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Magnon-magnon coupling mediated by topological edge states
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The topology of the photonic bath shows excellent potential to engineer the intriguing interaction properties
between light and matter. Here, we study the dielectric resonator array with a zigzag geometry, an analogy of
the Su-Schrieffer-Heeger model equipped with peculiar freedom to manipulate the nearest-neighbor coupling
strength by the internal interaction. A staggered coupling strength of s-type pillar modes is experimentally
achieved via the photonic spin-orbit coupling by employing the zigzag dielectric resonator chain. As a result, we
observe that the robust edge states of the zigzag chains manifest themselves with linear polarization for an even
number of dielectric resonators but elliptical polarization for an odd number. In addition, by coupling magnons to
the topological waveguide, we observe resonant magnon–magnon–edge-state coupling, whose coupling strength
is topologically protected. More broadly, our work shows that topological waveguide-QED systems may provide
the potential for synthesis and study of many-body states with attractive long-range interaction.
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I. INTRODUCTION

Nonlocal interactions between two subsystems are of
fundamental importance in advanced quantum information
technologies [1–7], which enable quantum state transfer and
entanglement over large distances, significantly increasing
connectivity and integrity. Recently, the flexible control of co-
herent magnon-photon coupling in a hybrid cavity-magnonic
system has opened promising avenues for magnon-based
quantum information transfer [8,9]. The magnons, which are
the collective spin-wave excitations excited in the ferromag-
nets, can efficiently interact with microwave photons, thereby
enhancing the coupling strength [10,11]. The enhanced inter-
action between electrodynamics and magnetization dynamics
leads to the cavity magnon polariton [12,13], characterized by
level repulsion and Rabi splitting [14,15].

Indeed, coherent coupling does not have to be direct and
can be realized via an intermediary, such as the quantized
electromagnetic field of the photons. This approach was first
utilized to demonstrate that qubits can interact nonlocally in
a controlled way at distances exceeding that achieved by the
qubit’s dipole alone [2,3,16]. Then it proved to be versatile
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and was widely adopted in systems that can efficiently in-
terface with the resonator, such as two electron spins [6,17],
double quantum dots [18,19], and hybrid systems [20,21].
Recently, remote coupling between two macrospin systems
was demonstrated theoretically [22,23] and experimentally
[24,25] with two ferrimagnets simultaneously coupled to a
cavity. Nonlocal spin current manipulation over several cen-
timeters [26] and photon-mediated magnon coupling between
dissimilar magnetic materials, such as ferromagnets and an-
tiferromagnets [27], have also been achieved. In addition,
microwave-mediated nonlocal magnon-magnon coupling was
achieved on a superconducting circuit platform, revealing new
avenues for quantum information processing on a magnon-
based quantum-compatible superconducting platform [28].

Recently, topological photonics emerged as a versatile plat-
form to achieve robustness against disorder [29,30], which is
an extension of analogous effects discovered from topologi-
cally nontrivial energy bands of electrons in condensed-matter
physics [31,32]. The nontrivial photonic effect has revolu-
tionized the design of advanced optical devices in principle,
which enables robust edge transport immune to backscattering
loss [33–35], lasing with robustness [36–38], and nonlinear
light generators [39]. In addition, since a photonic waveguide
can localize and transport electromagnetic waves over con-
siderable distances, a photonic bath with nontrivial topology
can be utilized as an effective substrate. Benefiting from this
advantage, an effective quantum light-matter interface [40,41]
and controllable remote interactions between quantum emit-
ters [42–46] can be achieved.

Inspired by this, we utilize a topologically nontrivial
photon bath of a topological waveguide to realize the re-
mote interaction between magnons and the topological edge
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FIG. 1. (a) A scheme of a zigzag chain with different coupling
strengths along the transverse and longitudinal directions (tT and tL),
i.e., tT �= tL . For an even number of dielectric resonators, the chain
is (b) topologically trivial when the magnetic field is D polarized
and (c) nontrivial when the magnetic field is A polarized. (d) For an
odd number of dielectric resonators, the two edge states are A and D
polarized, respectively. Energy band of (e) 30 and (f) 31 dielectric
resonator chains obtained from the tight-binding Hamiltonian (3).
The color shows the diagonal polarization degree of the eigenstates.

state. This engineered waveguide, consisting of a zigzag
chain of dielectric resonators, is a photonic analog of the
Su-Schrieffer-Heeger (SSH) model [47,48], which considers
only the tight-binding effect with nearest-neighbor hopping
in a dimerized one-dimensional lattice. However, the zigzag
chain has additional freedom to engineer the nearest-neighbor
coupling strength through polarization splitting of photonic
modes, instead of by modifying the separation between ad-
jacent particles as proposed conventionally [49]. Here, we
experimentally realize a staggered coupling strength of s-type
pillar modes by photonic spin-orbit coupling, which was the-
oretically proposed in [50]. Due to the spin-orbit coupling
effect, the edge states manifest themselves with linear po-
larization for an even number of dielectric resonators but
elliptical polarization for an odd number of dielectric res-
onators. In addition, the edge state shows strong robustness
when random disorder is introduced. By coupling magnons to
the waveguide, we observe resonant magnon–magnon–edge-
state coupling, whose coupling strength is immune to disorder.
This may allow for magnon-based quantum manipulation of
topological edge states, such as enabling quantum state trans-
fer between long-range magnons via a topological channel,
which may facilitate magnon-based quantum state transfer
[7,51] in the future.

II. THEORETICAL MODEL

We employ zigzag chains consisting of cylindrical di-
electric resonators [see Fig. 1(a)] to realize subwavelength
photonic structures supporting nontrivial topological states,
which were first discovered for plasmonic nanoparticles [52].
Hybridization between the polarization degenerate resonances

of the dielectric resonators leads to polarization splitting and
edge states localized at the end of the chain. In order to
elaborate on the intrinsic physics, let us consider ground
state modes in the dielectric resonances, i.e., s modes, which
are circularly polarized. Therefore, the interaction between
adjacent dielectric resonators can be decomposed into longi-
tudinally and transversely polarized components (tL and tT ).
The coupling coefficients are polarization dependent [53] and
different for polarizations oriented longitudinally and trans-
versely with respect to the link between adjacent dielectric
resonators [in addition, tL > tT ; see Fig. 1(a)]. For simplicity,
each on-site mode of a dielectric resonator is decomposed
along the x and y directions [see Fig. 1(a)]. Therefore, such
a system can be described by a Hamiltonian [54] as follows:

H =
∑

j,v

E0â†
j,v â j,v +

∑
j,v,v′

â†
j,vV

( j, j+1)
v,v′ â j+1,v′ + H.c., (1)

where

V j, j+1
v,v′ =

⎧⎪⎪⎨
⎪⎪⎩

tLcos2θ + tT sin2θ, v = v′ = x,

tLsin2θ + tT cos2θ, v = v′ = y,

(tL − tT )sinθcosθ, v �= v′.

(2)

Here, â†
j,v and â j,v represent the creation and annihilation

operators for the vth mode at the jth resonance (v = x, y).
θ is the zigzag angle [see Fig. 1(a)]. E0 denotes the on-site
potential which leads to an overall energy shift and therefore
is neglected later. Performing a transfer from the basis of
linearly to circularly polarized states gives

Hcir =
∑

j,w,w′
b̂†

j,wW ( j, j+1)
w,w′ b̂ j+1,w′ + H.c., (3)

where

W j, j+1
w,w′ =

⎛
⎜⎜⎝

t
�

2
e−2iθ

�

2
e2iθ t

⎞
⎟⎟⎠. (4)

Here, b̂†
j,w and b̂ j,w represent the creation and annihilation

operators for a w mode (right or left circularly polarized)
at the jth resonance. Notably, t = (tL + tT )/2 denotes the
polarization-independent coupling strength, whereas � =
tL − tT represents the polarization-dependent term induced by
the polarization splitting of photonic modes, which could be
interpreted as an effective spin-orbit coupling [50,53]. With
the Hamiltonian in the circular basis (3), we calculate the
eigenenergies of chains of 30 and 31 dielectric resonators
(δt = 1/3t , θ = π/2), as shown in Figs. 1(e) and 1(f), where
the color indicates the degree of polarization. For an even
number of dielectric resonators, the polarization states are
interleaved [see Fig. 1(e)]. The polarization that the lower
band ends with is identical to the polarization that the upper
band begins with. In addition, the eigenstates of the upper and
lower band are topologically trivial and therefore should be di-
agonally (D) polarized [see Fig. 1(b)]. Consequently, the edge
states (seen in the gap) are both necessarily antidiagonally (A)
polarized [see Fig. 1(c)], which leads to a topologically non-
trivial SSH chain. The polarization splitting results discussed
above are similar to Rashba spin-orbit coupling [55].
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FIG. 2. Energy spectrum as a function of zigzag angle θ under
the open boundary condition for (a) 30 and (b) 31 dielectric resonator
chains absent from disorder. The energies of two degenerate edge
states in (a) and (b) are marked in orange. Energy spectra of the
Hamiltonian (5) under the periodic boundary condition calculated
for (c) θ = 0 and (d) θ = 0.44π .

For a chain with an odd number of dielectric resonators, an
edge state will appear where a unit cell is broken by the bound-
ary. It is notable that, compared with the even-number case,
for D polarization, the edge state appears on the rightmost unit
of the chain, while for A polarization the edge state appears
on the leftmost unit of the chain [see Fig. 1(d)]. In addition, all
the polarization states, including the edge ones, are interleaved
[Fig. 1(f)]. The topological edge state here is stable once the
pillar resonators of the zigzag are on resonance, independent
of the polarization of the incident wave, which influences the
observation of the edge state in sphere resonators [54].

A. Band structure and winding number

For comparison, before discussing the winding number of
our system, we calculate the energy spectrum with Eq. (3)
under the open boundary condition while varying θ , as shown
in Figs. 2(a) and 2(b). For an even number of dielectric
resonators, topologically nontrivial zero-energy states appear
only in the gapped energy band. The gapless region exists only
near θ = 0, π . In contrast, for the odd-number scenario, in
addition to the gapless zero-energy states, gapped zero-energy
states appear near θ = 0, π . Furthermore, the region of the
gapless energy band will shrink if we increase the calculating
number (the number of the dielectric resonators in calcula-
tion) of the zigzag chain (see Appendix B). This implies that
the nontrivial zero-energy edge state will be present in all
θ �= 0, π if the number of dielectric resonators is sufficiently
large.

Under the periodic boundary condition, the Hamiltonian of
the zigzag chain reads [54]

H (K ) =
(

0 Q(K )

Q†(K ) 0

)
, (5)

where K is the Bloch wave vector, Q(K ) = h0 +
h(K ) · σ, h0 = t (1 + e−iK ), and h(K ) ≡ (hx, hy, hz ) =
[�

2 e−iK sin2θ, 0, �
2 (1 + e−iK )cos2θ ]. The energy spectra

calculated with Eq. (5) under the periodic boundary condition
for θ = 0 and θ = 0.44π are shown in Figs. 2(c) and 2(d). The
energy band closes when θ = 0 and opens when θ = 0.44π .

The topological invariant of our system is described by the
following winding number [56]:

w = i

2π

π∑
−π

dKTr[Q−1(K )∂K Q(K )]

= i

2π

π∑
−π

dK
d ln{det[Q(K )]}

dK

= − 1

2π

∮
d arg {det[Q(K )]}.

(6)

According to the bulk-boundary correspondence, the ex-
istence of topological edge states at the boundaries is
represented by the above nontrivial topological invariant in
the bulk. Calculated from Eq. (6), the winding number is
equal to 1 except when θ �= 0, π , demonstrating the nontrivial
zero-energy edge states are present for all θ �= 0, π , which is
further confirmed in Appendix A. In addition, compared with
the case with tLtT < 0 and |�| > 2|t | [54], where the topo-
logically nontrivial phase exists only when 70◦ < θ < 110◦
for dipole resonances, our work shows a wider region of the
topological phase with respect to θ .

B. Disordered arrays

Next, we study the effects of disorder on the zigzag chain
by assuming the zigzag angles between adjacent dielectric
resonators experience random variations. We keep the cou-
pling coefficient t = 1 and � = 1/3 fixed, and the variation
of the ith zigzag angle is δθi, which results in the ith zigzag
angle θdi = θ + δθi. Here, δθi is a random value distributed
uniformly within [−π/12, π/12]. Using this assumption, we
calculate the energy spectra shown in Figs. 3(a) and 3(b).
Evidently, for an even number of dielectric resonators, a pair
of zero-energy edge states survives the disorder in the gapped
region, and this band structure almost reproduces the features
of that without disorder [see Figs. 2(a) and 3(a)]. For the
odd-number case, the energy band is almost well gapped for
the entire range θ ∈ (0, π ), while the energy band without
disorder is gapless when θ approaches 0, π [see Figs. 2(b)
and 3(b)]. A pair of the zero-energy edge states survives in
the gapped region θ ∈ (0, π ), which is even larger than that
without disorder. In addition, we note that, for the scenario
with tLtT < 0 and |�| > 2|t |, the energy band structure is
seriously affected or even distorted by the disorder [54], while
here it is immune to the disorder.

In order to further confirm the survival of the zero-energy
states, the eigenstates for several selected average zigzag an-
gles are plotted in Figs. 3(c) and 3(d). The edge state exists in
the gapped region and tends to disappear when θ approaches
π in the gapless region or the gap is small. The surviving edge
states and well-protected band structure in our work prove the
robustness of our structure against disorder.
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FIG. 3. Energy spectrum as a function of zigzag angle θ under
the open boundary condition for (a) 30 and (b) 31 dielectric resonator
chains with disorder. The energies of two degenerate edge states in
(a) and (b) are marked in orange. Eigenstates for (c) 30 and (d) 31
dielectric resonator chains with disorder when θ = π/4, π/2, 4π/5,
19π/20.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

We choose disk dielectric resonators with a diameter of
11.7 mm, a height of 5.7 mm, and large permittivity ε = 38
as the building blocks of our subwavelength electromagnetic
structures. For a single dielectric resonance, the TE01 modes
can be excited with an azimuthally uniform magnetic field
[see Fig. 4(a)], which is a signature of the s mode. This

FIG. 4. (a) The magnetic field distribution in the x-y plane of the
single dielectric resonator. The white arrows represent the direction
of the magnetic field. (b) Schematic of using a transmission line
to excite the dielectric resonators of the zigzag chain. (c) A static
magnetic field H0 is applied in the x-y plane and perpendicular to the
direction of the transmission line, which leads to the precession of
magnetization under the illumination of microwaves at the frequency
of the edge state. Here, only the out-of-plane component of the mag-
netic field Hz [not shown in (a)], which is perpendicular to the static
field �H0, works since the magnetic field in the x-y plane is circularly
polarized with no net magnetic moment. The left arrow represents
the magnetization. (d) The blue, orange, yellow, and purple curves
represent the transmission spectra of the single dielectric resonator
and a zigzag chain with 12 dielectric resonators and 11 dielectric
resonators without and with disorder, respectively. The black (gray)
arrow denotes the edge (bulk) state.

resonant frequency is at 4.63 GHz [see Fig. 4(d)]. The di-
electric resonators touch each other to form a zigzag chain, as
seen in Fig. 1(a). The average coupling strengths of adjacent
dielectric resonators in the zigzag chain are equal, while the
coupling strengths are different along the longitudinal and
transverse directions. This kind of mode would cause the
polarization splitting effect and spin-orbit coupling seen in
Figs. 1(b)–1(d). A transmission line is applied to excite the
dielectric resonators by inputting the microwave at port 1, and
the transmission of the system can be detected at port 2. The
additional transmission line will inevitably lead to long-range
interaction, which breaks chiral symmetry, but the edge states
are robust against long-range couplings (see Appendix C and
Ref. [57]).

We perform a microwave imaging measurement in the
vicinity of the frequency of the TE01 mode. A homemade
magnetic field probe is fixed to an automatic mechanical
near-field scanning device and connected to the receiving
port of the analyzer. The probe is normal to the interface
of the structure, and we measure the components of the
magnetic field Hx, Hy, and Hz by adjusting the orientation
of the loop antenna [see Figs. 5(j)–5(l)]. We scan the near
field about 2 mm from the top surface of the zigzag ar-
ray to circumvent the contact between the probe and the
sample.

B. Microwave imaging

The transmissions for even-number (with 12 units) and
odd-number (with 11 units) zigzag chains are shown in
Fig. 4(d). The central modes in the gap marked by black
arrows are assumed to be edge states. This assumption can be
verified by performing microwave imaging at each frequency
of the central modes.

Figure 5 displays the results of the microwave imaging
measured at the frequencies of the central modes. For an even
number of dielectric resonators in the zigzag chain, an edge
state is obviously observed in Hx mapping with the magnetic
field mainly localized at the ends of the zigzag chain [see
Fig. 5(a)]. However, for the in-plane field Hy, the hot spot at
the rightmost site in Fig. 5(b) arises from the circularly polar-
ized magnetic field of the rightmost particle (with components
Hx and Hy), rather than the edge state. The measured Hx and
Hy mappings shown in Figs. 5(a) and 5(b) correspond to the A
and D polarization scenarios displayed in Figs. 1(c) and 1(b),
which are topologically nontrivial and trivial, as predicted
theoretically. Hence, the edge state is shown only in the Hx

mapping.
In contrast, for an odd-number zigzag chain, both Hx and

Hy mappings [see Figs. 5(d) and 5(e)] feature magnetic field
localized at the two ends of the chain. These experimental
results differ from the theoretical prediction, where Hx (Hy)
mapping with A (D) polarization is expected to have leftmost
(rightmost) field localization, as seen Fig. 1(d). This differ-
ence arises from the long-range interaction, which is not taken
into account in the theoretical part. Long-range interaction
will lead to an elliptically polarized edge state (with Hx and
Hy components) for an odd-number zigzag chain, as discussed
in Ref. [57], while it does not result in significant differences
for an even-number zigzag chain.
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FIG. 5. Microwave imaging of edge states for (a)–(c) 12 and (d)–(f) 11 dielectric resonator chains along the x, y, and z directions when the
zigzag chains are absent from disorder. (g)–(i) Microwave imaging of edge states along the x, y, and z directions for 11 dielectric resonator
chains when the random disorder is introduced. The x and y orientations are consistent with that in Fig. 1(a). (j)–(l) The orientations of the loop
antenna when measuring Hx , Hy, and Hz. The measured magnetic field is perpendicular to the loop of the antenna. This antenna is connected
to the third port of VNA via an SMA connector.

Although the topological effect induced by the polarization
splitting effect originates from the interaction between the in-
plane field Hx and Hy, the out-of-plane magnetic field Hz [see
Figs. 5(c) and 5(f)] shows a nontrivial topological property.
According to Maxwell’s equation, the out-of-plane magnetic
field Hz is directly related to in-plane electric field components
Ex and Ey. Hence, we can infer that the out-of-plane magnetic
field Hz inherits the topological properties from the in-plane
electric field components Ex and Ey.

The evident topological properties displayed in Fig. 5 con-
firm that the central modes marked by black arrows in the
transmission spectra for the even and odd cases are topologi-
cally edge modes. For comparison, the imaging on the bulk
mode marked by the gray arrows in Fig. 4(d) is shown in
Appendix D, where the energy is widely distributed among
the particles rather than localized at the edge of the chain.

We continue the microwave imaging operation for a zigzag
chain with disorder. For simplicity, we apply a random dis-
order angle δθi ∈ [−π/12, π/12] to the odd-number zigzag
chain with initial zigzag angle θ = π/2. The transmission
spectra of this disordered zigzag chain also show an apparent
central resonant mode [see Fig. 4(d)]. The mappings measured
at the frequency of central mode in Figs. 5(g)–5(i) show that
the magnetic field of the disordered zigzag chain is localized
at the left and right ends. These results imply that, similar to
the chain without disorder, the central mode of the disordered
chain is the topological edge state, which is robust against
disorder.

C. Remote magnon-magnon coupling with on-resonant
topological edge state

Next, we discuss that the topological edge state is applied
to mediate the coupling between separated magnons. To begin
with, two yttrium iron garnets (YIGs) with a 1 mm diam-
eter are placed in the center of the first and last dielectric
resonators in sequence. The static magnetic field is oriented
parallel to the top surface of the dielectric resonators and
perpendicular to the transmission line [see Fig. 4(c)]. The
transmission mappings of the magnon modes individually
tuned in resonance with the edge state are shown in Figs. 6(a)
and 6(b), where two modes resulting from the interaction are
not well separated. The respective dampings of the edge state
and magnon are 41 and 3 MHz. The extracted magnon-photon
coupling strengths are g1/2π = 39 MHz (YIG1+edge state)
and g2/2π = 39.3 MHz (YIG2+edge state). Hence, the in-
teraction between the edge state and magnon is in the weak
coupling region.

Then, two YIGs are simultaneously mounted at the center
of the first and last dielectric resonators. As the magne-
tocrystalline anisotropy field is dependent on the angle, we
adjust the orientation of the YIG sphere [58], so that the
two magnon modes are fully degenerate and simultaneously
tuned in resonance with the edge state. A single avoided
crossing with well-separated doublets is observed in the trans-
mission mapping [see Fig. 6(c)], implying strong coupling
between magnons and edge states. The extracted coupling
strength of g1+2/2π = 54 MHz, which implies the relation

013020-5



H. PAN, Z. H. AN, AND C.-M. HU PHYSICAL REVIEW RESEARCH 6, 013020 (2024)

FIG. 6. Transmission mappings measured when the edge state is
coupled to a magnon for the zigzag chain (a)–(c) without and (d)–
(f) with disorder. (a) and (d) Only YIG1 is placed at the leftmost
site. (b) and (e) Only YIG2 is placed at the rightmost site. (c) and
(f) YIG1 and YIG2 are simultaneously placed at the leftmost site
and rightmost site of the zigzag chain. The dashed curves are the
dispersions resulting from fitting coupling strength.

g1+2 ≈
√

g2
1 + g2

2. This enhanced coupling strength is ev-
idence of edge state assisted interactions between two
magnons separated by a length scale of 94 mm, which is many
orders of magnitude larger than what can be realized by direct
wavefunction overlapping. In order to further demonstrate that
the magnon-magnon coupling is mediated by the topological
zigzag chain, we remove two components of the zigzag chain
and find that this coherent magnon-magnon coupling behavior
disappears (see Appendix E).

Two magnons mediated by edge state will result in bright
and dark magnon modes. The enhancement originates from
the coupling between the bright magnon mode and the edge
state. A similar result was demonstrated in Refs. [6,59], where
two magnons or spins are coupled to an on-resonant cav-
ity mode, resulting in a bright magnon or spin mode and

therefore enhancement of the coupling strength between the
cavity mode and the magnon or spin mode. The distance
at which remote coupling mediated by a single on-resonant
cavity can be achieved is strictly restricted by the cavity
dimension [6,28]. As the edge state is localized at the ends
of the chain and the length of the chain is controllable,
magnon-magnon interaction mediated by the edge states is
more flexible and not limited to the cavity dimension.

As a key achievement, we show that the zigzag chain
can enable topology-protected photon-magnon coupling. The
same operation is repeated when coupling the edge state sur-
viving the disorder to the magnons. Figures 6(d)–6(f) show
the transmission mappings when only YIG1, only YIG2, and
both of them are tuned in resonance with the edge state. The
extracted coupling strengths are g′

1/2π = 38 MHz, g′
2/2π =

41 MHz, and g′
1+2/2π = 54 MHz, which also indicates the

enhanced coupling strength assisted by the edge state with

the relation g′
1+2 ≈

√
g′2

1 + g′2
2 . Because of the asymmetric

magnetic field distribution of the edge modes induced by the
disorder, the coupling strengths are no longer equal when
YIG1 and YIG2 are individually coupled to the edge state.
The asymmetry is predicted by the theoretical model because
the edge state shown in Figs. 3(c) and 3(d) is not strictly sym-
metric when the disorder is introduced. Despite the variation
of the individual coupling strengths caused by the asymmetry
of the magnetic field distribution of the edge state, the total
coupling strength remains unchanged. This demonstrates the
coupling strength is protected by the topology.

IV. CONCLUSION

To summarize, the remote interaction between the
magnons and the topological edge state was realized with a
topologically nontrivial photon bath of a topological waveg-
uide. The kernel of the waveguide is a zigzag chain of
dielectric resonators, which is analogous to the SSH chain.
The topological phase of this structure arises from the spin-
orbit coupling of the s mode. Experimentally, edge states with
linear polarization for an even number of dielectric resonators
but elliptical polarization for the odd-number scenario were
observed. More importantly, when the separated magnons
were simultaneously tuned in resonance with the edge state,
the enhancement of the vacuum Rabi splitting evidenced a
remote interaction between the two magnons mediated by
the edge state photon. Moreover, this interaction is robust
against disorder. The nonlocal interaction of two magnons

FIG. 7. detQ in the complex plane. The cases in (a) and (b) cor-
respond to θ = 0 and θ = 0.44π , respectively.
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FIG. 8. (a) Energy spectra when the number of dielectric res-
onators is increased to 120. (b) Illustration of the long-range coupling
induced by the traveling wave in the waveguide. (c) Energy spec-
trum as the relative next-nearest-neighbor coupling strength e is
varied. The black dashed line indicates the next-nearest coupling
ratio e = 0.35. (d) Illustration of the distance between the nearest
(next-nearest) dielectric resonators d1 (d2). The energies of two de-
generate edge states in (a) and (c) are marked in orange.

may increase the connectivity and scalability in magnon-
based quantum circuits [60,61].
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APPENDIX A: WINDING NUMBER

A calculation yields the trajectory in the complex plane
[see Figs. 7(a) and 7(b)]. For the gapless energy bands, the

trajectory of detQ crosses the original point in the complex
plane, and the winding number is v = 0 [54]. In contrast, for
the gapped case, detQ makes exactly one turn around zero,
demonstrating that the winding number is 1.

APPENDIX B: ENERGY SPECTRA OF AN INCREASED
NUMBER OF PARTICLES

Figure 8(a) shows the band structure when the number
of calculated particles is increased to 120. We find that the
gapless region shrinks and approaches θ = 0 and θ = π .

APPENDIX C: LONG-RANGE INTERACTION
OF THE ZIGZAG CHAIN

In order to demonstrate that the edge state is robust
against long-range coupling, for simplicity, we take the next-
nearest-neighbor coupling into account as an example. The
long-range interaction consists of two parts. On the one hand,
the magnetic field overlap between the modes excited in
the next-nearest dielectric resonators could contribute to the
long-range interaction. Its magnitude mainly depends on the
distance between two dielectric resonators. On the other hand,
the transmission line works as a reservoir, which leads to in-
direct coupling between modes of dielectric resonators linked
by the transmission line. The coupling strength is dependent
on the relative phase φ between the two dielectric resonators,
which results from the traveling wave in the transmission
line, and the cooperative radiative damping of the dielectric
resonators κ and γ [see Fig. 8(b)]. It is quite complicated.
Here, for simplicity, we consider only the first case. Since
the interaction strength is proportional to 1/d3 (d is the dis-
tance between two dielectric resonators) [62], the estimate
of the next-nearest-neighbor coupling ratio e = NN2/NN1 =
(d2/d1)3 = 0.35. Here, d1 (d2) is the distance between the
nearest-neighbor (next-nearest-neighbor) dielectric resonators
[see Fig. 8(d)].

To see the effect of the ratio e, we add an additional
next-nearest neighbor NN2 coupling term t ′ = et , δt ′ = eδt ,
to the Hamiltonian [Eq. (1)]. Figure 8(c) shows the influ-
ence of the NN2 couplings on the band structure. If only

FIG. 9. Microwave imaging of bulk states for (a)–(c) 12 and (d)–(f) 11 dielectric resonator chains when the zigzag chains are absent from
disorder.
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the nearest-neighbor coupling NN1 is considered, the band
structure is symmetric with respect to the central frequency.
When the additional NN2 coupling is included, the Hamil-
tonian breaks the chiral symmetry, and the band structure is
distorted and becomes asymmetric. Nevertheless, the edge
states persist in the gap and remain degenerate. In addition,
the states are elliptically polarized for e �= 0, which was dis-
cussed in detail in Ref. [57]. Overall, this calculated result
evidences that the edge states are robust even if the long-
range coupling, which breaks the chiral symmetry, makes a
difference.

APPENDIX D: MICROWAVE IMAGING
OF THE BULK STATE

For completeness, Fig. 9 shows the microwave imaging
of one typical bulk state at the frequencies indicated by the
gray arrows in the transmission spectra [see Fig. 4(d)]. The
magnetic field is almost widely distributed among all sites
of the zigzag chains. This implies that the localization of the
magnetic field at the ends is exclusively a feature of the edge
state, as discussed in Sec. III.

APPENDIX E: COUPLING FEATURE OF THE DAMAGED
DIELECTRIC RESONATOR ZIGZAG CHAIN WITH

COMPONENTS REMOVED

In order to demonstrate the remote coupling between two
YIGs (YIG1 and YIG2) mediated by the topological zigzag
chain, we removed two components to damage the zigzag
chain, as seen in Fig. 10(a). When YIG1 is placed at the
leftmost site of the damaged chain, we find the magnon
dissipatively [63] couples with cavity mode ω1/2π , mani-
festing an attraction of their dispersions that is marked by
a purple arrow, and coherently couples with cavity mode
ω2/2π , manifesting a repulsion of their dispersions, as seen
in Fig. 10(b). When YIG2 is placed at the rightmost site
of the same damaged chain, the magnon coherently couples
with cavity mode ω1/2π with a repulsion of their dispersions
and dissipatively couples with cavity mode ω2/2π with an
attraction of their dispersions (marked by a purple arrow), as
displayed in Fig. 10(c). The attractive dispersions of dissipa-
tive coupling (see Ref. [63]), which are not of interest here, are
not plotted in Figs. 10(b) and 10(c). Finally, when YIG1 and
YIG2 are simultaneously placed at the rightmost and leftmost
sites of the damaged chain, YIG1 and YIG2 are coherently
coupled with cavity modes ω2/2π and ω1/2π separately, as
shown in Fig. 10(d), which almost reproduces the repulsion
of their dispersions in Figs. 10(b) and 10(c). Moreover, the
magnon mode of YIG1 decouples from the magnon mode
of YIG2 and cavity mode ω1/2π , and the magnon mode of
YIG2 decouples from the magnon mode of YIG1 and cavity
mode ω2/2π , as denoted by green and red arrow, respectively,
in Fig. 10(d). Overall, these separate coupling behaviors of
the damaged chain evidence that the remote magnon-magnon
coupling is mediated by the topological zigzag chain, which
requires interaction between adjacent dielectric resonators.

FIG. 10. (a) Illustration of a dielectric resonator chain with re-
moved elements. (b) YIG1 and (c) YIG2 are placed in sequence at
the center of the leftmost and rightmost sites of the damaged zigzag
chain described in (a). (d) YIG1 and YIG2 are simultaneously placed
at the center of the leftmost and rightmost sites of the damaged zigzag
chain described in (a). The orange curves in (b) and (d) are the
repulsive dispersions of the magnon mode of YIG1 and the cavity
mode ω2/2π . The green curves in (c) and (d) denote the repulsive
dispersions of the magnon mode of YIG2 and the cavity mode
ω1/2π . The black dashed lines in (b)–(d) stand for the bare cavity
modes ω1/2π and ω2/2π . The purple arrows in (b) and (c) denote
the attraction of dispersions. The red (green) arrow in (d) denotes
the intersection of the bare cavity mode ω2/2π (ω1/2π ) and the
magnonlike mode of YIG2 (YIG1).

The damaged zigzag chain, as shown in Fig. 10(a), breaks the
adjacent dielectric resonant interaction and therefore cannot
mediate the magnon-magnon coupling.

We note that the attractive dispersions in Figs. 10(b) and
10(c) disappear in Fig. 10(d) because the bare cavity mode
ω2/2π (ω1/2π ) no longer exists under the coherent cou-
pling between the magnon of YIG1 (YIG2) and cavity mode
ω2/2π (ω1/2π ). Thus, the magnonlike mode does not coin-
cide with cavity mode ω1/2π [ω2/2π ; see the red and green
arrows in Fig. 10(d)], leading to the disappearance of the
attractive dispersions. Strictly speaking, when on resonant
(ωm = ωc), the coherent coupling between the cavity pho-
ton and magnon results in cavity magnon polariton, which
is a half magnon and half photon state. If |ωc − ωm| 
 g,
the magnon component becomes dominant, hence the termi-
nology “magnonlike mode” [64]. Here, ωc/2π (ωm/2π ) is
the resonant frequency of the cavity (magnon). The param-
eter g is the coupling strength between the magnon and the
cavity mode.
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