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In recent years there has been a great interest in topological photonics and protected edge states. Here, we
present a first-principles method to compute topological invariants of three-dimensional gapless phases. The
approach enables the calculation of the topological charges of Weyl points through the use of the photonic
Green’s function of the system. We take two different approaches, and show that they are consistent. In the first
one, we rely on the computation of Chern numbers in two-dimensional cross-sectional planes away from the
Weyl point. The second approach is based on direct calculation of the Berry curvature around the Weyl point.
We particularize the framework to the Weyl points that emerge in a magnetized plasma due to the breaking of
time-reversal symmetry. We discuss the relevance of modeling nonlocality when considering the topological
properties of continuous media such as the magnetized plasma. Our theory may be extended to other three-
dimensional topological phases or to Floquet systems.
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I. INTRODUCTION

Topological states in photonics have attracted much atten-
tion due to the promise of light propagation protected from
backscattering and thus immune to defects, such as sharp
edges or corners of the medium surface [1–6]. Through the
bulk-edge correspondence, a nontrivial topological invariant
of the medium’s bands guarantees protected edge modes that
lie in the band gap, when the topological medium is interfaced
with a trivial material, or vacuum [7,8]. The discovery of
nontrivial topological phases in optics [1,2,9] was inspired
by the electronic quantum Hall effect [10–12]. The topolog-
ical invariants are integers designated by “Chern numbers.”
Topological edge modes have been observed in photonic
crystals [1,2,9] and in a number of other systems includ-
ing waveguide arrays [13], and are also present in photonic
continua [14–19].

Three-dimensional (3D) systems can also host gapless
topological phases. This is the case of Weyl semimetals,
characterized by point degeneracies between topologically
inequivalent bands. These linear crossings between bands
in 3D, named Weyl points, are robust against perturbations
and are characterized by a quantized topological charge [6].
Weyl points have been realised in complex 3D photonic sys-
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tems, such as photonic crystals [20,21] and metamaterials
[22–24] as well as in homogeneous continuous media such as
a magnetized plasma [25]. The associated protected surface
states that emerge in the gaps away from the Weyl point [26]
have been observed in photonic systems including photonic
crystals [27,28], a strongly biased semiconductor [29] and a
metamaterial [30].

Topological photonic systems are conventionally charac-
terized by means of topological band theory [5,6,31,32]. This
framework yields a band’s Chern number from an integral
of the Berry curvature in momentum space, which is in turn
calculated from the system’s eigenstates. This approach is
usually taken for periodic photonic crystals, with momentum
space integrals carried out in the Brillouin zone, and typically
neglects dispersion, which is, however, an essential ingredi-
ent in topological continuous media, such as the magnetized
plasma. An alternative approach to characterize Weyl points
in the past has relied on linear k · p models around the Weyl
point, which enables one to write a Hamiltonian for the system
close to this degeneracy point [25].

In this work, we introduce a first-principles method to
calculate topological invariants in 3D dispersive photonic sys-
tems, and we apply it to the study of the Weyl points in a
magnetized plasma. In contrast to topological band theory,
our approach is based on the Green’s function and does not
require the calculation of the system’s eigenstates [33]. Ad-
ditionally, dispersion is naturally included in the method, as
well as nonlocality. In fact, it is known that a nonlocal material
response must be taken into account to guarantee well-defined
topologies in dispersive photonic systems [7,15,34–37]. Here,
we find that nonlocality can also influence in a decisive way
the type of Weyl points in an electromagnetic continuum.
Additionally, nonlocality can also affect the number of Weyl
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FIG. 1. Weyl points are monopoles of Berry curvature in mo-
mentum space. A plasma magnetized in the ẑ direction (a) hosts pairs
of Weyl points aligned along the kz axis. (b) A slice of momentum
space between two Weyl nodes is a Chern insulator (blue plane) and
hosts unidirectional edge states. The planes in green on the right
(PW +) and on the left (PW −) of the Weyl point represent the cuts
where the gap Chern numbers will be numerically computed and
whose difference gives the topological charge of the Weyl point (Ap-
proach I). (c) The Weyl charge can be computed by integrating the
flux of the Berry curvature through a spherical surface that surrounds
the Weyl point (Approach II).

point pairs in this system. Different methods based on Green’s
functions and spectral localizers have been proposed by other
authors [38–41]. Similar to our theory, these methods do not
rely on the computation of the photonic spectrum.

The paper is organized as follows. First, in Sec. II we detail
the methodology that allows us to compute the topological
charges of Weyl points from first principles, based on two
approaches: the first one is based on the calculation of the
gap Chern numbers in two-dimensional (2D) cross-sectional
planes away from the Weyl point under study; and the sec-
ond one involves integrating the flux of the Berry curvature
through an infinitesimal 3D momentum spherical surface cen-
tered at the Weyl point. Next, in Sec. III we present the results
for the topological charge of Weyl points in a magnetized
plasma. We first consider a local model which is known to
yield noninteger topological invariants in 2D type systems
[15]. To take into account the unavoidable nonlocality of
the magnetized plasma, we then consider two models that
incorporate a physical regularization procedure in the material
response that ensures integer invariants: a nonlocal hydro-
dynamic model and a full spatial cutoff model. We discuss
the Weyl points that emerge in both systems, as well as their
differences.

II. ANALYTICAL FORMALISM

Weyl points are topological entities that originate from a
geometric property of a system’s eigenstates, the Berry curva-
ture. Integration of the Berry curvature, Fn(k), over a closed
spherical surface that encloses the point [see Fig. 1(c)] gives a

quantized quantity,∫
dS n̂ · Fn(k) = 2πCW , (1)

with n̂ a unit vector normal to the spherical integration surface
in the outgoing direction and n an index that labels the bands.
CW , an integer, is the charge of the Weyl point. Its sign gives
the chirality of the Weyl degeneracy, that is, determines if the
flux is flowing into or away from the topological point. Thus,
the amount of Berry flux that goes through any closed surface
in momentum space that encloses the Weyl point is a topo-
logical invariant. This implies that Weyl points are monopoles
of Berry curvature in 3D momentum space. They only exist
in systems with a broken parity (P) or time-reversal (T )
symmetries, or both, which explains their robustness against
perturbations. In fact, they always appear in pairs, one being
a source and the other a drain, linked by inversion symmetry,
that can mutually annihilate [42]. Importantly, the sum of the
chiralities of Weyl points in a system must vanish [32,43].

The Berry curvature in Eq. (1) can be written in terms of
the Berry connection, An(k), as Fn(k) = ∇k × An(k), with
An(k) = 〈�†

n (k)|i∇k�n(k)〉, and �n(k) the eigenstates. This
in principle requires knowledge of the eigenfunctions along
the 3D bands. Alternatively, it has been shown that the Berry
curvature may be explicitly written in terms of the photonic
Green’s function, thus circumventing the need to compute the
eigenstates along the full band structure [33,44]. The photonic
Green’s function is obtained from Maxwell’s equations and
can be written as

Gk = i(L̂k − ω1)−1, (2)

where 1 is the identity and L̂k is a frequency-independent
differential operator that effectively models wave propagation
in a dispersive medium. Typically, such a description entails
modeling the effects of the material dispersion with additional
variables that represent the internal degrees of freedom of the
medium responsible for the dispersive response. The operator
L̂k is parameterized by the real wave vector k and its eigenfre-
quencies coincide with the poles of Gk. The derivation of L̂k
for a magnetized plasma is presented in Appendix A.

For lossless media, the eigenfrequencies lie in the real
frequency axis, separated by vertical strips that correspond to
the band gaps. For bands separated by a band gap, the sum
of the contributions of each of the Berry curvatures of the
bands below the band gap F (k) = ∑

n Fn(k) is then obtained
through an integral in the complex frequency space over a
line parallel to the imaginary axis contained in the band gap
(ω = ωgap + i∞). The l component (l = x, y, z) of the Berry
curvature can be written as [44–46]

[F (k)]l = εlmn

2

i

2π

∫ ωgap+i∞

ωgap−i∞
dω Tr

{
∂mL̂k · Gk · ∂nL̂k · G2

k

}
,

(3)

where we have generalized the expression for 2D Chern in-
sulators [44–46] to 3D media. The summation over m, n =
1, 2, 3 is implicit. Note that interchanging m and n flips the
sign of the integral. Here, εlmn is the Levi-Civita symbol, Tr is
the trace operator, ∂i = ∂/∂ki (i = x, y, z) and ωgap is some
frequency contained within the band gap. This approach is
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valid for dispersive continuous media, as well as for photonic
crystals [37].

We next show that the topological invariant of the Weyl
points can be calculated from the Green’s function, through
two complementary approaches. We assume a system with
broken T , where a minimum of two Weyl points appear at
opposite momenta, as sketched in Fig. 1. The same procedure
can be applied to systems with broken P which host a mini-
mum of two pairs of Weyl points.

A. Approach I: Chern number difference

Consider the topological charge of one of the two Weyl
points of a pair, CW in Eq. (1). The surface integral in that
equation can be carried out in an infinitesimally small sphere
enclosing the Weyl point. By construction, inside the integra-
tion volume the bands are well separated by a band gap and
the Berry curvature is well defined for the bands of interest
everywhere except at the Weyl point. Thus, the divergence of
the Berry curvature is zero everywhere except at the singular-
ity, and through Stokes theorem the integration surface can be
deformed into a parallelepiped. Therefore, the integral can be
equivalently carried out on the surface of a rectangular slice
of momentum space perpendicular to the axis along which
the Weyl point pairs are aligned [the kz axis in the sketch
of Fig. 1(b)]. Then, the topological invariant amounts to a
sum of the Berry fluxes going through all the sides of this
parallelepiped. Furthermore, the choice of integration surface
ensures that there are no other sources of Berry flux enclosed
by it, such that we can take the side faces (parallel to the kz

axis) to infinity where their contribution vanishes, and obtain
the topological invariant from the Berry fluxes going through
the two planes orthogonal to the kz axis at either side of the
Weyl point, PW − and PW +, sketched in green in Fig. 1(b).
Thus, the expression for the topological charge, Eq. (1), trans-
forms into

CW = 1

2π

∫
PW −

d2k (−ẑ) · Fn(k) + 1

2π

∫
PW +

d2k ẑ · Fn(k),

(4)
where the relative sign between the two terms takes into ac-
count that the unit vector n̂ in Eq. (1) points outwards from
the parallelepiped’s surface. Here, ẑ is the unit vector along
kz. Additionally, the label n corresponds to the band that lies
below the Weyl point.

The integrals in Eq. (4) correspond to the Chern numbers
of a given band at each side of the Weyl point, in particular,
the band that lies below it. Furthermore, since the bands only
touch at the Weyl point and there are well defined band gaps at
each side of it, the Chern numbers of the bands can be replaced
by gap Chern numbers, defined as the sum of the individual
Chern numbers of the bands immediately below a band gap
Cgap = ∑

n Cn. Hence,

CW = Cgap(PW +) − Cgap(PW −). (5)

From topological band theory, the gap Chern number can be
calculated from the Berry curvature:

Cgap = 1

2π

∫∫
d2k ẑ · F (k). (6)

The gap Chern number of each spectral band gap can also
be calculated from first principles using the photonic Green’s
function of the medium, as was shown in Refs. [33,37,45,47].
Specifically,

Cgap = i

(2π )2

∫∫
d2k

∫ ωgap+i∞

ωgap−i∞
dω Tr

{
∂1L̂k · Gk · ∂2L̂k · G2

k

}
,

(7)
where the integral over k is carried out over the whole
momentum space.

Hence, with this approach the topological charge of a Weyl
point is obtained by computing the gap Chern number of the
frequency band gaps that exist at each side of the Weyl point in
momentum space. Pairs of Weyl points bound planes of Chern
insulators with nontrivial gap Chern numbers, while outside of
the pairs the system will be trivial [42].

B. Approach II: Direct integration of the Berry curvature

An alternative approach to compute Weyl charges can be
accomplished through direct integration of the Berry curva-
ture. In particular, from the expression of the Berry curvature
in terms of the Green’s function, Eq. (3), we can write
explicitly,

F (k) · n̂ = i

2π

∫ ωgap+i∞

ωgap−i∞
dω Tr

{
[n1∂2L̂k · Gk · ∂3L̂k

+ n2∂3L̂k · Gk · ∂1L̂k + n3∂1L̂k · Gk · ∂2L̂k] · G2
k

}
.

(8)

From Eq. (1) we see that the topological charge of the Weyl
point can be obtained by direct integration of the above quan-
tity over a spherical surface in 3D momentum space enclosing
the Weyl point.

Due to the geometry of the integration surface, it is conve-
nient to adopt a system of spherical coordinates to parametrize
the wave vector space. We describe the 3D momentum sphere
around the Weyl point with polar angle θ , azimuthal angle
φ and k its radius. The wave vector can thus be written
as k = kW + kn̂, where kW is the momentum location of
the Weyl point and the unit vector normal to the sphere is
parametrized as n̂ = (cos φ sin θ, sin φ sin θ, cos θ ). This ap-
proach allows us to directly compute the topological charge
of the Weyl points from the Green’s function of the system.
A subtlety arises since it is not obvious that the modes in
the parametrized momentum space are fully gapped so the
frequency integral in Eq. (8) has to be done carefully. This
is further discussed in Sec. III D.

In the following section we apply our framework to study
a continuous medium with nontrivial topology featuring Weyl
points: a magnetized plasma [25]. The direct integration of the
Berry curvature (Sec. II B) will serve as the baseline against
which we will compare the results obtained from approach
I (Sec. II A), which solely relies on computing gap Chern
numbers over a slice of the “Brillouin zone” (an unbounded
plane for a continuum). We consider three different models of
the magnetized plasma, a local and two nonlocal models, and
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FIG. 2. Three-dimensional dispersion of local and nonlocal magnetized plasma models. (a) Dispersion surfaces for the local Drude model
described in Sec. III A, with parameters ωc = 0.8ωp and ω′

p = √
2ωp. (b) Dispersion surfaces for a magnetized plasma described by a

hydrodynamic model with β = 0.2c and ωc = 0.8ωp. (c) Dispersion surfaces for a magnetized plasma described with a full spatial cutoff
model with kmax = ωp/c, ωc = 0.8ωp, and ω′

p = √
2ωp. The integer numbers represent the topological charge of each Weyl point and they

were computed with Approach II [Eqs. (1) and (8)].

show that including nonlocality is important in the study of
topological properties of homogeneous photonic Weyl media.

III. TOPOLOGICAL CHARACTERIZATION
OF MAGNETIZED PLASMA

Let us consider a 3D plasma biased with a magnetic field
applied along the ẑ direction, as sketched in Fig. 1(a). The
medium is characterized by a plasma frequency ωp and a
cyclotron frequency ωc. Throughout this work, we consider
lossless local and nonlocal models of magnetized plasma,
with a nonmagnetic response, μ = μ01. We start with the
simpler, local model, in Sec. III A. Next, since we deal with
an unbounded wave vector space, we introduce nonlocality to
take into account that there is a physical cutoff that suppresses
the material response for large wave vectors (i.e., for very fast
variations of the field in space). Nonlocality results in a wave
vector-dependent permittivity. The nonlocal hydrodynamic
model in Sec. III B takes this into account by incorporating
charge diffusion due to repulsions between the electrons in the
plasma. A different approach is the nonlocal full-cutoff model
of Sec. III C. It was shown in Refs. [15,17,18], that the full
cutoff effectively models the fact that the material is formed
by discrete elements (atoms) standing in a vacuum (empty
space), and that this granularity results in a short-wavelength
cutoff. It should be noted that the type of nonlocality in the
plasma depends on the processes that control the electrody-
namics on a microscopic scale. Thus, the correct cutoff may
not be universal as it depends on the microscopic features of
the material. The nonreciprocal edge modes supported by a
magnetized plasma in the plane transverse to the magnetic
field are already well studied, taking the 3D medium as trans-
lationally invariant and reducing it to a 2D problem [7,15,34–
37,48].

Breaking of T -symmetry enables the emergence of Weyl
point pairs in this 3D system [25]. The Weyl points arise as
linear crossings between longitudinal and transverse modes
along the kz axis, as imposed by the direction of the applied
magnetic field. As P-symmetry is preserved, ω(−k) = ω(k),

and each Weyl crossing with positive momentum kz has a
partner at a symmetric point −kz. The 3D dispersion surfaces
of magnetized plasmas with different nonlocal properties can
be seen in Fig. 2: a local model is considered in Fig. 2(a), and
two different nonlocal models in Figs. 2(b) and 2(c), which
will be described below. Weyl crossings at positive kz can
be seen in all cases, marked with a blue, green, or red dot
in each panel. As mentioned, P-symmetry ensures that band
structures are symmetric between k and −k, so we only show
positive kz. Next to each Weyl point, we show the topological
charge which was computed by integrating the Berry curva-
ture flux over a small spherical surface centered at the Weyl
point [through Eqs. (1) and (8)]. Details on this approach are
given in the last part of Sec. III D.

The Weyl points predicted by the local model are predicted
as well by the nonlocal models. The corresponding topologi-
cal charges are independent of the model. This property is in
contrast with the gap Chern numbers of the associated 2D sys-
tems, which depend critically on the nonlocality [7,15,34–37].
Crucially, gap Chern numbers are ill-defined if the medium
response is not properly regularized. In contrast, Weyl charges
depend on the medium response near the finite Weyl mo-
mentum and are always well defined and consistent between
different models, although new Weyl pairs can appear in some
of the models, as we will see below. However, the type of Weyl
point exhibited by the system is affected by the nonlocality.

A. Local model

We first discuss the local magnetized plasma. The permit-
tivity tensor that describes electromagnetic propagation in the
bulk of this continuum is a matrix with a gyrotropic structure
[49,50]:

ε(ω)

ε0
= 1 + ω2

p

ω

[ − ω1 + iωcẑ × 1t
]−1 =

⎡
⎣ εt −iεg 0

iεg εt 0
0 0 εz

⎤
⎦,

(9)
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where 1t = x̂ ⊗ x̂ + ŷ ⊗ ŷ, and with × as the cross product
and ⊗ as the tensor product. Each matrix component is

εt = 1 − ω2
p

ω2 − ω2
c

, εg = −ωcω
2
p

ω
(
ω2 − ω2

c

) , εz = 1 − ω2
p

ω2
.

(10)

The lack of transpose symmetry is a consequence of break-
ing time-reversal symmetry (T ) through the application of
the magnetic field, turning the plasma into a nonreciprocal
medium. It has been shown that this medium possesses one
pair of Weyl points when ωc < ωp, and two pairs when ωc >

ωp, an inner and outer Weyl pair [25].
The local model considered in this work has a permittivity

tensor εloc which is the same as in Eq. (9), but with a uni-
axial plasma response, characterized with a different plasma
frequency in the ẑ direction, ω′

p. Only the ẑ ⊗ ẑ component
is affected by this choice: εz = ε0(1 − ω′2

p /ω2). Under these
conditions, this model only possesses one Weyl pair and full
band gaps are ensured in the xoy plane away from the Weyl
points. The Weyl points location is given by

kz = ±kW
z = ±

√√√√ω′
p

(
ω′2

p + ωcω′
p − ω2

p

)
c2(ωc + ω′

p)
. (11)

The Weyl points arise along the direction of the magnetic
field in momentum space, kz, as a linear crossing between
a flat longitudinal plasmon mode with constant frequency
ω = ω′

p and a transverse mode. The Weyl point with positive
kz is highlighted with a blue dot in Fig. 3(a), and as previ-
ously mentioned the bands are symmetric under kz → −kz

(not shown here). As they stem from the flat longitudinal
mode, the pointlike degeneracies displayed by this model are
tilted Weyl points that exhibit parabolic isofrequency surfaces
around them [25]. They stand at the critical transition between
type-I Weyl points, with ellipsoidal isofrequency surfaces, and
type-II Weyl points, for which the isofrequency surface is a
hyperboloid [22].

The Weyl charge can be obtained as the difference of gap
Chern numbers. To do this, we consider the dispersion in
cross-sectional planes of the 3D bands orthogonal to the kz

axis. The gap Chern numbers are calculated for the planes at
the left and right-hand sides of the Weyl point. Figure 3(b) de-
picts a cross section of the 3D dispersion at kz = 0 (xoy plane),
which displays two band gaps: a low-frequency one, bounded
between zero-frequency mode and a low-frequency transverse
magnetic (TM) band (shaded in orange); and a high-frequency
gap between the same TM mode and a transverse electric (TE)
mode (shaded in blue). The Chern numbers of these band
gaps have been previously studied [15,33,51], and analytical
expressions have been found (for kz = 0). The gap Chern
numbers take into account the topological charge of negative
frequency bands (not shown in Fig. 3), as they are given by
the sum of the Chern numbers of all bands below it. For the
high-frequency band gap (highlighted in blue), Cgap,1 = +1,

while for the low-frequency one Cgap,2 = −1/
√

1 + ω2
p/ω

2
c .

The latter result, a noninteger gap Chern number, is a con-
sequence of the ill-defined topology of the low-frequency TM
mode due to the limitations of the local model.

FIG. 3. Frequency dispersion for a local magnetized plasma, in
cross sections of Fig. 2(a). (a) Dispersion along the kz axis exhibiting
one of the Weyl points of the pair marked with a blue circle. The band
gaps of interest are shaded in blue and orange. (b), (c) Dispersion in
cross-sectional planes orthogonal to the kz axis, before and after the
Weyl point: kz = 0 (b) and kz = 5

4 kW
z (c). The parameters used here

were ωc = 0.8ωp and ω′
p = √

2ωp.

Next we take a cross section of the dispersion at the right-
hand side of the Weyl point, in particular at kz = 5

4 kW
z [see

Fig. 3(c)]. As kz increases from kz = 0, the low-frequency
TM mode bends upwards and crosses the flat TE mode at
the Weyl point. This band crossing enables an exchange of
topological charge, and thus modifies the gap Chern num-
ber of the high-frequency (blue) band gap. We confirm this
numerically [Eq. (7)] by computing the gap Chern number,
which yields Cgap,1 = 0. However, the low-frequency (orange)
band gap does not close and thus its topological invariant
stays a noninteger number, decreasing as kz increases. Ad-
ditionally, the results are symmetric for negative momentum
values (kz = −kW

z ), due to the spatial parity symmetry of the
Berry curvature F (−k) = F (k) [25,52]. Thus, we have that
for kz ∈ (−∞,−kW

z ), Cgap,1 = 0, while for kz ∈ (−kW
z , kW

z ),
Cgap,1 = +1 and for kz ∈ (kW

z ,∞), Cgap,1 = 0. From this we
compute the topological charge of the Weyl pair following
Eq. (4) as CW (kz = −kW

z ) = (+1) − 0 = +1 for the one at
negative momentum, and CW (kz = +kW

z ) = 0 − (+1) = −1
for the one at positive momentum. The calculation agrees
with the result discussed earlier obtained by direct integra-
tion of the Berry curvature flux through the spherical surface
centered at the Weyl point. This is also consistent with the
results obtained in Ref. [25] for a local magnetized plasma
using a k · p expansion close to the Weyl points. As expected,
having ω′

p �= ωp in the permittivity tensor does not change the
topological properties of the magnetized plasma, which shows
one pair of Weyl points with charge ±1 for ωc < ωp. Due to
the continuous and local nature of this medium, some of its
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FIG. 4. Frequency dispersion for the hydrodynamic model: (a) in the kz axis exhibiting the two regions of interest shaded in blue and
orange. [(b)–(d)] Cross sections of the 3D dispersion [Fig. 2(b)] for different values of kz: (b) kz = 0, (c) kz = kW

z , and (d) kz = 3
2 kW

z . The
band gaps are highlighted in orange. The Weyl crossing is highlighted with the green circle. The parameters used here were β = 0.2c and
ωc = 0.8ωp.

topological features are ill-defined when the integration sur-
face in momentum space is unbounded. To overcome this
problem, some cutoff should be included to the material
response, to ensure that its nonreciprocal components are
suppressed for large wave vectors [15]. When dealing with
realistic materials, fields with very fast spatial variation can-
not effectively polarize the microscopic constituents of the
medium, therefore its response is effectively suppressed when
k → ∞ and it should reduce to that of the vacuum, so the
momentum cutoff has a physical justification [53]. For this
purpose, we next consider two different nonlocal models: the
hydrodynamic model and the full-cutoff model.

B. Hydrodynamic model

A conventional approach to consider nonlocal effects is
to employ the hydrodynamic model, where the repulsive in-
teractions between electrons are accounted for by adding
a diffusion-type force contribution to the transport equa-
tion [54]. The diffusion velocity, β, is introduced as a
parameter. It controls the diffusion strength and typically cor-
responds to the velocity of electrons at the Fermi level. The
permittivity tensor within this model can be written as

εhydro

ε0
(ω, k) = 1 + ω2

p

ω

[
−ω1 + iωcẑ × 1t + β2

ω
k ⊗ k

]−1

,

(12)

where we observe how the last term on the right hand side
introduces an explicit dependence on the momentum.

Dispersion surfaces for this model are shown in Fig. 2(b),
for a choice of parameters given in the figure caption with
one pair of Weyl points, at kz = ±kW

z , marked with a green
dot in the figure. Cross sections of the dispersion, along the kz

axis and at three transverse cuts are shown in Fig. 4. Only the
longitudinal modes are affected by nonlocality [15]. This can
be observed in the dispersion of modes along kz [Fig. 4(a)],
where the flat longitudinal mode of the local model gains a
positive group velocity ( ∂ω

∂k > 0, for positive k), and also in
the in-plane dispersion [Figs. 4(b)–4(d), for different values
of kz], where the low-frequency TM mode now bends upward.
This is an important detail because the high-frequency band
gap is consequently eliminated in every cross section, for any
kz value, in contrast to the results obtained with the local

model [see Fig. 3(b)]. The introduction of arbitrarily weak
nonlocality of this type creates a type-II Weyl system, as can
be attested by the hyperbolic isofrequency curves around the
linear crossing seen in Fig. 5. This is the case when the cross-
ing between the longitudinal mode and the transverse mode
have group velocities vg = ∂ω

∂k with the same sign. This type
of Weyl point has a diverging local density of states (DOS) at
the Weyl frequency [24].

Due to the closing of the high-frequency band gap in planes
transverse to the kz axis within this model, Approach I can
only be applied to the low-frequency band gap, highlighted in
orange in Fig. 4. Direct computation of the gap Chern number
for this band gap yields Cgap = 0, at any cross-sectional plane,
as seen for a plane in between the two Weyl points, kz = 0, in
Fig. 4(b), a plane at the Weyl point, kz = kW

z , in Fig. 4(c), and
after the Weyl point, kz = 3

2 kW
z , in Fig. 4(d). This is consistent

with the fact that this band gap never closes, either with a Weyl
crossing or any other type of degeneracy [see Fig. 2(b)], such
that the topological invariant of the gap cannot change.

With the hydrodynamic model, we cannot then obtain in-
formation on the topological charge of the Weyl point, as a

FIG. 5. The hydrodynamic model features type-II Weyl points:
dispersion surfaces and isofrequency curves around the Weyl point at
kz = +kW

z in the ẑ and x̂ directions. The parameters used here were
β = 0.2c and ωc = 0.8ωp.
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FIG. 6. Frequency dispersion for the full-cutoff model: (a) in the kz axis exhibiting the two regions of interest in blue and orange. [(b)–(g)]
Cross sections of the 3D dispersion [Fig. 2(c)] for different kz values: (b) kz = 0, (c) kz = 3

4 kW,1
z , (d) kW,1

z , (e) kz = 5
4 kW,1

z , (f) kW,2
z , and (g)

kz = 5
4 kW,2

z . In panels [(b)–(g)], the high-frequency band gaps are highlighted in blue, the low-frequency ones in orange. The inner Weyl point
at kW,1

z is highlighted with the red circle and the outer Weyl point with the red square at kW,2
z . The parameters used here were kmax = ωp/c,

ωc = 0.8ωp, and ω′
p = √

2ωp.

gap Chern number difference, as it results from a crossing
between high-frequency bands (see Fig. 4) and the lack of
full frequency band gap along transverse directions prevents
the application of the Green’s function method. By direct
integration we find CW = ±1. We next consider a different
and more general nonlocal model.

C. Full-cutoff Model

A general solution to regularize the topology of a contin-
uum was introduced in Ref. [15], based on the introduction of
a high-frequency spatial cutoff to the material response of a
system, as

εcutoff(ω, k) = ε01 + 1

1 + k2/k2
max

[
εloc(ω) − ε01

]
, (13)

where εloc stands for the original local response, k2 = k · k
and kmax models the high-frequency wave vector cutoff. For
large values of the wave vector, k � kmax, the material re-
sponse is suppressed, since for k → ∞, εcutoff(ω, k) → ε01
and the material response becomes that of free space.

Unlike the hydrodynamic model, the nonlocality induced
by this regularization affects all of the dispersion modes, al-
beit in a different way than the hydrodynamic model. Most
importantly, the longitudinal mode along the kz axis again
acquires a nonzero group velocity, but this time a negative one
( ∂ω

∂k < 0, for positive k), as can be observed in Fig. 6(a). Addi-
tionally, the frequency of the longitudinal mode now tends to
zero ω → 0 as k → ∞ and consequently this mode always
intersects the other two transverse modes. This originates
two pairs of Weyl points whose momentum space locations

will be designated as kz = ±kW,1
z for the inner crossing, and

kz = ±kW,2
z for the outer crossing. The appearance of the outer

Weyl point pair is a difference with respect to the local and
hydrodynamic models. As it should, as the cutoff approaches
infinity this pair migrates to infinity and the result of the local
model is recovered. However, we note that the local model
studied elsewhere [25] (without uniaxial response ω′

p in ẑ) can
present two pairs when ωc > ωp, that is, for a different set of
parameters as those considered in our work. The physics of
these Weyl crossings is distinct from that of those appearing
in the hydrodynamic model, due to the different signs of
the group velocities of each crossing mode. In this case, the
isofrequency curves around all Weyl points are closed ellipses,
with a vanishing DOS exactly at the Weyl frequency, making
this a type-I Weyl system. This is shown in Fig. 7 for the inner
Weyl point, kz = +kW,1

z . This confirms that nonlocality has a
crucial role in determining the type and number of Weyl points
exhibited in a system [22].

We now consider the band structures in planes transverse
to the kz axis, see Figs. 6(b)–6(g), to compute the topological
charge of the Weyl points hosted by the system. As in the
previous sections, we consider dispersion curves ω(kx ), for
different values of kz. As with the hydrodynamic model, we
start at kz = 0 (b), where this time we identify two band
gaps: a high-frequency one, highlighted in blue, and a low-
frequency one, highlighted in orange. Computation of the
gap Chern numbers yields Cgap,1 = +1 (blue band gap) and
Cgap,2 = −1 (orange band gap). In contrast to the local mag-
netized plasma, the Chern numbers are now well defined due
to the regularization provided by the spatial cutoff, and in
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FIG. 7. The full spatial cutoff model features type-I Weyl points:
dispersion surfaces and isofrequency curves around the inner Weyl
point at kz = kW,1

z in the ẑ and x̂ directions. The parameters used here
were kmax = ωp/c, ωc = 0.8ωp, and ω′

p = √
2ωp.

contrast to the hydrodynamic model, we observe two nontriv-
ial band gaps. These results are consistent with those obtained
in Ref. [15], where the magnetized plasma modes at kz = 0
were studied. Next, Fig. 6(c) shows the band dispersion away
from kz = 0 but still at the left of the first Weyl point, kz =
3
4 kW,1

z . In this transverse plane, the zero-frequency mode is
lifted, but the two band gaps are still preserved, as expected.
Numerical computation confirms that the Chern numbers are
still Cgap,1 = +1 and Cgap,2 = −1, as expected since the gaps
have not closed. At the first Weyl point, kz = kW,1

z , the high-
frequency band gap closes at this linear degeneracy, as shown
in panel (d), while the low-frequency one is maintained, with
Cgap,2 = −1, as expected too. Further increasing the value
of kz to kz = 5

4 kW,1
z , in between the two Weyl points, we

see in Fig. 6(e) how the high-frequency gap opens up again,
although the calculated gap Chern number is now Cgap,1 = 0.
At the same time, the lower frequency band gap does not close
in this process and hence Cgap,2 = −1 is kept. This band gap
only closes in Fig. 6(f), at the second Weyl point, kz = kW,2

z .
Finally, for kz at the right of this outer degeneracy, we find
this band gap is open again [Fig. 6(g)], and its gap Chern
number turns trivial, Cgap,2 = 0, such that all band gaps are
now trivial. This is expected as this should be the behavior
at k → ∞, and there are no more band gap closings after the
outer Weyl point that could enable a change in topological
invariants.

Once we know all the gap Chern numbers, we can calculate
the magnitude of the topological charge of the Weyl point
using Approach I [Eq. (5)]. We obtain, for the inner Weyl
point at positive momentum, CW (kz = +kW,1

z ) = 0 − (+1) =
−1, while its counterpart at negative momentum has charge
CW (kz = −kW,1

z ) = +1 − 0 = +1. This value of the topolog-
ical charge is consistent with the one obtained in the local
model, as should be expected. Additionally, the topological
charges of the outer Weyl pair are CW (kz = +kW,2

z ) = 0 −
(−1) = +1 for the Weyl crossing with positive momentum
and CW (kz = −kW,2

z ) = (−1) − 0 = −1 for the crossing with
negative momentum. The outer pair of Weyl points smoothly

moves to infinity by increasing kmax, thus retrieving the results
from the local model.

D. Topological characterization with Approach II

In this section we give some details on how to di-
rectly compute the topological charge of Weyl points in the
magnetized plasma. Particularly, we focus on the complex
frequency integral of Eq. (8) and how the integral path can
be implemented in the case of a 3D spherical momentum
space.

We begin by plotting the frequency dispersion of the modes
present in a 3D momentum sphere surrounding a Weyl point,
for the three studied models. These modes are plotted in
yellow in Fig. 8, parametrized by the spherical coordinates
θ and φ (see Fig. 10 and Appendix B for more details). We
see that only the full-cutoff model in Fig. 8(c) possesses a
complete photonic band gap in the momentum sphere. And
so, it is possible to compute the frequency integral in Eq. (8)
along a path with a constant ωgap, represented by the con-
stant frequency plane in blue, between the two modes that
intersect at the Weyl point. This is not feasible in the case
of the local model in Fig. 8(a) and in the hydrodynamic
model in Fig. 8(b), since there is no complete band gap.
Nonetheless, it is possible to adjust ωgap(k) along the wave
vector space, and specifically for this case, for any (θ, φ)
point. This procedure is justified because the Berry curvature
in Eq. (3) is independent of the integration path in the gap.
In the case of both these models, we parametrized the real
part of the integral path ωgap(θ, φ) with a smooth continu-
ous function: ωgap = ωWeyl(1 + A cos θ ), where ωWeyl is the
frequency of the respective Weyl point and A is a suitable
constant. We can observe these parametrizations represented
by the blue surfaces in Figs. 8(a) and 8(b) of the same
figure.

This approach allows to effectively calculate the Berry
curvature of the bands that lie below the Weyl point for each
wave vector value on the momentum sphere. The topological
charge of the Weyl point is indeed well-defined because the
low-frequency mode never intersects the high-frequency one,
in the spherical surface, and so the integral yields an integer
value. The topological charges obtained through this approach
are given in Fig. 9. For the case of the local model, the
calculation yields a charge of −1 for the positive momentum
Weyl point (kz = +kW

z ) and the negative counterpart possesses
a charge of +1 (kz = −kW

z ). We obtained identical results
for the case of the hydrodynamic model, where the positive
momentum Weyl point exhibits a topological charge of −1
(kz = +kW

z ) and opposite charge of +1 for the negative coun-
terpart (kz = −kW

z ). This confirms the topological charge of
the Weyl point shared by the local and hydrodynamic models
is not influenced by the nonlocal properties of the medium,
which control mainly the short wavelength physics (k → ∞).
Finally, the results for the full-cutoff model are consistent
for the inner Weyl point pair, where the positive momentum
inner Weyl point has charge −1 (kz = +kW,1

z ) and +1 for
the counterpart (kz = −kW,1

z ). The outer Weyl points have
switched signs relatively to the inner ones, where the positive
momentum one possesses +1 (kz = +kW,2

z ) and the negative
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FIG. 8. In yellow: dispersion surfaces of the modes in a 3D momentum sphere surrounding a Weyl point, parametrized by the spherical
coordinates θ and φ. In blue: real part of complex frequency integral path ωgap(θ, φ). (a) Local model, at kz = +kW

z with ωc = 0.8ωp, ω′
p =√

2ωp, A = 0.07, and k = kW
z /5. (b) Hydrodynamic model, at kz = +kW

z , with β = 0.2c, ωc = 0.8ωp, A = 0.05, and k = kW
z /5. (c) Full-cutoff

model, at kz = +kW,1
z , with kmax = ωp/c, ωc = 0.8ωp, ω′

p = √
2ωp, and k = kW,1

z /5.

momentum one has −1 (kz = +kW,2
z ). The latter results are

equal to the ones we would obtain for a local model without
the uniaxial plasma response ω′

p, in the condition ωc > ωp

(which generates two Weyl pairs) [25]. These computations
are in agreement with the results obtained with Approach I.
Additionally, with this this approach, we were able to calcu-
late the Weyl charges for the hydrodynamic case, even without
a full band gap in the transverse planes.

IV. CONCLUSIONS

In this work we have introduced a first-principles formal-
ism that enables the characterization of Weyl points in 3D
dispersive photonic continua. We introduced two calculation
methods to find the Weyl charges by means of the photonic
Green’s function of the medium [15]. In the first calculation
approach, the Weyl charge is found from the calculation of
gap Chern numbers in planes transverse to the axis that joins
a Weyl pair. Conversely, for the second approach the Weyl
charge is obtained through the integration of the flux of the
Berry curvature over a small spherical surface centered at the
relevant Weyl point. This is in contrast to standard methods
based on topological band theory, which require the calcula-
tion of the eigenvectors at each value of the wave vector.

We have shown an application of the theory for a 3D mag-
netized plasma, where the T -breaking enables the existence
of Weyl point pairs. When considering a standard local de-
scription of the magnetized plasma, a Weyl point pair emerges
at the crossing between a flat plasmonic longitudinal mode
and a transverse mode. Furthermore, we have also taken into
account the effects of spatial dispersion using the hydrody-
namic and full-cutoff models. As might be expected, as the
Weyl charge only depends on the Berry curvature over a small
region of the momentum space centered at the Weyl point, the
Weyl charges associated with the local model are not sensitive
to the the spatial dispersion effects in the medium. However,
the number and type of Weyl points depend on the nonlocal-
ity model, even if the parameter that controls the nonlocal
effects is arbitrarily small. As a consequence, knowledge of
the topological properties of a 3D system allows us to infer the

gap Chern numbers of the corresponding 2D subsystems (pro-
vided they are fully gapped). Our results are hence connected
with the gap Chern numbers of the magnetized plasma 2D
TM bands, which depend critically on the asymptotic behavior
of the material response at k = ∞ and thus on the chosen
nonlocal model.

Previous literature studied the gap Chern numbers in trans-
lationally invariant magnetized plasmas [15,33,35,36], which
corresponds to kz = 0 in the plots shown in Fig. 9. Consistent
with those studies, in our analysis of the topological properties
of the 3D magnetized plasma, we find two relevant band gaps
at zero momentum. In the three considered models (local,
hydrodynamic, and full-cutoff), the high-frequency band gap
(highlighted in blue) is bounded by a Weyl point pair, which
gives rise to its topological nature: the gap Chern number is 1
for the local and full-cutoff models, while the hydrodynamic
model does not feature a full band gap in the transverse plane.
However, the low-frequency band gap (in orange) has an
ill-defined topology in the local model, while it is trivial in
the hydrodynamic model. Critically, in the full-cutoff model,
an outer pair of Weyl points appears which bounds this low-
frequency band gap, giving it a nontrivial gap Chern number
of −1. When the cutoff is suppressed kmax → ∞, the outer
Weyl point pair goes to infinity, and the local model with the
uniaxial response is retrieved, where only the inner Weyl pair
arises. Therefore, our results show how the different topolog-
ical properties of the 2D system for the different models arise
due to the Weyl points present in the 3D bands.

In conclusion, we have presented a detailed study of 3D
gapless phases in dispersive photonic continua, and discussed
the important effects of nonlocality in the topological proper-
ties of these systems. Specifically, we made use of the link
between the topological charge of the 3D Berry curvature
singularities (Weyl points) and the gap Chern numbers of 2D
subsystems, to characterize from first principles the topologi-
cal properties of an electromagnetic continuum in 3D for the
first time. Our results are based on first-principle calculations
of topological invariants that naturally take into account fre-
quency dispersion and nonlocality. This methodology can be
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FIG. 9. Summary of the topological characterizations of the lo-
cal and nonlocal models of the 3D magnetized plasma. The gap
Chern numbers in transverse cuts are highlighted with a white cir-
cle, for each subregion and they were computed through Approach
I [Eqs. (7) and (5)]. The topological charges of the Weyl points,
computed through Approach II [Eqs. (1) and (8)] are also showcased.
In the three plots we see the kz axis dispersion for: (a) local model
with the Weyl pair as blue circles. Parameters used were ωc = 0.8ωp

and ω′
p = √

2ωp; (b) hydrodynamic model with the Weyl pair as
green circles. The parameters used were β = 0.2c, ωc = 0.8ωp, and
ω′

p = ωp; (c) full-cutoff model with the inner Weyl pair as red cir-
cles and the outer pair as red squares. The parameters used were
kmax = ωp/c, ωc = 0.8ωp, and ω′

p = √
2ωp.

FIG. 10. Geometry and spherical coordinate system adopted for
the wave vector space. φ is the azimuthal angle, θ is the polar angle
and k is the radial distance from the Weyl point, in other terms the
radius of the integration sphere, represented in blue.

extended to P-broken Weyl systems, other 3D topological
phases, or to Floquet systems.
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APPENDIX A: FREQUENCY-INDEPENDENT
DIFFERENTIAL OPERATOR L̂k

Here we show the derivation of the operator L̂ from which
L̂k is obtained. We generalize the method of Ref. [37] to the
lossless 3D magnetized plasma. We consider the hydrody-
namic model as a first instance.

We start with Maxwell’s equations in time domain, for
propagation in free space (∂t ≡ ∂

∂t
):

−i∇ × E = iμ0∂t H,

i(∇ × H − j) = iε0∂t E,
(A1)

where μ0 and ε0 are the vacuum’s permeability and per-
mittivity, respectively. We then consider the continuity
equation given by

∂tρ + ∇ · j = 0. (A2)

The current j and charge ρ densities model the response
of the dispersive electric gyrotropic material. Making use of
Newton’s second law of motion plus Lorentz’s Force law, the
transport equation for a free electron gas biased with a static
magnetic field (B0 = B0ẑ) is given by

dj
dt

= ε0ω
2
pE + q

m
j × B0 − β2∇ρ, (A3)

where q = −e is the charge of an electron with opposite sign
and m is its effective mass. If we wish to retrieve the local
model, we just set β as zero. Equations (A1)–(A3) can be
rewritten as a Schrödinger-type equation:

L̂ · Q = 1

c
i∂t Q. (A4)

The state vector Q is given by Q = [Ex

Ey Ez H̃x H̃y H̃z j̃x j̃y j̃z ρ̃]T . We introduce the normalized
magnetic field, current and charge density: H̃ = η0H, j̃ = η0j,
ρ̃ = η0cρ, with η0 being the vacuum wave impedance and
c the speed of light. Since we are interested in the 3D
case of the continuous magnetized plasma, we assume a
spatial and time variation of the state vector of the type
eik·re−iωt , with wave vector k = kxx̂ + kyŷ + kzẑ. We are
also interested in analyzing the dispersion of all light modes
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in this medium, and hence the fields and wave vector are
unconstrained: E = Exx̂ + Eyŷ + Ezẑ, H = Hxx̂ + Hyŷ + Hzẑ
and j = jxx̂ + jyŷ + jzẑ which justifies the dimension of the

state vector written above. By manipulating Eqs. (A1)–(A3),
and taking into account that the cyclotron frequency is defined
as ωc = −qB0/m, we derive the operator L̂:

L̂(−i∇ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −i∂z i∂y −i 0 0 0
0 0 0 i∂z 0 −i∂x 0 −i 0 0
0 0 0 −i∂y i∂x 0 0 0 −i 0
0 i∂z −i∂y 0 0 0 0 0 0 0

−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −i ωc
c 0 −i β2

c2 ∂x

0 i
ω2

p

c2 0 0 0 0 i ωc
c 0 0 −i β2

c2 ∂y

0 0 i
ω2

p

c2 0 0 0 0 0 0 −i β2

c2 ∂z

0 0 0 0 0 0 −i∂x −i∂y −i∂z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

The operator L̂k from Eq. (2) can be obtained by substituting the spatial derivatives in (A5) with the corresponding wave
vector components ∂

∂ j ↔ ik j , j = {x, y, z}. To get the local model analysed in this work we must set β to zero and include the
uniaxial plasma frequency component ω′

p.
The full-cutoff model can be enforced in the system by changing the current density vector j in Maxwell’s equa-

tions (A1), replacing it with (−k−2
max∇2 + 1)−1j. The derived operator for this model with the uniaxial plasma frequency ω′

p is
given by

L̂(−i∇) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −i∂z i∂y
−i

(−k−2
max∇2+1)

0 0 0

0 0 0 i∂z 0 −i∂x 0 −i
(−k−2

max∇2+1)
0 0

0 0 0 −i∂y i∂x 0 0 0 −i
(−k−2

max∇2+1)
0

0 i∂z −i∂y 0 0 0 0 0 0 0
−i∂z 0 i∂x 0 0 0 0 0 0 0
i∂y −i∂x 0 0 0 0 0 0 0 0

i
ω2

p

c2 0 0 0 0 0 0 −i ωc
c 0 0

0 i
ω2

p

c2 0 0 0 0 i ωc
c 0 0 0

0 0 i
ω′2

p

c2 0 0 0 0 0 0 0
0 0 0 0 0 0 −i∂x −i∂y −i∂z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

APPENDIX B: NUMERICAL IMPLEMENTATION
OF APPROACH II

In this section we describe the direct computation of
the Weyl point’s topological charge with the first-principles
method through Eqs. (1) and (8) (Approach II). Specifically,
we will discuss the frequency integral of the equivalent def-
inition of the Berry curvature with the photonic Green’s
function. Usually, the integral in the complex frequency plane
in Eqs. (3), (7), and (8) is taken along a straight line that is
parallel to the imaginary frequency axis, centered at a real
frequency value ωgap, which is situated in the band gap. This
is the case when there exists a well-defined and complete
photonic band gap, which separates two distinct eigenmodes
[33]. However, with this approach, this is only possible in the
case of the full-cutoff model, as discussed in the main text.

For the numerical implementation of this approach, we
will adopt the system of spherical coordinates introduced
in Sec. II B to parametrize the wave vector space, with
polar angle θ ∈ [0, π ], azimuth angle φ ∈ [0, 2π [ and k
the radius of the 3D momentum sphere surrounding the

Weyl point. This geometry is highlighted in Fig. 10. The
wave vector is thus k = kW + kn̂, where kW is the momen-
tum location of the Weyl point and the unit vector normal
to the spherical integration surface is parametrized as n̂ =
(cos φ sin θ, sin φ sin θ, cos θ ). The charge of a Weyl point can
then be computed with the Green’s function definition of the
Berry curvature (8) through the flux integral

CW = 1

2π

∫ π

0
dθ

∫ 2π

0
dφ F (k) · n̂ k2 sin θ

= i

(2π )2

∫ π

0
dθ

∫ 2π

0
dφ

∫ ωgap+i∞

ωgap−i∞
dω

× g(ω, k)|k=kW +kn̂ k2 sin θ

= −1

(2π )2

∫ π

0
dθ

∫ 2π

0
dφ

∫ ∞

−∞
dξ

× g(ω, k)|k=kW +kn̂, ω=ωgap+iξ k2 sin θ, (B1)

where we performed a coordinate transformation
and the integrand function g(ω, k) can be written
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FIG. 11. In blue: frequency dispersion of the modes in a 3D
momentum sphere surrounding a Weyl point of the (a) local model
at kz = +kW

z , (b) hydrodynamic model at kz = +kW
z and (c) cutoff

model at kz = +kW,1
z , parametrized by the spherical coordinates φ

(a1, b1, c1 with θ = 0) and θ (a2, b2, c2 with φ = 0). In red: real
part of complex frequency integral path ωgap(θ, φ). The parameters
used here are the same as in Fig. 8.

explicitly as

g(ω, k) = Tr
{
[cos φ sin θ∂2L̂k · Gk(ω) · ∂3L̂k

+ sin φ sin θ∂3L̂k · Gk(ω) · ∂1L̂k

+ cos θ∂1L̂k · Gk(ω) · ∂2L̂k] · G2
k(ω)

}
. (B2)

In Fig. 11, we can observe the dispersion plots of the
modes in the momentum sphere for the three models, in-
dividually in φ (with θ = 0) or in θ (with φ = 0).
The continuous rotational symmetry of the system about
the z axis is clearly manifested in the φ plots resulting
in a flat frequency dispersion. However, even with a more
complex band structure, without this symmetry, it would
still be possible to parametrize ωgap, resulting in a more
complex surface, and yielding a Weyl charge with this
method.

FIG. 12. Frequency dispersion for a local magnetized plasma,
featuring negative frequency modes. (a) kz axis exhibiting the pos-
itive momentum Weyl points marked with a blue circle and their
topological charge. The band gaps of interest are shaded in blue
and orange. The computed gap Chern numbers in transverse cuts are
highlighted with a white circle, for each subregion. (b) xoy plane
(kz = 0), with Chern numbers for each gap (Cgap) and for each band
(C) in the insets. The parameters used here were ωc = 0.8ωp and
ω′

p = √
2ωp.

APPENDIX C: NEGATIVE FREQUENCY MODES

The bands with negative frequency are analyzed in this
section. We start by illustrating why the ill-defined topology
[33,37,45,47] of the TM mode in the xoy plane of the local
magnetized plasma does not affect the topology of the high-
frequency band gap, even though the gap Chern number is a
sum of the individual Chern numbers of the bands below the
band gap. Figure 12(b) shows the gap Chern numbers Cgap and
the band Chern numbers C in the xoy plane (kz = 0) of the lo-
cal model. The gap Chern numbers are frequency-symmetric
Cgap(ω) = Cgap(−ω), while the band Chern numbers of bands
linked by the particle-hole symmetry have opposite signs.
The latter property explains why the high-frequency band gap
(shaded in blue) in the xoy plane of the local model has a
well-defined topology, because the noninteger Chern numbers

FIG. 13. Frequency dispersion for a full-cutoff model of a mag-
netized plasma, featuring negative frequency modes. (a) kz axis
exhibiting the positive momentum Weyl points marked with a red
circle for the inner ones, with a red square for the outer ones and
their topological charge. The band gaps of interest are shaded in
blue and orange. The computed gap Chern numbers in transverse
cuts are highlighted with a white circle, for each subregion. (b) xoy
plane (kz = 0), with Chern numbers for each gap (Cgap) and for each
band (C) in the insets. The parameters used here were kmax = ωp/c,
ωc = 0.8ωp, and ω′

p = √
2ωp.
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of the low-frequency TM mode and its negative counterpart
cancel each other.

A similar analysis of the full frequency spectrum is done
for the full-cutoff model in Fig. 13. Since the gap Chern
numbers are even-symmetric with respect to frequency, Weyl

points with equal momentum but opposite frequency values
have identical topological charge. This property is shown in
panel (a) of Figs. 12 and 13. The band Chern numbers are the
analytical results from Ref. [33] and they were computed with
the theory from Ref. [15].
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