 ± e−μ)
are the normalization factors. In the virtual entanglement-
based protocol, Alice prepares K pairs of the entangled state

|φ〉 = 1√
2

(|+z〉A |0z〉A′ + |−z〉A |1z〉A′ )

=
√

N+

2
|+x〉A |0x〉A′ +

√
N−

2
|−x〉A |1x〉A′ , (2)

where |±x〉 and |±z〉 are the eigenstates of the Pauli matrices
X and Z , respectively, and subscripts A and A′ denote different
quantum systems possessed by Alice. Then Alice measures
the qubits in the system A randomly in the Pauli X or Z basis
to obtain the raw key X̂A from the X basis and ẐA from the
Z basis. Bob’s experimental implementation is the same as
the practical COW-QKD. He obtains his raw key ẐB of the
Z basis on the data line by measuring the click time just like
the original protocol. He also records a bit value 0(1) in the X
basis when detector DM0 (DM1 ) on the monitoring line clicks
to obtain the raw key X̂B. ẐA and ẐB are used to extract the
final key so the error-correction step and error-verification
step are performed to them. If these steps succeed, Alice and
Bob obtain the same bit string which we denote as Ẑ . All

the information that the eavesdropper Eve possesses up to
the error-correction step and error-verification step is denoted
as E ′. The smooth min-entropy H ε

min(Ẑ|E ′) characterizes the
mean probability that Eve can guess Ẑ successfully with all
information she owns using the optimal strategy [101]. The
smooth max-entropy H ε

max(ẐA|ẐB) quantifies the number of
bits required to reconstruct ẐA from ẐB [102].

According to the quantum leftover hashing lemma [98],
a �-secret key of length l can be extracted from Ẑ when a
random universal2 hash function to Ẑ , where parameter �

satisfies

� = 2ε + 1
2

√
2l−H ε

min (Ẑ|E ′ ). (3)

Letting ε0 = 1
2

√
2l−H ε

min (Ẑ|E ′ ), the length l of the secret key is
[103]

l = H ε
min(Ẑ|E ′) − 2 log2

(
1

2ε0

)
. (4)

A chain-rule inequality for these smooth entropies is used to
describe the error-correction step and error-verification step.
That is,

H ε
min(Ẑ|E ′) � H ε

min(ẐA|E ) − H ε
max(ẐA|ẐB)

= H ε
min(ẐA|E ) − leakEC − log2

(
2

εcor

)
, (5)

where leakEC and log2( 2
εcor

) are the numbers of bits that
are revealed during the error-correction and error-verification
procedure, respectively, to generate a εcor-correct key, and
Ê denotes all the information that Eve possesses before the
error-correction step and error-verification step. The lower
bound on the smooth min-entropy can be obtained by the
entropic uncertainty relation [93]. We denote the binary Shan-
non entropy as h(x) = −x log2 x − (1 − x) log2(1 − x). Let
X̂ ′

A and X̂ ′
B be the bit strings that Alice and Bob would have

obtained if Alice had measured in the X basis, which is ac-
tually measured in the Z basis in the virtual protocol. So, we
have H ε

max(X̂ ′
A|X̂ ′

B) � nzh(Ex ), where nz is the size of ẐA and
Ex is the bit error rate in the X basis. By exploiting the the
entropic uncertainty relation, we have

H ε
min(ẐA|E ) � nz − H ε

max(X̂ ′
A|X̂ ′

B) � nz[1 − h(Ex )], (6)

and the final key length is

l � nz[1 − h(Ex )] − leakEC − log2

(
2

εcor

)
− 2 log2

(
1

2ε0

)
.

(7)

C. Phase error rate

The phase error rate formula is derived by the same method
in Ref. [92]. For the completeness of this paper, a brief de-
duction is presented here. We consider a prepare-and-measure
protocol which is equivalent to the entanglement-based pro-
tocol in Sec. III B. In this protocol, when Alice prepares her
optical signals, she randomly chooses the Z or X basis. If she
chooses the Z basis, she prepares states |0z〉 and |1z〉 with
the same probability. If she chooses the X basis, she prepares
states |0x〉 and |1x〉 with probability N+

4 and N−
4 , respectively.
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She sends her states to Bob, and Bob uses the same implemen-
tation as the practical protocol to measure these states in the Z
basis (data line) or in the X basis (monitoring line) distributed
by a beam splitter.

It is obvious that the density matrices of the X and Z basis
are the same. That is,

ρ = (|0z〉〈0z| + |1z〉〈1z|)/2

= (N+ |0x〉〈0x| + N− |1x〉〈1x|)/4. (8)

Therefore, the bit error rate of the X basis can be obtained as
follows:

Ex = N+QM1
0x

+ N−QM0
1x

N+(
QM0

0x
+ QM1

0x

) + N−(
QM0

1x
+ QM1

1x

)
= N+(

QM1
0x

− QM0
0x

) + 2
(
QM0

0z
+ QM0

1z

)
2
(
QM0

0z
+ QM1

0z
+ QM0

1z
+ QM1

1z

) , (9)

which is equal to the bit error rate in the virtual entanglement-
based protocol, where QMi

sx(z)
refers to the gain of the event

which Alice prepares state |sx(z)〉 (s = 0, 1) and Bob get a
click with detector DMi (i = 0, 1) on the monitoring line. The
relation N−

4 QMi
1x + N+

4 QMi
0x = 1

2 (QMi
1z + QMi

0z ) is used in the sec-
ond equation, which can be obtained from Eq. (8). Because
the density matrices of the Z basis and X basis are the same,
the eavesdropper Eve cannot distinguish whether the prepare-
and-measure protocol or the practical COW-QKD protocol is
actually performed by Alice and Bob. The phase error rate in
the practical COW-QKD protocol is equal to the bit error rate
of the X basis in the prepare-and-measure protocol.

In practical COW-QKD protocol, states |0x〉 and |1x〉 are
not sent, so we cannot calculate QM1

0x
and QM0

0x
directly. The

decoy states |α〉2k−1 |α〉2k and |0〉2k−1 |0〉2k are used to esti-

mate QM1
0x

and QM0
0x

, where O and O are the upper and lower

bounds on value O, respectively. The expressions are

QM1
0x = 1

N+
(
e

μ

2

√
QM1

αα + e− μ

2

√
QM1

00

)2

+ N−

N+

(
eμN−

4
+ eμ

√
QM1

αα +
√

QM1
00

)
(10)

and

QM0
0x = 1

N+
(
eμQM0

αα + e−μQM0
00 − 2

√
QM0

00 QM0
αα

)
− N−

N+
(
eμ

√
QM0

αα +
√

QM0
00

)
, (11)

where QMi
w (w = αα, 00) denotes the gain of the event which

Alice sends state |α〉 |α〉 or |0〉 |0〉, respectively, where we also
omit the subscripts of states |α〉2k−1 |α〉2k and |0〉2k−1 |0〉2k and
Bob gets a click with detector DMi (i = 0, 1). The details of
how to obtain Eqs. (10) and (11) can be found in Ref. [92].

D. Statistical fluctuations

Given the impact of finite-key effects, it is crucial to ensure
the security of our protocol within the finite-key regime if we
want to facilitate the practical application of this technology.
This involves taking into account the statistical fluctuations
between observed and expected values and estimating the

lower bound of the final key length using a concentration
inequality [99,100].

Typically, Azuma’s inequality [100] is applied to convert
observed values to the upper or lower bound on corresponding
expected values and vice versa. As shown in Ref. [74], it can
be concluded that a loose bound will be obtained when using
Azuma’s inequality to estimate the statistical fluctuations of
events that occur with a very small probability. Specifically,
the estimation of the gains of decoy states |0〉2k−1 |0〉2k is
loose when using Azuma’s inequality. Instead, we use a con-
centration inequality named Kato’s inequality [99] to make
our estimation tighter so a higher key rate can be obtained.
Here we introduce the general form of Kato’s inequality which
has been employed in some finite key analyses [74,104]. Let
n1, n2, . . . , nk be a sequence of random variables which sat-
isfies 0 � ni � 1, (i = 1, 2, . . . , k). Let �i = ∑i

u=1 nu and fi

be the σ -algebra generated by {n1, n2, . . . , nk}, which is called
the natural filtration of this sequence of random variables.
For any k, a ∈ R and any b s.t. b � |a|, according to Kato’s
inequality we have that

Pr

[
k∑

u=1

E (nu| fu−1) − �k �
[

b + a

(
2�k

k
− 1

)]√
k

]

� exp

[−2(b2 − a2)(
1 + 4a

3
√

k

)2

]
, (12)

where E (·) refers to the expected value. Another form of
Kato’s inequality can be derived by replacing ni → 1 − ni and
a → −a, which is

Pr

[
�k −

k∑
u=1

E (nu| fu−1) �
[

b + a

(
2�k

k
− 1

)]√
k

]

� exp

⎡
⎣−2(b2 − a2)(

1 − 4a
3
√

k

)2

⎤
⎦. (13)

The details of how to use Kato’s inequality to accomplish
parameter estimation tasks are shown in the Appendix. In the
description below, we let O∗ be the expected value of O.

After performing the COW-QKD protocol, observed val-
ues nMi

αα and nMi
00 (i = 0, 1) are obtained, which stand for the

total click counts of detector Mi when state |0〉 |0〉 or |α〉 |α〉 is
sent, respectively. QMi

sz
(s = 0, 1) and the click count of detec-

tor DT , which we express as nz, can be directly calculated as
well. First, we use these four observed values to estimate their
upper bounds on corresponding expected values by Kato’s
inequality as follows:

nMi∗
w � nMi∗

w = nMi
w + �Mi

w , (14)

where w = 00, αα and i = 0, 1. The statistical fluctuation
parameters here are obtained in the way presented in the
Appendix. Similarly, two lower bounds nM0∗

w (w = 00, αα)
need to be calculated as follows:

nM0∗
w � nM0∗

w = nM0
w − �M0′

w . (15)

We set the failure probability for estimating each of the six
bounds above to be ε1. The total number of rounds performed
is set to be N . So, we can denote the number of state |α〉 |α〉
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sent by Alice as Nαα = N × pd1 and the number of state |0〉 |0〉
as N00 = N × pd2 . We calculate the upper and lower bounds
on gains of each event as follows:

QMi∗
w = nMi∗

w /nw, (16)

QM0∗
w = nM0∗

w /nw. (17)

Then, by applying Eqs. (10) and (11) in the expected case, we
obtain the expected values as follows:

QM1∗
0x = 1

N+
(
e

μ

2

√
QM1∗

αα + e− μ

2

√
QM1∗

00

)2

+ N−

N+

(
eμN−

4
+ eμ

√
QM1∗

αα +
√

QM1∗
00

)
, (18)

QM0∗
0x = 1

N+
(
eμQM0∗

αα + e−μQM0∗
00 − 2

√
QM0∗

00 × QM0∗
αα

)
− N−

N+
(
eμ

√
QM0∗

αα +
√

QM0∗
00

)
. (19)

Finally, by applying Eq. (9) and considering the bit error rate
in the X basis to be equal to the phase error rate in the Z basis
in the expected value case [32], the expected upper bound on
the phase error rate is

E∗
p = E∗

x =
N+(

QM1∗
0x − QM0∗

0x

) + 2
(
QM0

0z
+ QM0

1z

)
2
(
QM0

0z
+ QM1

0z
+ QM0

1z
+ QM1

1z

) . (20)

We use Kato’s inequality again but in a different form which
is explained in the Appendix to calculate the upper bound on
phase error rate in the observed value case. The expected num-
ber of clicks corresponding to phase errors is n∗

p = N × E∗
p .

So, the upper bound on the observed value is

np � np = n∗
p + �p, (21)

where �p =
√

1
2 nz ln ε−1

2 and ε2 is the failure probability for
estimating np. So, the upper bound on the phase error rate is

Ep = np/nz. (22)

E. Composable security

Considering the failure probability for estimating the statis-
tical fluctuations described in Sec. III D, the practical protocol
has a total secrecy of εsec = 2ε + ε0 + 6ε1 + ε2, where we
take ε = ε0 = ε1 = ε2 = εsec/10. So, the final key length is
denoted as

l � nz[1 − h(Ep)] − leakEC − log2

(
2

εcor

)
− 2 log2

(
5

εsec

)
,

(23)

and the COW-QKD protocol in this paper is εs-secret, where
εs = εcor + εsec.

IV. NUMERICAL SIMULATION AND DISCUSSION

To numerically simulate the key rate performance of our
protocol in the finite-key regime, we assume that the dark-
count rate is pd = 2 × 10−8 and the efficiency of the photon
detectors is ηd = 70%. The number of bits that are revealed
in the error-correction step leakEC is f nzh(Ez ), where the

FIG. 2. Secret key rate with different values of the total number
of rounds, N = 109, 1010, and 1011, using passive basis choice. The
misalignment error ed is set to 1%. When N = 1011, which is rea-
sonable in experimental implementation, the key rate is quite close
to the performance in the asymptotic case. The key rate performance
also shows that the security of our protocol ensures a secure distance
exceeding 100km for COW-QKD in practical implementation.

correction efficiency f is set to 1.1. The transmittance of
the optical fiber with length L is expressed by η = 10−0.016L .
For finite-key analysis, the security bounds of correctness
and secrecy are fixed to εcor = 10−15 and εsec = 10−10. Other
experimental parameters such as the mean photon number
μ = |α|2 and the transmittance of the beam-splitter used to
distribute incoming states are decided by an optimization
algorithm.

We present the performance of the key rate of COW-QKD
with different total numbers of rounds compared with the key
rate of infinite limit [92], where the misalignment error rate is
fixed to ed = 1%. As shown in Fig. 2, we can conclude that if
the state-sending step of our protocol is repeated for N = 1011

rounds, the key rate is close to that of infinite limit, showing
the practicality of our protocol in the finite-key regime. When
choosing N = 1011, a 3-Mbit key can be obtained through
34 km fiber by Alice and Bob if they run our protocol with a
laser operating at 1 GHZ for only 30 seconds, which presents
the superiority of this protocol in short-distance communica-
tion. The results also demonstrate that our security analysis
guarantees an unconditionally secure communication range
exceeding 100 km for COW-QKD, given its straightforward
experimental setup.

We demonstrate the flexibility of our protocol by present-
ing its key rate performance under different conditions. First,
the beam splitter used to passively distribute optical pulses
into the data or monitoring lines can be replaced by an opti-
cal switch that actively divides incoming states into different
lines. This is referred to as the passive and active basis choice,
respectively. A comparison of the key rate between passive
and active basis choice is presented in Fig. 3, along with the
estimated upper bound on the phase error rate Ep when using
an active basis, demonstrating the applicability of our analysis
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FIG. 3. Comparison of key rates using passive basis and active
basis when N = 109 and N = 1011. The upper bound on the phase
error rate Ep using active basis choice is presented by the dashed red
line. The misalignment error ed is set to 1%. (a) The total number of
rounds is N = 109. (b) The total number of rounds is N = 1011.

with an active basis. Our protocol also exhibits robustness
when faced with varying values of the misalignment error
rate, as shown in Fig. 4. The results show that even with a
large misalignment error, the key rates are not significantly
affected. This indicates the practicality of our protocol in
constructing quantum communication systems under different
experimental conditions.

We compare our protocol with DPS-QKD [71], whose
equipment requirements are similar to that of COW-QKD.
The finite-key security analysis of it in Ref. [74] shows a
tighter bound on phase error rate can be obtained by Kato’s
inequality. To simulate under the same experimental condi-
tions, we follow the choice in Ref. [74] and fix the security
bounds of both correctness and secrecy to 2−28 to get a total
secrecy of 2−27 ≈ 10−8.1. The misalignment error ed is set to
0.01 and the dark-count rate is 0, so we can ensure the bit error
rate is 1% as chosen in Ref. [74]. The correction efficiency
f is 1.16, and we have simulated the key rate under varying
values of overall channel transmittance, taking into account

FIG. 4. Secret key rate simulation in the finite-key case with
different values of misalignment error when using passive basis.
When a large misalignment error is employed, the key rates do not
drop significantly, which is an important advantage in constructing
quantum information systems. (a) The total number of rounds is
N = 109. (b) The total number of rounds is N = 1011.

both optical fiber loss and detection efficiency. We note that
in our COW-QKD protocol, Alice sends two pulses in each
round, whereas the DPS-QKD protocol requires three pulses.
For comparison, we need to ensure that the total number of
pulses Npulse is the same for both protocols. We compare the
key rates of the two protocols when Npulse is set to 3 × 1011

and 3 × 1012, so one of the results for DPS-QKD is consistent
with that reported in Ref. [74]. The simulation is shown in
Fig. 5. The results reveal that the key rates of our protocol are
significantly higher than those reported in Ref. [74].

Following the approach proposed in Ref. [74], our pro-
tocol demonstrates an enhancement of Kato’s inequality
over Azuma’s inequality as well. In our protocol, the gain
of the decoy states |0〉2k−1 |0〉2k , represented as QMi

00 , is
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FIG. 5. Comparison of key rates of our protocol and the DPS-
QKD protocol in Ref. [74]. Two protocols have similar experimental
settings and both belong to the distributed-phase-reference QKD pro-
tocols. The bit error rate is 1% and the correction efficiency f is 1.16.
For convenience, the security bounds of both correctness and secrecy
are fixed to 2−28 as in Ref. [74]. We compare the key rates when the
numbers of pulses are Npulse = 3 × 1011 and Npulse = 3 × 1012 and
conclude that our protocol has advantages on the secure transmission
distance and key rate performance.

entirely attributed to the nonzero dark count rate, which is
approximately on the scale of 10−8. However, the fluctuations
estimated by Azuma’s inequality between observed and ex-
pected values exhibit a linear dependence on

√
N00. These

statistical fluctuations dominate the estimation of the upper
limit on QMi∗

00 , resulting in a decrease in QM0∗
0x and an increase

in QM1∗
0x according to Eqs. (18) and (19). This gives rise to a

higher phase error rate as per Eq. (20), consequently leading
to a diminished key rate. To compare the results, we con-
duct a numerical simulation of our protocol’s key rates, using
Azuma’s or Kato’s inequalities to estimate the upper bound
on QMi∗

00 . The results are depicted in Fig. 6 together with a
detailed comparison of the upper bounds on QM0∗

00 obtained by
two inequalities.

Compared with other security analyses of previous variants
of COW-QKD, our protocol has notable advantages because
its key rate performance is better when considering the highest
security standard, i.e., the security against both zero-error at-
tack and coherent attacks. For the completeness of this paper,
in Fig. 7 we compare the key rates in the asymptotic case of
our COW protocol with the variants proposed in Refs. [86,89]
that have the immunity against these two attacks. To fairly
compare, the parameter choices in Refs. [86,89] are adopted,
which fix the dark count rate pd to 10−7 and set the detection
efficiency ηd to 99%. In our numerical simulation of the
variant presented in Ref. [86], we opt for a scenario where
each three-signal block, comprising six optical pulses, shares
the same phase. This modification to the experimental setup
has inevitably altered the simplicity of the original protocol.
Both of these previous variants are simulated with an active
basis choice. It can be concluded that our protocol not only

FIG. 6. (a) Finite secret key rate simulation of our protocol using
Azuma’s or Kato’s inequalities to estimate the upper bound on QM0∗

00

with N = 1010 and N = 1011. The misalignment error ed is set to 1%.
It can be concluded that significantly higher key rates are obtained
by utilizing Kato’s inequality. (b) The detailed estimated values

of QM0∗
00 when applying Azuma’s or Kato’s inequalities. Statistical

fluctuations dominate the estimation of the upper bound, leading to
significantly higher values. Consequently, higher phase error rates
are calculated as per Eqs. (18)–(20) and result in lower key rates.

outperforms in terms of key rates and transmission distance
but also preserves the original simplicity of the COW-QKD
setting.

Moreover, we have summarized the differences with sev-
eral previous works on COW-QKD in aspects such as
experimental setting and key rate performance in Table I.
As previously discussed, our protocol exhibits superior
key rate performance compared to variants [86,89] that
share an equivalent security level. A method for calculat-
ing the lower bound on the secure key rate of a COW
variant was proposed in Ref. [91] recently, which shows
significantly improved key rate performance. However, the
absence of finite-key regime analysis and immunity against
coherent attacks pose significant challenges to the practical
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FIG. 7. Secret key rates of our protocol compared with previous
variants in Refs. [86,89]. The dark count rate pd is fixed to 10−7 and
the efficiency of detectors is set to 99%. The experimental require-
ments for the variant in Ref. [86] are more complex compared to
the original protocol. However, both the variant in Ref. [89] and our
protocol maintain the simplicity of the setup. Under certain channel
transmission values, our protocol with passive basis choice can still
outperform the previous variants that use active basis choice in terms
of key rate performance.

implementation of this theoretical protocol. Earlier works
such as Refs. [80,85] presented security proofs that could
achieve high key rates scaling as O(η). However, these vari-
ants have been demonstrated to be insecure when confronting
zero-error attacks [87,88]. Since our security proof provides
the analytical formulas of the key rate, the extension of ana-
lyzing performance with finite key length can be completed as
presented in Sec. III. With the help of Kato’s inequality, our
analysis gives a tight bound on the key rate and guarantees
security against coherent attacks, establishing foundations for
further practical applications.

V. CONCLUSION

In this paper, we present a finite-key analysis for the COW-
QKD protocol proposed in Ref. [92]. We apply the quantum
leftover hashing lemma and entropic uncertainty relation to
derive an analytic formula for the key length. When dealing
with correlated random variables, we use Kato’s inequal-
ity to ensure security against coherent attacks and achieve
a higher key rate. By considering the failure probabilities
for estimating statistical fluctuations between observed and
expected values, we complete the security proof within the
universally composable framework. Our finite-key analysis
shows that the key transmission distance can exceed 100 km
in specific cases, providing a feasible approach for the se-
cure implementation of quantum communication processes.
In short-distance communication, the numerical simulation
in Fig. 2 has shown that our protocol can generate a 3-Mbit
secret key over 34 km fiber by running this protocol for
only 30 seconds with a photon source operating at 1 GHZ
repetition rate. We also present numerical simulations of key
rates under different conditions, demonstrating the practicality
and flexibility of our protocol. Compared to the finite-key
analysis of DPS-QKD in Ref. [74], our protocol obtains a
significantly higher key rate with almost the same experimen-
tal setup. Additionally, we show that our COW-QKD protocol
can also be used to show the superiority of Kato’s inequality
when estimating events with a small probability of occur-
rence. Furthermore, we present the comparison of key rates
with previous COW variants in the asymptotic scenario and
summarize the differences in many aspects to clearly illustrate
the distinct advantages of our protocol. In conclusion, our pro-
tocol lays a theoretical foundation for applying COW-QKD
in real-world scenarios by offering both a high key rate and
unconditional security against coherent attacks and completes
the intact security proof for this protocol. Our protocol may
be employed in future quantum communication with minus-
cule devices like chips and quantum information networks
due to the simple experimental setup and excellent key rate
performance.

TABLE I. The differences between our protocol and several variants of COW-QKD. Here, state |0〉 |α〉 is abbreviated expression of state
|0〉2k−1 |α〉2k and other states have similar meanings. States |0〉 |0〉 |α〉 , |0〉 |α〉 |0〉, and |0〉 |β〉 |β〉 are three-pulse states used in Ref. [91]. EUR
stands for entropic uncertainty relation and SDP stands for semidefinite programming techniques.

Branciard et al. Moroder et al. Korzh et al. Wang et al. Lavie et al.
(2008) [85] (2012) [86] (2015) [80] (2019) [89] (2022) [91] This paper

Signal states |0〉 |α〉 , |α〉 |0〉 |0〉 |α〉 , |α〉 |0〉a |0〉 |α〉 , |α〉 |0〉 |0〉 |α〉 , |α〉 |0〉 |0〉 |0〉 |α〉 , |0〉 |α〉 |0〉 |0〉 |α〉 , |α〉 |0〉
Decoy states |α〉 |α〉 |α〉 |α〉a |α〉 |α〉 |α〉 |α〉 |0〉 |β〉 |β〉 |α〉 |α〉 , |0〉 |0〉
Attack model Collectiveb Coherent Collective Coherent Collective Coherent
Key rate O(η) O(η2) O(η) O(η2) O(η2) O(η2)
Security framework EUR SDP EUR SDP SDP EUR
Against zero-error attack NO YES NO YES YES YES
Finite feasibility NO NO YES NO NO YES

aThis protocol needs three states to be sent in a group with the same phase, making the setup more complicated.
bThis protocol only considers restricted types of collective attacks.
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APPENDIX: KATO’S INEQUALITY

Kato’s inequality [99] is used to deal with the correlated
random variables in this paper when estimating parameters.
Here we introduce how to use Kato’s inequality to complete
the estimation in the main text.

We can use Eq. (12) to estimate the upper bounds on
expected values from the corresponding observed values. In

the estimation of QKD protocols, the random variables ni, i =
1, 2, . . . , k, which indicate whether the detector clicks in the
ith round, respectively, are Bernoulli random variables. If the
detector clicks in the uth round, nu = 1, and if it doesn’t click,
nu = 0. So, we have E (nu| fu−1) = Pr(nu = 1| fu−1). �k is an
observed value that denotes the total number of detector click
during k rounds.

To get the tightest bound, one should choose the optimal
values for a and b to minimize the deviation [b + a( 2�k

k −
1)]

√
k by solving an optimization problem. To demonstrate,

we let εa be the failure probability for estimating the upper
bounds, i.e., exp[−2(b2−a2 )

(1+ 4a
3
√

k
)2 ] = εa, and the optimization prob-

lem which is denoted as mina,b�|a|[b + a( 2�k
k − 1)]

√
k.

This is solved by Ref. [104] and the solutions
are

a1 = a1(�k, k, εa) = 3(72
√

k�k (k − �k ) ln εa − 16k3/2 ln2 εa + 9
√

2(k − 2�k )
√

−k2 ln εa(9�k (k − �k ) − 2k ln εa))

4(9k − 8 ln εa)(9�k (k − �k ) − 2k ln εa)
, (A1)

b1 = b1(a1, k, εa) =
√

18a2
1k − (

16a2
1 + 24a1

√
k + 9k

)
ln εa

3
√

2k
. (A2)

With the fixed values a1 and b1, we get the upper bound on expected value as follows according to Eq. (12):

�∗
k � �∗

k = �k + �1(a1, b1, k, �k ), (A3)

where �1(a1, b1, k, �k ) = [b1 + a1( 2�k
k − 1)]

√
k and we use the expected value �∗

k to denote
∑k

u=1 E (nu| fu−1).
Similarly, Eq. (13) can be applied to estimate the lower bound on expected values, where we need to solve another

optimization problem. That is, mina,b�|a|[b + a( 2�k
k − 1)]

√
k, where exp[−2(b2−a2 )

(1− 4a
3
√

k
)2 ] = εa.

The solutions are

a2 = a2(�k, k, εa) = −3(72
√

k�k (k − �k ) ln εa − 16k3/2 ln2 εa − 9
√

2(k − 2�k )
√

−k2 ln εa(9�k (k − �k ) − 2k ln εa))

4(9k − 8 ln εa)(9�k (k − �k ) − 2k ln εa)
, (A4)

b2 = b2(a2, k, εa) =
√

18a2
2k − (

16a2
2 − 24a2

√
k + 9k

)
ln εa

3
√

2k
, (A5)

and we get the lower bound

�∗
k � �∗

k = �k − �2(a2, b2, k, �k ), (A6)

where �2(a2, b2, k, �k ) = [b2 + a2( 2�k
k − 1)]

√
k. With the methods above, the estimations of nMi∗

w and nM0∗
w in the main text can

be done, where w = 00, αα and i = 0, 1. The failure probability for each estimation is εa, which is considered when explaining
the composable security of our protocol.

When converting expected values to observed values, Kato’s inequality is available as well. However, to get specific values
of the optimal ai, bi and the deviation �i where i = 1, 2, the observed value �k needs to be employed, which is not known. So,
we follow the method used in Ref. [104]. Let a = 0 and set the failure probabilities in Eqs. (12) and (13) to be εb. We obtain the
inequalities below:

k∑
u=1

E (nu| fu−1) � �k + �, (A7)

k∑
u=1

E (nu| fu−1) � �k − �, (A8)

where � =
√

1
2 k ln ε−1

b . This is how the estimation procedure of Eq. (21) is done.
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