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Stochastic thermodynamics is formulated under the assumption of perfect knowledge of all thermodynamic
parameters. However, in any real-world situation, there is nonzero uncertainty about the precise value of
temperatures, chemical potentials, energy spectrum, etc. Here we investigate how this uncertainty modifies the
theorems of stochastic thermodynamics. We consider two scenarios: in the effective scenario, we fix the (un-
known, randomly generated) parameters of an experimental apparatus and then repeatedly observe (stochastic)
trajectories of the system for that fixed apparatus. In contrast, in the (consistently with the effective scenario) phe-
nomenological scenario, the (unknown) apparatus is re-generated for each trajectory. We derive expressions for
thermodynamic quantities in both scenarios. For the effective scenario, we also discuss the physical interpretation
of entropy production (EP) and derive the mismatch cost. To illustrate this scenario, we also provide a numerical
analysis of the thermodynamics of a quantum dot implementing bit erasure with uncertain temperature. We also
analyze the protocol for changing the distribution over states in a way that maximizes work extraction, again in
the effective scenario. Next, we investigate the effective thermodynamic value of information, focusing on the
case where there is a delay between the initialization of the system and the start of the protocol. Finally, we derive
the detailed and integral fluctuation theorems (FTs) for the phenomenological EP. In particular, we show how
the phenomenological FTs account for the fact that the longer a trajectory runs, the more information it provides
concerning the precise experimental apparatus, and therefore the less EP it generates. Our results provide a very
preliminary investigation of the myriad issues that arise when one tries to expand stochastic thermodynamics to
account for uncertainty in the parameters governing a physical process.
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I. INTRODUCTION

The microscopic laws of classical and quantum physics are
parameterized sets of equations that specify the evolution of
a closed system starting from a specific state. To use those
equations, we need to know that specific state, we need to be
sure the system is closed, and we need to know the values of
the parameters in the equations [1,2].

Unfortunately, in many real-world scenarios, we are un-
certain about the precise state of the system, and very often,
the system is open rather than closed, subject to uncertain
interactions with the external environment. Statistical physics
accounts for these two types of uncertainty by building on
the microscopic laws of physics in two ways. First, to capture
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uncertainty about the state of the system, we replace the exact
specification of the system’s state with a probability distri-
bution over states. Second, to capture uncertain interactions
between the system and the external environment, we add ran-
domness to the dynamics in a precisely parameterized form.1

In particular, in the subfield of classical stochastic ther-
modynamics [1,2], we model the system as a probability
distribution evolving under a continuous-time Markov chain
(CTMC) with a precisely specified rate matrix. Often in this
work, we require that the CTMC obeys local detailed balance
(LDB). This means that the rate matrix of the CTMC has
to obey certain restrictions, which are parameterized by the
energy spectrum of the system, the number of thermodynamic

1We note though there is a substantial literature which adopts
the “inclusive” framework, in which the external environment is
finite, and the joint dynamics of the system-environment is explicitly
modeled. This framework is the classical form of “open quantum
thermodynamics.” The inclusive framework has been explored both
for explicit Hamiltonian dynamics over the joint system, where the
only randomness in the initial state [45–47], and for approximate
Hamiltonian dynamics [48–52].
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reservoirs in the external environment perturbing the system’s
dynamics, and the temperatures and chemical potentials of
those reservoirs. Often we also allow both the Hamiltonian
of the system and the rate matrix of the associated CTMC to
change in time in a deterministic manner, perhaps coupled by
LDB. That joint trajectory is referred to as a protocol in the
literature.

However, in addition to uncertainty about the state of
the system and uncertainty about interactions with the exter-
nal environment, there is an additional unavoidable type of
uncertainty in all real-world systems: uncertainty about the
parameters in the equations governing the dynamics. In the
context of stochastic thermodynamics, this means that even
if we impose LDB, we will never know the reservoir tem-
peratures and chemical potentials to infinite precision (often
even being unsure about the number of such reservoirs), we
will never know the energy spectrum to infinite precision, and
more generally, we will never know the rate matrix and its
time dependence to infinite precision.

At present, almost nothing is known about the thermody-
namic consequences of this third type of uncertainty despite
its unavoidability.2 In this paper, we start to fill in this gap by
considering how stochastic thermodynamics (and nonequilib-
rium statistical physics more generally) needs to be modified
to account for this third type of uncertainty, in addition to the
two types of uncertainty it already captures.

We define an apparatus α ∈ A to be any specific set of
values of the thermodynamic parameters of an experiment,
including the number of reservoirs, their temperatures and
chemical potentials, the precise initial distribution over states
(i.e., how the system was prepared) the (deterministic trajecto-
ries of the) rate matrices, the (deterministic trajectories of the)
energy functions, etc. Here and throughout, we assume that
these thermodynamic parameters are appropriately related by
LDB for any specific α. For simplicity, we also assume that for
all apparatuses, the system has the same state space, X . Also
for simplicity, we assume that all nonprotocol components
of an apparatus (in particular the temperatures and chemical
potentials) do not change in time. In addition, we assume that
for all α, the process takes place in the same time interval,
[ti, t f ]. We write an element of X as x, and a trajectory of X
values across [ti, t f ] as xxx.

We suppose that α is not precisely known and write its
probability measure as dPα . Physically, it may be that we
have an infinite set of apparatuses generated by IID sam-
pling dPα . Alternatively, dPα could represent uncertainty or
a detailed model of the noise in the measuring instruments
used to set the parameters in α. (Below, we will often abuse
notation/terminology and refer to a “distribution” over ap-
paratuses when properly speaking, we should be couching
the discussion in terms of a probability measure.) Abusing
notation, we will use A to denote both the random variable
with values α, and the event space of that random variable.3

2We note though that it is already known that if we do not account
for all thermodynamic reservoirs, we invariably underestimate the
total entropy production in a process [53].

3Note that α is a generic characterization of apparatuses, which can
be formalized as a vector with some components finite-valued, some

Concretely, we consider two kinds of experimental scenar-
ios. Both start by sampling dPα , but they differ after that.

(i) In the “effective” scenario, we generate an apparatus by
sampling dPα . For that fixed apparatus we then generate many
stochastic trajectories xxx. After running all those trajectories for
that fixed apparatus, we can, if we wish, rerun the scenario,
generating another sample of the distribution over appara-
tuses, which we then use to generate a new set of stochastic
trajectories. We call this the effective scenario.

Experimentally, in the effective scenario, one can generate
and then observe frequency counts of the distribution p(xxx|α)
for multiple random values of α, but without ever directly
observing α. For example, the experimenter might construct
a bit-eraser experimental apparatus involving a single thermal
reservoir whose temperature is fixed throughout the experi-
ment but only known to the finite precision of 0.1 K. The
experimenter then runs their experiment many times using
this fixed apparatus and collected statistics concerning the
trajectories across those experiments. They can then use those
estimates to make (perhaps Bayesian) estimates of thermo-
dynamic functions of a trajectory, like the associated entropy
production.

(ii) In the “phenomenological” scenario, we again gener-
ate an apparatus by sampling dPα , but the apparatus cannot be
fixed while we generate multiple trajectories. Instead, in order
to generate a new trajectory we must first generate a new appa-
ratus by resampling dPα . We call this the phenomenological
scenario.

We can illustrate the phenomenological scenario with
the example discussed below in Sec. IV C, where the ex-
perimenter constructs a bit-eraser experimental apparatus
involving a single thermal reservoir whose temperature at
the beginning of the experiment is only known to the finite
precision of 0.001 K. Suppose that we modify that example
analyzed in Sec. IV C, so that the temperature is very slowly
drifting randomly in time. Assume also that any given run
of the experiment is very fast on the timescale of that drift,
so we can treat the temperature as fixed throughout the run.
However, after generating a trajectory by running the exper-
iment, it takes a long time for the system to be reinitialized
to rerun the experiment, and during that time the temperature
has drifted to a new value that is statistically independent of
the value during the preceding run. As in the effective sce-
nario, the experimenter runs their experiment many times and
collected statistics concerning (functions of) the trajectories
across those experiments. However, in the phenomenological
scenario, one can only observe frequency counts of the α-
averaged distribution over trajectories, p̄(xxx) := ∫

dPα p(xxx|α).
Illustrations of both scenarios are depicted in Fig. 1, for a

simple three-state time-homogeneous system coupled to one
of the three possible apparatuses. In each case, we measure
the marginal probability distribution at the final time t f . Note
that in neither scenario do we allow any direct measurement
of α. However, there may be indirect information about α that
arises from the precise trajectory of states that is generated
once α is chosen.

countable, and some uncountable, with the measure dPα defined
appropriately.
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FIG. 1. Comparison of the two uncertain apparatus scenarios considered in this paper. (a) A simple, three-state system that can be coupled
to one of the three apparatuses, with respective probabilities. (b) Trajectories of the values of a quantity E that has three possible values across
the time interval [ti, t f ], along with the associated empirical estimate of the relative probabilities that the system had each of those three values
during [ti, t f ]. Each color represents a different trajectory. [(c)–(e)] Plots of trajectories for the effective scenario, where we can estimate the
marginal distribution at time t f pt f (E |α) for a fixed apparatus α, shown for three separate instances of the scenario corresponding to the three
possible apparatuses. (f) The phenomenological scenario, in which each trajectory is sampled with a different apparatus, and therefore only
p̄t f (E ) can be estimated.

Crucially, the ensemble-level thermodynamic quantities
generated in these two scenarios can differ, since the two
types of average involved (once over α, once over x) do not
necessarily commute. As an example, in the effective sce-
nario, since we can form an estimate of pt (x|α) by running
many iterations of a fixed experimental apparatus, we can
experimentally estimate the entropy defined as

S̄(Pt ) = −
∫

dPα
∑

x

pt (x|α) ln pt (x|α) (1)

using empirical frequency counts.
This is not possible in the phenomenological scenario, in

which we can only experimentally estimate a more “coarse-

grained” version of entropy,

S(P̄t ) = −
∑

x

(∫
dPα pt (x|α)

)
ln

(∫
dPα pt (x|α)

)
(2)

using empirical frequency counts.
Note also that if we are in the effective scenario and

have the ability to force a new apparatus to be (randomly)
generated whenever we want, then we can implement the
phenomenological scenario just by forcing a new apparatus to
be generated after every run. In this augmented version of the
effective scenario, we could experimentally estimate the quan-
tity in Eq. (2) using empirical frequency counts. However, if
we are in the effective scenario and do not have this extra
ability, then we cannot estimate the quantity in Eq. (2), only
the quantity in Eq. (1). (In this paper, whenever we discuss the
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effective scenario, we will assume we do not have this extra
ability.)

The difference between the thermodynamics of the two
scenarios will be a central focus of our analysis below.

A. Related research

It is important to distinguish between the focus of this
paper and some of the issues that have been investigated in
the recent literature. Some recent research has considered how
to modify stochastic thermodynamics if the experimentalist
is not able to view all state transitions in the system as it
evolves [3,4]. The uncertainty in these papers concerns what is
observed as the system evolves, whereas we focus on uncer-
tainty in the parameters governing that evolution. Similarly,
some models consider either spatial [5] or temporal [6] varia-
tion of temperature and other parameters, but they assume that
this evolution is known. In contrast, we assume that α is fixed
throughout the interval, but to an unknown value.

Probably the closest research to what we consider in this
paper is sometimes called superstatistics. It has long been
known that an average over Gibbs distributions cannot be writ-
ten as some single Gibbs distribution (theorem 1 in Ref. [7]).
This means that even equilibrium statistical physics must be
modified when there is uncertainty in the temperature of a
system. The analysis of these modifications was begun by
Beck and Cohen [8], who developed an effective theory for
thermodynamics with temperature fluctuating in time. They
considered a system coupled to a bath, which is in a local
equilibrium under the slow evolution of the temperature of the
bath. The main assumption they exploit is scale-separation:
while for short time scales, the distribution over states of the
system is an equilibrium, canonical distribution with inverse
temperature β, the long-scale behavior is determined by a su-
perposition of canonical distributions with some distribution
of temperatures f (β ). The resulting superstatistical distribu-
tion p(E ) = ∫

dβ f (β ) exp(−βE )/Z (β ) was later identified
with the distribution corresponding to generalized entropic
functionals [9,10] due to the fact that particular generalized
entropic functionals are maximized by the same distribution
that can be obtained the superposition of the canonical distri-
bution with given f (β ) [11,12].

Later interpretations of superstatistics are not based on the
notion of local equilibria but rather on the Bayesian approach
to systems with uncertain temperature [13,14]. These are con-
ceptually closer to the focus of this paper, which focuses on
off-equilibrium systems that are evolving quickly on the scale
of the coupling with the thermal reservoirs, and so cannot be
modeled in terms of timescale separation.

Similar to the quasiequilibrium scenarios considered in
superstatistics, other research has focused on deriving an ef-
fective description of the system in local equilibrium averaged
over uncertain thermodynamic parameters. In particular, this
is the basis of a very rich and well-studied approach to ana-
lyzing spin glasses [15,16], in which the coupling constants Ji j

in the spin-glass Hamiltonian H = −∑
(i j) Ji jsis j , are random

variables drawn from a given distribution p(Ji j ). Given such a
distribution, the famous replica trick ln Z = limn→0

Zn−1
n [17]

can be used to calculate the Helmholtz free energy, averaged
over all Ji j . Let us note that in the terminology used in dis-

ordered systems, the annealed disorder corresponds to the
effective scenario while quenched disorder corresponds to the
phenomenological scenario.

Finally, several authors [18–21] have investigated the sit-
uation where the initial distribution differs from the one that
would minimize the total EP of the process. Such cases result
in nonzero mismatch cost in general. We also investigate mis-
match cost in this paper, but focus on the implications for that
cost if the experimenter is unsure of that initial distribution.
That issue is also considered in Ref. [22], but for the special
case of “local” processes that implement deterministic finite
automata.

B. Roadmap

One of the major themes of the paper is that the uncertainty
about the system parameters can have major effects on the
precise forms of thermodynamic quantities. This is reflected
in the difference between the thermodynamics of the effective
and phenomenological scenarios, discussed above.

Even within the effective scenario though, there are some
important distinctions between different ways of running the
experiment (and so different ways of defining thermodynamic
quantities). In particular, there are major differences that arise
depending on whether the protocol changes from one run of
an experiment to the next, or instead is fixed in all runs. We
call these the “adapted” and “unadapted” scenarios, respec-
tively. We start in Sec. II with a simple illustrative example of
these two situations, involving a moving optical tweezer with
uncertain stiffness parameter.

We then begin our more general analysis. First, in Sec. III,
we introduce the necessary notation and briefly recall the main
results of traditional, full-certainty stochastic thermodynam-
ics. In Sec. IV, we present the general form that stochastic
thermodynamics takes in the effective scenario (recall the
discussion of the effective and phenomenological scenarios
in the introduction). We begin by noting that the evolution of
the effective probability distribution is not Markovian. Then
we derive the forms of the first and second laws of thermo-
dynamics for effective thermodynamic quantities. Next we
discuss the relation between effective EP and effective dis-
sipated work. We illustrate this discussion with the numerical
example of a fermionic bit erasure with uncertain temperature.
We end this section by investigating the special case where the
only uncertainty concerns the initial distribution, calculating
the associated effective mismatch cost.

Next, in Sec. V, we start by carefully elaborating the for-
mal differences between the adapted and unadapted scenarios,
defining both in terms of “minimal dissipated work.” We then
provide two specific examples of both of those scenarios,
illustrating how the thermodynamic consequences of their
formal differences.

In Sec. VI, we focus on (feedback) control protocols for
uncertain apparatuses, for a specific “adapted” scenario. In
contrast to the conventional case where the apparatus is pre-
cisely known, we assume we cannot tailor the protocol for
each (uncertain) apparatus separately, but instead must use
the same protocol for all apparatuses. We use this setting to
investigate how apparatus uncertainty affects a foundational
concern of stochastic thermodynamics: How much work can
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be extracted from a system during a process that takes it from
a given initial distribution to a given target distribution.

First, we consider this issue when we are uncertain both
about the initial distribution (though not the final one) and
about the temperature of the system as it evolves. We focus
on how that uncertainty changes the results of the standard
analysis of this issue, in which we suppose a {quench; equili-
brate; semistatically evolve} process is applied to the system
immediately after the initial distribution is generated.

Next, we use this analysis to consider how uncertainty
affects the “thermodynamic value of information” to a feed-
back controller [23,24]. We restrict attention to the special
case of the analysis where the temperature is known exactly,
so the only uncertainty is in the initial distribution. We also
suppose that there is a (perfectly known) delay between when
the initial distribution is generated, ti, and the time τ when
the {quench; equilibrate; semistatically evolve} process can
begin, during which time the system evolves according to a
(perfectly known) rate matrix. In particular, we derive expres-
sions for how the thermodynamic value of information varies
with the length of the delay.

In Sec. VII, we investigate the ensemble entropy produc-
tion calculated from effective trajectory probabilities, i.e.,
from trajectory probabilities given by averaging over appa-
ratuses. We call this the phenomenological (ensemble) EP.
We begin by proving that phenomenological ensemble EP is a
lower bound on the average over apparatuses of the effective
ensemble EP. So fixing the apparatus and averaging over the
trajectories—though without knowing what value the appara-
tus is fixed to—and then averaging over apparatuses increases
EP, compared to the case where we average apparatuses before
averaging trajectories.

The difference between effective EP and phenomenolog-
ical EP is called likelihood EP. It measures the difference
between log-likelihood functions estimated from the forward
and time-reversed trajectories.

Considering trajectory versions of all three EPs, we estab-
lish three detailed fluctuation theorems (DFT). In addition to
the well-studied DFT in the literature which concerns a single,
known apparatus, we establish the DFT for the phenomeno-
logical EP and for likelihood EP. The former represents
the effective irreversibility of the system by coarse-graining
all the apparatuses. The latter represents how irreversibil-
ity affects the estimation of the apparatus’ parameters when
estimated by observing the forward and time-reversed trajec-
tories. These results are illustrated by a simple example of a
two-state system coupled to one heat reservoir with uncertain
temperature.

We emphasize that our results provide only a very pre-
liminary investigation of the myriad issues that arise when
one tries to expand stochastic thermodynamics to account for
uncertainty in the parameters governing a physical process.

We also emphasize that our results do not have implications
for how experimentalists should perform their experiments
or analyze the outcomes of those experiments. Deriving such
results that provide specific advice to experimentalists would
be an important feature of a fully developed extension of
stochastic thermodynamics to capture uncertainty in the pa-
rameters governing a nonequilibrium process. However, in
general, deriving such results would require careful modeling

of the precise physical process by which an experimentalist
initializes their system. (It is that process which determines
the distribution over thermodynamic parameters, the distribu-
tion that plays a central role in the stochastic thermodynamics
of processes with uncertain parameters.) Constructing such
a model would be in addition to constructing a model of
the subsequent physical process that is actually being experi-
mentally investigated, once the initialization process has been
completed. This is beyond the scope of the current paper.
(Indeed, to our knowledge it has never been considered in
the literature.) Accordingly, we leave it for future work to
provide recommendations to experimentalists for how they
should change their analyses of their experiments.

Our paper ends with a discussion section in which we
describe just a few of all the associated directions for future
work, in addition to this direction of modeling how experi-
ments are initialized.

II. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the importance of accounting
for the uncertainty of the system parameters in an experiment,
with a simple example of a colloidal particle in a moving laser
trap. The dynamics of the particle is given by the overdamped
Langevin equation

ẋ = −μ
∂V

∂x
+ ξ

where ξ is the white noise, and V is the potential. Let us
consider that the particle is dragged by an optical tweezer with
the harmonic potential

Vk (x, t ) = k

2
(x − λ(t ))2,

where k is the stiffness parameter and λ(t ) is the control
protocol. The average work is given by the Sekimoto formula

W [λ(t )] =
∫ t f

0
dt λ̇

〈
Vk (λ(t ), x(t ))

∂λ

〉
,

where 〈. . . 〉 is the ensemble average. Let us consider μ = 1.
Our aim is to move the trap from λi = 0 at time ti = 0 to

λ f at time t f so that the average work is minimal. Following
Ref. [25], it is possible to express the optimal control protocol
starting that minimizes the average work as

λ�
k = λ f (1 + kt )

2 + kt f

and the corresponding optimal work as

W �
k = kλ2

f

2 + kt f
. (3)

The complete derivation is done in Appendix A.
We focus on the realistic situation where the experimenter

has to measure the stiffness parameter to be able to determine
the optimal control protocol. The estimation is typically done
by repeated measurement of k, which leads to a histogram of
k. In practice, often an experimenter will implicitly assume
that the uncertainty in k is due to the measurement and takes
the average value of stiffness k̄ as the single possible value.
However, often the uncertainty in the parameters can have
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a physical reason, e.g., imprecise calibration of the laser. In
those kinds of scenarios, the stiffness can change for each
run of the experiment, and so the experimenter’s implicit
assumption is invalid.

Write the stiffness parameter that the experimenter uses
to set up the control protocol as k, with the real stiffness
parameter written as κ (which in general differs from k). In
Appendix A we show that the work can then be expressed as

Wκ [λk (t )] = W �
k + λ2

f

(2 + kt f )2

(
κ2 − k2

κ
+ (k − κ )2

κ
e−κt f

)
using the definition in Eq. (3).

We now assume that the experimenter repeats the exper-
iment many times. In each run, the stiffness parameter κ is
drawn from a distribution p(κ ). We want to compare two
broad types of scenario. In the first type of scenario, the
experimenter remeasures the stiffness parameter every time it
is (randomly) regenerated, so that they can adapt their control
protocol in that run to the new value of the stiffness parameter
in order to minimize the average work for that run. This is an
example of what we call an adapted scenario below, in Sec. V.
The average work in this scenario can be expressed as

Wad. =
∫

dκWκ [λκ (t )]

In the second scenario, the experimenter ignores the un-
certainty in stiffness, and for each run, they assume that
the system is described by the same stiffness parameter κ̄ =∫

dκ p(κ )κ . This is an example of what we call an unadapted
scenario below, in Sec. V. The minimal expected work in this
unadapted scenario can be expressed as

Wunad. =
∫

dκWκ [λκ (t )]

Recall that the “dissipated work” of a particular control
protocol is the difference between the work it expended and
the minimal work that would have been expended by an op-
timal control protocol. Dissipated work is one of the central
concerns in nonequilibrium statistical physics. Because the
“minimal work” differs between the adapted and unadapted
scenarios, we would expect that the dissipated work does
as well. We illustrate this for the current case of a parti-
cle in a trap in Fig. 2. To generate that figure we chose
p(κ ) ∼ LogNormal(μ, σ ), where μ and σ are the mean and
the variance of the log-normal distribution.4 The parameters
of the lognormal are λ f = 1, t f = 1, μ ≡ κ̄ = 3

2 . Figure 2
demonstrates the general fact that the adapted and unadapted
scenarios can differ in their thermodynamics; with the in-
creasing variance of the distribution, the difference is more
pronounced (Note that both adapted and unadapted work de-
crease with increasing σ which is caused by the fact that the
expected work is in the case a concave function of stiffness).

Note that choosing the control protocol λκ (t ) in this sce-
nario is not the optimal choice that minimizes the average

4Nota bene, this is in contrast with what is arguably the most
common parametrization, where the parameters are the mean and the
variance of the corresponding normal distribution. The transforma-
tion between these two parametrizations is given in Appendix A.

FIG. 2. The comparison of the average work for an unadapted
and adapted scenario for the moving optical tweezer with uncertain
stiffness.

work. (The issue of control protocols that optimize the average
work are discussed in Sec. VI.)

III. PRELIMINARIES

For simplicity, throughout this paper, we assume the sys-
tem of interest has a countable state space X with elements
generically written as x ∈ X . A trajectory of values of X
across some noninfinitesimal time interval [0, t] will be writ-
ten as xxxt , or just xxx for short. The trajectory’s state at a specific
time t is denoted as xxx(t ). Throughout this paper, we will often
leave the time t implicit. The Kronecker delta function with ar-
guments x, x′ is written as δx,x′ and Dx(p||q) = ∑

x p(x) ln p(x)
q(x)

is the Kullback-Leibler (KL) divergence between distributions
p and q, also known as the relative entropy [26]. When the KL
divergence is also averaged over apparatuses, we denote it as
Dx,α (p||q) = ∫

dPα
∑

x p(x|α) ln p(x|α)
q(x|α) .

Throughout this paper, capital letters indicate random vari-
ables that are averaged over, while lowercase letters indicate
specific values of such random variables. In addition, we use
bold letters for any variable that is dependent on a trajectory
xxx, even implicitly.

A. Instance-level, trajectory-level, and ensemble-level quantities

A generic function yt (x) depending on state x (and possibly
on time t) is called an instance-level value. Instance-level
values are denoted by lowercase letters. Given a distribution
over the states pt (x), we write

Yt := 〈yt 〉 =
∫

dx pt (x)yt (x) (4)

for the expectation of the instance value yt (x) under a dis-
tribution pt (x). We refer to such expected values specified
by a particular t as ensemble values, and denote them in
uppercase letters. Also, we will often leave both the distri-
bution and the time t implicit when they are obvious from
context.

We refer to quantities specified in terms of a sequence xxx of
instance values over a time interval [t0, t] as trajectory-level,
typically denoted as yyy[t0,t](xxx). When the initial time t0 is fixed,
we use only yyyt (xxx). Trajectories of values are denoted by bold
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lowercase letters, with an index t indicating the ending time
of that trajectory. Given a distribution over trajectories P(xxx),
we denote the expected value of an associated sequence as the
ensemble(-trajectory) value

YYY t := 〈yyyt 〉 =
∫ t

t0

Dxxx P(xxx)yyyt (xxx), (5)

where Dxxx denotes the path integration over all trajectories.

B. Brief review of stochastic thermodynamics

We now quickly review conventional stochastic ther-
modynamics, in which there is no uncertainty about the
thermodynamic parameters [1,2,27]. It is important that the
reader bear in mind that there is an apparatus specification
α throughout this review; it is just implicit. Accordingly, in
the following part of the paper, we will often invoke the
equations in this section—modified so that that specification
of α is made explicit. For example, we will do this to form an
α average of both sides of equations involving thermodynamic
quantities. Note in particular that this convention means that
any expressions like P(x) in this section in fact mean P(x | α),
just with α implicit.

Conventional stochastic thermodynamics considers a sys-
tem with a specified Hamiltonian that is coupled to N
independent infinite thermal reservoirs, which have associated
inverse temperatures βν . This coupling between the systems
and the reservoirs results in the system evolving according
to a CTMC. In general, both the Hamiltonian and the rate
matrix of the CTMC can change in time. We use the term
protocol to refer to the time-sequence of energy functions and
rate matrices, writing it as (u, K). However, as described in
Appendix B, the physical requirement of microreversibility
puts constraints on how the rate matrix of the CTMC at any
given time and the Hamiltonian at that time can be related.
These constraints are functions of the thermodynamic param-
eters of the process, e.g., the temperatures of the thermal
reservoirs.

Below we summarize some of the relevant quantities that
are central to stochastic thermodynamics. A more extensive
review can be found in Appendix B. Readers already com-
fortable with stochastic thermodynamics can skip to the next
section.

1. Ensemble thermodynamics

The ensemble internal energy is written as Ut := 〈ut 〉 =∑
x pt (x)ut (x). The system exchanges energy with each of the

reservoirs (e.g., via kinetic molecular collisions). In addition,
it might be that the system is able to exchange particles with
some of the reservoirs. (This extension is discussed in Ap-
pendix B and used later in one of the examples.) The first law
of thermodynamics can be formulated as


Ut = QQQt +WWW t , (6)

where the change in internal energy, the total heat flow into
the system during the interval [ti, t], and the total work on the
system during that interval, are given respectively by


Ut := Ut − Uti , (7)

QQQt :=
∫ t

ti

dt ′Q̇QQt ′ =
∫ t

ti

dt ′ ∑
x

ṗt ′ (x)ut ′ (x), (8)

WWW t :=
∫ t

ti

dt ′ẆWW t ′ =
∫ t

ti

dt ′ ∑
x

pt ′ (x)u̇t ′ (x). (9)

Furthermore, the heat flow rate Q̇QQt can be decomposed into
heat flows in from the separate reservoirs, i.e., direct energy
flows in from the separate reservoirs: Q̇QQt = ∑

ν Q̇QQ
ν

t .
The entropy rate can be decomposed as


St = ���t + EEE t , (10)

where 
St = St − Sti , ���t is the entropy production (EP) and
EEE t is the entropy flow (EF). The second law of thermodynamics
is enforced by the fact that for any rate matrix, EP rate is non-
negative, i.e., �̇��t � 0 and so ���t � 0.

When LDB holds, the EF rate can be expressed in terms of
thermodynamic entropy, i.e.,

ĖEE t =
∑

ν

βνQ̇QQ
ν

t . (11)

In this case, Eq. (10) means that

���t = 
St − βQQQt (12)

if there is only a single heat bath, with inverse temperature β.
By Eq. (6), this can be written as

���t

β
= WWW t −

(

Ut − 
St

β

)
= WWW t − 
Ft , (13)

where 
Ft is the difference in the nonequilibrium Helmholtz
free energy between time 0 and time t . In the rest of this
section we investigate further this special case where there is
a single thermal reservoir, with no particle exchange.

The entropy production rate can be therefore written as

�̇��t = Ṡt − βQ̇QQt (14)

�̇��t =
∑

ν

∑
x,x′

Kν
x,x′ p(x′) ln

Kν
x,x′ pt (x′)

Kν
x′,x pt (x)

. (15)

Suppose we wish to minimize the work expended over
all possible protocols acting on the system, so long as they
take some specified initial pair of an energy function and
distribution, (uti , pti ), to some specified ending pair, (ut f , pt f ).
For those two specified pairs, 
Ut f is fixed, independent of the
precise protocol. Moreover, if the trajectory of time-varying
rate matrices, KKK , is fixed, then P(xt f | xti ) is fixed, which means
that pt f is a (linear) function of pti , i.e., KKK : pti → pt f . So by
Eq. (6) the minimal work that occurs during [ti, t f ] subject to
the constraint of our given two pairs is

WWW min
(
pti , pt f , uti , ut f

)
= 
Ut f − min

u′:u′
ti
=uti ,u

′
ti
=uti

min
K′:pti →pt f

QQQ(u′,K′ )
t f

(
pti

)
, (16)

where QQQ(u′,K′ )
t f

(pti ) is the total heat over the interval [ti, t f ]
flowing into the system if it follows protocol (u′, K′) starting
from initial distribution pti . There are two implicit restrictions
on the set of KKK that the second min in Eq. (16) runs over.
First, we are only concerned with KKK ′ that send pti → pt f .
Second, if we require thermodynamic interpretability, then
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that second min only runs over KKK ′ that LDB at all times for
the uuu′ determined in the first min.

Since pti , pt f are fixed, so is 
St f . Therefore by the second
law, the double-minimum in Eq. (16) is just 
St f /β. Plugging
in, the minimal work over all protocols that meet our con-
straints is

WWW min
(
pti , pt f , uti , ut f

) = 
Ut f − 
St f /β (17)

= 
Ft f . (18)

Therefore the quantity on the right-hand side of Eq. (13) is
the difference between the actual work expended to go from
(uti , pti ) to (ut f , pt f ) and the minimal possible. Accordingly,
that quantity is called the dissipated work.5

Next, note that due to the first law, dissipated work can
be rewritten as a function of the initial distribution which is
parameterized by the protocol:

WWW diss
(
pti , pt f , uti , ut f

) =

SKKK

t f

(
pti

)
β

− QQQ(u,K)
t f

(
pti

)
(19)

:= WWW (u,K)
diss

(
pti

)
, (20)

where we use the fact that the specified trajectory of rate
matrices takes pti → pt f . (Note that the ending distribution
pt f changes if we change pti while K is fixed, i.e., two of the
arguments of the function WWW min in Eq. (18) change.) In this
way Eq. (13) connects a purely thermodynamic quantity to a
purely dynamic quantity, defined in terms of rate matrices.

As conventional, given any protocol (uuu,KKK ), we define the
associated prior initial distribution pti as the one that min-
imizes the function in Eq. (20) for that protocol. We can
consider the directional derivative of that function, evaluated
for any initial distribution, in the direction of any other initial
distribution. In particular, that directional derivative of the
dissipated work must equal 0 when evaluated at the prior
initial distribution qti (x) in the direction of any other initial
distribution, pti (x). This can be used to show that

βWWW diss
(
pti

) = [
D

(
pti

∣∣∣∣qti

) − D
(
pt f

∣∣∣∣qt f

)] + ���
(
qti

)
(21)

where D denotes the KL divergence, and the distributions
pti (x) and qti (x) evolve into the distributions pt f (x) and qt f (x),
respectively.6

The function ���(qti ) in Eq. (21) is called the residual EP.
The thermodynamic process implemented by a given appara-
tus is thermodynamically reversible iff the residual EP of the
process is zero, and the initial distribution happens to equal
the prior of the process.

The drop in KL divergence in Eq. (21) is called the mis-
match cost of running the process with initial distribution
pti . By the data-processing inequality for KL divergence, the

5Note that the initial energy function, initial distribution, ending
energy function, and ending distribution are treated specially in the
definition of dissipated work—they are not allowed to vary when
determining the “minimal” work.

6Strictly speaking, Eq. (21) assumes that the conditional distri-
bution P(x(t f )|x(ti )) has a single “island”; the extension of the
analysis here to the case of multiple islands is straight-forward. See
Refs. [18–21].

mismatch cost is nonzero, and by inspection, it equals zero
if the initial distribution equals the prior. So mismatch cost
is the extra EP generated by running the process with initial
distribution pti rather than the prior qti , in addition to the
residual EP which would be generated if the process were run
with the prior as the initial distribution.

Similar considerations hold for the case of multiple reser-
voirs. However, in that case the formula on the right-hand side
of Eq. (21) does not give the difference between the amount of
work actually expended and the minimal possible. The reason
is that when there are multiple baths, the minimal heat flow
is no longer proportional to the change in entropy. (Indeed,
in an NESS, the change in entropy is zero, even though the
minimal heat flow is not.) Instead, in this case the formula
on the right-hand side of Eq. (21) gives the the difference
between the entropy change of the system and the sum over
the reservoirs v of the product βvQQQt f (pti ). (See [28].) This
difference is just the entropy production (and is sometimes
called “dissipated heat” in the literature).

2. Trajectory thermodynamics

The trajectory internal energy is written as uuut (xxx). The first
law of thermodynamics on the trajectory level for any time t
is

d

dt
uuut (xxx) = q̇qqt (xxx) + ẇwwt (xxx), (22)

where q̇qqt (xxx) = ∑
ν q̇qqν

t (xxx) is the trajectory heat and ẇwwt (xxx) =∑
x δx,xxx(t )u̇t (x) trajectory work. Trajectory entropy is defined

as st (xxx) := − ln pt (xxx(t )). The time derivative of entropy can
be decomposed as

d

dt
ssst (xxx) = σ̇σσ t (xxx) + ε̇εεt (xxx), (23)

where σ̇σσ t (xxx) is the trajectory EP rate and ε̇εεt (xxx) is the trajectory
EF rate.

It is straightforward to verify that by averaging these
trajectory-level quantities over all trajectories, we recover
the ensemble-level versions, i.e., 〈q̇qqν

t 〉 = Q̇QQ
ν

t , 〈ε̇εεt 〉 = ĖEE t , and
〈σ̇σσ t 〉 = �̇��t . Furthermore, due to LDB, trajectory EP can be
expressed as

σσσ (xxx) = ln
PPP(xxx)

PPP†(xxx†)
(24)

where PPP(xxx) is the probability of observing trajectory xxx
and PPP†(xxx†) is the probability of observing the time-
reversed trajectory xxx†(t ) := xxx(t f − t ) under time-reversed
protocol.

Next, defining P(σ ) := ∫
DxxxP(xxx)δ(σ − σσσ (xxx)), it is

straightforward to show that the trajectory EP σ fulfills the
detailed fluctuation theorem,

P(σ )

P†(−σ )
= eσ , (25)

where P† denotes the probability under the time-reversed
protocol and σ is the random variable given the value of
EP of a randomly generated trajectory [2]. Finally, ensemble
EP can be expressed as Kullback-Leibler divergence between
probabilities of forward and reversed trajectories [29]

��� = Dxxx(PPP(xxx)||PPP†(xxx†)), (26)
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where Dxxx denotes that the KL divergence is integrated over all
trajectories xxx.

IV. EFFECTIVE THERMODYNAMICS

As described in the introduction, we are interested in how
the conventional laws of stochastic thermodynamics concern-
ing the evolution of a system change when there is uncertainty
about the parameters of that evolution, but we assume LDB
holds, whatever those parameters are.

In Sec. IV A, we present our notation for effective
quantities. which are defined by averaging over different appa-
ratuses. In Sec. IV B, we use this notation to start to investigate
effective ensemble-level stochastic thermodynamics.

We present this initial investigation at a high level, but
to guide intuition the reader can think of the particular case
where the transition rates of the systems are not known
with infinite precision. Such uncertainty must arise when-
ever we do not know the exact number of heat reservoirs,
their temperatures/and or chemical potentials. However, un-
certainty can even arise when we do know those quantities
exactly, and even when we impose LDB. This is because even
if we knew those quantities to infinite precision, LDB does
not uniquely fix the rate matrix K , and so there can still be
uncertainty concerning K .

We illustrate effective ensemble-level stochastic thermody-
namics in Sec. IV C, for the example of erasure of fermionic
bits. We start that illustration with a brief review of the case
where the system is coupled to a heat bath with certain temper-
ature. Then we continue with the generalized case when the
system is coupled to a heat bath with uncertain temperature.

A. Effective quantities

Suppose we are given some generic quantity Y α , which
depends on the apparatus α, and which may also depend on
time and/or the random trajectory through the system’s state
space (where any of the dependencies may be implicit). The
probability distribution over possible states of the system at
time t is denoted as pt (x|α). Trajectory probability is denoted
as P(xxx | α).

We define the effective value of Y as its expectation over α,
and write it using an overbar as

Y :=
∫

dPα Y α. (27)

In the sequel, we require that all quantities varying with α that
Y α depends on are explicit in the integrand in Eq. (27). So,
for example, if Y α depends on the initial probability distri-
bution over states, that distribution occurs in the integrand as
pt0 (x|α).

As an important special case, the effective state probability
at time t is

pt (x) =
∫

dPα pt (x|α) (28)

=
∫

dPα pα
t (x), (29)

where we use the shorthand pα
t (x) := pt (x|α). We also write

the effective trajectory probability up to time t

Pt (xxx) =
∫

dPα Pt (xxx | α) (30)

Since the apparatus is fixed throughout [ti, t f ] once it is
sampled, the joint dynamics over X × A is given by the master
equation,

ṗt (x) =
∑

x′

∫
dPα′

Kαα′
xx′ pα′

t (x′), (31)

where Kαα′
xx′ = Kα

xx′ δ(α′, α). Averaging both sides of Eq. (31)
over α and interchanging the derivative and average on the
left-hand side, we get

ṗt (x) =
∑

x′
Kxx′ pt (x

′), (32)

where

Kxx′ :=
∫

dPα Kαα′
xx′ pt (x

′|α′). (33)

So the dynamics over the system considered by itself
is simply the dynamics of a coarse-graining of the joint
system-apparatus. Since the transition rate matrix of that
coarse-grained dynamics depends on the probability distri-
bution, the effective dynamics is not described by a linear
Markov master equation. (Note that these considerations con-
cerning whether the dynamics is linear Markovian also apply
to scenario II, the phenomenological scenario.)

B. Effective ensemble stochastic thermodynamics

We writeWWW α for the ensemble energetic work expended for
a specific apparatus α as it sends pα

ti to pα
t f

. By conservation of
energy

WWW α = 
U α − QQQα (34)

where the change in the internal energy for each apparatus α

during the process is


U α =
∑

x

[
pα

t f
(x)uα

t f
(x) − pα

ti (x)uα
ti (x)

]
. (35)

In addition, by the second law, for any specific apparatus α,∑
ν

βν,αQQQν,α � S
(
pα

t f

) − S
(
pα

ti

)
. (36)

These quantities are given by integrating over time and
fixing a specific apparatus. If we instead average over appa-
ratuses and fix a specific time, we get the formulas for the
effective ensemble energy and effective ensemble entropy at
time t :

Ut =
∫

dPα
∑

x

pα
t (x)uα

t (x), (37)

St = −
∫

dPα
∑

x

pα
t (x) ln pα

t (x). (38)

If we average over both time and apparatuses, then plug-
ging into the equations in Sec. III B 1, we get the formulas for
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the effective work on the system and heat transferred to the
reservoir(s) up to time t :

WWW t =
∫

dPα

∫ t

ti

dt ′ ∑
x

pα
t ′ (x)u̇α

t ′ (x), (39)

QQQt =
∫

dPα

∫ t

ti

dt ′ ∑
x

ṗα
t ′ (x)uα

t ′ (x). (40)

In addition, the effective ensemble EF rate is

ĖEE t =
∫

dPα
∑

ν

βα,νQ̇QQ
α,ν

t (41)

=
∫

dPα
∑
xx′ν

Kα,ν
x,x′ pα

t (x′) ln
Kα,ν

x,x′

Kα,ν
x′,x

(42)

and EEE t = ∫ t
ti

dt ĖEE t . Similarly, the effective ensemble EP is

���t = ∫ t
ti

dt�̇��t , where the effective ensemble EP rate is

�̇��t =
∫

dPα�̇��
α

t � 0 (43)

with ���α
t given by evaluating Eq. (14) with the apparatus

parameter α made explicit. (Recall the discussion at the very
beginning of Sec. III B about “putting back in explicit depen-
dence on α”.)

Plugging in the expression for �̇��
α

t in terms of rate matrices,
we confirm that

dS

dt
= ĖEE t + �̇��t , (44)

where

�̇��t =
∫

dPα
∑
xx′ν

Kα,ν
x,x′ pα

t (x′) ln
Kα,ν

x,x′ pt (x′)
Kα,ν

x′,x pt (x)
. (45)

Combining these definitions, we can write the first and sec-
ond law of thermodynamics for effective ensemble quantities
as


Ut = QQQt +WWW t , (46)


St = ���t + EEE t , (47)

respectively, simply by averaging the first and second laws

over all α. Note in particular that since �̇��t � 0, the total ef-
fective ensemble EP generated in the interval is non-negative.
This is why Eq. (47) can be identified as the effective sce-
nario’s second law.

Unfortunately though, Eq. (41) shows that in general the
effective ensemble EF rate cannot be expressed in terms of
the expected effective heat flows for the separate reservoirs,

Q̇QQν
t = ∫

dPαQ̇QQ
ν,α

t . This is despite our assumption that LDB
holds for each apparatus separately. In fact, this discrepancy
between the two rates would exist even if we knew with
certainty that there was only one reservoir, i.e., that N = 1.
This is because the discrepancy reflects the fact that there can
be statistical coupling between βα (and Kα,ν and therefore)
Q̇QQ

α

t , depending on the precise form of the uncertainty over
α. This discrepancy means that the time-derivative of the
effective ensemble entropy is not necessarily lower-bounded
by the ensemble effective heat flow rate. So the version of the

effective scenario’s second law of thermodynamics, Eq. (47)
is not as consequential as the standard version in which there
is no uncertainty about α.

C. Example: bit erasure of information stored in fermionic
bits with uncertain temperature

We now illustrate how environment uncertainty affects the
design of an experimenter’s protocol as well as the associated
EP for the effective scenario, using the example of bit erasure
of a fermionic bit in finite time [30]. First, we review the
analysis when there is no uncertainty about temperature. Then
we extend that analysis by introducing uncertainty about the
temperature of the single heat bath, and therefore (in order to
enforce LDB) in the trajectories of the rate matrices and so of
the energy function.

1. Bit erasure of information stored in fermionic bits

Our system has two states, labeled 0 and 1. The proba-
bilities of those two states are denoted as pt (1) ≡ p(t ) and
pt (0) ≡ 1 − p(t ), respectively. In this section, we will denote
the dependence of a generic quantity x on time t as x(t ) (rather
than xt ) to clarify the reasoning. In particular, the chemical
potential of an electron in the quantum dot is written as
μ(t ). (Recall that in Appendix B, we discuss the extension
of stochastic thermodynamics to include chemical potentials.)

For simplicity, we will only consider variations in the tra-
jectory of energy functions across t ∈ [ti, t f ], with a fixed map
specifying the rate matrix that goes with each possible energy
function. Specifically, we set the rate matrix at all times t to

Kβ (t ) =
(

Kβ

00(t ) Kβ

01(t )

Kβ

10(t ) Kβ

11(t )

)
=

(−kβ (t ) 1 − kβ (t )
kβ (t ) −(1 − kβ (t ))

)
,

(48)
where

kβ (t ) = 1

1 + exp(βh(t ))
(49)

and we use the shorthand h(t ) = u(t ) − μ(t )n1 for the dif-
ference between the energy and the chemical potential times
n1 = 1. Since there is no remaining freedom to vary the
trajectory of rate matrices across t ∈ [ti, t f ] once we specify
a trajectory of energy functions across t ∈ [ti, t f ], we will
sometimes refer to that trajectory of energy functions as a
“control protocol”.

Given Eq. (48), we can write

Kβ

10(t )(1 − pβ (t )) − Kβ

01(t )pβ (t ) = kβ (t ) − pβ (t ) (50)

and so

ṗβ (t ) = kβ (t ) − pβ (t ). (51)

The solution is

pβ (t ) = e−t

(
p(ti ) +

∫ t

ti

dτeτ kβ (τ )

)
. (52)

From now on, for simplicity, we take ti = 0. Consider a
special type of control protocol chosen so that

kβ (t ) ≡ k(t ) = (1 − t/t f )p(0) + t/t f δ (53)
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for all t , arbitrary δ > 0. Note that the right-hand side is inde-
pendent of β. Plugging in to Eq. (49), the associated control
protocol is

hβ (t ) = 1

β
ln

(
1 + p(0)t + tδ

p(0)(t − 1) − tδ

)
. (54)

Similarly, plugging in to Eq. (52) shows that

p(t ) = e−t (p(0)(2et − tet − 1) + δ(1 + tet − et )). (55)

Note that despite the notation, this quantity does not depend
on the temperature. Finally, the EP is

���β ≡ ��� =
∫ t

0
dτ ṗ(τ )

(
ln

1 − p(τ )

p(τ )
− βhβ (τ )

)

=
∫ t

0
dτ

[
p(t )(1 − k(t )) ln

(
p(t )(1 − k(t ))

(1 − p(t ))k(t )

)

+(1 − p(t ))k(t ) ln

(
(1 − p(t ))k(t )

p(t )(1 − k(t ))

)]
. (56)

Note that EP also does not depend on temperature, due to the
choice of the control protocol hβ (t ).

2. Bit erasure with temperature uncertainty

We now consider the variant of this bit erasure scenario
where the experimentalist does not know the temperature ex-
actly but instead has some distribution dPβ = p(β )dβ. We
suppose that the experimenter is in full control of the control
protocol, but that the same, single protocol will be used for all
apparatuses.

Averaging both sides of Eq. (52) gives the formula for the
evolution of the effective distribution:

p(t ) = e−t

(
p(ti ) +

∫ t

ti

dτeτ k(τ )

)
(57)

with

k(t ) =
∫

dβp(β )
1

1 + exp(βh∗(t ))
, (58)

where h∗(t ) is the protocol chosen by the experimentalist to be
used for all apparatuses. Note that this is the same evolution
one would get by first averaging both sides of Eq. (51),

ṗ(t ) = k(t ) − p(t ) (59)

and then solving for p(t ). This reflects the fact that in this
particular situation, where Eq. (50) holds, we can write
K (t )p(t ) = K (t ) · p(t ), and so the dynamics of the effective
distribution is Markovian (in contrast with the general case).

Similarly to the no-uncertainty analysis, we assume the
transition rate matrix has the form

k(t ) = (1 − t/t f )p(0) + t/t f δ (60)

To this end, we should find a control protocol (independent of
β) such that Eq. (60) equals Eq. (55).

Next, define the function

�(h∗) :=
∫

dβp(β )
1

1 + exp(βh∗)
. (61)

Thus the control protocol h�(t ) can be obtained by solving the
equation for the transition rate k̄(t ) = �(h∗(t )). By solving

the equation, we obtain

h∗(t ) = �−1((1 − t )p(0) + tδ). (62)

Note that h∗(t ) is not the β-average of hβ (t ) which can be
expressed as h̄(t ) = hβ̃ (t ), where β̃ = (

∫
dβPβ1/β )−1 is the

harmonic mean of beta (corresponding to the arithmetic mean
of temperature).

In the actual experiment, however, the system is coupled
to a bath with the certain temperature β and therefore the
transition rate is

kβ

h∗ (t ) = 1

1 + exp(βh∗(t ))
. (63)

Thus the probability distribution of a system coupled to a heat
reservoir with temperature β using the protocol h∗, can be
obtained from the equation

ṗβ

h∗ (t ) = kβ

h∗ (t ) − pβ

h∗ (t ). (64)

As an illustration, consider the special case where there are
two possible temperatures. The first temperature T1 = 1/β1

occurs with probability P(T1) and the second temperature
T2 = 1/β2 occurs with probability P(T2) = 1 − P(T1). Thus
the distribution P(T ) can be expressed as

P(T ) = P(T1)δT T1 + P(T2)δT T2 , (65)

and therefore

k(t ) = P(T1)

1 + exp
( h∗(t )

T1

) + P(T2)

1 + exp
( h∗(t )

T2

) . (66)

As usual, the control protocol can be obtained by solving
Eq. (62). Moreover, since that protocol is independent of T ,
by definition the effective ensemble entropy production is

�̄��h∗ = P(T1)���T1
h∗ + P(T2)���T2

h∗ . (67)

In Fig. 3, we plot the control protocol h(t ), probability
distribution p1(t ), and entropy production ���(t ) for for this
case of bit erasure with uncertainty about which of two pos-
sible temperatures the bath has. We assume parameters T1 =
1, T2 = 10, t f = 10, and δ = 0.1, and take P(T1) = P(T2) =
1/2.

In the top-right panel of Fig. 3, we plot h∗(t ) along with
the control protocols hT (t ) for the two cases where there is
no temperature uncertainty, for the two possible values of
T = {T1, T2}. The expected distribution p̄(t ) is displayed in
the bottom-left panel, along with the two distributions pT

h∗
which could actually occur in the experiment, when the ex-
perimenter fixes the protocol to h∗(t ) and the temperature of
the bath is one of T = {T1, T2}. Finally, we compare the total
EP for the case of certain temperature ���T (t ) (which does
not vary with T ), with the case of total EP for the case of
uncertain temperature given by ���h∗ in the bottom-right panel
of Fig. 3. Despite the fact that p(t ) coincides with p̄(t ), the
effective ensemble EP increases to the case of EP for the case
of a certain temperature. For comparison, we depict ���T

h∗ for
T = {T1, T2}.

The main reason why ���h∗ is higher than ��� is that for
the situation when T1 is chosen, the protocol h∗ forces the
distribution pT1

h� (t ) to decrease much below p(t ), which on one
hand makes the bit erasure more efficient (the final probability
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FIG. 3. Bit erasure of a fermionic bit with uncertain temperature. The design of the experiment is depicted in the top-left panel. For each
site, the bit is coupled to one of the metallic leads with different temperatures T1 = 1 and T2 = 10 with equal probability. The control protocol
for each temperature and for the case of uncertain temperature is depicted in the top-right panel. The actual probability distribution for a given
temperature and control protocol is depicted on the bottom-right panel. The entropy production for the case of a certain temperature as well as
an uncertain temperature is depicted in the bottom-right panel.

distribution is closer to (1,0)), but one has to pay much more
dissipated work and consequently entropy production ���

T1
h∗ to

get the distribution closer to the ideal bit erasure. This work
is not compensated in the other case when the temperature is
equal to T2. We see that while the entropy production ���

T2
h∗ is

lower than ���, this does not compensate enough the entropy
production ���

T1
h∗ and the average entropy production ���h∗ is

larger than � in the case when the temperature is certain.
Let us finally mention that this is a similar situation hidden
Markov pump [31] when the actual EP (here corresponding
to ��� calculated from the complete microscopic structure of
the hidden pump in lower than when the entropy is calculated
for a coarse-grained pump. That is, the experimenter’s knowl-
edge of the setup affects the obtained EP. While in the case
of Ref. [31] the experimenter lacks the precise information
about the system, there the experimenter lacks the precise
knowledge of the heat bath and its temperature.

V. THE TWO TYPES OF EFFECTIVE DISSIPATED WORK

In much of the rest of this paper, we focus on the case of
a single bath. Specifically, we investigate how the properties
of dissipated work change from those in Eq. (20) when we
fix that number of baths but introduce uncertainty in the other
parameters.

It turns out that there (at least) two natural ways to extend
the reasoning that results in Eq. (20) to this case where the
number of baths is fixed to one but there is uncertainty about
the other parameters defining the apparatus. These two exten-

sions reflect two different ways of defining “minimal possible
effective dissipated work.”

A. The adapted and unadapted scenarios

Write α̂t := (uα
t , Kα

t ) to mean the components of α that
specify the protocol, evaluated at time t . Similarly write αt
to mean all components of αt other than those that spec-
ify the protocol, e.g., the initial probability distribution, the
temperature, chemical potentials, and other thermodynamic
forces, etc. Thus αt can be decomposed as αt = (α̂t , αt ).
Recall though that for simplicity we are assuming that all
nonprotocol components of α are time-independent, so we can
simplify this to αt = (α̂t , α).

In the sequel, when we are considering the entire trajectory
over times t of the values (uα

t , Kα
t ) specified by a particular α,

we write (uα, Kα ), in keeping with our convention that bold
characters indicate trajectories. Similarly, we write α̂ with-
out a subscript to mean the entire trajectory of the protocol,
(uα, Kα ).

In the first approach to extending the definition of the min-
imal possible effective work, we define it as the least average
work that could be expended if the energy component of the
protocol, u, were fully fixed in an explicitly known manner by
the experimentalist, before the other uncertain parameters, α,
were (randomly) determined. To make sure that uncertainty
in parameters like the temperature do not cause LDB to be
violated even though the parameters other than uα are set
independently of uα , we must allow the rate matrix trajectories
Kα to be statistically dependent on both uα and α. So in this
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approach, we restrict attention to measures over α of the form

dPα = dPuα

dPαdP(Kα |uα,α) (68)

with no statistical coupling between the energy component of
the the protocol and the nonprotocol parameters defining the
apparatus. [It is the term dP(Kα |uα,α) in Eq. (68) that allows us
to ensure that LDB holds].

We use the term unadapted to refer to measures of this
form. For unadapted measures, the minimal possible work is

W unad
min = min

uα

∫
dPαdP(Kα |uα,α)(
U α̂,α − QQQα̂,α ). (69)

We also use the term “unadapted” to refer specifically to the
kind of optimal protocol given in Eq. (69), and to the associ-
ated definitions of least possible (effective expected) work and
of dissipated (effective expected) work. In particular, the un-
adapted dissipated work is the amount of work that could have
been saved if the experimentalist has intervened to change
the marginal distribution dPα̂ , leaving all other aspects of
the experimental setting the same. (An example of unadapted
dissipated work is presented in Sec. IV C.)

In the second approach, we also set α by random sampling
of dPα . However, unlike in the unadapted scenario, in this sec-
ond approach do not compare the actual work to the best that
could have been achieved if the experimentalist had changed
dPuα

to be some delta function, independent of α. Rather
we consider the best possible work that could have occurred
“by luck,” if there were the best possible statistical coupling
between the nonprotocol parameters and uα (along with (Kα ,
if that could be beneficial), again leaving dPα unchanged.
Practically, this “luck” may arise by the experimentalist being
able to measure α after it is formed by sampling dPα , and
use that measured value to set α̂, subject to LDB. However,
we do not require that the experimentalist have this ability in
our definition of this approach—it is a a best-case approach,
considering the best of all possible statistical couplings, even
those the experimentalist cannot take credit for.

More formally, in this second approach we replace the
distribution in Eq. (68) with

dPα = dP(uα |α)dPαdP(Kα |uα,α) (70)

= dPαdP(Kα,uα |α) (71)

= dPαdPα̂|α. (72)

We then define the “least possible” work for a given dPα to
be the minimum of the expected work as one varies over all
conditional measures Pα̂|α (subject to the constraint of LDB).

We refer to this measure over apparatuses as the adapted
statistical coupling between the protocol and the other pa-
rameters specifying the apparatus that could have occurred,
counterfactually, for the specified (fixed) marginal over those
other parameters. We also refer to the associated minimal
effective ensemble work as the adapted minimal (effective
ensemble) work,

W ad
min =

∫
dPα min

α̂
(
U α̂,α − QQQα̂,α ) (73)

and refer to the associated dissipated effective ensemble work
as the adapted (effective ensemble) dissipated work.

Note that we can self-consistently define the adapted dissi-
pated work for a single apparatus α,

W α̂,α

diss := W α̂,α − min
α̂′

(
U α̂′,α − QQQα̂′,α ) (74)

in the sense that the adapted effective dissipated work is the
α-average of the adapted dissipated work for a single α. The
analogous property does not hold for the unadapted dissipated
work in general, since the min and the integral in Eq. (69) will
typically not commute. (The minimization defining adaptive
dissipated work occurs inside the average over α, whereas
it occurs outside that average for the unadapted dissipated
work.) Moreover, the set of elements being minimized over
in the definition of adapted dissipated work contains the set of
elements being minimized over in the definition of unadapted
dissipated work as a proper subset.

As a result of these differences in the minimizations defin-
ing the two scenarios,

min
uα

∫
dPαdP(Kα |uα,α)(
U α̂,α − QQQα̂,α )

�
∫

dPαdP(Kα |uα,α) min
uα

(
U α̂,α − QQQα̂,α ) (75)

�
∫

dPα min
uα,Kα

(
U α̂,α − QQQα̂,α ). (76)

So the adapted dissipated work is upper-bounded by the un-
adapted dissipated work.

B. Thermodynamic meaning of effective EP in a specific
adapted scenario

We now describe a relationship between effective dis-
sipated work and effective ensemble EP, to provide a
thermodynamic interpretation of effective ensemble EP. In
this section, we focus on the adapted effective dissipated work
in particular.

For simplicity, suppose that all the apparatuses α with
nonzero probability take the same initial distribution pti (x) to
the same ending distribution pt f (x), i.e., for all α with nonzero
probability, pα

ti (x) = pti (x) and pα
t f

(x) = pt f (x). This means
that 
Sα is independent of α.

We similarly assume that the initial and final energy func-
tions are independent of α. By Eq. (35), these two assumptions
mean that 
U α is independent of α, and so in particular it
is independent of the protocol. So by Eq. (73), the adapted
minimal effective ensemble work is


U −
∫

dPαmin
α̂

QQQα̂,α (77)

Also for simplicity, from now on we assume that each
reservoir for any specific apparatus α has the same temper-
ature, so that we can write βν,α = βα . Under this assumption
the second law reduces to the inequality(

S
(
pα

t f

) − S
(
pα

ti

))
βα

=
(
S
(
pt f

) − S
(
pti

))
βα

(78)

� QQQα. (79)

In general, the minimum of Eq. (77) will occur when the
protocol α̂ accompanying the rest of the apparatus α saturates
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the second law. As a result, the adapted minimal work is


U −
∫

dPα 
Sα

βα
= 
U − 
S

∫
dPα (βα )−1 (80)

= 
U − 
Sβ−1. (81)

Plugging into Eq. (46) and combining, the adapted dissipated
work is

WWW diss = 
S(β−1) − QQQ. (82)

On the other hand, multiplying both sides of Eq. (74) by βα

before averaging over α, then again using the fact that 
U α is
independent of α, we get

βWWW diss =
∫

dPα βα[WWW α − 
U ] +
∫

dPαβα 
S

βα
(83)

= 
S − βQQQ = ���, (84)

where the last line uses Eqs. (41) and (47). Plugging Eq. (84)
into Eq. (82) and rearranging gives

��� =
(

WWW diss + QQQ

(β−1)

)
− βQQQ. (85)

So in general, in this setting where all apparatuses map
pti (x) to pt f (x) and 
U α is independent of α, the effective
ensemble EP is not proportional to the effective (adapted) dis-
sipated work, in contrast to the no-uncertainty case. Instead it
equals the effective inverse-temperature-weighted dissipated
work [Eq. (84)], or alternatively it is an affine function of
the effective dissipated work [Eq. (85)]. Note though that if
β is fixed, independent of α, then the relationship between
adapted effective dissipated work and effective EP mirrors
their relationship in the no-uncertainty case:

βWWW diss = ���. (86)

[Compare to Eq. (84).]
As a variant of this scenario, suppose instead that we still

have a single reservoir, one which does not exchange par-
ticles with the system, and also still suppose that the other
thermodynamic parameters can vary with α. However, now
suppose that both pα

ti and pα
t f

can also vary with α, unlike
before. To have the definition of minimal adapted work still
be meaningful in this situation, assume that the protocol can-
not change either of those two distributions, although it can
change intermediate distributions. Formally, this means that
the support of P(α̂|α) is restricted so that for all α, no α̂

is possible which affects the initial and final distributions.
(If changing the protocol were allowed to change the initial
and/or final distributions, then in general the minimal adapted
work would be arbitrarily negative.) Under this assumption
changes to α̂ without any changes to α do not change the drop
in entropy, 
Sα̂,α . Nor do they change 
U α , which is still
independent of α. However, now changes to α will change the

drop in entropy. In this case, Eq. (82) gets replaced by

WWW diss =
(


S

β

)
− QQQ. (87)

C. Mismatch cost and effective ensemble EP for a specific
unadapted scenario

A common setting in which we have uncertainty about
thermodynamic parameters is where we know everything
about the apparatus with complete certainty—the number of
reservoirs and their parameters, the paths followed by the
Hamiltonian and the rate matrix, etc.—except that we do not
know the initial distribution that is run with those parameters.
Concretely, this setting arises whenever we have a fixed phys-
ical apparatus that is run with a randomly generated initial
distribution. (So we are concerned with unadapted dissipated
work.) One common example is a computer that is used by
different users; each user implicitly fixes a distribution over
the inputs to the computer, i.e., fixes its the initial distribution
over the states of the computer. Other common examples are a
single cell floating in different environments, or a fixed digital
gate that can be positioned at different locations in a digital
circuit (and so have different distributions over the inputs it
receives from the rest of the circuit).

In this section, we illustrate effective ensemble EP for such
a setting. Note that this is an unadapted scenario; the protocol
does not change depending on the actual initial distribution,
but rather is pre-fixed. For simplicity, we assume a single
reservoir, and take β = 1.

In the situation under consideration, where we are certain
about the temperature of the process and the protocol, but not
the initial distribution, effective EP is just effective dissipated
work, up to a multiplicative factor of β. So we can average
Eq. (21) to get the effective dissipated work (and so effective
EP):

WWW diss =
∫

dPα
[
D

(
pα

ti

∣∣∣∣qα
ti

) − D
(
pα

t f

∣∣∣∣qα
t f

) + �α
(
qα

ti

)]
. (88)

In particular, the expected effective mismatch cost is∫
dPα

[
D

(
pα

ti

∣∣∣∣qα
ti

) − D
(
pα

t f

∣∣∣∣qα
t f

)]
=

∫
dPα

[
D

(
pα

ti

∣∣∣∣qα
ti

) − D
(
Rα pα

ti

∣∣∣∣Rαqα
ti

)]
, (89)

where Rα is the transition matrix of the apparatus α (implicitly
specified by the fixed trajectory of rate matrices), with entries
Pα (x(t f ) | x(ti )).

This effective mismatch cost is strictly positive in general
since the integrand is always non-negative and only equals
zero in degenerate cases. In particular, in the situation con-
sidered in this section where α only runs over the initial
distribution, the rate matrix trajectory is independent of α,
and therefore so is the prior. So the effective mismatch cost
reduces to ∫

dPα
[
D

(
pα

ti

∣∣∣∣qti

) − D
(
Rpα

ti

∣∣∣∣Rqti

)]
. (90)

As an illustration, suppose that R takes all initial distribu-
tions to the same ending distribution. So Rpα

ti = Rqti ∀α. As
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examples, R has this property in bit erasure, or in complete
relaxation of a system to its stationary state. For such an R,
the ending KL divergence is zero, no matter what pα

ti is. Since
the KL divergence is a convex function of its arguments, this
means that the prior that would minimize effective mismatch
cost is just the effective initial distribution, qti (x) = pti (x).

If we plug this into Eq. (90), we can evaluate the minimal
value of the contribution to effective dissipated work arising
from uncertainty about the initial distribution, if the protocol
just happened to result in a prior that minimizes that contri-
bution. Given that effective residual EP is non-negative, this
establishes that

WWW diss �
∫

dPαD
(
pα

ti

∣∣∣∣pti

) = DJS
({

pα
ti

}
, Pα

)
, (91)

where DJS ({pα
ti }, Pα ) denotes the Jensen-Shannon divergence

among the set of distributions {pα
ti } distributed according to

Pα . So minimal effective dissipated work is strictly positive, as
long as Pα puts nonzero probability mass on at least one dis-
tribution pα �= p. This provides a strengthened version of the
second law, applicable whenever there is uncertainty about the
initial distribution, and all initial distributions with nonzero
probability get mapped to the same final distribution.

VI. CONTROL PROTOCOLS IN A SPECIFIC
UNADAPTED SCENARIO

As discussed at the end of Sec. III B 1, along with Secs. V
and V B, in no-uncertainty stochastic thermodynamics, the
“dissipated work” is defined as the difference between two
amounts of work. The first is the actual work under a given
protocol that maps an initial distribution pti (x) to a final dis-
tribution pt f (x). The second is the least possible amount of
work that would be required to implement that map under any
(counterfactual) protocol, with all thermodynamic parameters
other than the protocol, left the same. One way to modify
this definition of dissipated work for the case of uncertain
thermodynamic parameters was investigated at the beginning
of Sec. V B. In that investigation, the initial and final dis-
tributions were both fixed, independent of the (nonprotocol
components of the) apparatus, which we write as α−(u,K ), or
just α for short. We also supposed that

P(α̂|α) := P(u, K|α−(u,K ) ) (92)

was optimized for extracting work, whether due to conscious
intervention by the experimentalist or just by chance. That
optimizing conditional distribution was called the adapted
protocol.

In the next section, we introduce a modification of that
scenario considered in Sec. V B. In the following section, we
analyze the dissipated work for that modified scenario.

A. Modifying the adapted scenario

First we list the modifications, and then discuss their for-
mal subtleties.

(1) One of the reasons for interest in dissipated work in
no-uncertainty stochastic thermodynamics is because often
the experimentalist can intervene in their experiment, in an
(essentially) arbitrary way, even if they do not know α. In the
language of Sec. V, this is an unadapted scenario. Formally, in

such a scenario the distribution over the set of counterfactual
protocols, P(α̂|α), is independent of α, since the experimen-
talist cannot choose the protocol they implement to match the
other uncertain parameters specifying the apparatus (by defi-
nition of their being uncertain about those other parameters).
Physically, this means that the experimentalist can set the
protocol—but can only do so before the other thermodynamic
parameters are generated by sampling the distribution over
apparatuses, in a way that is independent of the protocol they
have set.

(2) Often the experimentalist does not in fact have com-
plete freedom to vary the entire protocol arbitrarily. Often
they will be able to set the trajectory of the energy function
directly, but cannot directly set the trajectory of rate matrices.
Instead, for each different apparatus, LDB will constrain the
relationship between the rate matrix and the quantity that the
experimentalist can control, the energy function.

(3) Often, the experimentalist will want to only consider
the counterfactual situations that result in some pre-specified
final distribution, p∗(x). However, they will be uncertain about
the initial distribution, as well as other thermodynamic param-
eters that govern the dynamics, like the temperature.

Item 1 means that the protocol of the apparatus is statisti-
cally independent of the other thermodynamic parameters:

P(α) = P(α̂)P(α). (93)

To ensure item 2 while requiring that LDB holds for each
apparatus we make several simplifying assumptions. First,
we assume that there is only a single reservoir in all of the
apparatuses that have a nonzero probability of occurring and
that the reservoir only exchanges energy with the system,
not particles. So the only uncertainty parameter concerning
the reservoirs that is relevant to ensuring LDB is the sin-
gle number βα (which we will sometimes write as αβ). In
addition, we suppose that there is a single-valued function
M : (ut , β

α ) → Kα (t ), a function which the experimentalist
can set arbitrarily (subject to the constraint of LDB), and so
will know with zero uncertainty. So by “varying the set of
counterfactual protocols” we vary the marginal distribution
P(α̂u) and the function M, with

P
(
Kα (t ), α|uα

t

)
= δ

(
Kα (t ) − M

(
uα

t , αβ
))

P(α). (94)

In our analysis below, it will also be convenient to assume
that the support of dPαβ

has a finite minimum (so that there
is a maximal possible temperature), and to require that M be
differentiable with bounded derivative.

There are various formal challenges that arise in the anal-
ysis, depending on the precise definition of item 3. Here we
clarify item 3 to mean that averaged over apparatuses, the
final distribution is p∗, rather than requiring it have that form
for all α with nonzero probability. That then leaves the formal
challenge of ensuring that we can meet this item 3. If the
protocol is chosen so that at least one of the apparatuses is
noninfinitesimally off-equilibrium at t f , then if that apparatus
happens to occur, in general the state distribution pt (x) would
pass through p∗(x) transitionally at the time t f , after which
pt (x) would keep evolving to other distributions, no matter
what the protocol happens to be then. Indeed, in general, it
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may be that two apparatuses α, α′ both cause the state distri-
bution to pass through p∗(x) at t f , but result in different state
distributions at all other times, both before and after t f . This
is a complication that doesn’t occur in the conventional, no-
uncertainty scenario for the case of a single reservoir, where
the counterfactual protocol is completely arbitrary, and so the
optimal counterfactual protocol results in the system being at
thermal equilibrium at all times.

To see how to address this problem with ensuring that the
condition in item 3 is met, recall the conventional, two-step
{quench; semistatic protocol} process often considered in
analyses of the minimal thermodynamic cost, in which there
is no uncertainty, and one needs to set a protocol to change
(uti , pti ) �→ (ut f , pt f ) [32,33]. Here we restrict attention to
protocols that expand that conventional two-step process, into
a three-step {quench; equilibrate; semistatic protocol} pro-
cess. In other words, we insert an intermediate step into the
conventional process, a step in which we wait long enough for
the system to relax to equilibrium, no matter what its tempera-
ture, before starting the step with the semistatic protocol. (We
are assured of being able to do this due to our restrictions on
the support of dPβα

.) Due to our assumption that the function
M(.) has a bounded derivative, we can choose the semistatic
protocol in which u(x) varies in that subsequent third step
slowly enough so that (the rate matrix evolves slowly enough
so that) the system is always at equilibrium throughout that
step, again no matter what α is.

As a formal point, we also assume that the very first energy
function, uti , cannot be chosen by the experimentalist, i.e., it
is randomly distributed as specified by P(α). However, the
experimentalist “takes over” the specification of the trajectory
of the energy function starting with the energy function that
the system is quenched to, the one immediately following uti .

As in the conventional no-uncertainty version of the two-
step protocol, we require that the distribution over states
does not change during the quench step of this expanded,
three-step protocol. This is true no matter what the tem-
perature of the bath is. This means both that there is no
heat exchange with the bath in that step, and that there is
no change in Shannon entropy in that step, no matter what
α is. So this step is thermodynamically reversible; if we
inverse-quenched right away, we would return to the initial
distribution and energy u, with zero net work expenditure.
Moreover, since the system is at equilibrium throughout the
semistatic evolution step, that step is also thermodynamically
reversible; we could run it backward, returning to the energy
and (equilibrium) distribution at the beginning of that step,
and there would be zero net work. This is also true no matter
what α is.

On the other hand, in contrast to the quench and semistatic
steps, in general, the intermediate, equilibration step will re-
sult in dissipated work for each α considered by itself. More
precisely, while no work is extracted during that step, in a
counterfactual process work could have been extracted, if the
protocol could be tailored for that α.

The first of the following sections contain a preliminary
analysis of this dissipated work. In the section after that, we
investigate some related issues that arise when a feedback
control protocol is used to define a “thermodynamic value of
information about the actual apparatus.”

B. Optimal work extraction when the temperature is uncertain

Write the Boltzmann distribution for arbitrary energy func-
tion u and inverse temperature βα as

πα
u (x) = e−βαu(x)

Z (u, βα )
. (95)

Also write uα
ti for the initial, prequench energy function for

the case where the apparatus is α, and write uq for the energy
function that the experimentalist chooses for the system to
quench to. Similarly, write ut (with no α superscript) for the
energy function at times t during the semistatic evolution
(times at which the experimentalist chooses the energy func-
tion).

With this notation the protocol of the process for each α

(which is determined before the process starts) can be written
as the following:

where due to the semistatic nature of the evolution in the third
leg, pα

t f
= πα

ut f
. As a shorthand, it will also be convenient to

write the nonequilibrium internal energy and free energy for
arbitrary energy u, state distribution p, and apparatus α as

U (p, u) :=
∑

x

p(x)u(x), (96)

Fα (p, u) := U (p, u) − S(p)

βα
, (97)

where in general, u and/or p may depend on α.
Note that our requirement that

∫
dPα pα

t f
(x) = p∗(x) means

that

p∗(x) =
∫

dPαπα
ut f

(x) (98)

=
∫

dPα e−[βαut f (x)]

Z (ut f , β
α )

. (99)

This imposes a strong condition on the ending energy function
that the experimentalist chooses. Indeed, in the no-uncertainty
case, this requirement would uniquely fix that energy func-
tion, up to an overall additive constant.

Since no work is expended or extracted during the equili-
bration process (pti , uq ) �→ (πα, uq ), the total work is given
by summing the work during the quench and semistatic evo-
lution steps. Whatever the protocol is, for each α, this total
work is

WWW α = U
(
pα

ti , uq
) − U

(
pα

ti , uα
ti

)︸ ︷︷ ︸
quench

+ Fα
(
pα

t f
, ut f

) − Fα
(
πα

uq
, uq

)
︸ ︷︷ ︸

semistatic ev.

.

(100)
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Adding and subtracting S(pα
ti )/β

α to Eq. (100) and rearrang-
ing, we can rewrite this total work as

WWW α =Fα
(
pα

t f
, ut f

) − Fα
(
pα

ti , uti

)
+ Fα

(
pα

ti , uq
) − Fα

(
πα

uq
, uq

)
. (101)

The expected work is the α-average of this expression.
The first term on the right-hand side of Eq. (101), the

difference between the nonequilibrium free energies imme-
diately preceding the quench and at the end of the process, is
independent of uq. So in the scenario under consideration, the
experimentalist cannot affect this term by appropriate choice
of protocol. The second term is instead the change in nonequi-
librium free energy that arises in going from just before to
immediately following the equilibration step.

To evaluate that second term, first, note that since no work
is done on the system in the equilibration step, the change of
the expected energy is due to the heat flow, i.e., 
U = QQQ. So
the expected value of that second term is∫

dPα
[
Fα

(
pα

ti , uq
) − Fα

(
πα

uq
, uq

)]
(102)

=
∫

dPα

[
1

βα

(
S
(
πα

uq
− S

(
pα

ti

))) − Qα

]
(103)

= WWW diss, (104)

where abusing notation, Qα is defined to be the heat flow oc-
curring in just the second, equilibration step, for apparatus α.
Equation (104) establishes that the (α-average of the) second
term in Eq. (101) is just the effective dissipated work of the
equilibration step, and therefore the effective dissipated work
of the entire process. (See Sec. V B.)

Because πα
uq

is the Boltzmann distribution for energy func-
tion uq and inverse temperature βα , as usual in equilibrium
thermodynamics,

Fα
(
πα

uq
, uq

) = − ln Z (uq, β
α )

βα
(105)

In addition, S(pα
ti ) is independent of uq. Combining, the uq

that minimizes the expression in Eq. (102) is the one that
minimizes∫

dPα

[∑
x

pα
ti (x)uq(x) + 1

βα
ln Z (uq, β

α )

]
.

To solve for the uq minimizing this expression, take ∂
∂uq (x)

for each x and set it to zero. This gives a set of coupled
equations that uq(x) must satisfy:∫

dPα

[
pα

ti (x) − e−βαuq (x)∑
x′ e−βαuq (x′ )

]
= 0, (106)

i.e.,

pti (x) =
∫

dPα

e−βαuq (x)∑
x′ e−βαuq (x′ ) (107)

=
∫

dPαπα
uq

(x), (108)

where

pti (x) :=
∫

dPα pα
ti (x). (109)

We denote this optimizing solution to Eq. (107) as u∗
q. Note

that it is independent of uti , ut f , and p∗.
As an example, suppose there is no uncertainty in the

temperature, only in the initial distribution. Then we could
immediately invert Eq. (107) to get

u∗
q(x) = − ln pti (x)/β (110)

up to an irrelevant additive constant. Note that this is also the
energy function that would be optimal if with zero uncertainty
we knew that the initial distribution were pti (x).

More generally, suppose that there is both a nonzero min-
imal value and a finite maximal value of supp(dPβα ), i.e., a
nonzero minimal temperature and a finite maximal tempera-
ture that have nonzero probabilities under dPα . Then up to an
overall additive constant, there is one and only one solution
uq to Eq. (106) for any given pti and dPα . (This is proven in
Appendix C.)

By plugging u∗
q(x) into Eq. (101) and averaging over α, we

get a formula for the expected work during the full protocol:

WWW =
∫

dPα
[
Fα

(
pα

t f
, ut f

) − Fα
(
pα

ti , uti

)]
+

∫
dPα

[
Fα

(
pα

ti , u∗
q

) − Fα
(
πα

u∗
q
, u∗

q

)]
. (111)

The first line in Eq. (111) is the expected work that would be
required if we were able to use a different (optimal) protocol
that was set by the realized value of α, i.e., it is the minimal
work, discussed in Sec. V B. So the second line in Eq. (111)
is the extra work required due to our not being able to use
such a protocol that depends on the realized value of α. In
other words, it is the extra work due to our having limited
information about the random apparatus when we set the
protocol. This kind of increase in the minimal work if the
protocol is prevented from depending on the realized value of
a random variable is sometimes called “thermodynamic value
of information” in the literature [32,34–37]. What differs be-
tween our analysis here and the previous analyses is that we
are concerned with the thermodynamic value of information
of the parameter α, whereas those previous analyses instead
considered the thermodynamic value of information on the
initial state of the system.

C. Dynamics of the thermodynamic value of information

In this section, we modify the scenario considered in
Sec. VI B in two ways. First, we assume that the experimenter
can only set the protocol starting at a time τ > ti, whereas dPα

is sampled at ti. (We refer to the protocol during the interval
starting at τ as the “experimenter’s protocol.”) Second, we
assume that we know with certainty that βα = 1 for all α

during that time of the experimenter’s protocol, following
τ . In particular, βα = 1 during the equilibration process. So
the only uncertainty the experimenter faces in choosing their
protocol is in what the distribution is when that protocol takes
over the dynamics.
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In general, the system will evolve between ti and τ , po-
tentially according to an uncertain rate matrix. Our concern is
with how the size of the gap τ − ti affects the minimal work
that must be expended during the experimenter’s protocol, in
light of that evolution between ti and τ . In particular, we inves-
tigate how the thermodynamic value of knowing the precise α

in that interval depends on the length of that interval, i.e., the
derivative with respect to τ of that value of information.

Since there is no uncertainty in the temperature during the
experimenter’s protocol, we can plug into Eq. (110) with ti
replaced by τ , to see that the optimal energy function for the
experimenter to quench to at time τ is

u∗
q(x) = − ln pτ (x) (112)

= − ln
∫

dPα pα
τ (x) (113)

up to an overall additive constant.7

If the experimenter had had no uncertainty when they
perform the quench, the protocol starting at τ would have
resulted in zero dissipated work. Accordingly, we define the
thermodynamic value of information for this scenario as the
effective dissipated work during the experimenter’s protocol
that does arise, since there in fact is uncertainty.

Recall that by the analysis in Sec. VI B, this dissipated
work arises during the equilibration that starts immediately
following the time of the quench, which in our current sce-
nario is the time τ . This dissipated work is given by modifying
Eq. (102) to reflect the fact that there is no temperature uncer-
tainty during the experimenter’s protocol:∫

dPα
[
Fα

(
pα

τ , u∗
q

) − F
(
πu∗

q
, u∗

q

)]
, (114)

where u∗
q is given by the solution to Eq. (113). Expanding the

two free energies and plugging in, we can write this effective
dissipated work as

Iτ = S(pτ ) − Sτ (115)

= S

(∫
dPα pα

τ

)
−

∫
dPαS

(
pα

τ

)
. (116)

(See the discussion at the end of Sec. VI B.)
This is the Jensen-Shannon divergence of the set of dis-

tributions {pα (x)}, weighted according to dPα . Furthermore,
since α is a random variable, we can re-express each distribu-
tion pα (x) as a conditional distribution p(x|α). This allows
us to also identify Iτ as the mutual information at time τ

between x and α, mutual information that vanishes by the
end of the equilibration step. So Iτ is the usual expression
for the thermodynamic value of information found in previous
analyses in the literature [32,35,38]. Here though it reflects
the thermodynamic value in knowing what the initial distribu-
tion is, while in those previous analyses, it reflects the value

7Note that even though the temperature during the experimenter’s
protocol has no uncertainty, that is not the case during [ti, τ ). As
a result, pα

τ can have values different from πu∗
q
, depending on Pα .

In fact, even if temperature were fixed during [ti, τ ), uncertainty in
the initial distribution pα

ti
would again mean that pα

τ can have values
different from πuq .

in knowing what the precise initial state is.8 Let us finally
mention that a particular version of this formula was recently
introduced in connection with the thermodynamics of discrete
finite automata [39] [see Eq. (16) there].

We wish to evaluate the derivative of Iτ with respect to τ .
To begin, we consider the case where the rate matrix Kxx′ (t )
during the interval t ∈ [ti, τ ) has no uncertainty. We can see
how the thermodynamic value of information of α depends
on τ in this case, by taking the derivative of the right-hand
side of Eq. (116) with respect to τ . In Appendix D, we show
that the value of information in this case, Iτ , is monotonically
decreasing in time, i.e.,

dIτ
dτ

� 0 (117)

stopping to fall only when the system reaches equilibrium.
(We can derive the same result from the data-processing in-
equality.) Physically, this means that the thermodynamic value
of information of α decreases the longer we wait to use it.

In addition to the τ dependence of the thermodynamic
value of information of α, one might also be interested in how
the total effective EP (i.e., effective dissipated work), gener-
ated during the entire interval [ti, t f ], changes with changes
to τ ∈ [ti, t f ]. There are two contributions to that EP: the
thermodynamic value of information Iτ , generated during the
equilibration step, and the EP generated earlier, during the
interval [ti, τ ). So to get the derivative of the total effective
EP generated during the entire interval [ti, t f ], we must add
two terms. The first is the derivative of the effective EP under
K (t ), i.e., the effective EP rate, evaluated at t = τ . The second
is the time derivative of the value of information evaluated at
that time.

From Eq. (43), that effective EP rate at τ is

�̇��τ =
∫

dPα
∑
x,x′

Kxx′ (τ )pα
τ (x′) ln

Kx′x(τ )pα
τ (x′)

Kx′x(τ )pα
τ (x)

. (118)

Adding this to Eq. (D3) of Appendix D gives the derivative of
the total effective EP generated during [ti, t f ] as

d�

dt
=

∑
x,x′

Kxx′ (τ )pτ (x′) ln
Kxx′ (τ )pτ (x′)
Kx′x(τ )pτ (x)

. (119)

This is the EP rate generated by the effective dynamics of p,
evaluated at τ . So the derivative of the effective EP generated

8As an aside, in this paper we are considering the thermodynamic
value of information in scenarios in which the (expected) target
distribution, pt f (x) is fixed, independent of the initial distribution.
An alternative is to consider scenarios in which the conditional distri-
bution, p(x(t f )|x(ti )) is fixed, independent of the initial distribution.
Such scenarios include, for example, all computational systems more
complicated than simple bit erasure. (In the case of computational
systems, uncertainty about the initial distribution amounts to uncer-
tainty about which of a set of possible users of the computer will
set its initial state in any given run of that computer.) In general,
to implement a fixed conditional distribution p(x(t f )|x(ti )) requires
there to be “hidden states”, in addition to X Nonetheless, here too the
Jensen-Shannon divergence characterizes the value of information in
knowing the actual initial distribution [38], just like in Eq. (116).
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during [ti, t f ] with respect to the time τ ∈ [ti, t f ], at which
the experimentalist takes over the protocol, is the phenomeno-
logical EP generated by time τ . (Recall the discussion of the
phenomenological scenario in the introduction.)

As a final comment, suppose that α indexes not just the
distribution, but also the rate matrix, i.e., suppose that we are
unsure about the dynamics as well as the distribution. This
means that

d pτ (x)

dτ
=

∫
dPα d pα

τ (x)

dτ
=

∫
dPα

∑
x′

Kα
xx′ (τ )pα

τ (x′).

(120)

In this case, the value of information of α can increase with
τ . As a simple example, suppose that the initial distribution is
independent of α, i.e., pα

ti (x) = pti (x). Then Ipti
= 0. Suppose

as well that α has two possible values, as does x, and that dPα

is uniform over α’s two values. Finally, also suppose that for
α = 0, the associated trajectory of rate matrices K0

xx′ (t ) sends
pti (t ) to the ending distribution p0

τ (x) = δ(x, 0) with arbitrar-
ily high accuracy, while for α = 1, the associated trajectory
of rate matrices K1

xx′ (t ) sends pti (x) to the ending distribution
p1

τ (x) = δ(x, 1) with arbitrarily high accuracy. Then Ipτ
is

arbitrarily close to ln 2, which establishes the claim.
Example 1. As an example, suppose that an experimental-

ist tries to set up a system with a particular rate matrix K∗ and
initial distribution p∗

0. Since they cannot do this with infinite
statistical certainty, we need to construct a physical model
for how the system actually gets (randomly) initialized. For
simplicity, model their constructing the system this way as a
random process that samples a distribution over α such that
both the α-average of pα

0 = p∗, and the α-average of Kα =
K∗. Presume that they then assume—erroneously—that Kα

and pα are statistically independent. This would lead them to
write the dynamics of the distribution as evolving according to
a simple product of a single matrix with a single distribution:

d p∗
t

dt
= K∗ p∗

t . (121)

Suppose though that Kα and pα are not statistically in-
dependent; for whatever reasons, when the experimentalist
initializes their system, they do so in a way that couples
those two quantities. This means that the dynamics of p is
actually given by Eq. (120), not by Eq. (121). Since these two
expressions differ, the experimentalist would expect to see a
dependence on time of the value of information that differs
from the true dependence.

To illustrate the richness of value of information due to
uncertainty, we also consider the value of information for
the case where there is uncertain temperature, and therefore
(imposing LDB) uncertain rate matrices leading up to the time
that the experimentalist’s protocol takes over. It is unknown
what the general necessary and sufficient conditions would be
for the value of information due to uncertainty to be nonde-
creasing as τ increases. This is a potentially fruitful area of
future research. To exemplify this fact, we calculate the value
of information for the example from Sec. IV C, i.e., the bit
erasure for the case of the uncertain temperature (see Fig. 4).
We observe that the value of information increases with time,
until it reaches its maximal value around t ≈ 8 and then starts
to decrease.

0 2 4 6 8 10
0.00
0.02
0.04
0.06
0.08
0.10
0.12

Value of Information It

FIG. 4. Value of information for the case of bit erasure with
uncertain temperature from Sec. IV C.

VII. PHENOMENOLOGICAL EP AND FLUCTUATION
THEOREMS

In this section, we focus on the second, phenomenological
scenario, where the apparatus changes after each stochastic
trajectory is generated. Recall that in the phenomenological
scenario we are not able to measure P(xxx|α) for any (unknown)
apparatus α, but only the average probabilities P(xxx).

A. EP in the phenomenological scenario

To begin, recall that the α-average of the ensemble EP can
be expressed as

��� =
∫

dPαDxxx(P(xxx | α)|| (Pα )†(xxx†| α)). (122)

Writing dPα = p(α)dα as shorthand, the joint probability
over trajectories xxx and apparatuses α is P(xxx, α) = P(xxx|α)p(α).
So the α-averaged effective ensemble EP is

��� = Dxxx,α (P(xxx, α)||P†(xxx†, α))

=
∫

dα
∑

xxx

P(xxx, α) ln
P(xxx, α)

P†(xxx†, α)
. (123)

Now by Bayes’ theorem,

P(α|xxx) = P(xxx|α)

P(xxx)
p(α) = P(xxx, α)

P(xxx)
, (124)

where we used the fact that P(xxx) = ∫
dPαP(xxx|α). Combining

this with the chain rule for KL divergence [40], we derive

�̄�� = Dxxx(P(xxx)||P†
(xxx†)) + Dxxx,α (P(α|xxx)||P†(α|xxx†)). (125)

For later use, introduce shorthand for the first term on the
right-hand side of Eq. (125),

��� := Dxxx(P(xxx)||P†
(xxx†)). (126)

We call ��� the phenomenological EP. Phenomenological EP
measures the irreversibility of the dynamics quantified by the
effective (i.e., apparatus-averaged) probabilities.

Similarly, we define the second term on the right-hand side
of Eq. (125) as

��� := Dxxx,α (P(α|xxx)||P†(α|xxx†)), (127)

which measures the difference between distributions of α

estimated from forward and reverse trajectories. Like many
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4. Likelihood EP
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FIG. 5. Illustration of the second law of inference on a two-state system with uncertain temperature. Before the experiment, the temperature
is randomly chosen from the prior distribution p(T ) (top-left panel). The experimenter cannot measure the temperature but can observe the
trajectory xxx(t ) (top-right panel). From observing the trajectory, it is possible to update the temperature distribution P(T ) �→ P(T |xxx) (bottom-left
panel). Similarly, the temperature distribution obtained from observing the time-reversed trajectory under the time-reversed protocol is P̃(T |xxx†).
From their log ratio, it is possible to express the likelihood EP λλλ(T |xxx) (bottom-right panel). By calculating the histogram of λxxx , we observe
that negative likelihood EP is observed much less common than positive likelihood EP, which corresponds to the detailed fluctuation theorem.
Finally, the average value of likelihood EP remains positive, which is in agreement with the second law of inference.

forms of EP, ��� is a Kullback-Leibler divergence and is zero
only if the forward probability is the same as the backward
probability. For these reasons, we refer to ��� as likelihood
EP, even though it need not have a straightforward relation
to dissipated work.

All three EPs in Eqs. (125)–(127) have associated
trajectory-level versions:

σσσ (xxx|α) := ln
P(xxx|α)

P†(xxx†|α)
, (128)

φφφ(xxx) := ln
P(xxx)

P
†
(xxx†)

, (129)

λλλ(α|xxx) := ln
P(α|xxx)

P†(α|xxx†)
. (130)

The first EP corresponds to the effective scenario, where we
randomly fix the apparatus and generate an infinite set of tra-
jectories for that apparatus. The second EP corresponds to the
phenomenological scenario, where the apparatus randomly
changes after generating each trajectory.

In general, there will both be α for which σσσ (xxx|α) > φφφ(xxx)
and α for which σσσ (xxx|α) < φφφ(xxx). However, Eq. (125) means
that

��� � ���. (131)

So fixing α to the same value all stochastically generated
trajectories, calculating the associated trajectory-averaged EP,
and then averaging over the unknown values of α increases
the ensemble EP, compared to the case where we average
over apparatuses to calculate EP, and only then average over
apparatuses.

The last of these trajectory-level EPs in Eq. (130), the
likelihood EP, is the difference between the first two. While
the likelihood EP is a log-likelihood ratio, in contrast to
the common case in which log-likelihood ratios are based
on the same data but different parametric models, this one is
based on the same set of apparatuses, but on forward, resp.
reversed trajectories.

The trajectory version of Eq. (125) can be written as

σσσ (α,xxx) = φφφ(xxx) + λλλ(α|xxx). (132)

There is an ordinary fluctuation theorem for the first EP term
in this equation, σ , for any given α. For the case of phe-
nomenological EP and likelihood EP, we define the following
probabilities:

P(φ) :=
∫

Dxxx P(xxx)δ(φ − φφφ(xxx)), (133)

P(λxxx ) :=
∫

dPα δ(λxxx − λλλ(α|xxx)). (134)
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These obey detailed fluctuation theorems:
P(φ)

P†(−φ)
= eφ, (135)

P(λxxx )

P†(−λxxx† )
= eλxxx . (136)

These detailed fluctuation theorems result in associated
integrated fluctuation theorems, i.e, 〈e−φ〉 = 1, respectively,
〈e−λxxx 〉 = 1. The first of those IFTs implies that 〈φ〉 ≡ � � 0.
The second of those IFTs means that

���xxx = 〈λxxx〉 =
∫

dP(λxxx )λxxx � 0 (137)

We call this the second law of inference. It tells us that for each
trajectory xxx, the α-averaged log-likelihood

∫
dPα ln P(α|xxx) is

larger than the α-averaged likelihood obtained from the time-
reversed trajectory under the reverse process. Of course, by
averaging over all trajectories with probability P(xxx), we obtain
��� = 〈���xxx〉 � 0.

B. Example: two-state system with uncertain temperature

To illustrate these results, consider a two-state system
with states {0, 1}, as depicted in Fig. 5. The energy levels
corresponding to the states are E0 and E1. We consider the
transition rate matrix

K =
(

−e
E0−E1

T e
E1−E0

T

e
E0−E1

T −e
E1−E0

T

)
(138)

The initial distribution is p0 = {1/2, 1/2}. Suppose that the
temperature is randomly drawn from the Gamma distribution
P(T ) = Te−T (top-left panel of Fig. 5).

The trajectory entropy production is

σσσ T (xxx) = ln pt0 (xxx(t0)) − ln p(t f )(xxx(t f )) − 1

T

(
Exxx(t f ) − Exxx(t0 )

)
.

(139)

By observing a trajectory xxx (top-right panel of Fig. 5), we
calculate an updated distribution P(T |xxx) (bottom-right panel
of Fig. 5). Finally, we can also calculate the likelihood EP
(bottom-right panel of Fig. 5). In the inset histogram of the
bottom-right panel, we see that the likelihood EP λλλxxx can attain
negative values, however λ̄xxx = �xxx is greater than zero, which
is in agreement with the detailed fluctuation theorem and the
second law of inference.

VIII. DISCUSSION AND FUTURE WORK

In any real-world example of a nonequilibrium system’s
dynamics, there are three major types of uncertainty: (a) un-
certainty about the state of the system, (b) uncertainty about
the state of the external environment that the system is inter-
acting with, and (c) uncertainty about the precise dynamics of
the system and its interaction with its external environment.
In (classical) stochastic thermodynamics, the first type of un-
certainty is addressed by replacing the specification of the
system’s state (e.g., coarse-graining), and the second one is
typically addressed by assuming the environment is infinite,
at equilibrium, and evolving far faster than does the sys-
tem (“separation of time scales”). In essence, the entire field

of stochastic thermodynamics concerns the consequences of
those two types of uncertainty for the dynamics of energy and
particle counts in the system. However, very little attention
has been paid so far to the third type of uncertainty. Here we
begin an investigation of the consequences of that third type
of uncertainty, showing that it entails major modifications to
the standard results previously derived in stochastic thermo-
dynamics.

Our investigations have only scratched the surface of issues
involved with this third type of uncertainty. In the light of
recent studies [41] where the system is coupled to a reser-
voir with fluctuating temperature, it makes sense to extend
the analysis from a static distribution p(α) to a distribution
over dynamic trajectories of the parameters, i.e., PPP(αααt ). An-
other possible future direction can motivated by extending the
framework to the case of stochastic thermodynamics of hid-
den Markov models [42] with the application to biophysical
systems as flashing ratchets [43,44] when the experimenter
cannot directly observe whether the ratchet is on or off, and
therefore does not also know the switching rate. There are also
many ways to extend the investigations in Sec. V, e.g., to see
how EP might be related to dissipated work in the unadapted
scenario.

Another set of interesting questions is how the fluctuation
theorems of effective, phenomenological and likelihood EP
can be related to physically measurable quantities like dissi-
pated work, and whether one could derive a version of the
Crooks fluctuation theorem and Jarzynski equality for this
type of quantities.

Some of the more immediate questions to be addressed
in future work include the extension to the stochastic control
protocols. The first possible question is whether the {quench;
equilibrate; semistatically evolve} protocol is the optimal pro-
tocol which maps px(ti ) → px(t f ) or if there is an alternative
protocol that generates less effective dissipated work.

Furthermore, it is reasonable to assume that in systems
with limited possibility of measuring the system’s parameters,
it will be even more difficult to realize the desired control
protocol with infinite precision. The related question is how
the partial knowledge of the system obtained by the (impre-
cise) measurement from observing a trajectory, i.e., P(α) �→
P(α|xxxt ) can be utilized to adjust the control protocol ε�(x) �→
ε�(x|xxxt ). In more realistic situations, the measurement cannot
be done continuously but at given time instants and might bear
some costs. The question of optimal measurement and update
of control protocol in uncertain environments is challenging
but d definitely a crucial question to be answered.

Finally, we emphasize that our current results do not have
implications for how experimentalists should perform their
experiments or should analyze the outcomes of those exper-
iments. Deriving such results would be an important feature
of a fully developed extension of stochastic thermodynamics
to capture uncertainty in the parameters governing a nonequi-
librium process. However, in general, such a derivation would
require careful modeling of the physical process by which
an experimentalist initializes their system. (It is that pro-
cess which determines the distribution over thermodynamic
parameters, the distribution that plays a central role in the
stochastic thermodynamics of processes with uncertain pa-
rameters.) Constructing such a model would be in addition
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to constructing a model of the subsequent physical process
that is actually being experimentally investigated, once the
initialization process has been completed. Such model con-
struction is beyond the scope of the current paper. (Indeed, to
our knowledge it has never been considered in the literature.)
Accordingly, we leave it for future work to provide recom-
mendations to experimentalists for how they should change
their analyses of their experiments.

Our paper ends with a discussion section in which we
describe just a few of all the associated directions for future
work, in addition to this direction of modeling how experi-
ments are initialized.
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APPENDIX A: DETAILED CALCULATION OF MOVING
OPTICAL TWEEZER WITH UNCERTAIN STIFFNESS

Let us now show a detailed derivation of the moving optical
tweezer with uncertain stiffness from the main text. Let us
consider a particle described by an overdamped Langevin
equation

ẋ = −μ
∂V

∂x
+ ξ, (A1)

where ξ (t ) is the white noise, and V is the potential. Let us
consider the potential in the form

Vk (x, t ) = k

2
(x − λ(t ))2, (A2)

where k is the stiffness parameter and λ(t ) is the control
protocol. The Sekimoto formula for the average work is

W [λ(t )] =
∫ t f

ti

dt λ̇

〈
Vk (λ(t ), x(t ))

∂λ

〉
, (A3)

where 〈. . . 〉 is the ensemble average. Let us consider μ = 1.
By introducing u(t ) = 〈x(t )〉, we obtain

u̇k = k(λ − uk ), (A4)

where we omit the dependence of both u and λ on t . From
this, we can express λ as

λ = u̇k

k
+ uk . (A5)

Let us now express 〈Vk (λ(t ),x(t ))
∂λ

〉 as〈
Vk (λ(t ), x(t ))

∂λ

〉
= −k〈x − λ〉 = k(λ − uk ) = u̇k . (A6)

By plugging into the formula for work, we obtain

W [λ(t )] =
∫ t f

ti

dt

(
u̇2

k + ük u̇k

k

)
=

∫ t f

ti

dt u̇2
k +

[
u̇2

k

]t f

ti

2k
. (A7)

Extremization of the work functional can obtained by
δW [λ(t )]

δλ(t ) = 0, which leads to the Euler-Lagrange equation

ük = 0, (A8)

which leads to u(t ) = mt , where m is a parameter to be
determined. The boundary conditions are set to uk (ti ) = 0,
λ(ti) = 0, from which we have u̇k (ti ) = k(λ(ti) − uk (ti)) = 0.
We set λ(t f ) = λ f , thus, we have u̇k (t f ) = k(λ f − mt ). Let us
now set ti = 0 The total work is, therefore

W = m2t f + k

2
(λ f − mt f )2. (A9)

The optimal solution is given by m� = kλ f

2+kt f
. Thus the optimal

protocol can be expressed as

λ�
k = λ f (1 + kt )

2 + kt f
. (A10)

and the optimal work is

W �
k = kλ2

f

2 + kt f
(A11)

Note that we observe initial and final jumps in the protocol,
i.e.,


λk (ti ) = lim
t→t+

i

λ(t ) − λ(ti) ≡ 
λk (t f )

= λk (t f ) − lim
t→t−

f

λk (t ) = λ f

2 + kt f
. (A12)

Let us now focus on the case where λk is used when the
stiffness parameter is κ , which is not necessarily equal to k. In
this case, we take the protocol λk (t ) = λ f (1+kt )

2+kt f
for ti � t � t f ,

and λ(0) = 0, λ(t f ) = λ f , and plug it to the Langevin equa-
tion

u̇κ = κ (λk − uκ )

together with the initial condition uκ (0) = 0. By solving the
differential equation, we get

uκ (t ) = λ f

(2 + kt f )

(
kt +

(
1 − k

κ

)
(1 − e−κt )

)
= uk (t ) + 
k,κ (t ), (A13)

where 
k,κ (t ) denotes the difference between uk and uκ for
the same protocol λk . Note that uκ boils down to uk (t ) = m�t
for k = κ , as expected. The velocity is then

u̇κ (t ) = λ f

(2 + kt f )
(k + (κ − k)e−κt ).
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By plugging into the Eq. (A7), we obtain that the work can be expressed as

Wκ [λk (t )] =
∫ t f

0
dt u̇2

κ (t ) +
[
u̇2

κ

]ti
t f

2κ

=
∫ t f

0
dt

λ2
f

(2 + kt f )2
(k + (κ − k)e−κt )2 + κ

2
(λ f − uκ (t f ))2

= λ2
f

(2 + kt f )2

(
k2t f + 2k

κ
(κ − k)(1 − e−κt f ) + (k − κ )2

2κ
(1 − e−2κt f )

)

+ λ2
f

2(2 + kt f )2κ
((k + κ )2 + 2(k + κ )(κ − k)e−κt f + (k − κ )2e−2κt f )

= λ2
f

(2 + kt f )2

[
(2k + k2t f ) + κ2 − k2

κ
+ (k − κ )2

κ
e−κt f

]
. (A14)

Let us now consider that κ is distributed by the distribution p(κ ). We choose our k determining our protocol to be k = κ̄ =∫
dκ κ p(κ). Then the expected work (unadapted) W̄ = ∫

dκWκ (λκ̄ (t )) is equal to

Wunad. ≡ W̄ = λ2
f κ̄

(2 + κ̄t f )
+ λ2

f κ̄

(2 + κ̄t f )2

(
κ̄ − κ̄2

∫
dκ

1

κ
p(κ )

)
+ λ2

f

(2 + κ̄t f )2

∫
dκ

(κ̄ − κ )2

κ
e−κt f p(κ ) = Wκ̄ [λκ̄ (t )] + Wdiss.

(A15)

On the other hand, if we were able to choose the optimal
protocol for each κ , the expected work (adapted) would be

Wad. = Wκ [λκ (t )] =
∫

dκ
λ2

f κ

2 + κt f
p(κ ). (A16)

Since κ
2+κt f

is a concave function, we obtain from the Jensen
inequality that

Wad. � Wunad.. (A17)

APPENDIX B: BRIEF REVIEW OF STOCHASTIC
THERMODYNAMICS

In this section, we present some additional details of ordi-
nary, no-uncertainty stochastic thermodynamics, and review
some of the main associated results. We leave N and associ-
ated parameters like the inverse temperatures βν and chemical
potentials μν implicit. We write the rate matrix for going from
state x′ to state x due to stochastic exchanges of heat and/or
particles with reservoir ν as Kν

x,x′ (t ). From now on, we leave
the time index implicit. The full rate matrix of the system is
Kx,x′ = ∑N

ν=1 Kν
x,x′ , and so the master equation of the CTMC

is ṗt (x) = ∑
x′ Kx,x′ pt (x′).

Often in the literature, due to considerations involving
time-symmetric microscale dynamics, we assume that at any
(implicit) time t the separate matrices Kν

x,x′ each satisfy local
detailed balance (LDB) with respect to the energy level u(x)
at that time, for the particle reservoir ν:

Kν
x,x′

Kν
x′x

= πν
x

πν
x′

= e−βν [(u(x)−u(x′ ))−μν (nν (x)−nν (x′ ))], (B1)

where u(x) is the energy level of the system in state x and
nν (x) is the number of particles of the type specified by ν

when the system is in state x. (If the reservoir ν does not
exchange particles with the system, then μν = nν (x) = 0.)

Note that in the absence of chemical reservoirs, the map
from rate matrices to energy functions is single-valued (up
to an overall additive constant), but the inverse map is multi-
valued.

1. Ensemble thermodynamics

The ensemble internal energy is written as Ut := 〈ut 〉 =∑
x pt (x)ut (x). The system exchanges particles with some of

the reservoirs, as well exchanging energy with each of them
directly (e.g., via kinetic molecular collisions). The first law of
thermodynamics can be formulated as


Ut = QQQt +WWW t +CCCt (B2)

where 
Ut := Ut − U0 and QQQt := ∫ t
0 dt ′QQQt ′ is total heat flow

into the system during the interval [0, t], WWW t := ∫ t
0 dt ′WWW t ′ is

the total work on the system during that interval, and CCCt :=∫ t
0 dt ′CCCt ′ is the total chemical work during that interval. The

heat flow rate Q̇QQt can be decomposed into heat flows in from
the separate reservoirs, i.e., direct energy flows in from the
separate reservoirs:

Q̇QQt =
∑

ν

Q̇QQ
ν

t =
∑

ν

∑
xx′

Kν
x,x′ pt (x)(ut (x) − μνnν (x)). (B3)

For simplicity, we ignore the possibility of more than one
distinguishable type of particle. The mechanical work flow
and chemical work flow are defined as

ẆWW t =
∑

x

pt (x)u̇t (x), (B4)

ĊCCt =
∑

x

ṗt (x)
∑

ν

μνnν (x). (B5)
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Shannon entropy at time t is defined as St := 〈st 〉 =
−∑

x pt (x) ln pt (x). We define the EF rate as

ĖEE t = −
∑

ν

∑
x,x′

Kν
x,x′ p(x′) ln

Kν
x,x′

Kν
x′,x

(B6)

and the EP rate as

�̇��t = −
∑

ν

∑
x,x′

Kν
x,x′ p(x′) ln

Kν
x,x′ pt (x′)

Kν
x′,x pt (x)

. (B7)

Direct expansion of the rates followed by integration over time
establishes that


St = ���t + EEE t , (B8)

where 
St = St − S0, ���t is the entropy production (EP) given
by integrating the EP rate, and EEE t is the entropy flow (EF)
given by integrating the EF rate.

The second law of thermodynamics is enforced by the fact
that for any rate matrix, EP rate is non-negative, i.e., �̇��t � 0.
When LDB holds, the EF rate can be expressed in terms of
thermodynamic entropy, i.e.,

ĖEE t =
∑

ν

βνQ̇QQ
ν

t . (B9)

2. Trajectory thermodynamics

The trajectory internal energy is written as uuut (xxx). The first
law of thermodynamics on the trajectory level for any time t
is

d

dt
uuut (xxx) = q̇qqt (xxx) + ẇwwt (xxx) + ċcct (xxx), (B10)

where

q̇qqt (xxx) =
∑

ν

q̇qqν
t (xxx)

=
∑

ν

∑
x

δ̇x,xxx(t )(ut (x) − μνnν (x)), (B11)

ẇwwt (xxx) =
∑

x

δx,xxx(t )u̇t (x), (B12)

ċcct (xxx) =
∑

ν

∑
x

δ̇x,xxx(t )μ
νnν (x) (B13)

are called the trajectory heat, trajectory mechanical work, and
trajectory chemical work, respectively.

Trajectory entropy is defined as st (xxx) := − ln pt (xxx(t )).
Then time derivative of entropy can be decomposed as

d

dt
ssst (xxx) = σ̇σσ t (xxx) + ε̇εεt (xxx), (B14)

where due to LDB, trajectory EF rate is

ε̇εε(xxx) =
∑

ν

βνq̇qqν (xxx) =
∑

x

δ̇x,xxx(t )

∑
ν

ln
Kν

x,x′

Kν
x′,x

(B15)

ensemble-level versions, i.e., 〈q̇qqν
t 〉 = Q̇QQ

ν

t , 〈ε̇εεt 〉 = ĖEE t ,

APPENDIX C: PROOF THAT THE H∗ SOLVING
Eq. (106) IS UNIQUE

Write the (countable) elements of X as 1, 2, . . ., ordered
so that p1(ti ) � p2(ti ) � . . .. For simplicity, we assume that

p|X |(ti ) > 0, i.e., we assume that all elements of X have
nonzero probability under p(ti ); it is straightforward to extend
the analysis below to the case where px(ti ) = 0 for some x, by
setting H∗(x) = ∞ for any such x.

By inspection, if there is a solution H∗(x) = H (x) for some
given p(ti) and dPα , then H (x) + k is also a solution for that
p(ti ) and dPα , for any real number k. Accordingly, wolog
set H∗(1) = 1. For use below, write the maximal element of
supp(dPβα ) as βmax.

The proof is by iterative construction of H∗(x). To begin,
we set H∗(i) = i for all i. We then run a two-step iterative pro-
cedure, from i = 2 to i = |X |, changing each element H∗(i) in
turn so that ∫

dPα peq
H∗,βα (i − 1)∫

dPα peq
H∗,βα (i)

= pi−1(ti )

pi(ti )
. (C1)

When this iterative procedure finishes, we will know that
Eq. (C1) is satisfied for all i � 2 for the finishing H∗, and
so Eq. (106) is met for that H∗.

In the first step of the iterative procedure, if pi(ti) =
pi−1(ti ), we set H∗(i) = H∗(i − 1). This guarantees that
Eq. (C1) holds for this particular i.

If instead pi(ti ) < pi−1(ti ) for this i, then we execute the
second step of the iterative procedure. Consider two candidate
Hamiltonians, H+(x) and H−(x), which both equal the current
H∗( j) for all j �= i. We complete their definitions by setting
H+(i) = H∗(i) and H−(i) = κ , where

κ > H−(i) + β−1
max ln

pi−1(ti )

pi(ti)
. (C2)

This guarantees that

pi−1(ti )

pi(ti )
<

e−βmaxH−(i−1)

e−βmaxH−(i)
. (C3)

Plugging in these definitions establishes both that∫
dPα peq

H+,βα (i − 1)∫
dPα peq

H+,βα (i)
<

pi−1(ti )

pi(ti )
(C4)

and ∫
dPα peq

H−,βα (i − 1)∫
dPα peq

H−,βα (i)
>

pi−1(ti)

pi(ti )
. (C5)

∫
dPα peq

H∗,βα (i) is a differentiable function of H∗(i), and
H+( j) = H−( j) = H∗( j) for all j �= i. Therefore applying
the intermediate value theorem with Eqs. (C4) and (C5) means
that there is some value H∗(i) such that Eq. (C1) holds. The
second step of the iterative procedure finishes by setting H∗(i)
to this intermediate value. At that point we increment i by 1.

At the end of the second step for any particular i, we have
established that Eq. (C1) holds for that i in both of the possible
situations pi(ti ) = pi−1(ti ) and pi(ti) < pi−1(ti ). Therefore by
the end of the iterative procedure we have established that
Eq. (C1) holds for all i.

This completes the proof that there is a solution for H∗(x),
as claimed. Uniqueness of this solution follows from the fact
that the derivative of

∫
dPα peq

H∗,βα (i) with respect to H∗(i)
is non-negative, and so the intermediate value arising in the
second step of the iterative procedure is unique.
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APPENDIX D: PROOF OF NONINCREASING VALUE OF INFORMATION FOR NO-UNCERTAINTY RATE MATRICES

Consider the case where the rate matrix Kxx′ (t ) during the interval t ∈ [ti, τ ) has no uncertainty. We can see how the
thermodynamic value of information of α depends on τ in this case, by taking the derivative of the left-hand side of Iτ with
respect to τ :

dIτ
dτ

= dS(pτ (X ))

dτ
−

∫
dPα

dS
(
pα

τ

)
dτ

=
∫

dPα
∑
x,x′

Kxx′ (τ )pα
τ (x′)

[
ln

∫
dPα′

Kxx′ (τ )pα′
τ (x′)∫

dPα′Kx′x(τ )pα′
τ (x)

− ln
Kxx′ (τ )pα

τ (x′)
Kx′x(τ )pα

τ (x)

]
. (D1)

Therefore the time-derivative of the value of information reduces to a difference of EP rates, distinguished from each other by
whether we know α or not. In addition, if we multiply and divide by Pα inside the rightmost logarithm in Eq. (D1) (i.e., change
the two conditional probability distributions into joint probability densities) and consider dPα = dαPα , we get

dIτ
dτ

=
∑
x,x′

∫
dαPα Kxx′ (τ )pα

τ (x′)

[
ln

∫
dαPα′

Kxx′ (τ )pα′
τ (x′)∫

dαPα′Kx′x(τ )pα′
τ (x)

− ln
PαKxx′ (τ )pα

τ (x′)
PαKx′x(τ )pα

τ (x)

]
. (D2)

In particular, if Pα is a probability mass function, p(α), then Eq. (D2) can be written in terms of the joint probability pτ (x, α) =
p(α)pα

τ (x): ∑
x,x′

∑
α

Kxx′ (τ )pτ (x′, α)

[
ln

∑
α′ Kxx′ (τ )pτ (x′, α′)∑
α′ Kx′x(τ )pτ (x, α′)

− ln
Kxx′ (τ )pτ (x′, α)

Kx′x(τ )pτ (x, α)

]
. (D3)

Each (x, x′) pair in the outer sum in Eq. (D3) in which x = x′ gives a value of zero, since both of the logarithms equal
zero if x′ = x. In addition, Kxx′

(τ ) is non-negative for all x′ �= x. So we can apply the log-sum inequality (assuming ai and bi

non-negative):

∑
i

ai ln
ai

bi
�

(∑
i

ai

)
ln

∑
i ai∑
i bi

(D4)

separately for each (x, x′ �= x) pair. This means that dIτ
dτ

� 0, as claimed.
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