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Quantum quenches in driven-dissipative quadratic fermionic systems with parity-time symmetry
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We study the quench dynamics of noninteracting fermionic quantum many-body systems that are subjected
to Markovian drive and dissipation and are described by a quadratic Liouvillian which has parity-time (PT)
symmetry. In recent work, we have shown that such systems relax locally to a maximum entropy ensemble that
we have dubbed the PT-symmetric generalized Gibbs ensemble (PTGGE), in analogy to the generalized Gibbs
ensemble that describes the steady state of isolated integrable quantum many-body systems after a quench. Here,
using driven-dissipative versions of the Su-Schrieffer-Heeger (SSH) model and the Kitaev chain as paradigmatic
model systems, we corroborate and substantially expand upon our previous results. In particular, we confirm
the validity of a dissipative quasiparticle picture at finite dissipation by demonstrating light cone spreading of
correlations and the linear growth and saturation to the PTGGE prediction of the quasiparticle-pair contribution
to the subsystem entropy in the PT-symmetric phase. Further, we introduce the concept of directional pumping
phases, which is related to the non-Hermitian topology of the Liouvillian and based upon qualitatively different
dynamics of the dual string order parameter and the subsystem fermion parity in the SSH model and the Kitaev
chain, respectively: depending on the postquench parameters, there can be pumping of string order and fermion
parity through both ends of a subsystem corresponding to a finite segment of the one-dimensional lattice, through
only one end, or there can be no pumping at all. We show that transitions between dynamical pumping phases
give rise to a new and independent type of dynamical critical behavior of the rates of directional pumping, which
are determined by the soft modes of the PTGGE.
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I. INTRODUCTION

Quantum quenches are a paradigmatic scenario for induc-
ing and studying far-from-equilibrium dynamics in isolated
quantum many-body systems. In a quantum quench, an initial
state, often chosen to be the ground state of a prequench
Hamiltonian, is evolved in time with a postquench Hamilto-
nian [1,2]. Of particular interest are quenches across phase
boundaries, which can lead to a variety of intriguing phe-
nomena, especially in systems with nontrivial topology [3–9].
But the two basic questions that underlie the interest in
nonequilibrium dynamics induced by quantum quenches read
as follows: Does a given system equilibrate after a quench,
i.e., do expectation values of local observables reach a steady
state? And what is the nature of this steady state? It is
well established that integrable quantum many-body systems,
which are characterized by an extensive set of integrals of
motion, relax locally to a statistical ensemble determined
by the principle of maximum entropy [10]—the generalized
Gibbs ensemble (GGE) [11–17]. The GGE can be regarded as
being universal in the sense that its general structure is model-
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independent, whereas specific model-dependent details enter
the GGE only through the form of the integrals of motion
and as Lagrangian multipliers, the values of which are deter-
mined by the state in which the system is prepared before the
quench. In this way, the GGE conserves an extensive amount
of information about the initial state. Relaxation to the GGE
is accompanied by a number of universal characteristic fea-
tures, such as light cone propagation of correlations [16,18],
linear growth and volume-law saturation of the subsystem en-
tropy [19–22] and the equilibration of local order parameters
[13–17].

In stark contrast, open many-body quantum systems, which
are subjected to Markovian drive and dissipation, gener-
ally approach a highly model-dependent steady state that is
determined by the interplay between internal Hamiltonian
dynamics and the coupling to external reservoirs [23–32].
Through these couplings, the system can exchange energy and
particles with the reservoirs, breaking conservation laws the
system would have in isolation. In particular, for integrable
systems, this generically means that local integrals of motions
of an isolated system are not conserved anymore if the system
is open. As a result, after a quench, all memory of the initial
state fades away with time, and the steady state takes the form
of a GGE only in the limit of weak coupling γ between the
system and its environment [33–36]. Yet, as we have shown
in Ref. [37], the universal principles governing generalized
thermalization after a quantum quench in an isolated inte-
grable system do apply—in suitably generalized form—to
specific driven-dissipative systems even for finite system-bath

2643-1564/2024/6(1)/013016(37) 013016-1 Published by the American Physical Society

https://orcid.org/0000-0002-3357-9173
https://orcid.org/0000-0002-0163-7850
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013016&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1103/PhysRevResearch.6.013016
https://creativecommons.org/licenses/by/4.0/


ELIAS STARCHL AND LUKAS M. SIEBERER PHYSICAL REVIEW RESEARCH 6, 013016 (2024)

coupling γ ; and further, key signatures, such as a driven-
dissipative quasiparticle picture [38–40] and equilibration of
local observables, still accompany relaxation to a maximum
entropy ensemble. This unexpected robustness of generalized
thermalization is ensured by parity-time (PT) symmetry of
the Liouvillian that generates the dynamics of these driven-
dissipative systems. To highlight the fundamental roles that
are played by PT symmetry and the principle of maximum
entropy, we have dubbed the ensemble such systems locally
relax to the PT-symmetric GGE (PTGGE) [37].

Originally, PT symmetry has been studied as a framework
for a non-Hermitian generalization of quantum mechanics.
In conventional quantum mechanics, physical observables are
represented by Hermitian operators, mainly because these
operators have real spectra. However, as shown in seminal
work by Bender et al. [41], symmetry under the combina-
tion of spatial inversion or parity and time reversal can also
lead to real spectra in non-Hermitian operators. In particular,
an eigenvector of a PT-symmetric non-Hermitian operator
is associated with a real eigenvalue if also the eigenvector
itself is PT-symmetric, i.e., invariant under the PT trans-
formation. Eigenvectors that are not invariant under the PT
transformation are said to spontaneously break PT symmetry
and are associated with complex eigenvalues. Typically, if a
PT-symmetric operator depends on a parameter γ that mea-
sures the degree of non-Hermiticity such that the operator is
Hermitian for γ = 0, all eigenvectors are PT-symmetric and
the spectrum is entirely real if γ is sufficiently small; this
situation is referred to as the PT-symmetric phase. At inter-
mediate values of γ , in the PT-mixed phase, PT-symmetric
and PT-breaking eigenvectors coexist. And for large values
of γ , typically all eigenvectors spontaneously break PT sym-
metry. Non-Hermitian generalizations of quantum mechanics,
as envisioned originally in Refs. [41], are restricted to the
PT-symmetric phase with a real spectrum. More recently, PT-
symmetric non-Hermitian versions of paradigmatic models of
condensed matter theory such as the Kitaev chain [42] have
received great interest due to their unconventional topological
properties, in particular, in connection with the spontaneous
breaking of PT symmetry that leads to the occurrence of com-
plex eigenvalues [43–51]. Here, however, we are interested in
PT symmetry of a special type of non-Hermitian operator: the
Liouvillian that generates the dynamics of an open quantum
many-body system [52–64]. The coupling to external reser-
voirs generically induces exponential decay, which is reflected
in the spectrum of the Liouvillian being complex. On the one
hand, this implies that not only the PT-symmetric but also
the PT-mixed and PT-broken phases can describe quantum
dynamics of driven-dissipative systems; on the other hand,
this puts into question the very existence of a PT-symmetric
phase, since all eigenvalues of a generic Liouvillian become
real only in the limit of vanishing dissipation—we choose here
the convention that the real and imaginary parts of an eigen-
value of a Liouvillian determine, respectively, the oscillation
frequency and decay rate of the corresponding eigenmode.
However, after a shift by a constant decay rate, the single-
particle spectrum of a quadratic Liouvillian, which describes
a noninteracting open quantum many-body system, can be-
come entirely real—a property that is known as passive PT
symmetry [65,66].

FIG. 1. (a) Schematic representation of (left) the single-particle
spectrum λk of an isolated system (blue lines) with κ = 0 and (right)
relaxation of an observable 〈O�〉 acting on � sites to the GGE (red,
dashed line) on a timescale tF (purple, dashed line). (b) For a driven-
dissipative system with PT symmetry, (left) the spectrum acquires a
global shift by −iκ , and (right) relaxation to the PTGGE (red, dashed
line) is revealed by rescaling 〈O�〉 with e2�κt . (c) Quenches from
the trivial to the topological phase are accompanied by oscillatory
dynamics of a topological disorder parameter are shown for (left) an
isolated system, with zeros of 〈O�〉 at multiples of a single soft-mode
period ts (green vertical lines), and (right) a driven-dissipative sys-
tem, where directional pumping is characterized by two soft-mode
periods ts,− (dark green) and ts,+ (light green).

Passive PT symmetry of quadratic Liouvillians is the key
feature that underlies local relaxation to the PTGGE of the
translationally invariant driven-dissipative fermionic lattice
systems that we study below. In the PT-symmetric phase,
the single-particle eigenvalues of such Liouvillians form two
bands that are given by λ±,k = −iκ ± ωk , where k is the
quasimomentum. The momentum-independent decay rate κ

results in temporally uniform overall exponential relaxation.
Independently from that, dephasing of modes with differ-
ent frequencies ωk �= ωk′ leads to local relaxation to the
PTGGE—this is completely analogous to isolated two-band
models with single-particle dispersion ±εk , where generalized
thermalization to the GGE is induced by dephasing of purely
oscillatory modes with εk �= εk′ [16,67]. However, note that
the PTGGE is intrinsically time-dependent due to the expo-
nential decay at the rate κ . Relaxation of an isolated system
to the GGE and of a driven-dissipative system to the PTGGE,
and the underlying single-particle spectra, are illustrated in
Figs. 1(a) and 1(b), respectively. After a quench in an iso-
lated system, a suitably chosen observable 〈O�〉 that acts on
� contiguous lattice sites equilibrates to the value predicted by
the GGE after the Fermi time tF ∼ � [14]. In contrast, after
a quench to the PT-symmetric phase of a driven-dissipative
system, the global shift of the spectrum by −iκ results in
exponential decay, 〈O�〉 ∼ e−2�κt . Relaxation to the PTGGE
through dephasing can thus be revealed by considering the
rescaled expectation value e2�κt 〈O�〉. For stronger coupling to
the environment, PT symmetry is broken spontaneously and
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the imaginary part of λ±,k becomes dispersive. The long-time
dynamics is then determined not by dephasing of all single-
particle eigenmodes but rather by the single slowest-decaying
mode that corresponds to the smallest value of − Im(λ±,k ).
Therefore the spontaneous breaking of passive PT symmetry
defines a sharp dynamical transition that delimits relaxation to
the PTGGE and thus the validity of the principle of maximum
entropy in driven-dissipative systems. An important caveat
is that this argument for local relaxation to the PTGGE in
the PT-symmetric phase is based solely on the form of the
spectrum of the Liouvillian. Indeed, relaxation to the PTGGE
applies as long as the overall decay with constant rate κ causes
the system to heat up to infinite temperature. Instead, for a
nontrivial steady state, local relaxation to the PTGGE occurs
only transiently up to a sharply defined crossover time t× [37].

In this work, we perform a detailed study of the quench
dynamics and relaxation to the PTGGE of driven-dissipative
fermionic many-body systems with PT symmetry, corroborat-
ing and substantially expanding upon our earlier results that
we have presented in Ref. [37]. We consider two models,
driven-dissipative versions of the Su-Schrieffer-Heeger (SSH)
model [68] and the Kitaev chain [42], which are representative
for broad classes of quadratic fermionic systems. Studying
the time evolution of the dual string order parameter and
the subsystem fermion parity, which serve as topological dis-
order parameters for the SSH model and the Kitaev chain,
respectively, leads us to introduce directional pumping phases
that are characterized by qualitatively different dynamics of
the topological disorder parameters as illustrated in Fig. 1(c).
Using the example of a Kitaev chain with long-range hopping
and pairing, we show that directional pumping phases and
the dynamical critical behavior at transitions between these
phases are in general independent from the phases and the
associated criticality that are defined in terms of PT symmetry
and gap closings of the postquench Liouvillian.

To make the differences between our previous [37] and
current work more explicit, let us briefly summarize the ad-
ditional results presented in this work that have not been
presented before. We extend our previous results in two major
ways. First, we present a detailed study of the quench dy-
namics of the driven-dissipative SSH model, which has been
mentioned only briefly in Ref. [37]. In particular, we derive
the corresponding expression for the PTGGE and study the
evolution of the subsystem entropy for this model. We com-
plement our previous results for the Kitaev chain by studying
the spreading of correlations. Second, we provide an extensive
analysis of the dynamics and topological zero crossings of
topological disorder parameters in both models. The most
important new concepts and results in this context are direc-
tional pumping phases with dynamical critical behavior and
a notion of universality at the phase boundaries. We further
demonstrate modifications of this critical behavior induced by
changes in the long-wavelength description due to long-range
couplings. Finally, we compare the dynamical critical behav-
ior of topological disorder parameters to the critical behavior
of the connected density autocorrelation function.

This paper is organized as follows. In Sec. II, we sum-
marize our key results. The models we study, which are
driven-dissipative versions of the SSH and Kitaev chains, are
introduced in Sec. III. We then establish the PTGGE as the

maximum entropy ensemble for these models in Sec. IV. The
spreading of correlations after a quench is studied in Sec. V,
which is followed in Sec. VI by a discussion of the time
evolution of the subsystem entropy. We study the dynamics
of the dual string order parameter and the subsystem parity
in Sec. VII, where we also introduce directional pumping
phases and characterize the associated critical behavior. In
Sec. VIII, we investigate directional pumping phases and
phase transitions in a Kitaev chain with long-range hopping
and pairing. Open research questions are presented in Sec. IX,
and technical details are described in the Appendixes A–F.

II. KEY RESULTS

We consider the following quench protocol. The system
is initialized in the ground state |ψ0〉 of the Hamiltonian
H0 that describes an isolated SSH model or Kitaev chain,
where we focus on quenches starting from the topologically
trivial phases of these models. At t = 0, a parameter of the
Hamiltonian is changed abruptly; simultaneously, the system
is coupled to Markovian reservoirs. The ensuing dynamics
is generated by a quantum Liouvillian L in Lindblad form,
such that the state of the system at time t is given by ρ(t ) =
e−iLtρ0, where ρ0 = |ψ0〉〈ψ0| is the initial state. Our main
results can be summarized as follows:

After quenches to the PT-symmetric phase, driven-
dissipative free fermionic models relax to a maximum entropy
ensemble, the parity-time symmetric generalized Gibbs en-
semble (PTGGE). We have introduced the PTGGE as the
maximum entropy ensemble that describes relaxation of a
driven-dissipative Kitaev chain and have briefly discussed
quench dynamics of an SSH model with incoherent loss and
gain in Ref. [37]. Here, we present a detailed derivation of
the PTGGE for the SSH model. As noted in Introduction,
dephasing of modes with different oscillation frequencies, but
with a decay rate that is guaranteed to be equal for all modes
by PT symmetry, is the fundamental process that underlies
relaxation to the PTGGE in free fermionic systems. Due to
the common decay rate of all modes, the PTGGE is inherently
time-dependent. We choose the SSH model and the Kitaev
chain as representatives of the two fundamental classes of
quadratic fermionic systems: the isolated SSH model has
a U(1) symmetry associated with the conservation of the
number of particles, whereas due the presence of pairing
terms in the isolated Kitaev chain only the fermion parity
is conserved and the symmetry group is reduced to Z2. The
driven-dissipative generalizations of these models combine
their quadratic Hamiltonians with linear Lindblad operators,
which enable the systems to exchange particles with external
reservoirs and, therefore, always break particle number con-
servation. However, as detailed in Sec. III, we can still choose
a particular form of dissipation so as to preserve a weak U(1)
symmetry in the driven-dissipative SSH model [69]. Then,
as in the isolated SSH model, no anomalous correlations are
generated in the course of the dynamics. Therefore the driven-
dissipative versions of the SSH model and the Kitaev chain we
consider in this work can be regarded as natural open-system
generalizations of topological insulators and superconductors.

We illustrate relaxation to the PTGGE by considering the
dynamics of topological disorder parameters, which take
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finite expectation values in the ground state in the trivial phase
and vanish in the topological phase. Topological disorder pa-
rameters for the SSH model and the Kitaev chain are the dual
string order parameter [70] and the subsystem fermion parity
[37], respectively. The corresponding operators act nontriv-
ially on � contiguous lattice sites. As illustrated schematically
in Fig. 1, relaxation of the topological disorder parameters to
the PTGGE happens on a characteristic timescale given by the
Fermi time tF ∼ � [14]. We further provide analytical conjec-
tures for the evolution of the topological disorder parameters,
which we find to be in excellent agreement with our exact
numerical results. These conjectures generalize analytical re-
sults for the quench dynamics of the isolated transverse field
Ising model in the space-time scaling limit �, t → ∞ with �/t
fixed [13–15], and show clearly how the dynamics are affected
by drive and dissipation: Apart from the abovementioned uni-
form exponential decay, both the dispersion relation and the
statistics of the eigenmodes of the adjoint Liouvillian, which
generates the time evolution of operator expectation values,
are modified, leading to pronounced quantitative differences
even after rescaling of expectation values to compensate the
exponential decay.

For the models we consider, a description of the late-time
dynamics in terms of the PTGGE applies up to arbitrarily long
times for balanced loss and gain, which leads to a steady state
at infinite temperature. For a small imbalance, the PTGGE still
provides an accurate description on intermediate timescales,
up to a crossover timescale t× that scales logarithmically with
the difference between loss and gain rates. However, some
observables such as the dual string order parameter are not
affected at all by an imbalance between loss and gain.

Correlations show ballistic light cone spreading in the PT-
symmetric phase. In contrast, after quenches to the PT-mixed
and PT-broken phases, correlations spread diffusively. The
single-particle spectra for isolated and PT-symmetric driven-
dissipative systems shown in Figs. 1(a) and 1(b), respectively,
suggest that PT-symmetric quadratic Liouvillians admit a no-
tion of quasiparticles that propagate coherently with a velocity
vk = dωk/dk, as is also the case for quasiparticle excitations
of an isolated system, but have a finite lifetime ∼1/κ . Based
on this dissipative quasiparticle picture, we can expect many
characteristic features of the dynamics of isolated systems to
carry over to PT-symmetric driven-dissipative systems in the
PT-symmetric phase. In particular, we find that the spreading
of correlations after quenches to the PT-symmetric phase is
described by a clear light cone structure. Interestingly, the
speed at which correlations propagate is increased as com-
pared to isolated systems; however, the finite lifetime of quasi-
particles, which leads to an overall exponential decay of cor-
relations, indicates that, in fact, it is not the case that in open
systems more information is transported in a shorter time.

Light cone spreading of correlations is restricted to the
PT-symmetric phase. But also after quenches to the PT-mixed
and PT-broken phases there is a pronounced peak of correla-
tions that propagates through the system. However, the peak
position evolves diffusively rather than ballistically as in the
PT-symmetric phase.

The growth and saturation of the subsystem entropy
obeys the quasiparticle picture, adapted to driven-dissipative
systems. For isolated systems, the quasiparticle picture leads

to quantitative predictions for the full time evolution of the en-
tropy of finite subsystems [19–22]. One can regard the initial
ground state as a source of pairs of entangled quasiparticles
with opposite momenta, which propagate through the system
with different velocities of at most vmax. If one of the two
quasiparticles that form a pair is located within the subsystem
while the other one is outside of the subsystem, then this pair
contributes to the entanglement between the subsystem and its
complement and, therefore, to the subsystem entropy. Based
on this picture, knowledge of the quasiparticle velocity and the
stationary value of the subsystem entropy that is reached for
t → ∞ is sufficient to determine the full time evolution of the
subsystem entropy in the space-time scaling limit �, t → ∞,
where � is the size of the subsystem. The quasiparticle picture
has been extended to open systems, where the requirement
of ballistically propagating quasiparticles restricts its appli-
cability to the limit of weak dissipation γ → 0 [38,39], and
an additional contribution to the subsystem entropy due to
the mixedness of the state has to be accounted for. If, how-
ever, the system under consideration has PT symmetry, then,
as explained above, ballistically propagating quasiparticles
exist within the entire PT-symmetric phase. Based on this
observation, in Ref. [37], we have proposed an analytical con-
jecture for the quasiparticle-pair contribution to the subsystem
entropy of a PT-symmetric Kitaev chain in the space-time
scaling limit and for finite dissipation strength γ . Here, we
provide further evidence for broad validity of our conjecture
by applying it to the SSH model with incoherent loss and gain,
where we again find excellent agreement with numerical data.

Quantum quenches in driven-dissipative systems can give
rise to the unique phenomenon of directional pumping of
topological disorder parameters. The timescales of directional
pumping are determined by the soft modes of the PTGGE.
As detailed in Sec. VII, in the isolated SSH model and the
Kitaev chain, crossing the boundary between the trivial and
the topological phase in the course of a quench is reflected in
pumping of topological disorder parameters. That is, the dual
string order parameter and the fermion parity of a subsystem
of size � exhibit oscillatory decay, crossing zero at multiplies
of a timescale ts as illustrated in the left panel in Fig. 1(c).
The period of zero crossings ts is determined by the momenta
at which the GGE Hamiltonian vanishes—soft modes of the
GGE [14,16]. In contrast, for quenches within the trivial
phase, the disorder parameters show nonoscillatory decay.
Since the Hamiltonians of the SSH model and the Kitaev chain
commute with the respective topological disorder parameters,
processes that change the dual string order parameter and the
fermion parity occur not in the bulk of the subsystem but
at the interfaces between the subsystem and its complement.
Interestingly, for quenches in driven-dissipative systems, the
rates at which topological disorder parameters are pumped
through the left and right ends of a subsystem are different.
Therefore, as illustrated in the right panel in Fig. 1(c), there
are two distinct timescales ts,± for zero crossings. These time
scales are determined by soft modes of the PTGGE. As shown
in Ref. [37] for the driven-dissipative Kitaev chain, neces-
sary conditions for the phenomenon of directional pumping
to occur are open-system dynamics leading to mixed states,
and the breaking of inversion symmetry by the coupling to
reservoirs.
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A dynamical phase diagram can be defined in terms of
directional pumping. The resulting phase boundaries and the
dynamical critical behavior at these phase boundaries are,
in general, different and independent from the corresponding
properties defined in terms of gap closings and PT symmetry
of the postquench Liouvillian. PT symmetry of the Liouvillian
leads to the distinction between PT-symmetric, PT-breaking,
and PT-mixed phases. For the models we consider here,
the transition from the PT-symmetric to the PT-mixed phase
occurs when the gap between the bands λ±,k = −iκ ± ωk

closes. Note that this corresponds to a purely dynamical phase
transition that marks a qualitative change of only the coher-
ent dynamics. As we demonstrate using the example of the
density autocorrelation function, upon approaching the phase
boundary from the PT-symmetric phase, a characteristic pe-
riod of oscillations of local correlation functions diverges; in
the PT-mixed phase, the decay of the density autocorrelation
function is overdamped. Further, this transition is purely dy-
namical in the sense that it does not affect the steady state.
Indeed, for this part of our analysis, we focus on balanced
loss and gain, such that the steady state is always at infinite
temperature.

Here, we show that a different and independent char-
acterization of dynamical phases can be given in terms of
directional pumping: As explained above, the pumping of
topological disorder parameters for quenches from the trivial
to the topological phase in isolated systems becomes direc-
tional in open systems. In particular, the topological phases
of the isolated SSH model and Kitaev chain are continuously
connected to phases with pumping at different rates through
both ends of a subsystem. Surprisingly, we find transitions to
phases with pumping through only the left or the right end of
a subsystem. As the transition to such a phase is approached,
one of the timescales ts,± of zero crossings diverges.

The Kitaev chain with long-range hopping and pairing
represents an especially interesting model to study directional
pumping phases and the associated critical behavior. In partic-
ular, we find that long-range couplings can modify the critical
exponents that govern the divergence of the timescales ts,±,
whereas the exponents that describe the divergence of the
period of oscillations of the density autocorrelation function
at the gap closing at the transition from the PT-symmetric
to the PT-mixed phase remain unchanged. Moreover, in the
presence of long-range couplings, directional pumping phase
boundaries do not always coincide with phase boundaries that
are determined by gap closings, which implies that a diver-
gence of one of the time scales ts,± does not require a gap
closing in the spectrum of the Liouvillian. These findings es-
tablish directional pumping phases, phase transitions, and the
associated critical behavior as new and independent concepts
that are unique to quantum quenches in driven-open systems.

III. MODELS

For the quench protocol outlined above, the postquench
time evolution of the system density matrix ρ is described by
a Markovian quantum master equation in Lindblad form [71],

i
dρ

dt
= Lρ = (H + iD)ρ, (1)

where the Liouvillian L incorporates both unitary dynamics
generated by the Hamiltonian superoperator H and Marko-
vian drive and dissipation described by the dissipator D.
These superoperators are defined through their action on the
density matrix ρ,

Hρ = [H, ρ], (2)

Dρ =
L∑

l=1

(2LlρL†
l − {L†

l Ll , ρ}), (3)

where Ll are the quantum jump operators, describing the cou-
pling between system and environment. In this work, we focus
on noninteracting fermionic lattice models that are described
by a Hamiltonian H and jump operators Ll that are quadratic
and linear in fermionic operators, respectively, leading to a
quadratic Liouvillian L. For the Hamiltonian H , we study
two models: the SSH model and the Kitaev chain, which
are paradigmatic examples for a one-dimensional topological
insulator and superconductor, respectively. We specify the
Hamiltonians and jump operators in the following, and give
a detailed description of the symmetries, spectrum, and time
evolution for SSH model. For a detailed account of the driven-
dissipative Kitaev chain, we refer to Ref. [37].

A. Driven-dissipative SSH model

The SSH model with L unit cells is described by the fol-
lowing many-body Hamiltonian [68]:

H =
L∑

l=1

(J1c†
A,l cB,l + J2c†

A,l+1cB,l + H.c.), (4)

where cs,l and c†
s,l are, respectively, annihilation and creation

operators for fermions on sublattice s ∈ {A, B} at lattice site
l . Further, J1, J2 ∈ R>0 are the hopping amplitudes within
and between unit cells. Unless stated otherwise, we as-
sume periodic boundary conditions (PBC) with cs,L+1 = cs,1;
open boundary conditions (OBC) are implemented by setting
cs,L+1 = 0. We often find it convenient to parameterize J1 and
J2 in terms of total and relative hopping amplitudes,

J = 1
2 (J1 + J2), 
J = 1

2 (J1 − J2). (5)

As detailed below, the SSH model belongs to the Altland-
Zirnbauer class BDI [72]. Therefore the topology of the SSH
model is characterized by an integer-valued invariant, the
winding number W , and the ground state of the SSH model
is topologically trivial and nontrivial for 
J > 0 and 
J < 0,
respectively [73–75]. In this work, we study quench dynam-
ics whereby the initial state |ψ (t )〉 at t = 0 is chosen to be
the ground state |ψ0〉 for prequench parameters J1,0 > 0 and
J2,0 = 0, corresponding to the topologically trivial phase. The
ground state |ψ0〉 is Gaussian, i.e., the density matrix ρ0 =
|ψ0〉〈ψ0| can be written as the exponential of a quadratic form
in fermionic operators; further, since the Hamiltonian Eq. (4)
is quadratic, also the time-evolved state ρ(t ) = e−iHtρ0eiHt is
Gaussian [76]. Therefore, after a quench in the isolated SSH
model, the state of the system is Gaussian at all times, and
thus fully determined by the covariance matrix,

Gs,s′
l,l ′ (t ) = 〈[cs,l , c†

s′,l ′ ](t )〉, (6)
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for s, s′ ∈ {A, B} and l, l ′ ∈ {1, . . . , L}, and where 〈· · · (t )〉 =
tr(· · · ρ(t )). In particular, anomalous correlations vanish,
〈(cs,l cs′,l ′ )(t )〉 = 〈(c†

s,l c
†
s′,l ′ )(t )〉 = 0. Turning now to a driven-

dissipative generalization of the SSH model, we note first
that the dynamics generated by a quadratic Liouvillian L
preserves the Gaussianity of the time-evolved mixed state
ρ(t ) = e−iLtρ0 [76,77]. The vanishing of anomalous corre-
lations, which for the isolated SSH model is a consequence
of particle number conservation, can be ensured in an open
SSH model by imposing the weak U(1) symmetry that is de-
fined by the relation L(SρS†) = SL(ρ)S† for S = eiθN where
the particle number operator is N =∑s∈{A,B}

∑L
l=1 c†

s,l cs,l and
θ ∈ [0, 2π ) [69]. This weak symmetry condition guarantees
that no correlations are established between Hilbert space
sectors with different numbers of particles, and, therefore,
anomalous correlations vanish. For the Hamiltonian part of
the time evolution in Eq. (1), the weak symmetry is again
a consequence of particle number conservation of the SSH
Hamiltonian Eq. (4), [H, N] = 0. Note that the weak U(1)
symmetry does not affect the integrability of the model, which
is guaranteed by the Liouvillian being quadratic. The weak
U(1) symmetry only ensures the vanishing of anomalous cor-
relations, which leads to a simplification of the dynamics. A
specific choice of dissipation that respects the weak U(1) is
given by incoherent loss and gain as described by the dissipa-
torD = Dl +Dg with

Dlρ =
∑

s∈{A,B}

L∑
l=1

(2Ll,s,lρL†
l,s,l − {L†

l,s,l Ll,s,l , ρ}),

Dgρ =
∑

s∈{A,B}

L∑
l=1

(2Lg,s,lρL†
g,s,l − {L†

g,s,l Lg,s,l , ρ}). (7)

The jump operators corresponding to local loss and gain are
given by

Ll,s,l = √
γl,scs,l , Lg,s,l = √

γg,sc
†
s,l , (8)

where we consider loss and gain rates γl,s and γg,s, respec-
tively, that depend on the sublattice index. We parametrize
these rates in terms of their mean and difference,

γl/g = γl/g,A + γl/g,B

2
, 
γl/g = γl/g,A − γl/g,B

2
. (9)

Below it will prove convenient to express the loss and gain
rates in terms of the four independent parameters γ , δ, 
γ ,
and 
, which are defined by

γ = γl + γg

2
, δ = γl − γg,


γ = 
γl + 
γg

2
, 
 = 
γl − 
γg. (10)

To determine the dynamics of the covariance matrix Eq. (6),
let us first represent the jump operators in the general form

Ll,l =
2L∑

l ′=1

Bl,l,l ′cl ′ , Lg,l =
2L∑

l ′=1

Bg,l,l ′c
†
l ′ , (11)

where we collect sublattice and lattice indices in a single
index such that cA,l = c2l−1 and cB,l = c2l . With the L × 2L

matrices Bl and Bg, we can then introduce the bath matrices

Ml = B†
l Bl , Mg = Bᵀg B∗

g. (12)

Finally, the Liouvillian dynamics of a Gaussian state is de-
scribed by the equation of motion for the covariance matrix
which reads [78]

dG

dt
= −i(ZG − GZ†) + 2(Ml − Mg), (13)

where the generator of the dynamics Z can be interpreted as a
non-Hermitian Hamiltonian and is defined by

Z = H − i(Ml + Mg). (14)

The derivation of Eq. (13) is presented in Appendix A.
Before we proceed with the analysis of the driven-

dissipative SSH model, let us briefly comment on the relation
between the formalism of Lindblad master equations on which
our work is based, and the framework of non-Hermitian
Hamiltonians [79]. Formally, the matrix Z defined in Eq. (14)
is equivalent to non-Hermitian SSH model of Refs. [48,80,81]
up to a shift by −i2γ1. Such a shift does not affect the
topological properties that are considered in these references.
However, the shift guarantees that the eigenvalues of Z are
negative semidefinite, which is a necessary requirement for
the dynamics of the covariance matrix generated by Z to
be stable and thus physically meaningful. More generally,
and in contrast to non-Hermitian Hamiltonians, the master
equation (1), from which the evolution equation (13) follows,
provides a full description of the time evolution of an open
quantum system. In particular, the time evolution generated
by the Liouvillian L is completely positive and trace pre-
serving. This guarantees that the time-evolved density matrix
ρ(t ) represents, at all times, a physical state, from which the
expectation value of an observable O can be evaluated as
〈O(t )〉 = tr(Oρ(t )). In Appendix B, we discuss how the left
and right eigenvectors of Z enter 〈O(t )〉. For non-Hermitian
Hamiltonians, these eigenvectors are used to define biorthog-
onal expectation values, and are of key importance for the
characterization of topology [82].

In the following, we discuss some fundamental proper-
ties of the driven-dissipative SSH model. In particular, we
examine symmetries of the isolated and driven-dissipative
system, the corresponding spectrum and mode structure,
non-Hermitian topology, and finally the dynamics of the co-
variance matrix.

1. Symmetries of the isolated and driven-dissipative SSH model

Symmetries of driven-dissipative systems are of fundamen-
tal importance not only for their topological classification but
also—as highlighted, in particular, in our work [37]—for their
quench dynamics. In our discussion of symmetries of the
driven-dissipative SSH model, we will exploit translational
invariance and work in momentum space. To that end, we
first rewrite the Hamiltonian in Eq. (4) in terms of spinors
Cl = (cA,l , cB,l )ᵀ as

H = 1

2

L∑
l,l ′=1

C†
l hl−l ′Cl ′ , (15)
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with the 2 × 2 matrix hl = hl · σ where σ = (σx, σy, σz )ᵀ is a
vector of Pauli matrices. The momentum-space representation
of the SSH model is given by the Bloch Hamiltonian hk that
is defined as

hk =
L∑

l=1

e−ikl hl = hk · σ, (16)

where

hk = (J1 + J2 cos(k), J2 sin(k), 0)ᵀ. (17)

Similarly, also the bath matrices in Eq. (12) can be expressed
in terms of translationally invariant 2 × 2 blocks:

ml,l = δl,0

(
γl,A 0

0 γl,B

)
, mg,l = δl,0

(
γg,A 0

0 γg,B

)
. (18)

Combining the block representations of the Hamiltonian and
the bath matrices, we can write the matrix Z given in Eq. (14)
in the form

zl = hl − i(ml,l + mg,l ). (19)

Then, as in Eq. (16), we obtain the non-Hermitian Bloch
Hamiltonian zk that generates the time evolution of the co-
variance matrix:

zk = z11 + zk · σ, (20)

with

z1 = −i2γ , zk = hk + ib, b = −2
γ êz, (21)

where êz = (0, 0, 1)ᵀ is a unit vector along the z axis.
a. Isolated system. We first discuss symmetries of the iso-

lated SSH model that is described by the Bloch Hamiltonian
in Eq. (16). As stated above, the SSH model belongs to the
Altland-Zirnbauer class BDI and has particle-hole symmetry
(PHS), time reversal symmetry (TRS), and chiral symme-
try (CS). Due to the Hermiticity of the Bloch Hamiltonian,
hk = h†

k , each of these symmetries can be expressed in two
equivalent ways:

PHS: hk = −σzh
ᵀ
−kσz = −σzh

∗
−kσz,

TRS: hk = hᵀ−k = h∗
−k, (22)

CS: hk = −σzhkσz = −σzh
†
kσz,

which can be confirmed by using −σzσσz = (σx,−σy,−σz )ᵀ

and h−k = (hx,k,−hy,k, hz,k )ᵀ. Another symmetry that will
play a key role in the following is inversion symmetry (IS).
In real space and when expressed as a transformation of the
fermionic operators cs,l , inversion amounts to an exchange of
the sublattices and a reflection across the middle of the chain,
cA/B,l �→ cB/A,L+1−l . The combination of IS with TRS yields
PT symmetry (PTS). In momentum space, IS and PTS are
described by

IS: hk = σxh−kσx = σxh†
−kσx,

PTS: hk = σxhᵀk σx = σxh∗
kσx. (23)

b. Driven-dissipative system. For the driven-dissipative
SSH model, we can regard the non-Hermitian matrix zk �= z†

k
in Eq. (20) as the generalization of the Bloch Hamiltonian to

open systems. Of the two equivalent versions of the symme-
tries of the Bloch Hamiltonian hk stated in Eq. (22), only one
of each applies to zk:

PHS†: zk = −σzz
∗
−kσz,

TRS†: zk = zᵀ−k,

CS: zk = −σzz
†
kσz. (24)

Therefore, in the nomenclature of Ref. [83], the driven-
dissipative SSH model belongs to the class BDI†. Further,
inversion symmetry in the form given in Eq. (23) is broken
by the dissipative contributions to zk . However, an inversion
symmetry IS† still applies to the traceless part z′

k = zk − z11
with z1 given in Eq. (21); and by combining IS† with TRS†

we obtain PTS of z′
k:

IS†: z′
k = σxz′†

−kσx,

PTS: z′
k = σxz′∗

k σx. (25)

This form of a PT symmetry which applies after a shift that
renders the generator of the dynamics traceless is called pas-
sive PT-symmety [62,65,66].

Let us now discuss the implication of PTS for the mode
structure of the Liouvillian [41]. The eigenvalues and eigen-
vectors of the shifted matrix z′

k are denoted by λ′
±,k =

±√
zk · zk and |ψ±,k〉, respectively. Since z′

k and zk are related
by a shift z11, they have the same eigenvectors, and their
eigenvalues are related by λ±,k = λ′

±,k + z1 with z1 = −i2γ .
The PTS condition in Eq. (25) then leads to

z′
kσx|ψ±,k〉∗ = λ′∗

±,kσx|ψ±,k〉∗. (26)

This implies that for any eigenvalue λ′
±,k of z′

k correpsonding
to an eigenvector |ψ±,k〉, there is also an eigenvalue λ′∗

±,k
with eigenvector σx|ψ±,k〉∗. Since for a given value of k there
are only two eigenvalues which are related by λ′

+,k = −λ′
−,k ,

there are two possibilities: (i) PT-symmetric eigenmodes with
λ′

±,k = λ′∗
±,k ∈ R and σx|ψ±,k〉∗ = |ψ±,k〉. For the eigenvalues

λ±,k of the full matrix zk this implies that Im(λ±,k ) = −2γ

and Re(λ+,k ) = − Re(λ−,k ). (ii) Alternatively, there exist
PT-breaking eigenmodes with λ′

±,k = −λ′∗
±,k ∈ iR and eigen-

vectors obeying σx|ψ±,k〉∗ = |ψ∓,k〉 such that Re(λ±,k ) = 0
and Im(λ+,k ) + 2γ = −(Im(λ−,k ) + 2γ ). That is, the eigen-
values that are associated with PT-breaking eigenmodes are
related by reflection across the line −i2γ .

Depending on the symmetry of the eigenvectors |ψ±,k〉 un-
der the PT transformation, we can distinguish three different
phases: (i) in the PT-symmetric phase, all eigenmodes are PT-
symmetric; then, eigenvalues have a constant imaginary value,
while the real part is dispersive. This is shown in Fig. 2(b).
(ii) In the PT-broken phase, all eigenmodes are PT-breaking,
and the corresponding eigenvalues are purely imaginary and
dispersive as illustrated in Fig. 2(d). (iii) Finally, in the PT-
mixed phase, PT-symmetric and PT-breaking modes exist
simultaneously. Therefore, as shown in Fig. 2(c), there are
two sets of eigenvalues: one that is dispersive only in the real
part, and one that is dispersive only in the imaginary part. The
resulting dynamical phase diagram of the driven-dissipative
SSH model is shown in Fig. 2(a).
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FIG. 2. (a) Dynamical phase diagram of the driven-dissipative
SSH model with topological phase for 
J < 0 and trivial phase for

J > 0. The model features PT-symmetric (blue, red), PT-broken
(orange, purple), and PT-mixed phases (green, yellow). Examples of
the mode structure for the three topological phases are shown for
(b) the PT-symmetric (PTS), (c) the PT-mixed (PTM), and (d) the
PT-broken (PTB) phases. Positive (negative) bands are represented
by orange (blue) dots and edge modes for a system with OBC by
black dots. Star, circle and diamond markers in (a) indicate parame-
ters corresponding to the spectra shown in (b)–(d).

2. Spectrum of the Liouvillian

We next consider the spectra of the isolated and driven-
dissipative SSH models with PBC. As shown in Appendix C,
the Bloch Hamiltonian hk Eq. (16) can be diagonalized as

U †
k hkUk = εkσz, (27)

where the unitary matrix Uk is given by Eq. (C1) after setting
γ = 
γ = 0, and with the single particle dispersion relation
εk of the isolated SSH model defined by the magnitude of the
Bloch vector,

εk = |hk| =
√

J2
1 + J2

2 + 2J1J2 cos(k). (28)

For future reference, we note that in terms of the fermionic
operators ds,k defined through(

dA,k

dB,k

)
= U †

k

(
cA,k

cB,k

)
, cs,k = 1√

L

L∑
l=1

e−ikl cs,l , (29)

the Hamiltonian takes the following diagonal form:

H =
∑
k∈BZ

εk (d†
A,kdA,k − d†

B,kdB,k ), (30)

where the Brillouin zone is BZ = {−π + 
k,−π +
2
k, . . . , π} with 
k = 2π/L. The ground state |ψ0〉 is
obtained by filling the band with negative energy,

|ψ0〉 =
∏

k∈BZ

d†
B,k|�〉, (31)

where |�〉 is the vacuum of particles.
Applying the formalism of third quantization [84], one can

show that the spectrum of the Liouvillian is determined by
the eigenvalues of the matrix zk in essentially the same way
as the spectrum of the second-quantized Hamiltonian Eq. (4)
is obtained by occupying single-particle states with energies
±εk . The eigenvalues of zk , which thus can be regarded as
forming the single-particle spectrum of the Liouvillian, form

two bands and are given by

λ±,k = −i2γ ± ωk, (32)

with the dispersion relation

ωk =
√

ε2
k − 4
γ 2, (33)

where γ and 
γ are defined in Eq. (10). The dispersion
relation ωk determines the dynamical phase diagram of the
driven-dissipative SSH model in the 
J-
γ plane depicted in
Fig. 2(a). In particular, different phases can be defined in terms
of the gap structure of the bands λ±,k [83]—as we explain
next, this is equivalent to the distinction of phases in terms of
PT symmetry: For small values of 
γ , the bands are separated
by a real line gap (blue, red regions in the figure); that is,
ωk > 0 for all values of k ∈ BZ, with a typical complex band
structure shown in Fig. 2(b). This is the PT-symmetric phase.
Upon increasing the value of 
γ , the real line gap closes, and
the spectrum of zk is gapless in a finite region of the 
J-
γ

plane (green, yellow). Then, for a range of momenta, ωk is
real; for all other values of k, ωk = iκk is purely imaginary,
with

κk =
√

4
γ 2 − ε2
k . (34)

A typical band structure in this gapless or PT-mixed phase
is illustrated in Fig. 2(c). The phase boundary between PT-
symmetric and PT-mixed phases is determined by a critical
value 
γc. For |
J| < J , the critical value is 
γc = |
J|,
and for |
J| > J , it is given by 
γc = J . At |
J| = J , the
dispersion is flat, ωk = 2J , which enables a direct transition
between the phase with a real line gap and the phase with
an imaginary line gap or PT-broken phase (orange, purple),
where κk > 0 for all values of k ∈ BZ. The band structure in
this phase is exemplified in Fig. 2(d).

3. Non-Hermitian topology

We have already mentioned that the SSH model is in the
Altland-Zirnbauer class BDI. The class BDI in one spatial
dimension is topologically nontrivial and characterized by an
integer-valued invariant, called the winding number W . For
models with a real line gap, the Altland-Zirnbauer classifi-
cation can be extended to non-Hermitian systems, where in
the nomenclature of Ref. [83], the driven-dissipative SSH
model belongs to the class BDI†. Accordingly, within the
blue and red regions in Fig. 2(a), which correspond to the
phase with a real line gap or, equivalently, the PT-symmetric
phase, the topology of the driven-dissipative Kitaev chain is
characterized by a non-Hermitian generalization of the wind-
ing number. To calculate the non-Hermitian winding number,
we first find the left and right eigenstates of zk , which we
denote by |ψL

±,k〉 and |ψR
±,k〉, respectively. By employing the

representation of zk given in Eq. (C4), we find the eigenvalue
equations

z′
kUk|±〉 = λ±,kUk|±〉, 〈±|U −1

k z′
k = λ±,k〈±|U −1

k , (35)

where |±〉 are the eigenvectors of σz with eigenvalues ±1. The
left and right eigenvectors of zk are thus given by∣∣ψL

±,k

〉 = U −†
k |±〉, ∣∣ψR

±,k

〉 = Uk|±〉, (36)
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respectively, where U −†
k is the short-hand notation for the

inverse of the Hermitian adjoint of Uk . We can now define
a projector on the − band:

Qk = 1 − ∣∣ψR
−,k

〉〈
ψL

−,k

∣∣− ∣∣ψL
−,k

〉〈
ψR

−,k

∣∣, (37)

and determine the non-Hermitian winding number by

W = i

4π

∫ π

−π

dk tr

(
�Q−1

k

d

dk
Qk

)
, (38)

where � = σz is the matrix that appears in the chiral symmetry
condition Eq. (24) [83], and we have replaced summation
of k ∈ BZ by an integral over k ∈ [−π, π ] in the thermo-
dynamic limit L → ∞. With {Qk, σz} = 0, following from
chiral symmetry, and Q = Q† by definition, we find that Qk

is off-diagonal with

Qk =
(

0 qk

q∗
k 0

)
, (39)

and the calculation reduces to

W = − i

2π

∫ π

−π

dk
1

qk

dqk

dk
. (40)

In the PT-symmetric phase, we find qk = −(J1 + J2e−ik )/ωk ,
and, therefore,

1

qk

dqk

dk
= −i

J2

J2 + eikJ1
+ J1J2 sin(k)

J2
1 + J2

2 − 4
γ 2 + 2J1J2 cos(k)
.

(41)

The second term on the right-hand side of this equation is an
odd function of k and does not contribute to the symmetric
integral in Eq. (40); the first term yields

W = 1

2π

∫ π

−π

dk
J2

J2 + eikJ1
, (42)

which is solved by substituting z = eik and integrating over
the unit circle |z| = 1. Simple poles of the integrand are
located at z1 = 0 and z2 = −J2/J1. By using the residue theo-
rem, we obtain the result

W =
{

0 for 
J > 0,

1 for 
J < 0.
(43)

This is essentially the same result as for the isolated SSH
chain, but extended to the whole PT-symmetric phase. The
topological PT-symmetric phase is indicated in Fig. 2(a) by
the blue area with the label “TOP,” and the trivial phase by
the red area with the label “TRIV.” Interestingly, while the
definition of the non-Hermitian winding number is restricted
to the PT-symmetric phase with a real line gap, edge modes
with λedge = 0, −i4
γ occur in a chain with OBC when

J < 0 and for arbitrarily large values of 
γ , including in
the PT-mixed and PT-broken phases. In Figs. 2(b)–2(d), edge
modes are indicated with black dots. The existence of these
edge modes can be understood to be a consequence of chi-
ral symmetry [85]: Due to chiral symmetry, each sublattice
supports one edge mode. However, on a given sublattice, the
non-Hermitian contribution to Z in Eq. (14) is constant, and
its presence does not affect the eigenvectors with support on
that sublattice. Therefore the edge modes of Z are identical to
the edge modes of the Hamiltonian H , and their existence is

determined by the topology of H . This concludes our discus-
sion of the static properties of the SSH model, and we turn
now to quench dynamics, which are the main interest of our
work.

4. Dynamics of the driven-dissipative SSH model

As explained at the beginning of Sec. III A, in this work, we
consider quench dynamics with the system initially prepared
in the ground state given in Eq. (31), for prequench parame-
ters J1,0 > 0 and J2,0 = 0 corresponding to the trivial phase.
Gaussianity of this state is preserved in the time evolution
generated by a quadratic Liouvillian, and, therefore, the state
of the system is fully determined by the covariance matrix G
defined in Eq. (6), whose dynamics are described by Eq. (13).
For PBC, the covariance matrix is a 2L × 2L block Toeplitz
matrix, which is built from 2 × 2 blocks given by

gl−l ′ =
(〈[cA,l , c†

A,l ′ ]〉 〈[cA,l , c†
B,l ′ ]〉

〈[cB,l , c†
A,l ′ ]〉 〈[cB,l , c†

B,l ′ ]〉

)
. (44)

Further, for PBC and due to translational invariance of the
Hamiltonian, the Markovian baths and the chosen initial state,
all matrices in Eq. (13) are block-circulant Toeplitz matrices.
Therefore the representation of the blocks of the covariance
matrix in momentum space, which is obtained through a dis-
crete Fourier transform,

gk =
L∑

l=1

e−ikl gl , (45)

obeys the following equation of motion:

dgk

dt
= −i(zkgk − gkz†

k ) + yk, (46)

with

yk = 2(ml,k − mg,k ) = 2(δ1 + 
σz ), (47)

where ml,k and mg,k are the momentum-space representations
of the blocks of the bath matrices defined in Eq. (18). The
time-evolved covariance matrix in momentum space can be
split into two contributions,

gk (t ) = g1,k (t ) + g2,k (t ), (48)

where

g1,k (t ) = e−izkt gk (0)eiz†
k t , (49)

g2,k (t ) =
∫ t

0
dt ′e−izk (t−t ′ )ykeiz†

k (t−t ′ ). (50)

Here, g1,k (t ) encodes information of the initial condition
gk (0); the second contribution g2,k (t ) has no counterpart in
isolated systems and describes the approach to the steady state
ρSS for t → ∞, where L(ρSS) = 0.

To evaluate the initial value gk (0), let us first define spinors
Ck = (cA,k, cB,k )ᵀ and Dk = (dA,k, dB,k )ᵀ, where the operators
cs,k and ds,k are defined in Eq. (29). Further, by rearranging
Eq. (27) and defining an initial unit vector n̂0,k = h0,k/ε0,k ,
where h0,k and ε0,k are, respectively, the Bloch Hamilto-
nian and the single-particle dispersion relation for prequench
parameters J1,0 and J2,0, we find n̂0,k = UkσzU

†
k . Finally,
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by evaluating 〈DkD†
k〉0 = 〈ψ0|DkD†

k |ψ0〉 = (1 + σz )/2 for the
ground state |ψ0〉 in Eq. (31), we obtain

gk (0) = 2〈CkC
†
k 〉0 − 1 = 2Uk〈DkD†

k〉0U
†
k − 1 = n̂0,k · σ.

(51)

In particular, for our choice of prequench parameters given by
J1,0 > 0 and J2,0 = 0, we find

gk (0) = σx. (52)

With this result for the initial value, and after some algebraic
simplifications, a general form for the time-dependent covari-
ance matrix can be found [37]. We first split Eqs. (49) and (50)
into two contributions that are proportional to the identity and
traceless, respectively,

g1,k (t ) = g1,1,k (t )1 + g1,k (t ) · σ,

g2,k (t ) = g2,1,k (t )1 + g2,k (t ) · σ. (53)

In the PT-symmetric phase, the components of g1,k (t ) read

g1,1,k (t ) = −e−4γ t

ω2
k

(1 − cos(2ωkt ))n̂0,k · (hk × b) (54)

and

g1,k (t ) = e−4γ t

[
n̂0,k − ε2

k

ω2
k

(1 − cos(2ωkt ))h⊥,k

+ εk

ωk
sin(2ωkt )ho,k

]
, (55)

where we have introduced vectors h‖,k and h⊥,k which are
parallel and perpendicular to n̂k = hk/εk , respectively, and the
out-of-plane vector ho,k that is orthogonal to both n̂0,k and n̂k:

h‖,k = (n̂0,k · n̂k )n̂k, h⊥,k = n̂0,k − h‖,k,

ho,k = −n̂0,k × n̂k . (56)

Here, for n̂0,k ∦ n̂k the dynamics of e4γ t g1,k (t ) describe an
ellipse with center n̂0,k − (ε2

k/ω
2
k )h⊥,k , semi-major axis ε2

k/ω
2
k

pointing along h⊥,k , and semi-minor axis εk/ωk along ho,k ;
for an isolated system with γ = 
γ = 0, this reduces to the
well-known precession of g1,k (t ) around hk .

The components of g1,k (t ) given in Eqs. (54) and (55) de-
cay exponentially at a rate 4γ . Therefore, as indicated above,
the steady state, which is determined by the limit t → ∞
of gk (t ), is described by g2,k (t ) Eq. (50). In turn, g2,k (t )
is proportional to yk , which vanishes for balanced loss and
gain, δ = 
 = 0. The vanishing of all correlations indicates
that balanced loss and gain lead to a steady state at infinite
temperature, ρSS = ρ∞ = 1/22L. In contrast, for δ,
 �= 0,
also g2,k (t ) �= 0 and the steady state is nontrivial. The integral
in the expression for g2,k (t ) in Eq. (50) can be solved by
elementary means, but we omit the lengthy result.

Finally, for future reference, we briefly discuss the conse-
quences of PHS for gk (t ). In particular, PHS of the initial state
and PHS† of zk imply that

g1,k = −σzg
ᵀ
1,−kσz, (57)

where we omit the time argument to shorten the notation.
In contrast, yk in Eq. (47) breaks PHS, but has TRS and

commutes with σz. Combined with PHS† of zk this leads to

g2,k = σzg
ᵀ
2,−kσz. (58)

By inversion of Eq. (45), one then immediately finds

g1,l = −σzg
ᵀ
1,−lσz, g2,l = σzg

ᵀ
2,−lσz. (59)

B. Driven-dissipative Kitaev chain

In Ref. [37], we have presented a detailed study of the
quench dynamics of a driven-dissipative Kitaev chain with
short-range hopping and pairing. We summarize key prop-
erties of this model in the following. These properties will
form the basis for our discussion of new results that concern
the spreading of correlations and the effects of long-range
hopping and pairing in Secs. V and VIII, respectively.

The Hamiltonian of a Kitaev chain [42] of length L, with
hopping matrix element J , pairing amplitude 
, and chemical
potential μ, reads

H =
L∑

l=1

(−Jc†
l cl+1 + 
clcl+1 + H.c.) − μ

L∑
l=1

(
c†

l cl − 1

2

)
,

(60)

where the fermionic annihilation and creation operators
at lattice site l are cl and c†

l , respectively, with canoni-
cal anticommutation relations {cl , c†

l ′ } = δl,l ′ and {cl , cl ′ } =
{c†

l , c†
l ′ } = 0. Depending on the observable under study, we

consider both periodic boundary conditions with cL+1 = c1

and open boundary conditions with cL+1 = 0, which will be
indicated accordingly. We assume that J and 
 are positive
and real, such that the Kitaev chain has TRS and belongs to
the Altland-Zirnbauer class BDI. In the following, we keep J
and 
 as distinct parameters in most expressions. However,
our main results are obtained for J = 
. For this choice, the
ground state of the Kitaev chain is topologically nontrivial for
|μ| < 2J . In Sec. VIII, we will also study a generalization
of the Kitaev chain that incorporates long-range hopping and
pairing.

We now subject the Kitaev chain to Markovian drive and
dissipation in the form of local particle loss and gain as de-
scribed by the jump operators [85–87]

Ll = √
γl cl + √

γgc†
l , (61)

with loss and gain rates γl and γg, respectively. A convenient
parameterization of the coupling to Markovian reservoirs is
obtained by introducing the mean and relative rates,

γ = γl + γg

2
, δ = γl − γg. (62)

The mean rate γ determines the overall strength of dissipa-
tion; and the relative rate δ can be interpreted as an effective
inverse temperature in the sense that for δ = 0, the steady state
ρSS is at infinite temperature, ρSS = ρ∞ = 1/2L, while for
δ → ∞, the jump operators Eq. (61) describe particle loss,
leading to a pure steady state, ρSS = |�〉〈�| [37].

In this work, we consider quenches originating from the
trivial phase of the isolated chain with μ0 → −∞. The initial
state is then given by the vacuum of fermions |�〉. As in
the case of the SSH model discussed above, Gaussianity of
the state is preserved under the evolution generated by the
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quadratic Hamiltonian Eq. (60) and the linear jump opera-
tors Eq. (61), and the state is fully determined by two-point
correlations. However, for the Kitaev chain, there are also
nonvanishing anomalous correlations, 〈clcl ′ 〉, 〈c†

l c†
l ′ 〉 �= 0, and,

therefore, it is convenient to describe correlations by 2L real
Majorana fermions instead of L complex Dirac fermions. The
transformation to Majorana operators wl reads

w2l−1 = cl + c†
l , w2l = i(cl − c†

l ). (63)

These operators obey the anticommutation relation
{wl ,wl ′ } = 2δl,l ′ . The covariance matrix can then be defined
using Majorana operators as

�l,l ′ (t ) = i

2
〈[wl ,wl ′ ](t )〉, (64)

where 〈· · · (t )〉 = tr(· · · ρ(t )). Quench dynamics can thus be
described by the time evolution of �(t ). For details we refer to
Ref. [37]. Finally, analogous to the phases of the SSH model
discussed in Sec. III A 1, the driven-dissipative Kitaev chain
features PT-symmetric, PT-breaking, and PT-mixed phases.
The phase boundaries can be defined in terms of the spectrum
of the Liouvillian, determined by λ±,k = −i2γ ± ωk with the
dispersion relation

ωk =
√

ε2
k − 4γlγg, (65)

where

εk =
√

(2J cos(k) + μ)2 + 4
2 sin(k)2. (66)

Of particular interest for this work is the PT-symmetric phase
where ωk ∈ R>0 for all k ∈ BZ, realized for

2
√

γlγg < |2J − |μ||, (67)

while the PT-breaking phase, with ωk = iκk and κk ∈ iR>0 for
all k ∈ BZ, is determined by

2
√

γlγg > 2J + |μ|. (68)

For values of 2
√

γlγg between the boundaries given in
Eqs. (67) and (68), the system is in the PT-mixed phase.

IV. PT-SYMMETRIC GENERALIZED GIBBS ENSEMBLE

After the technical preliminaries of the previous sec-
tion, let us now focus on the main purpose of this work,
which is to study the quench dynamics and relaxation of
noninteracting driven-dissipative fermionic models. We start
by deriving the maximum entropy ensemble [10] for PT-
symmetric free fermionic systems in the PT-symmetric phase,
the PT-symmetric generalized Gibbs ensemble (PTGGE), us-
ing two different approaches. First, we present a derivation
based on the dephasing of the covariance matrix, which has
the benefit of being more practicable for analytical and numer-
ical purposes; then, we show how the PTGGE can be derived
from the quadratic eigenmodes of the adjoint Liouvillian.
This, in comparison, is a more physically insightful approach,
offering a better understanding in terms of the evolution of Li-
ouvillian eigenmodes with modified dynamics and statistics,
and connects neatly to the structure found in isolated systems.

We have discussed the derivation of the PTGGE for
the driven-dissipative Kitaev chain in depth in Ref. [37].

Therefore, in Sec. IV A, we present a detailed derivation of
the PTGGE for the SSH model with incoherent loss and gain,
and we provide only a brief summary of the corresponding
results for the Kitaev chain in Sec. IV B.

A. Driven-dissipative SSH model

As stated above, we commence the derivation of the
PTGGE for the SSH model in terms of the covariance matrix.
This derivation can be divided into three steps. The first step,
which we have taken in Sec. III A 4, is to find an analytical
result for the evolution of the covariance matrix. Then, we
obtain the long-time asymptotic behavior, determined by de-
phasing of momentum modes. Finally, we relate the dephased
covariance matrix to the density matrix of the system. The last
two steps are presented in Sec. IV A 1 below. After this we
proceed with the derivation by finding quadratic eigenmodes
of the Liouvillian in Sec. IV A 2.

1. Derivation of the PTGGE from dephasing
of the covariance matrix

In isolated integrable models that can be mapped to
noninteracting fermions, generalized thermalization to a max-
imum entropy ensemble following a quantum quench happens
through dephasing of momentum modes that oscillate at
different frequencies εk �= εk′ for k �= k′ [16,67]. Conse-
quently, local observables take on stationary expectation
values predicted by the generalized Gibbs ensemble. In
driven-dissipative integrable systems, the same mechanism is
responsible for relaxation to a maximum entropy ensemble
inside the PT-symmetric phase [37], yet there are fundamen-
tal differences which we will illustrate in the following. To
that end, let us study a general block gl (t ) of elements of
the covariance matrix, determined by the momentum-space
representation gk (t ) given in Eq. (48) through inversion of
Eq. (45),

gl (t ) =
∫ π

−π

dk

2π
eikl (g1,k (t ) + g2,k (t )). (69)

For the moment, let us consider balanced loss and gain δ =

 = 0 such that g2,k (t ) = 0; explicit expressions for g1,k (t )
are given in Eqs. (54) and (55). Note that g1,k (t ) depends on
time through an overall factor e−4γ t , and through oscillating
factors sin(2ωkt ) and cos(2ωkt ). According to the Riemann-
Lebesgue lemma, to obtain the behavior of gl (t ) for t → ∞,
we have to drop these oscillating terms [16]. Stated in terms
of g1,k (t ), in the limit t → ∞, we may write

g1,k (t ) ∼ gd,1,k (t ) = e−4γ t g′
d,1,k, (70)

where the subscript “d” denotes the dephased value obtained
by omitting oscillatory contributions, and where g′

d,1,k is time-
independent and explicitly given by

g′
d,1,k = g′

d,1,1,k1 + g′
d,1,k · σ, (71)

where

g′
d,1,1,k = − 1

ω2
k

n̂0,k · (hk × b) = 2εk
γ

ω2
k

sin(
φk ) (72)
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and

g′
d,1,k = n̂0,k − ε2

k

ω2
k

h⊥,k

= cos(
φk )n̂k + 4
γ 2

ω2
k

sin(
φk )êz × n̂k, (73)

with the angle 
φk defined by

cos (
φk ) = n̂0,k · n̂k, sin(
φk ) = (n̂0,k × n̂k ) · êz. (74)

The asymptotic behavior of gl (t ) is thus given by

gl (t ) ∼ e−4γ t
∫ π

−π

dk

2π
eikl g′

d,1,k . (75)

Since for a Gaussian state any expectation value can be ex-
pressed in terms of the covariance matrix by using Wick’s
theorem, this result shows that after appropriate rescaling to
compensate overall exponential decay, local observables re-
lax to stationary values that are determined by the dephased
covariance matrix. In particular, the expectation value of a
product O� of � fermionic operators becomes stationary after
rescaling with a factor of e2�γ t . We note that this applies
only when 〈O�〉SS = tr(O�ρSS) = tr(O�)/22L = 0. Otherwise,
one should consider the tracless part O� − tr(O�)/22L, the
expectation value of which measures actual correlations and
vanishes in the steady state at infinite temperature. Further,
similarly to isolated systems, in the equilibrated values of
rescaled local observables, memory of the initial state is pre-
served through the angle defined in Eq. (74).

As a consequence of Gaussianity, not only arbitrary expec-
tation values but also the full state of the system is determined
by the covariance matrix. In particular, the density matrix that
describes the PTGGE corresponding to the dephased covari-
ance matrix,

gPTGGE,k (t ) = gd,1,k (t ), (76)

is given by [88]

ρPTGGE(t ) = 1

Z (t )
e−2

∑
k∈BZ C†

k arctanh(gPTGGE,k (t ))Ck , (77)

where Z (t ) is a normalization such that tr(ρPTGGE(t )) = 1.
We note that while our derivation of ρPTGGE(t ) is based
on explicit results for the covariance matrix for the driven-
dissipative SSH model, our considerations clearly generalize
to other open fermionic systems that are described by
number-conserving quadratic fermionic Hamiltonians and are
subjected to incoherent loss and gain.

Even though the same mechanism of dephasing underlies
both relaxation of isolated systems to the GGE and of PT-
symmetric systems to the PTGGE, there are several important
differences: (i) The PTGGE is intrinsically time-dependent
due to the exponential decay of correlations at a rate deter-
mined by the imaginary part of the eigenvalues λ±,k of zk .
Crucially, in the PT-symmetric phase, the decay rate is identi-
cal for all momentum modes. Relaxation of local observables
to the PTGGE is then visualized best by factoring out the
overall exponential decay. (ii) The oscillation frequencies in
driven-dissipative models are given by the Liouvillian disper-
sion ωk and not by the bare Hamiltonian dispersion relation
εk . This affects the characteristic timescale of relaxation to

the PTGGE. (iii) Until now, we have considered balanced loss
and gain rates with δ = 
 = 0. For finite values of δ and 
,
also g2,k (t ) �= 0 in Eq. (69) is nonzero, and this contribution to
the covariance matrix has no counterpart in isolated systems.
While in driven-dissipative systems information about the
initial state is incorporated in g1,k (t ), the contribution g2,k (t )
describes the approach to the steady state, which is nontrivial
for δ,
 �= 0. Hence, for finite δ and 
, the state of the system
will deviate from the PTGGE for t → ∞. However, as we
explain in the following, for sufficiently small values of δ and

, one can clearly observe transient relaxation to the PTGGE.

Similarly to g1,k (t ), the contribution g2,k (t ) dephases in the
long-time limit and contains terms that decay exponentially.
However, as mentioned before, the integral in Eq. (50) also
includes a time-independent steady-state contribution,

g2,k (t ) ∼ gd,2,k (t ) + gSS,k = e−4γ t g′
d,2,k (t ) + gSS,k, (78)

where

g′
d,2,k = −i

δ

2γω2
k

[
2
γ (hk × êz ) · σ − ε2

k1
]
, (79)

and with the steady state contribution given by

gSS,k = − i



4γ 2 + ω2
k

{[(hk × êz ) + 2γ êz]σ − 2
γ1}

− i
δ

4γ 2 + ω2
k


γ

γ

{(
2
γ + 4γ 2 + ω2

k

2
γ

)
1

− [2γ + (hk × êz )]σ

}
. (80)

Hence, for δ,
 �= 0, Eq. (75) is replaced by

gl (t ) ∼
∫ π

−π

dk

2π
eikl [e−4γ t (g′

d,1,k + g′
d,2,k ) + gSS,k]

= e−4γ t g′
d,l + gSS,l . (81)

Clearly, at some point the steady state contribution will
dominate over the exponentially decaying terms, and the co-
variance matrix will assume its steady state form gl (t ) ∼ gSS,l .
Yet, for sufficiently small values of δ and 
, the PTGGE
still gives an accurate description for relaxation of local
observables on intermediate timescales, up to the crossover
time t× at which gSS,l becomes dominant. The explicit value
of t× depends on the observable under consideration. For
the example of correlations within a unit cell as measured
by 〈cB,l c

†
A,l (t )〉 = GB,A

l,l (t )/2 = g2,1
0 (t )/2, we can estimate the

crossover time as follows: Assuming that dephasing happens
on a timescale that is shorter than t×, the crossover time t×
is determined by the condition that the absolute value of the
exponentially decaying term in Eq. (81) is equal to the steady
state contribution, which leads to

t× = 1

4γ
ln
(∣∣g′2,1

d,l

/
g2,1

SS,l

∣∣). (82)

Since gSS,l is proportional to yk given in Eq. (47), this estimate
implies that t× diverges logarithmically for δ,
 → 0. The
time evolution of 〈cB,l c

†
A,l (t )〉 and the logarithmic divergence

of t× are illustrated in Fig. 3.
Finally, we want to contrast relaxation to the PTGGE

with the asymptotic behavior of the covariance matrix in the
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FIG. 3. Relaxation of local correlations for a PT-symmetric
quench with 
J = −0.5J , 
γ = γ = 0.2J , and with small imbal-
ance between loss and gain. (a) The dashed line corresponds to an
imbalance of 
 = δ/2 = 10−9J , while the solid line shows the evo-
lution for balanced loss and gain, 
 = δ = 0. For finite imbalance,
the rescaled correlation function relaxes to the PTGGE prediction on
intermediate timescales up to t×, indicated by a green vertical line.
(b) The analytical prediction from Eq. (82) is in excellent agreement
with the numerically determined values for a range of values of
δ = 2
. Numerically, we define t× as the time at which the deviation
from the PTGGE value equals one.

PT-mixed and PT-breaking phases, again based on the dynam-
ics of 〈cB,l c

†
A,l (t )〉, which, for δ = 
 = 0, is given by

〈cB,l c
†
A,l (t )〉 =

∫ π

−π

dk

4π
g2,1

1,k (t ). (83)

In the PT-breaking phase, the dispersion is purely imaginary,
ωk = iκk with κk ∈ R>0 given in Eq. (34). After some alge-
braic simplifications of g1,k (t ), the above integral reads [37]

〈cB,l c
†
A,l (t )〉 = e−4γ t

∫ π

−π

dk

4π

(
1 − 2

h2
y,k

κ2
k

sinh(κkt )2

)

∼ −e−4γ t
∫ π

−π

dk

8π

h2
y,k

κ2
k

e2κkt . (84)

Clearly, the dominant contribution is due to momenta in the
vicinity of the maximum of κk . In the PT-mixed phase, the
integration in Eq. (83) can be split into a contribution only
consisting of PT-symmetric modes and another contribution
due to PT-breaking modes, and again the dominant contribu-
tion at late times is due to PT-breaking modes in the vicinity of
the maximum of κk . For example, for |
J| > J , the dispersion
κk has a maximum at kmax = 0. Using standard asymptotic
expansion techniques [89], we obtain

〈cB,l c
†
A,l (t )〉 ∼ −e−4γ t e4t

√

γ 2−J2

t−3/2. (85)

That is, in the PT-mixed and PT-breaking phases, there is a
single momentum mode kmax that maximizes κk and dom-
inates the dynamics, and the continuum of modes in the
vicinity of kmax leads to additional algebraic decay. In con-
trast, all momenta k ∈ BZ contribute to the result for the
PT-symmetric phase given in Eq. (75).

2. Derivation of the PTGGE from the principle
of maximum entropy

As we show next, the PTGGE can also be derived from the
principle of maximum entropy [10] by properly taking into
account the modified statistics of Liouvillian eigenmodes and
the expectation values of their commutators. This approach is

explained best by considering first the isolated SSH model.
The dynamics of the isolated SSH model are generated by
the Hamiltonian superoperator H , whose action is defined in
Eq. (2), and with eigenmodes ds,k given in Eq. (29). Since
we are concerned with Gaussian states that are by definition
fully determined by two-point functions, let us consider also
quadratic forms of operators. Any quadratic form of eigen-
modes ds,k can be expressed in terms of commutators and
anticommutators through the decomposition

ds,kd†
s′,k′ = 1

2 ([ds,k, d†
s′,k′ ] + {ds,k, d†

s′,k′ }). (86)

For fermions, statistics are encoded in anticommutators,

{ds,k, d†
s′,k′ } = δs,s′δk,k′ , {ds,k, ds′,k′ } = {d†

s,k, d†
s′,k′ } = 0.

(87)

By contrast, commutators describe the dynamics. In particu-
lar, commutators of the modes ds,k are also eigenmodes of the
Hamiltonian superoperatorH :

H[dA,k, d†
A,k] = 0,

H[dA,k, d†
B,k] = −2εk[dA,k, d†

B,k]. (88)

That is, mode-diagonal commutators are conserved, while
mixed-index commutators oscillate with frequency 2εk and
dephase. In quadratic fermionic models or in integrable mod-
els that can be mapped to noninteracting fermions, the GGE
is usually stated as the maximum entropy ensemble that is
compatible with conserved mode occupation numbers ns,k =
d†

s,kds,k [16,17]. According to our discussion, we can equiv-
alently define the GGE as the maximum entropy ensemble
that is consistent with canonical anticommutations relations
Eq. (87) and the conservation of mode-diagonal commutators
Eq. (88). Crucially, this latter definition generalizes to the
PTGGE, however, with some important differences. First, the
adjoint Liouvillian L† that generates the dynamics of oper-
ators in the driven-dissipative setting, and is specified below
for the SSH model, is a non-Hermitian operator. Therefore
its eigenmodes obey modified noncanonical anticommutation
relations. Second, mode-offdiagonal commutators of eigen-
modes of L† oscillate at modified frequencies 2ωk , directly
affecting the dynamics. And third, mode-diagonal commu-
tators are not conserved; instead, these commutators decay
exponentially. However, crucially, they do not oscillate and
are, therefore, not affected by dephasing. Based on the above
definition of the PTGGE, in the following, we present a de-
tailed derivation of the PTGGE for the driven-dissipative SSH
model. The computation consists of three steps: (i) specifying
the generator of operator dynamics L† and the corresponding
eigenvalue equation and (ii) solving the eigenvalue equation to
obtain (ii.a) nonoscillatory, mode-diagonal and (ii.b) oscilla-
tory, mode-offdiagonal commutators of eigenmodes of L†.
(iii) Constructing the PTGGE as the maximum entropy en-
semble that is compatible with the statistics of the eigenmodes
of the adjoint Liouvillian L† and the expectation values of
nonoscillatory commutators.

(i) Adjoint Liouvillian. As detailed in Appendix A, for a
density matrix ρ evolving according to a Liouvillian superop-
erator L, the expectation value of an operator O follows the
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equation of motion given by

d

dt
〈O〉 = i〈L†O〉, (89)

with the adjoint Liouvillian

L† = H − iD†. (90)

Hermitian conjugation is defined here with respect to the
Hilbert-Schmidt scalar product, leading toH = H†, and

D†O =
L∑

l=1

(2L†
l OLl − {L†

l Ll , O})

=
L∑

l=1

([L†
l , O]Ll + L†

l [O, Ll ]). (91)

According to Eq. (89), the adjoint LiouvillianL† generates the
dynamics of operator expectation values. Suppose now that O
is an eigenmode of L† in the following sense:

L†O = λ∗(O − OSS), (92)

where OSS is a number. Then, the equation of motion of the
expectation value 〈O〉 reduces to

d

dt
〈O〉 = iλ∗(〈O〉 − OSS). (93)

Dynamical stability requires the imaginary part of the eigen-
value λ to be negative, such that the expectation value 〈O〉
approaches OSS for t → ∞.

(ii) Eigenmodes of the adjoint Liouvillian. We want
to solve the eigenvalue equation (92), where we consider
quadratic eigenmodes of the adjoint Liouvillian. In particular,
we seek eigenmodes in the form of mode-diagonal and mode-
offdiagonal commutators,

ηk = [ds,k, d†
s,k], χk = [dA,k, d†

B,k]. (94)

We note that only the commutators ηk and χk and not the
modes ds,k themselves satisfy the eigenvalue equation (92).
Nevertheless, for simplicity, we refer to both the modes ds,k

and the commutators ηk and χk as eigenmodes of L†. In
analogy to Eq. (88), we anticipate that the expectation values
of the diagonal commutators ηk are nonoscillatory whereas
the expectation values of the offdiagonal commutators χk are
oscillatory and, therefore, subject to dephasing.

(ii.a) Nonoscillatory eigenmodes. To find the nonoscilla-
tory eigenmodes of the adjoint Liouvillian, we use a general
bilinear ansatz given by

η =
2L∑

l,l ′=1

Ql,l ′ [cl , c†
l ′ ], (95)

where the goal is to find Q such that η satisfies the eigenvalue
equation (92). This approach does not rely on translational
invariance and, therefore, we omit the momentum index
for the time being. Plugging the ansatz into the eigenvalue
equation (92), we obtain two contributions on the left-hand
side that are due to the Hamiltonian superoperator H and
the adjoint dissipator D†, respectively. The Hamiltonian part

reads

Hη =
2L∑

l,l ′=1

(cl [Q, H]l,l ′c
†
l ′ − c†

l ′ [Q
ᵀ, H]l ′,l cl ), (96)

and the action of the dissipator is given by

D†η = −
2L∑

l,l ′=1

(cl{Q, Ml + Mg}l,l ′c
†
l ′

+ c†
l ′ {Ml + Mg, Qᵀ}l ′,l cl ) + 2 tr((Ml − Mg)Q). (97)

We write the eigenvalue λ in Eq. (92) as λ = −iκ with
an undetermined real parameter κ ∈ R, and we identify the
steady-state value ηSS with the last term in Eq. (97),

ηSS = 2

κ
tr((Ml − Mg)Q). (98)

Then, the eigenvalue equation takes the form

2L∑
l,l ′=1

[cl (QZ† − ZQ)l,l ′c
†
l ′ − c†

l ′ (Z
†Qᵀ − QᵀZ )l ′,l cl ]

= iκ
(
clQl,l ′c

†
l ′ − c†

l ′Q
ᵀ
l ′,l cl

)
. (99)

Multiplying this equation with cmc†
m′ and using

1

22L
tr(cmc†

m′clc
†
l ′ ) = 1

4
(δm,m′δl,l ′ + δm,l ′δl,m′ ),

1

22L
tr(cmc†

m′c
†
l cl ′ ) = 1

4
(δm,m′δl,l ′ − δm,lδm′,l ′ ), (100)

we obtain two equations for Q and its transpose Qᵀ, respec-
tively,

QZ† − ZQ = iκQ (101)

Z†Qᵀ − QᵀZ = iκQᵀ, (102)

where Z is defined in Eq. (14). Since Z = Zᵀ, the two equa-
tions above are actually equivalent. To make further progress,
we use translational invariance of the driven-dissipative SSH
model, which implies that the eigenmodes ηk are labeled by
a momentum k, and that Qk are block Toeplitz matrices with
2 × 2 blocks

qk,l−l ′ =
(

Qk,2l−1,2l ′−1 Qk,2l−1,2l ′

Qk,2l,2l ′−1 Qk,2l,2l ′

)
, (103)

such that the commutator of Liouvillian eigenmodes in
Eq. (94) now takes the form

ηk =
L∑

l,l ′=1

(
Cᵀl qk,l−l ′C

†ᵀ
l ′ − C†

l ′q
ᵀ
k,l−l ′Cl

)
, (104)

with Cl = (c2l−1, c2l )ᵀ. Defining the discrete Fourier transfor-
mations of the blocks qk,l and the spinors Cl as

qk,k′ =
L∑

l=1

e−ik′l qk,l , Ck = 1√
L

L∑
l=1

e−iklCl , (105)

we can recast Eq. (102) as

z†
k′q
ᵀ
k,−k′ − qᵀk,−k′zk′ = iκqᵀk,−k′ , (106)
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and write the commutator in momentum space,

ηk =
∑

k′∈BZ

(
Cᵀk′qk,−k′C†ᵀ

k′ − C†
k′q
ᵀ
k,−k′Ck′

)
. (107)

In the PT-symmetric phase, zk can be diagonalized as stated
in Eq. (C4), and the spectrum of zk is given by σ (zk ) =
{−i2γ ± ωk} where ωk ∈ R>0. Using this representation of
zk in Eq. (106), we obtain

ωk′
(
U −†

k′ σzU
†
k′q
ᵀ
k,−k′ − qᵀk,−k′Uk′σzU

−1
k′
) = i(κ − 4γ )qᵀk,−k′ ,

(108)

with the shorthand notation U −†
k = (U †

k )−1. Then, identifying
κ = 4γ , we can rewrite this equation as a commutator,[

σz,U †
k′q
ᵀ
k,−k′Uk′

] = 0. (109)

Therefore, for ηk to be an eigenmode of the adjoint Liouvil-
lian with eigenvalue λ = −i4γ , qk,k′ has to satisfy the above
commutation relation. The general solution for qk,k′ reads

qᵀk,−k′ = U −†
k′ (α1,k,k′1 + αz,k,k′σz )U −1

k′ , (110)

where α1,k,k′ and αz,k,k′ are undetermined parameters. To ob-
tain the solution anticipated in Eq. (94), we choose α1,k,k′ =
αz,k,k′ = α0,kδk,k′/2. Then, Eq. (107) takes the form

ηk = α0,k

2

(
Cᵀk U −ᵀ

k Pz,+U −∗
k C†ᵀ

k − C†
k U −†

k Pz,+U −1
k Ck

)
,

(111)

where

Pz,± = 1
2 (1 ± σz ). (112)

Defining now the Liouvillian eigenmodes as

Dk =
(

dA,k

dB,k

)
= V †

k Ck (113)

with

Vk =
√

2

tr
(
U −1

k U −†
k

)U −†
k

= 1√
2

(
e−i(φk+ψk )/2 −e−i(φk−ψk )/2

ei(φk+ψk )/2 ei(φk−ψk )/2

)
, (114)

we obtain the final form of ηk:

ηk = [dA,k, d†
A,k]. (115)

The angle φk is defined in Eq. (C2) and ψk is determined by
the relation

εkeiψk = ωk + i2
γ . (116)

In the transformation to the Liouvillian eigenmodes in
Eq. (114), we have chosen the normalization such that
{dA,k, d†

A,k} = 1. This leads to

α0,k = tr
(
U −1

k U −†
k

) = 2 cosh(θk ), (117)

with θk given in Eq. (C3) and related to ψk by

tan(ψk ) = sinh(θk ). (118)

Note that the alternative choice α1,k,k′ = −αz,k,k′ =
α0,kδk,k′/2 in Eq. (110) leads to ηk = [dB,k, d†

B,k]. Further,

the transformation Vk given in Eq. (114) determines the
statistics of the Liouvillian eigenmodes. Since Vk is not
unitary, the operators ds,k do not obey the usual canonical
anticommutation relations. The statistics of these modes are
encoded in the anticommutators collected in({dA,k, dA,k′ } {dA,k, dB,k′ }

{dB,k, dA,k′ } {dB,k, dB,k′ }
)

= fkδk,k′ , (119)

where

fk = V †
k Vk = 1 + sin(ψk )σy. (120)

Next, having specified the solution for the matrix Q that leads
to eigenmodes ηk in the form given in Eq. (115), we can
determine the steady state contribution in Eq. (98). We find

〈[dA,k, d†
A,k]〉SS = ηSS = δ

γ
. (121)

Finally, to fully determine the time evolution of the expecta-
tion value 〈ηk〉, we have to calculate its initial value. Relating
the expectation value of the commutator to the covariance
matrix by

〈[dA,k, d†
A,k]〉 = ωk

εk
tr
(
U −†

k Pz,+U −1
k gk

)
, (122)

we find the initial value, determined by the covariance matrix
gk (0) in Eq. (51), to be given by

〈[dA,k, d†
A,k]〉0 = cos(
φk − ψk ), (123)

where the angle 
φk is defined in Eq. (74). Therefore, by
solving Eq. (93) for the commutator in Eq. (115), we obtain
the time evolution of the expectation value of diagonal com-
mutators:

〈[dA,k, d†
A,k](t )〉 = e−4γ t 〈[dA,k, d†

A,k]〉0

+ (1 − e−4γ t )〈[dA,k, d†
A,k]〉SS, (124)

with the initial and steady-state values given in Eq. (123) and
Eq. (121), respectively.

(ii.b) Oscillatory eigenmodes. We proceed by showing that
the offdiagonal commutators χk = [dA,k, d†

B,k] with mode op-
erators ds,k given in Eq. (113) are oscillatory eigenmodes of
the Liouvillian. To that end we write χk in the form

χk =
∑

k′∈BZ

(
Cᵀk′ p

ᵀ
k,k′C

†ᵀ
k′ − C†

k′ pk,k′Ck
)
, (125)

where we define

pk,k′ = δk,k′Vk′σ−V †
k′ , (126)

and σ± = (σx ± iσy)/2. The fact that the offdiagonal commu-
tators χk are eigenmodes ofL† with eigenvalue λ = −2(ωk +
i2γ ) can be confirmed by noting that pk,k′ satisfies the eigen-
value equation that is similar to Eq. (106):

z†
k′ pk,k′ − pk,k′zk′ = −(2ωk − i4γ )pk,k′ . (127)

The time evolution of expectation values of χk thus reads

〈[dA,k, d†
B,k](t )〉 = e−i2(ωk−i2γ )t 〈[dA,k, d†

B,k]〉0

+ (1 − e−i2(ωk−i2γ )t )〈[dA,k, d†
B,k]〉SS,

(128)
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where the initial and steady-state values are given by

〈[dA,k, d†
B,k]〉0 = i sin(
φk ),

〈[dA,k, d†
B,k]〉SS = i
 cos(ψk ) − δ sin(ψk )

2(ωk − 2iγ )
. (129)

(iii) Construction of the PTGGE. We consider now the case
of balanced loss and gain with δ = 
 = 0, such that the steady
state contributions to Eqs. (124) and (128) vanish,

〈[dA,k, d†
A,k]〉SS = 〈[dA,k, d†

B,k]〉SS = 0. (130)

Further, due to the oscillatory exponent in (128), the contribu-
tion of offdiagonal commutators to local observables vanishes
at late times due to dephasing between offdiagonal commuta-
tors with different momenta

〈[dA,k, d†
B,k](t )〉 → 0. (131)

Therefore the state of the system at late times is determined
by the expectation values of diagonal commutators given in
Eq. (124) and the statistics of the modes ds,k that follow from
the nonunitary transformation Vk Eq. (114) and are encoded
in the matrix fk in Eq. (120). The PTGGE can be defined as
the maximum entropy ensemble that is compatible with these
requirements. We can also collect the same information in the
dephased covariance given in Eq. (76), which can be related
to the eigenmodes by

gPTGGE,k (t ) = V −†
k ζk (t )V −1

k , (132)

where ζk (t ) = e−4γ tζ ′
k with

ζ ′
k =

(〈[dA,k, d†
A,k]〉0 0

0 〈[dB,k, d†
B,k]〉0

)

=
(

cos(
φk − ψk ) 0

0 − cos(
φk + ψk )

)
. (133)

Then for the given two-point function gPTGGE,k (t ), the entropy
is maximized for the Gaussian state that is uniquely deter-
mined through Eq. (77). In terms of the eigenmodes of the
adjoint Liouvillian, the PTGGE can be written as

ρPTGGE(t ) = 1

ZPTGGE(t )
e−2

∑
k∈BZ D†

k f −1
k arctanh(ζk (t ) f −1

k )Dk , (134)

which shows most transparently both the dependence of the
PTGGE on the initial conditions through ζk (t ) and the effect
of the noncanonical anticommutation relations of the Liouvil-
lian eigenmodes described by fk .

B. Driven-dissipative Kitaev chain

Having presented the derivation of the PTGGE for the SSH
model, we now turn to the driven-dissipative Kitaev chain.
Since the latter has been discussed in detail in Ref. [37], we
restrict ourselves here to highlighting the aspects in which
the derivation for the Kitaev chain differs from the one for
the SSH model. In particular, for the Kitaev chain, we define
bilinear forms of eigenmodes as

ηk = [dk, d†
k ], χk = [dk, d−k], (135)

which can be regarded as normal and anomalous commu-
tators, respectively, and where the Liouvillian eigenmodes

dk are related to the original fermionic operators ck =
1√
L

∑L
l=1 e−ikl cl via

Dk =
(

dk

d†
−k

)
= V †

k

(
ck

c†
−k

)
,

Vk =
(

cos
(

θk+φk

2

)
i sin

(
θk−φk

2

)
i sin

(
θk+φk

2

)
cos
(

θk−φk

2

)
)

, (136)

with angles θk and φk that are defined through the relations

εkeiθk = −2J cos(k) − μ + i2
 sin(k),

εkeiφk = ωk + i2
√

γlγg. (137)

The Liouvillian eigenmodes dk obey noncanonical anticom-
mutation relations,( {dk, d†

k′ } {dk, d−k′ }
{d†

−k, d†
k′ } {d†

−k, d−k′ }

)
= fkδk,k′ , (138)

where fk = V †
k Vk = 1 + sin(φk )σy. In analogy to the mode-

diagonal commutators for the SSH model, the normal
commutators ηk are nonoscillatory,

〈[dk, d†
k ](t )〉 = e−4γ t 〈[dk, d†

k ]〉0 + (1 − e−4γ t )〈[dk, d†
k ]〉SS,

(139)

where 〈[dk, d†
k ]〉0 is determined by the initial conditions

and 〈[dk, d†
k ]〉SS contains the steady state contribution. The

nonoscillatory normal commutators decay with an overall
decay rate γ defined in Eq. (62), and are not affected by de-
phasing. In contrast, and analogously to the mode-offdiagonal
commutators of the SSH model, the anomalous commutators
χk are oscillatory,

〈[dk, d−k](t )〉 = e−i2(ωk−i2γ )t 〈[dk, d−k]〉0

+ (1 − e−i2(ωk−i2γ )t )〈[dk, d−k]〉SS, (140)

with initial values 〈[dk, d−k]〉0 and steady-state contribu-
tions 〈[dk, d−k]〉SS. The anomalous commutators oscillate
with frequency ωk and are thus affected by dephasing. As
above, the PTGGE describes the late-time relaxation dy-
namics for vanishing steady-state contributions 〈[dk, d†

k ]〉SS =
〈[dk, d−k]〉SS = 0, accomplished by balanced loss and gain
rates δ = γl − γg = 0, and after dephasing of the contribu-
tions due to anomalous commutators. The explicit form of the
PTGGE is given by

ρPTGGE(t ) = 1

ZPTGGE(t )
e−2

∑
k�0 D†

k f −1
k arctanh(ζk (t ) f −1

k )Dk , (141)

where ζk (t ) = e−4γ tζ ′
k with

ζ ′
k =

(〈[dk, d†
k ]〉0 0

0 〈[d†
−k, d−k]〉0

)
. (142)

The key difference between Eqs. (141) and (134) for the Ki-
taev chain and the SSH model, respectively, is that in general
anomalous correlations such as 〈clcl ′ 〉 do not vanish for the
Kitaev chain; in contrast, the weak U(1) symmetry of the
driven-dissipative SSH model ensures that anomalous corre-
lations like 〈cs,l cs′,l ′ 〉 vanish at all times.

013016-16



QUANTUM QUENCHES IN DRIVEN-DISSIPATIVE … PHYSICAL REVIEW RESEARCH 6, 013016 (2024)

FIG. 4. Propagation of correlations after quenches to the topo-
logical PT-symmetric phase (μ = −0.5J) for (a) the isolated system
(γ = 0) and (b) the driven dissipative system (γ = 0.6J). The black
and blue dashed lines are described by � = 2vmaxt and � = 2vPHt ,
respectively. (c) Direct comparison between the numerically deter-
mined peak positions (dots) and � = 2vmaxt (solid lines).

V. SPREADING OF CORRELATIONS

Now that we have derived the ensemble that describes the
late-time dynamics for quenches to the PT-symmetric phase,
we turn to a detailed study of relaxation to the PTGGE. In
the following sections, both for the SSH model and the Kitaev
chain, we focus on balanced loss and gain with δ = 
 = 0,
such that the steady state is at infinite temperature, and a
description of the dynamics in terms of a PTGGE applies on
arbitrarily long timescales.

A well-established property of isolated integrable sys-
tems that exhibit generalized thermalization after a quantum
quench is the ballistic propagation of correlations through the
system [16,18]. This is also referred to as light cone spreading
of correlations, since correlations outside of the light cone
that is defined by the group velocity vmax are suppressed
exponentially [90]. As we demonstrate in the following, light
cone propagation of correlations is not unique to isolated
systems [91,92]. We illustrate this behavior for the driven-
dissipative Kitaev chain, where we consider the evolution of
the normal commutators Cl−l ′ (t ) = 〈[cl , c†

l ′ ](t )〉 for δ = 
 =
0. In the PT-symmetric phase, we find ballistic propagation
of quasiparticles which, however, have a finite lifetime, and
a maximum velocity adjusted to the modified dispersion rela-
tion ωk; in contrast, in the PT-mixed and PT-broken phases,
we observe diffusive spreading of correlations.

A. PT-symmetric phase

In Figs. 4(a) and 4(b), we show the absolute value of
rescaled normal commutators C′

�(t ) = e4γ tC�(t ) for the iso-
lated and the driven-dissipative Kitaev chain in the PT-
symmetric phase, respectively. A clear light cone structure is
visible in both figures. The peak of correlations, defining the
boundary of the light cone and found at position � = 2vmaxt ,

FIG. 5. Maximum of the quasiparticle velocity vmax and the
phase velocity vPH as a function of the chemical potential μ for (a) the
isolated system (γ = 0) and (b) the driven-dissipative system (γ =
0.3J). For μ < 0, at the phase boundary, vmax = vPH = √

2J|μ|,
while for μ > 0, we find vmax = √

2J|μ| and vPH = 0.

is well described by the ballistic propagation of quasiparticles
with finite lifetime ∼1/γ and velocity

vmax = max
k∈BZ

(|vk|) = max
k∈BZ

(|dωk/dk|). (143)

We conclude that the spreading of correlations with finite
velocity is maintained also in the driven-dissipative model
throughout the whole PT-symmetric phase. For a finite rate
of dissipation γ , the light cone velocity with dispersion ωk

is increased compared to the velocity corresponding to the
isolated system with dispersion εk . This is further verified in
Fig. 4(c), where the position of the light cone boundary is
traced numerically and compared to the analytical prediction.
However, the increased speed at which correlations propagate
is offset by the exponential decay of correlations at rate 4γ .
Further, the phase velocity defined as [93]

vPH = |ωk/k|k=kmax
, (144)

where kmax is the momentum for which vk = vmax, decreases
with increasing reservoir coupling. While vmax defines the
boundary beyond which correlators become exponentially
suppressed, the phase velocity describes the propagation of
local peaks within the light cone. At the boundaries of the PT-
symmetric phase, the phase velocity and maximum particle
velocity line up with vmax = vPH = √

2J|μ| for μ < 0, while
for μ > 0 we still have vmax = √

2J|μ| but the phase velocity
vPH = 0. This behavior is depicted in Fig. 5, where vmax and
vPH are plotted as a function of μ. For the value μ = −0.5J
chosen in Figs. 4(a) and 4(b), we obtain vPH > vmax. However,
as can be seen in Fig. 5, also the opposite order vPH < vmax is
realized for different values of μ.

B. PT-mixed and PT-broken phases

In the PT-mixed and PT-broken phases, where γ > γc =
|J − |μ|/2|, the spreading of correlations is dominated by the
single slowest-decaying mode with decay rate

2γs = min
k∈BZ

(− Im(λ+,k )). (145)

Accordingly, we define rescaled normal commutators as
C′

l (t ) = e4γstCl (t ). In Figs. 6(a) and 6(b), the absolute value of
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FIG. 6. Propagation of correlations after quenches to (a) the PT-
mixed phase (μ = −0.5J , γ = 1J) and (b) the PT-broken phase
(μ = −0.5, γ = 2J). The red dots indicate the position of the peak of
correlations, spreading diffusively as � = 2(Dt )1/2. (c) Direct com-
parison between the numerically determined peak positions (dots)
and diffusive propagation in log-log scale.

rescaled normal commutators is shown for the PT-mixed and
PT-broken phase, respectively. It is worthwhile to first discuss
the qualitative differences of correlations in the phases with
PT-symmetric and PT-breaking modes. In the PT-symmetric
phase, at any time, the normal commutators show multiple os-
cillations inside the light cone, with a peak at the boundary of
the light cone and ensuing suppression of correlations outside
the light cone. This creates the sharp boundaries in Fig. 4.
In contrast, in the presence of PT-breaking modes, normal
commutators show a single peak without oscillations and long
decaying tails, giving the unstructured appearance inside the
boundary in Fig. 6. Crucially, a correlation boundary can still
be defined through this single peak. The correlation bound-
ary, however, spreads diffusively according to � = 2(Dt )1/2,
where the diffusion constant is given by

D = −1

2

d2κk

dk2

∣∣∣∣
k=kmax

= J|μ|√
4γlγg − (2J − |μ|)2

, (146)

with κk defined in Eq. (34) and kmax the momentum max-
imizing κk . The diffusive evolution of the peak position is
illustrated further in Fig. 6(c).

Let us briefly comment on the spreading of correlations
in the driven-dissipative SSH model. Based on the analytical
form of the covariance matrix derived in Sec. III A 4, which
is structurally similar to the covariance matrix of the Kitaev
chain, we can expect that the dynamics of correlations is
qualitatively the same in both models. This expectation is
confirmed by numerical results, which we do not show here.

VI. TIME EVOLUTION OF THE SUBSYSTEM ENTROPY

The linear growth and volume-law saturation of the von
Neumann entropy of a finite subsystem is a key signature of
thermalization in isolated systems [19–22]. As we show in the

following, the exact same phenomenology can be observed
after quenches to the PT-symmetric phase of the driven-
dissipative SSH model—if we consider the contribution to
the entropy that measures the spreading of correlations due to
the propagation of pairs of entangled quasiparticles, and after
appropriate rescaling to compensate for exponential decay.
The corresponding analysis for the driven-dissipative Kitaev
chain is provided in Ref. [37].

We consider a subsystem of the SSH chain that contains
� contiguous unit cells. The corresponding reduced density
matrix is obtained by tracing out the remaining L − � unit
cells, ρ� = trL−�(ρ), and the von Neumann subsystem entropy
is defined by SvN,� = − tr(ρ� ln(ρ�)). For a Gaussian state, the
subsystem entropy can be calculated as [88]

SvN,� =
�∑

l=1

S(ξl ), (147)

where

S(ξ ) = −1 + ξ

2
ln

(
1 + ξ

2

)
− 1 − ξ

2
ln

(
1 − ξ

2

)
, (148)

and where ±ξl with 0 � ξl � 1 and l ∈ {1, . . . , �} are the
eigenvalues of the reduced covariance matrix G� defined by

G� = (Gs,s′
l,l ′
)s,s′∈{A,B}

l,l ′∈{1,... ,�}, (149)

with Gs,s′
l,l ′ given in Eq. (6). The set of eigenvalues {±ξl} of G�

forms the single-particle entanglement spectrum [88]. In pure
states of isolated systems, the subsystem entropy measures the
entanglement between the subsystem and its compliment. Af-
ter a quench, the subsystem entropy grows linearly in t before
it saturates to a volume-law value, SvN,� ∝ �. This behavior
can be explained through a quasiparticle picture, which does
not only provide a qualitative interpretation but also quanti-
tative predictions for the full time evolution after a quench
in the space-time scaling limit [19–22]. In this picture, the
initial state acts as a source of pairs of entangled quasiparticles
with opposite momenta. After creation, these quasiparticles
move ballistically with a velocity of at most vmax through the
system. All pairs whose members are separated by the bound-
ary between the subsystem and its compliment contribute to
the subsystem entropy. Consequently, the subsystem entropy
starts to saturate when all maximum-velocity pairs generated
in the subsystem have left the subsystem.

In open systems, the time-evolved state is no longer
pure and the subsystem entropy involves two contributions
[38–40,94]: SQP

vN,�, which describes correlations due to quasi-
particle pairs as in an isolated system; and Sstat

vN = SvN,L, the
statistical entropy due to the mixedness of the state. The
quasiparticle-pair contribution is thus given by the difference

SQP
vN,� = SvN,� − �

L
Sstat

vN . (150)

In the following, we consider quenches to the PT-symmetric
phase of the driven-dissipative SSH model. Building upon
findings of Refs. [38,39], in Ref. [37], we have proposed an
analytical conjecture for the evolution of the quasiparticle-pair

013016-18



QUANTUM QUENCHES IN DRIVEN-DISSIPATIVE … PHYSICAL REVIEW RESEARCH 6, 013016 (2024)

FIG. 7. Quasiparticle-pair contribution to the subsystem en-
tropy in the driven-dissipative SSH model after quenches to the
trivial (green, 
J = 0.5J) and topological (blue, 
J = −0.5J) PT-
symmetric phases for γ = 
γ = 0.1J , δ = 
 = 0, and � = 20.
Dashed lines show numerical data, and solid lines correspond to the
analytical conjecture Eq. (151) for the space-time scaling limit. The
approach of the numerical results to the conjecture with increasing
subsystem size is shown in the inset: For the topological quench
at t = 2tF , the difference between the numerical data and Eq. (151)
(blue dots) vanishes as 1/� (orange line).

contribution SQP
vN,� in the space-time scaling limit:

SQP
vN,�(t ) ∼

∫ π

0
min(2|vk|t, �) tr

(
S
(
ζk (t ) f −1

k

)− S(gk (t ))d
)
,

(151)

where for the SSH model ζk (t ) and fk are defined in Eqs. (133)
and (120), respectively, and gk (t ) is given in Eq. (48) with
the subscript “d,” which stands for dephasing, indicating that
only nonoscillatory components contribute. For long times,
γ t � 1, we can expand the quasiparticle-pair entropy in
the exponentially decaying factors ζk (t ), gk (t ) ∼ e−4γ t . To
lowest nontrivial order, we find S(ξ ) ∼ ln(2) − ξ 2/2. Then,
the constant contributions in Eq. (151) cancel, and we find
SQP

vN,�(t ) ∼ e−8γ t . Therefore relaxation to the PTGGE can be
revealed by considering the rescaled quasiparticle-pair en-
tropy e8γ t SQP

vN,�(t ), which is shown in Fig. 7. The rescaled
quasiparticle-pair entropy grows linearly up to the Fermi time
[14],

tF = �/(2vmax), (152)

where saturation to the value predicted by the PTGGE sets in.
As shown in the inset, the difference between the numerical
results and the analytical conjecture Eq. (150) vanishes as
1/�. The numerical method we have used to obtain this data
is described in Ref. [37].

VII. TIME EVOLUTION OF STRING ORDER
AND SUBSYSTEM FERMION PARITY

Generalized thermalization after a quantum quench in iso-
lated systems is defined as relaxation of the averages of local
observables to stationary values that are determined by the
GGE. Similarly, based on the arguments given in Sec. IV, after
quenches to the PT-symmetric phases of the driven-dissipative
Kitaev and SSH chains, we expect to observe local relaxation
to the PTGGE. To confirm this expectation, we proceed to
study the time evolution of the dual string order parameter for
the SSH model and the subsystem parity for the Kitaev chain,

which are defined below in Secs. VII A and VII B, respec-
tively. These observables are of special interest due to their
connection to topology: On the one hand, in the ground state
of an isolated system, the dual string order parameter and the
subsystem parity function as topological disorder parameters.
That is, they are finite in the trivial phase and vanish in the
topological phase. On the other hand, after quenches originat-
ing from the trivial phase, the decay of dual string order and
subsystem parity carries a robust signature of the topology of
the postquench Hamiltonian: For quenches across the topo-
logical phase boundary, the topological disorder parameters
exhibit periodically recurring zero crossings; in contrast, they
do not cross zero for quenches within the trivial phase. Phys-
ically, these zero crossings correspond to pumping of spin
order and fermion parity between a finite subsystem and its
complement. As we discuss in the following, in the presence
of drive and dissipation, this phenomenology acquires quali-
tative modifications that are unique to open systems.

A. Dual string order parameter

The concept of string order has originally been introduced
and is mostly discussed in the context of spin chains [95,96].
For the SSH model Eq. (4), an equivalent formulation in terms
of a dimerized spin-12 chain can be obtained through the
Jordan-Wigner transformation [97], which yields

H = 2
2L∑

l=1

(J − (−1)l
J )
(
Sx

l Sx
l+1 + Sy

l Sy
l+1

)
, (153)

where Sμ

l with μ ∈ {x, y, z} are spin-12 operators that act on
the spin at site l with l ∈ {1, . . . , 2L}. The Jordan-Wigner
transformation, which maps the set of 2L fermionic operators
cl and c†

l with cA,l = c2l−1 and cB,l = c2l to spin operators
S±

l = Sx
l ± iSy

l , is given by

S−
l = eiπ

∑l−1
l′=1 nl′ cl , S+

l = eiπ
∑l−1

l′=1 nl′ c†
l , Sz

l = nl − 1
2 .

(154)

where nl = c†
l cl . For 
J < 0, the ground state of the

dimerized spin chain is topologically ordered. Indeed, the
topologically ordered phase of the dimerized spin-12 chain is
continuously connected to the Haldane phase of the antiferro-
magnetic spin-1 Heisenberg chain [98]. The topological and
trivial phases of the dimerized spin chain can be distinguished
through the string order parameter, which takes a finite expec-
tation value in the topological phase, and vanishes in the trivial
phase. Equivalently, the dual string order parameter is nonzero
in the trivial phase, and vanishes in the topological phase [70].
The designation as dual refers here to the self duality of the
dimerized spin chain: Under a translation by one lattice site,
Sμ

l �→ Sμ

l+1, the Hamiltonian Eq. (153) maps to itself with

J �→ −
J . Consequently, also the trivial and topological
phases are exchanged, and, therefore, the dual string order
parameter, which is obtained by performing the translation
by one lattice site on the usual string order parameter, serves
as a topological disorder parameter. The dual string order
parameter for the dimerized spin-12 chain is given by [70,99]

Oμ

� = eiπ
∑2�

l=1 Sμ

l , (155)
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with μ ∈ {x, y}. We note that the invariance of the Hamilto-
nian Eq. (153) under rotations around the z-axis implies that
〈Ox

�〉 = 〈Oy
�〉. An alternative interpretation of string order is

obtained through a nonlocal unitary transformation that maps
the dimerized spin chain Eq. (153) to two coupled Ising mod-
els [100], which have the doubled Ising symmetry Z2 × Z2.
This symmetry is broken in the topologically ordered phase,
and correlations of the Ising order parameters map to the
string order parameters Ox

� and Oy
�.

To compute the dual string order parameter for the SSH
model, it is convenient to introduce 4L Majorana operators wl

according to Eq. (63). For concreteness, we consider the dual
string order parameter with μ = x, which can be written in
terms of Majorana fermions as

Ox
� = (−i)�

�∏
l=1

w4l−2w4l−1. (156)

Since the quench dynamics we consider here only involve
Gaussian states, we can employ Wick’s theorem [101–103],
according to which the expectation value of the dual string
order parameter is given by the Pfaffian of a submatrix of
the covariance matrix � for Majorana fermions defined in
Eq. (64), 〈

Ox
�

〉 = pf(��). (157)

The submatrix �� consists of the elements of � that corre-
spond to the Majorana operators appearing in Eq. (156),

�� = (�l,l ′ )l,l ′∈{2,3,6,7,... ,4�−2,4�−1}. (158)

As shown in Appendix D, up to a factor of i, �� is unitarily
equivalent to the contribution G1,� to the reduced covariance
matrix of complex fermions defined in Eq. (149),

�� = iP†
� G1,�P�, (159)

where

P� =
�⊕

l=1

(
1 0
0 i

)
. (160)

The decomposition of the reduced covariance matrix as G� =
G1,� + G2,� employed here is analogous to that of gk in
Eq. (48).

1. Relaxation of the dual string order parameter

To illustrate relaxation to the PTGGE, we consider the time
evolution of the dual string order parameter after quenches
to the trivial and topological PT-symmetric phases. As dis-
cussed in Sec. IV A 1, the expectation value of a product of �

fermionic operators becomes stationary after rescaling with a
factor of e2�γ t . Accordingly, in Fig. 8, we show the evolution
of the rescaled dual string order parameter e4�γ t |〈Ox

�〉|. For
quenches to both the topological (blue) and the trivial (green)
phase, we observe fast decay up to the Fermi time tF Eq. (152),
followed by much slower relaxation to the value predicted by
the PTGGE. As an aside, it is interesting to note that, since
G2,� does not contribute to �� in Eq. (159), relaxation of the
dual string order parameter is described by the PTGGE even
if δ,
 �= 0. The numerical data for the quench to the trivial

FIG. 8. Dual string order parameter after quenches to the
trivial (green, 
J = 0.5J) and topological (blue, 
J = −0.5J) PT-
symmetric phases for γ = 
γ = 0.3J , δ = 
 = 0, and � = 20.
Dashed lines correspond to numerical data, and the solid lines show
the analytical conjectures in Eqs. (161) and (162) with α+ = α− =
0.15. We indicate the asymptotic PTGEE prediction by straight hor-
izontal red lines and the change of dynamics at the characteristic
timescale t = tF by the purple vertical line. The system size L is
chosen sufficiently large to avoid finite-size effects.

phase is in excellent agreement with the following analytical
form:〈

Ox
�(t )
〉 ∼ O0e−4�γ t+∫ π

0
dk
2π

min(2|vk |t,�) tr(ln(|ζ ′
k f −1

k |)), (161)

where ζ ′
k and fk are defined in Eqs. (133) and (120), re-

spectively, and the prefactor O0 is determined by fitting
the late-time asymptotic behavior to the PTGGE prediction.
Equation (161) is an analytical conjectures we have proposed
originally for the dynamics of the subsystem parity in the
driven-dissipative Kitaev chain [37], and which is based on
analytical results obtained by Calabrese et al. [13–15] for
the relaxation of order parameter correlations in the trans-
verse field Ising model and in the space-time scaling limit
�, t → ∞ with �/t fixed. As mentioned above, the SSH model
can be mapped to two coupled Ising models by a nonlocal
unitary transformation [100], which leads us to expect that
our conjecture also applies to the dual string order parameter.
Numerically, this expectation is confirmed in Fig. 8, where the
solid lines indicate the analytical predictions.

The analytical conjecture Eq. (161) shows that as com-
pared to the isolated SSH model, there are two important
modifications. (i) The dynamics are determined the Liou-
villian dispersion relation ωk rather than the Hamiltonian
dispersion relation εk , leading here to a shorter Fermi time
tF . (ii) Noncanonical anticommuation relations of Liou-
villian quasiparticles encoded in fk �= 1 affect the result
quantitatively.

For quenches to the topologically nontrivial phase with

J < 0, the dual string order parameter exhibits additional
oscillatory dynamics for t < tF , well described in the space-
time scaling limit by〈

Ox
�(t )
〉 ∼ 2 cos

(
ωks,+t + α+

)
cos
(
ωks,−t + α−

)〈
Ox

�(t )
〉
nonosc,

(162)

where 〈Ox
�(t )〉nonosc is the nonoscillatory evolution described

by Eq. (161), α± are numerically determined phase shifts,
and ks,± are the soft modes of the PTGGE. These modes are
determined by the condition that the matrix in the exponent in
Eq. (77) has an eigenvalue that is equal to zero. According to
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Eq. (132), this condition can be stated as

det (gPTGGE,k (t ))

= e−8γ t det
(
V −†

k V −1
k

)
det(ζ ′

k )

= − ε2
k

ω2
k

e−8γ t cos(
φk − ψk ) cos(
φk + ψk ) = 0, (163)

or, equivalently, cos(
φk ± ψk ) = 0. As we show below,
cos(
φk − ψk ) = 0 has two solutions k = ks,±. The solutions
to cos(
ψk + ψk ) = 0 are then given by −ks,±: Indeed, IS of
the Bloch Hamiltonian hk and IS† of the non-Hermitian Bloch
Hamiltonian zk imply that 
φk = −
φk and ψk = ψ−k ,
respectively [37], and, therefore, cos(
φ−ks,± + ψ−ks,± ) =
cos(
φks,± − ψks,± ) = 0. It is thus sufficient to consider the
condition cos(
φk − ψk ) = 0. For our choice of initial state
with vanishing intercell hopping, J2,0 = 0, this condition leads
to

J1 + J2 cos(k) = − sgn(sin(k))2
γ , ωk = J2|sin(k)|.
(164)

The two solutions are given by

ks,± = ∓ sgn(J1) arccos (−(J1 ∓ sgn(J1)2
γ )
/

J2). (165)

We have chosen the designation of each of the solutions of
Eq. (164) as either ks,+ or ks,− such that ks,− and ks,+ are
associated with the pumping of string order through the right
and left boundary of a subsystem, respectively, as detailed be-
low. Note that the designation is reversed when J1 = J + 
J
changes sign. Crucially, for this choice, the frequencies ωks,±
are continuous functions of 
J and 
γ . For 
γ �= 0, the
PTGGE has two distinct soft modes ks,+ �= −ks,−. In contrast,
for the GGE, which is obtained for 
γ → 0, the soft modes
are locked onto each other by inversion symmetry, ks,+ =
−ks,−. Associated with the soft modes are two timescales,1

ts,± = π/ωks,± = π
/

(J2|sin(ks,±)|), (166)

which determine the oscillation periods of the dual string
order parameter, and, in particular, the periodicity of the
recurring zero crossings of the dual string order parameter.
Note that since ωk = ω−k , there is only a single timescale
ts = ts,+ = ts,− for isolated systems. As shown in Fig. 8, the
periodicity of zero crossings persists up to tF , and the subse-
quent relaxation of the dual string order parameter for t > tF
approximately follows the prediction given in Eq. (161).

The oscillatory dynamics of the dual string order parameter
for quenches to the topological phase are connected to the
topological zero crossings in the entanglement spectrum. We
explore this connection in more detail in the following section.

2. Topological zero crossings

For quantum quenches in the isolated SSH model, zero
crossings of the dual string order parameter are a robust
signature of the topology of the postquench Hamiltonian. To
explain why that is the case, we observe first that according
to Eq. (157) zero crossings of the dual string order parameter

1We notice that the definition of the timescales ts,± in Ref. [37]
erroneously contains a factor of 1/2.

FIG. 9. Simultaneous zero crossings of the dual string order pa-
rameter (black line) and in the single-particle entanglement spectrum
(blue lines) for a quench to the topological phase, 
J = −1.5J and
γ = 
γ = 0.3J , with balanced loss and gain δ = 
 = 0, and for a
subsystem of size � = 10.

occur whenever an eigenvalue of ��, or, equivalently as per
Eq. (159), of the reduced covariance matrix G�, crosses zero.
The coincidence of zero crossings of the dual string order
parameter and in the single-particle entanglement spectrum
applies to all Gaussian states, and is illustrated for a quench
to the topological PT-symmetric phase in Fig. 9. Furthermore,
the dynamical entanglement spectrum bulk-boundary corre-
spondence for one-dimensional lattice models [4] that belong
to the class BDI [104] states that for quenches originating
from the trivial phase, zero crossings in the entanglement
spectrum occur if and only if the postquench Hamiltonian
is topologically nontrivial. Consequently, also zero crossings
of the dual string order parameter occur if and only if the
postquench Hamiltonian of the isolated SSH model is topo-
logically nontrivial. As we discuss in more detail below, for
the Kitaev chain, the role of the dual string order parameter is
played by the subsystem fermion parity [37].

Turning now to the driven-dissipative SSH model, the con-
tinuity of non-Hermitian real-line-gap topology suggests that
the relation between zero crossings of the dual string order
parameter and nontrivial topology of the generator of the
postquench dynamics remains valid through the entire PT-
symmetric phase. An important qualitative modification due
to drive and dissipation has already been mentioned above:
There are now two distinct timescales for zero crossings of
the dual string order parameter, which are determined by soft
modes of the PTGGE. In Ref. [37], for the driven-dissipative
Kitaev chain, we have provided a physical interpretation of
these two timescales in terms of directional parity pumping:
The two timescales correspond to different rates of the ex-
change of parity between a subsystem and its complement
through the left and right ends of the subsystem. This effect
requires the breaking of inversion symmetry and mixedness of
the time-evolved state, and is thus unique to driven-dissipative
systems. As we illustrate in Fig. 10, the driven-dissipative
SSH model exhibits an analogous effect of directional string
order pumping. The figure shows the dynamics of the rescaled
dual string order parameter for a quench to the PT-symmetric
topological phase. After a short initial period, the numerical
data for PBC (black line) are well described by the analytical
prediction Eq. (162) (red line), and exhibit zero crossings at
multiples of both ts,− and ts,+. In contrast, the dual string order
parameter for subsystems L� = {1, . . . , �} at the left end and
R� = {L − � + 1, . . . , L} at the right end of a chain with OBC,
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FIG. 10. Directional string order pumping for a quench to the
topological PT-symmetric phase with 
J = −0.5J , γ = 
γ =
0.2J , δ = 
 = 0, and � = 40. For PBC, the numerical data (black
line) crosses zero at multiples of both ts,+ (light green) and ts,− (dark
green), with blue shading indicating the sign of the dual string order
parameter. The analytical conjecture Eq. (162) agrees well with the
numerics (red line). For OBC, zero crossings occur at multiples of
ts,− or ts,+ depending on whether the subsystem is at the left (L�,
violet line) or the right end of the chain (R�, blue line). Additional
rescaling with e±2γ t of the data for L� and R� compensates for
exponential decay and growth, respectively, due to edge modes.

crosses zero at multiples of only ts,− and ts,+, respectively.
These observations confirm that string order pumping does
indeed occur at different rates through the left and right ends
of a subsystem. We note that a previous study of topologi-
cal entanglement spectrum crossings in the driven-dissipative
Kitaev chain has focused on subsystems of type L� and has,
therefore, not observed directional pumping [85].

As explained above, our expectation for the occurrence
of zero crossings of the dual string order parameter in the
topological PT-symmetric phase is based on the continuity
of topological properties throughout this phase. Indeed, for
the driven-dissipative SSH model, two soft modes ks,± of
the PTGGE given by Eq. (165) exist within the entire topo-
logical PT-symmetric phase. The corresponding frequencies
ωks,± are shown in Fig. 11. Upon increasing 
γ , one of the
soft mode frequencies, ωs,−, vanishes at the transition from
the PT-symmetric to the PT-mixed phase. In contrast, ωks,+
remains finite within the entire PT-mixed phase, and vanishes
at the boundaries separating the PT-mixed from the trivial
PT-symmetric and the PT-broken phases. This observation

FIG. 11. Directional string order pumping phase diagram of the
driven-dissipative SSH model determined by the soft-mode frequen-
cies (a) ωks,− and (b) ωks,+ . The phases determined by PT symmetry,
introduced in Fig. 2, are shown in the background.

FIG. 12. Directional string order pumping for quenches to the
PT-mixed phase with 
J = −5J , 
γ = γ = 1.1J , and � = 30, for
PBC (black line) and for OBC with subsystems located at the left
(L�, purple line) and the right edge of the chain (R�, blue line). The
blue shading indicates the sign of the dual string order parameter for
the subsystem R�. Zero crossings of the dual string order parameter
for PBC and the subsystem R� for OBC fit well to the soft mode
timescale ts,+. We include an additional exponential rescaling ect with
c = 51 to improve the presentation of the data.

suggests that zero crossings of the dual string order parameter
can also occur in the PT-mixed phase—an expectation that is
confirmed in Fig. 12. The numerical analysis of zero cross-
ings of the dual string order parameter for quenches to the
PT-mixed phase is more challenging than for the PT-
symmetric phase: In the PT-symmetric phase, through a
simple rescaling, the overall exponential decay of the covari-
ance matrix can be removed analytically before evaluating
the covariance matrix numerically [37]. In contrast, due to
the finite bandwidth of decay rates in the PT-mixed phase,
exponential decay cannot be fully accounted for beforehand,
leading at late times to extremely small numbers below the
numerical precision. The data shown in Fig. 12 is rescaled by
e(4�γs+c)t , where 2γs is the decay rate of the slowest-decaying
PT-breaking mode given in Eq. (145), and we have chosen
c = 51 to best present the numerical results. In agreement
with our expectations based on the values of ωks,± shown in
Fig. 11, the dual string order parameter for the subsystem L�

does not exhibit zero crossings, while for R� there are zero
crossings at multiples of ts,+. Note that the numerical data for
R� stops abruptly due to the occurrence of exponentially small
numbers in the calculation of the Pfaffian. For PBC we, further
observe a transition from a fast initial decay to a much slower
relaxation behavior, in analogy to but much smoother than the
transition at tF for the quenches to the PT-symmetric phase
shown in Fig. 8.

Our findings lead us to speculate that the non-Hermitian
topology of a suitably defined restriction of the matrix zk to its
PT-symmetric eigenmodes remains intact even upon crossing
the transition to the PT-mixed phase, and that a finite gap is
not essential for such a construction. In physical terms, our
results suggest to define directional pumping phases based
on the existence of soft modes. For the driven-dissipative
SSH model, as can be seen in Fig. 11, the phase boundaries
of directional pumping phases are also phase boundaries in
terms of the gap structure and PT symmetry. However, as we
discuss for the example of a driven-dissipative Kitaev chain
with long-range hopping and pairing in Sec. VIII below, this
does not have to be the case.
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3. Dynamical criticality

Having introduced the concept of directional pumping
phases, we may ask what kind of critical behavior occurs
at the transitions between these phases, and whether this
behavior is universal. Usually, dynamical critical phenomena
in driven-dissipative systems are associated with symmetry-
breaking second order phase transitions in the steady state
[24–32]. Then, critical behavior is induced by the closing of
the dissipative gap, given by the decay rate of the slowest-
decaying eigenmode of the Liouvillian, at the critical point. In
particular, the correlation length diverges as ξ ∼ |δg|−ν , where
δg = g − gc is the deviation of the parameter g from its critical
value gc, and the divergence of the relaxation timescale τ ∼
|δg|−νz, where z is the dynamical critical exponent, leads to the
phenomenon of critical slowing down. Contrary to that, direc-
tional pumping phase transitions mark a qualitative change in
the oscillatory dynamics of the dual string order parameter
and are not associated with any changes in the steady state.
Indeed, we consider here dynamics which, for δ = 
 = 0,
always lead to a steady state at infinite temperature with a
vanishing correlation length. Further, the rate of relaxation
to the steady state is finite for any value of γ > 0. Instead,
directional pumping phase transitions are characterized by
divergences of the soft-mode time scales ts,±, which deter-
mine the periodicity of zero crossings of the dual string order
parameter. The soft modes ks,± and the associated timescales
ts,± are genuinely dynamical quantities and depend on both
pre- and postquench parameters. However, as we discuss in
the following, the critical exponents that govern the power-
law behavior of ks,± and ts,± at the phase boundaries do not
depend on the specific choice of parameters. These exponents
are determined by an effective long-wavelength description,
which indicates that their values are indeed universal.

At the boundaries of the directional pumping phases,
the soft modes ks,± approach values ks,±,c. The frequencies
ωks,± = J2 | sin(ks,±)| vanish at the phase boundaries, imply-
ing that ks,±,c = 0,±π . In analogy to the correlation length
exponent ν and the dynamical exponent z, we define critical
exponents ν ′ and z′ through the scaling behavior

|ks,± − ks,±,c| ∼ |δg|ν ′
, ωks,± ∼ |δg|ν ′z′

, (167)

for δg = g − gc,± → 0, leading to a divergence of the soft-
mode timescales ts,± ∼ |δg|−ν ′z′

. For the SSH model, we
consider the parameters g = 
J and g = 
γ . Let us assume
that the values 
Jc,± and 
γc,± correspond to a particular
point on the phase boundary of ωks,± , where ks,± takes the
value ks,±,c. To obtain the behavior of ks,± and ωks,± in the
vicinity of this critical point, we set 
J = 
Jc,± + δ
J and

γ = 
γc,± + δ
γ in Eq. (164), and expand in k around
ks,±,c. We thus find

|ks,± − ks,±,c| ∼ ωks,± ∼ |δg|1/2 for δg → 0, (168)

for both g = 
J and g = 
γ . Therefore the timescales ts,±
exhibit a square-root divergence with critical exponents

ν ′ = 1/2, z′ = 1, (169)

irrespective of the direction from which the phase boundary is
approached in the 
J-
γ plane.

FIG. 13. Directional parity pumping phases determined by the
soft-mode frequencies (a) ωks,− and (b) ωks,+ for the driven-
dissipative Kitaev chain. The background colors indicate the phases
defined by PT symmetry, with PT-symmetric phases (blue, red),
PT-mixed phases (green, yellow) and a PT-broken phase (orange)
[37,85]. For better visual differentiation the saturation of background
colors in (b) has been increased.

B. Subsystem fermion parity

As mentioned above, the subsystem fermion parity serves
as a topological disorder parameter for the Kitaev chain. This
can be seen by noting that a combination of the Jordan-Wigner
[97] and Kramers-Wannier [105,106] transformations maps
the Kitaev chain to the transverse field Ising model such
that the trivial phase of the Kitaev chain corresponds to the
ferromagnetically ordered phase of the Ising model. Then,
order-parameter correlations of the Ising model over a dis-
tance � are equivalent to the fermion parity P� of a subsystem
of size � of the Kitaev chain [37], which is defined by

P� = eiπ
∑�

l=1 c†
l cl . (170)

For a Gaussian state, the expectation value 〈P�〉 = pf(��) is
given by the Pfaffian of the reduced covariance matrix ��

defined in Eq. (64) [101,102].

1. Topological zero crossings

In complete analogy to our the discussion for the SSH
model in Sec. VII A 2, the subsystem parity can be seen to
exhibit zero crossings for quenches of the isolated Kitaev
chain from the trivial to the topological phase. As shown in
Refs. [37], the connection between zero crossings and topol-
ogy remains valid throughout the entire PT-symmetric phase
of the driven-dissipative Kitaev chain. The periodicities ts,±
of these zero crossings are determined by the soft modes ks,±,
which, for μ0 → −∞, are given by the solutions to [37]

2J cos(k) + μ = sgn(sin(k))2γ , ωk = 2
|sin(k)|. (171)

We find

ks,± = ± sgn(μ) arccos (−(μ ∓ sgn(μ)2γ )\(2J )), (172)

and the corresponding frequencies ωks,± determine the direc-
tional pumping phases shown in Fig. 13. As in the case of
the SSH model, the frequency ωks,− , which describes parity
pumping through the right end of a subsystem, is nonzero
only within the topological PT-symmetric phase; in contrast,
the frequency ωks,+ , corresponding to parity pumping through
the left end of a subsystem, remains finite within the entire
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PT-mixed phase. The phase boundaries defined by directional
parity pumping coincide with those that are related to PT
symmetry. However, as we show in Sec. VIII A where we
consider a Kitaev chain with long-range hopping and pairing,
this does not have to be the case.

2. Dynamical criticality

The critical exponents ν ′ and z′, which describe the be-
havior of the soft modes ks,± and the frequencies ωks,± in
the vicinity of transitions between directional pumping phases
according to Eq. (167), take on the same values for the Kitaev
chain as for the SSH model. To obtain this result, we insert
μ = μc + δμ and γ = γc + δγ in Eq. (171) and expand in k
around ks,±,c = 0,±π . We obtain

ωks,± ∼ |ks,± − ks,±,c| ∼ |δg|1/2 for δg → 0, (173)

for both g = μ and g = γ , which leads to the values of ν ′
and z′ given in Eq. (169). As we show in the next section,
the values of these exponents can be modified in the presence
of long-range hopping and pairing.

VIII. DRIVEN-DISSIPATIVE KITAEV CHAIN WITH
LONG-RANGE HOPPING AND PAIRING

We have introduced the concept of directional pumping
phases to distinguish parameter regions with qualitatively dif-
ferent dynamics of string order and fermion parity. Transitions
between directional pumping phases are characterized by di-
vergent timescales ts,± for string order and parity pumping,
and there is evidence for universality of the exponents that
govern the critical behavior of ts,±: We have found the same
exponents given in Eq. (169) for two models that differ by the
presence of a weak U(1) symmetry but belong to the same
Altland-Zirnbauer class; and these exponents can be obtained
from an expansion in momenta around critical values ks,±,c,
which indicates that models with the same low-momentum or,
equivalently, long-wavelength description will have the same
exponents, while microscopic details that require the entire
Brillouin zone for their description are irrelevant. However,
in the examples we have considered so far, the boundaries
of directional pumping phases coincide with gap closings of
the Liouvillian single-particle spectrum in the complex plane,
suggesting that also directional pumping phase transitions are
a mere manifestation of gap closings, and that the exponents
that describe the critical behavior of ts,± are determined by
those that govern the divergences of oscillation periods of
low-order correlation functions [85]. To better understand the
relation between directional pumping phases and the more
elementary notion of dynamical phases defined in terms of
gap closings or PT symmetry, we now consider quench dy-
namics in a Kitaev chain with long-range hopping and pairing
[107–123]. Long-range couplings are known to modify crit-
ical properties at gap closings in isolated systems. As we
discuss in the following, for a Kitaev chain with Markovian
drive and dissipation, the presence of long-range couplings
can likewise lead to modifications of the critical exponents
that are associated with the pumping timescales ts,±, but
does not affect the exponents that govern the divergence of
the oscillation period of the density autocorrelation function.
Furthermore, even the boundaries of the directional pumping

phases of the driven-dissipative long-range Kitaev chain do
not always coincide with gap closings. These results indicate
that directional pumping phases and the associated critical
behavior are indeed new and independent concepts.

A. Long-range Kitaev chain

We consider a Kitaev chain with long-range hopping and
pairing as described by the Hamiltonian [121]

H =
L∑

l=1

�L/2�∑
r=1

(−Jrc†
l cl+r + 
rclcl+r + H.c.)

− μ

L∑
l=1

(
c†

l cl − 1

2

)
, (174)

where both the hopping matrix element Jr = J/(Nαrα ) and
the pairing amplitude 
r = 
/(Nαrα ) decay with distance as
a power law with exponent α > 1, and the Kac normaliza-
tion factors are defined as Nα =∑�L/2�

r=1 r−α [124]. As with
the short-range Kitaev chain, we assume that the coupling
to Markovian reservoirs is described by the jump operators
given in Eq. (61), where we focus on γl = γg in this section.
Consequently, the single-particle dispersion relation of the
Liouvillian takes the form given in Eq. (65), but with the
Hamiltonian dispersion relation εk given by

εk =
√

(2Jk + μ)2 + 4
2
k, (175)

where, in the thermodynamic limit L → ∞,

Jk = J

ζ (α)
Re(Liα (eik )), 
k = 


ζ (α)
Im(Liα (eik )). (176)

Explicit expressions for the polylogarithm Liα (z) and the Rie-
mann zeta function ζ (α) are provided in Appendix E.

B. Phase diagram of the long-range Kitaev chain

Long-range couplings do not affect the symmetry proper-
ties of the Kitaev chain; in particular, the driven-dissipative
long-range Kitaev chain is PT-symmetric. The phase diagram
of the long-range Kitaev chain, determined by the sponta-
neous breaking of PT symmetry, is shown in Figs. 14(a) and
14(c) for α = 3.3 and 1.5, respectively. In comparison to the
phase diagram of the short-range Kitaev chain [37,85], the key
qualitative differences are the absence (i) of mirror symmetry
with respect to axis μ = 0 and (ii) of a direct transition be-
tween the PT-symmetric and the PT-broken phase, and (iii)
a segment of the boundary of the topological PT-symmetric
phase being curved instead of described by straight lines.

To understand these modifications, let us first discuss how
the corresponding properties come about in the short-range
Kitaev chain: (i) The unitary transformation cl �→ (−1)l cl

maps the Hamiltonian H Eq. (60) and the chemical potential
μ to −H and −μ, respectively. Therefore gap closings that
determine phase boundaries occur symmetrically with respect
to μ = 0. This symmetry of the isolated Kitaev chain extends
to the driven-dissipative model. However, in the isolated long-
range Kitaev chain, the mapping cl �→ (−1)l cl does not result
in a simple sign change and, therefore, the phase diagram
does not have reflection symmetry with respect to μ = 0. The
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FIG. 14. Phase diagrams and dispersion relations of the long-
range Kitaev chain for (a), (b) α = 3.3 and (c), (d) α = 1.5. [(a) and
(c)] Colors indicate PT-symmetric (blue, red), PT-mixed (green, yel-
low) and PT-broken phases (orange, purple). [(b) and (d)] Dispersion
relations εk with a single minimum at k = 0 for μ = μb,<, two
degenerate minima at k = ±kb for μ = μm, and a single minimum
at k = π for μ = μb,>. The bifurcation points μb,≶ are shown in
(a), (c) as red lines. For α = 1.5, the first bifurcation occurs at
μb,< = μc,< = −2J .

critical values μc,≶ of the chemical potential that separate the
topological phase from the trivial phase are given by

μc,< = −2J0 = −2J, μc,> = −2Jπ = 2Jη(α)/ζ (α).
(177)

We note that also the midpoint between μc,< and μc,>, given
by μm = −(Jπ + J0), does not describe a mirror symmetry
of the phasediagram, but will prove to be convenient in the
characterization of the long-range Kitaev chain.

(ii) At μ = 0, the dispersion relation of the short-range
Kitaev chain is flat, εk = 2

√
J2 + 
2. Therefore, upon in-

creasing γ , the Liouvillian dispersion relation Eq. (65)
becomes imaginary simultaneously for all k ∈ BZ, leading to
a direct transition from the PT-symmetric to the PT-broken
phase. In contrast, for 1 < α < ∞, the dispersion relation
Eq. (175) of the long-range Kitaev chain is never flat. The
resulting absence of a direct transition between the PT-
symmetric and PT-broken phase is clearly visible in Fig. 14.

(iii) Spontaneous breaking of PT symmetry, which de-
termines the boundary of the PT-symmetric phase, occurs
when ωk Eq. (65) where γ = γl = γg with εk given in
Eq. (175) becomes imaginary for some k. This happens when
mink∈BZ(εk ) = 2γ . For the short-range Kitaev chain, the dis-
persion relation εk takes its minimum value at kmin = 0 when
μ < 0, and at kmin = π when μ > 0; the jump of kmin from 0
to π occurs at μ = 0 where the dispersion is flat. In contrast,
in the long-range Kitaev chain with 1 < α < ∞, there are
two bifurcation points of the minimum of εk at μb,≶: There

FIG. 15. Numerical evaluation of the left and right bifurcation
points μb,< (blue, dashed) and μb,> (orange, dashed), respectively,
together with the analytical predictions in Eqs. (179) and (181) (blue,
solid) and (178) (orange, solid).

is a single minimum at k = 0 for μ < μb,<; then, in the
range μb,< < μ < μb,>, there are two degenerate minima at
momenta ±kb with kb increasing monotonically from 0 to π

for μ increasing from μb,< to μb,>; finally, for μb,> < μ,
there is again a single minimum at k = π . This is illustrated
for α = 3.3 and α = 1.5 in Figs. 14(b) and 14(d), respec-
tively. To determine the precise shape of the phase boundary,
we note that 
k defined in Eq. (176) vanishes at k = 0, π .
Therefore, for μ < μb,< and μb,> < μ, the boundary of the
PT-symmetric phase is determined by ε0 = |2J0 + μ| = 2γ

and επ = |2Jπ + μ| = 2γ , respectively. These conditions de-
scribe straight lines and are symmetric with respect to μm

defined above. But for μb,< < μ < μb,>, PT symmetry break-
ing occurs for εkb = 2γ , yielding a smaller critical value of γ

as compared to an extension of the straight boundaries over
the entire range of values of μ.

The momenta ±kb at which the dispersion relation takes
on its minimum value for μb,< < μ < μb,> can only be
found numerically. However, the bifurcation points μb,≶ can
be found analytically by using the series expansions of the
polylogarithm given in Appendix E: To determine the right
bifurcation point μb,>, we employ the expansion of εk around
k = π given by εk ∼ επ + (k − π )2/(2mπ ), and solve the
equation 1/mπ = 0 for μ. Using Eq. (E4), for 1 < α < ∞,
we find

μb,> = −2[Jπ + (
′
π )2/J ′′

π ], (178)

where primes denote derivatives with respect to k. The left
bifurcation point μb,< is determined by εk ∼ ε0 + k2/(2m0)
and 1/m0 = 0, which holds for 3 < α < ∞, where the term
∼kα−1 in Eq. (E2) can be neglected. We obtain

μb,< = −2[J0 + (
′
0)2/J ′′

0 ] for 3 < α < ∞. (179)

For 1 < α < 3, using the same idea as above but keeping only
the relevant terms in the expansion in Eq. (E2), we are led to

(
′
k )2

J ′′
k

∝ (kα−2 + c1)2

kα−3 + c2

k→0−−→ 0, (180)

where c1, c2 ∈ R are constants. Therefore

μb,< = −2J0 for 1 < α < 3. (181)

In Fig. 15, our analytical expressions for the bifurcation points
are shown to agree with numerical solutions.
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FIG. 16. Relaxation of the subsystem parity after quenches in
the driven-dissipative Kitaev chain with long-range couplings. Both
quenches are to the topological phase, where the blue line corre-
sponds to α = 2.5, μ = −J , γ = 0.3J , and � = 20, and the orange
line to α = 1.5, μ = −0.5J , γ = 0.15J , and � = 80. Dashed and
solid lines show numerical data and the analytical conjecture in
Eq. (162), respectively. For smaller values of α corresponding to
longer-range couplings, finite-size effects are more strongly pro-
nounced and larger system sizes are required. The purple vertical
line indicates the characteristic relaxation timescale tF and the red
horizontal lines show the PTGGE predictions.

C. Subsystem fermion parity

The time evolution of the subsystem parity after quenches
to the topological PT-symmetric phase for α = 2.5 and 1.5
is shown in Fig. 16. In comparison to the short-range Kitaev
chain with Markovian drive and dissipation, there are more
pronounced oscillations after t = tF . However, the stationary
values of the rescaled subsystem parity are still well described
by the PTGGE.

1. Topological zero crossings

The timescale of topological zero crossings of the subsys-
tem parity is determined by soft modes of the PTGGE. In the
presence of long-range couplings, the conditions Eq. (171),
which determine the soft modes and associated frequency
scales for the short-range Kitaev chain, are generalized to

2Jk + μ = sgn(
k )2γ , ωk = 2|
k|. (182)

To solve these equations, we use the following properties
of the function Jk and 
k defined in Eq. (176), which hold
for 1 < α < ∞: (i) Jk = J−k and 
k = −
−k are even and
odd, respectively. (ii) Jk is monotonic for k ∈ [0, π ], and can
thus be inverted on that interval. We denote the inverse by
k = Jinv(Jk ). (ii) 
k � 0 is nonnegative for k ∈ [0, π ]. The
solutions to Eq. (182) read

ks,± = ± sgn(μ − μs)Jinv(−(μ ∓ sgn(μ − μs)2γ )/(2J )),
(183)

where we have introduced a value μs of the chemical poten-
tial that depends on γ and at which the designation of the
solutions of Eq. (182) as ks,± is reversed. As in the case of
the Kitaev chain with short-range couplings, we have chosen
ks,− and ks,+ to describe the pumping of parity through the
right and left ends of a subsystem, respectively. The value
of μs can be found numerically be requiring the frequencies
ωks,± to be continuous functions of μ and γ . As illustrated in
Fig. 17 for the long-range Kitaev chain with α = 2.5, the soft

FIG. 17. Directional pumping of subsystem parity for a quench
to the topological PT-symmetric phase with α = 2.5, μ = −0.5J ,
γ = 0.3J , δ = 0, and � = 20. For PBC, the subsystem parity (black
line) crosses zero at multiples of both ts,+ (light green) and ts,−
(dark green), with blue shading indicating the sign of the subsystem
parity. In contrast, for OBC, zero crossings occur at multiples of
ts,− or ts,+ for a subsystem located at the left (L�, violet line) and
right end of the chain (R�, blue line). Factors e±2γ t compensate for
additional exponential decay and growth due to edge modes. The
analytical conjecture Eq. (162) agrees well with the numerics also for
the long-range model after stronger initial discrepancies (red line).

mode periods ts,± = π/ωks,± agree with the zero crossings of
the subsystem parity, both for PBC and OBC.

A unique property of the long-range model is the existence
of a finite region in the μ-γ plane which lies outside of the
PT-symmetric phase but in which the PTGGE has two soft
modes as shown in Figs. 18(a) and 18(b) for α = 2.5 and

FIG. 18. Directional parity pumping phase diagrams of the long-
range Kitaev chain determined by the soft-mode frequencies ωks,±
for [(a) and (b)] α = 2.5 and [(c) and (d)] 1.5. Background colors
indicate phases defined by PT symmetry as in Fig. 14. The boundary
of the PT-symmetric topological phase is shown as a black line.
Red and green lines indicate phase boundaries at which the critical
exponents are and are not modified, respectively, in comparison to
the short-range Kitaev chain.
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Figs. 18(c) and 18(d) for α = 1.5, where the boundary of the
PT-symmetric phase is indicated by a black line. This finding
demonstrates that directional pumping phases are in fact not
bound to dynamical phases determined by the gap structure of
the matrix zk or PT symmetry. Moreover, this finding rules out
a relation between topological zero crossings and exceptional
points, which are present in the spectrum of the matrix zk

in the gapless PT-mixed phase at the crossing of the bands
λ±,k . For the SSH model, the band crossing is illustrated in
Fig. 2(c).

To understand the origin of the difference in phase bound-
aries, note that solutions to Eq. (182) exist for values of μ and
γ between the extrema of Jk at k = 0, π where J0 = J and
Jπ = −Jη(α)/ζ (α), leading to the conditions |2J0 + μ| = 2γ

and |2Jπ + μ| = 2γ that determine the boundaries of direc-
tional pumping phases. In particular, ωks,− is nonzero for
μc,< < μ < μc,> and γ < 2(J0 − Jπ − |μ − μm|). The PT-
symmetric phase is delimited by a smaller critical value of γ

for μb,< < μ < μb,>. Outside of that range, the phase bound-
aries coincide.

2. Dynamical criticality

The product ν ′z′ of critical exponents describes how the
soft-mode time scales ts,± diverge at the boundaries of di-
rectional pumping phases. For the long-range Kitaev chain,
this divergence is the same as in the short-range Kitaev chain
for the phase boundaries that are shown as green lines in
Fig. 18; but for the phase boundaries that are shown as red
lines, long-range hopping and pairing lead to modified critical
behavior. To derive the corresponding exponents, we note
that according to Eq. (182), at directional pumping phase
boundaries, |
ks,±| = ωks,±/2 vanishes, which is the case for
ks,±,c = 0,±π . We can then determine the scaling behavior
of ks,± as in the short-range Kitaev chain by inserting μ =
μc + δμ and γ = γc + δγ in Eq. (182) and expanding in k
around ks,±,c = 0,±π . Modified scaling behavior of ks,± as
compared to the short-range model occurs if the expansions of
Jk and 
k are modified as compared to J cos(k) and 
 sin(k),
respectively. This is the case for the expansions around k = 0:
Depending on the value of α, different exponents dominate in
Eq. (E2), leading to

Jk − J0 ∼
{

k2 for 3 < α

kα−1 for 1 < α < 3
(184)

and


k ∼
{

k for 2 < α

kα−1 for 1 < α < 2
. (185)

For the phase boundaries with modified scaling behavior,
which are indicated by red lines in Fig. 18, we thus find

ν ′ = 1/2, z′ = 1 for 3 < α,

ν ′ = 1/(α − 1), z′ = 1 for 2 < α < 3,

ν ′ = 1/(α − 1), z′ = (α − 1) for 1 < α < 2. (186)

Otherwise, when ks,±,c = ±π which is the case for the phase
boundaries that are shown as green lines, the leading powers
in the expansions of Jk and 
k and, therefore, the critical

FIG. 19. Scaling behavior of the first crossing time t1 for the
subsystem parity in the long-range Kitaev chain. The connected
dots show numerical results for α = 4.9 (blue), 2.5 (green) and 1.9
(orange), and the expected scaling behavior according to Eq. (186) is
indicated by solid lines, with scaling exponents given in the left lower
corner of each panel. We consider quenches to (a) the PT-symmetric
(PTS) phase with μ = μc,< + δμ and γ = 0, and (b) the PT-mixed
(PTM) phase with μ = μc,< and γ = δγ , for a chain with OBC and
subsystems located at (a) the left (L� with � = L/2 = 500) and (b) the
right end of the chain (R� with � = L/2 = 300).

exponents ν ′ and z′ are the same as in the short-range Kitaev
chain and the SSH model and given in Eq. (169).

An efficient way to probe the modified exponents numer-
ically is to perform quenches for a range of values of μ

and γ close to a phase boundary and measure the time t1 at
which the first zero crossing of the subsystem fermion parity
occurs. In Fig. 19(a), we set μ = μc,< + δμ and γ = 0, and
we consider the fermion parity of the left half of the system
LL/2 = {1, . . . , L/2} in a chain with OBC and for different
values of α. By decreasing the value of δμ, we expect to
observe a scaling behavior t1 ∼ δ−ν ′z′

μ with exponents given
in Eq. (186). Indeed, we find good agreement between the
predicted exponents and the numerical data for α > 2. For
α < 2, due to the limited system sizes in our simulations, we
cannot fully reach the scaling regime, we still observe a clear
tendency toward the analytically predicted scaling behavior.
In Fig. 19(b), we present an analogous analysis for quenches
to the PT-mixed phase, where we set μ = μc,< and γ = δγ .
Here, pumping of fermion parity occurs only through the left
end of a subsystem and, therefore, we consider a subsystem
RL/2 = {L/2 + 1, . . . , L} corresponding to the right half of
the chain. Even though numerics in the PT-mixed phase are
restricted to smaller system sizes, we again find compelling
agreement with the analytical exponents for α > 2, and a clear
trend toward the analytical prediction for α < 2.

D. Connected density autocorrelation function

For each momentum mode k, the Liouvillian single-
particle eigenvalues λ±,k = −i2γ ± ωk are formally identical
to the eigenfrequencies of a damped harmonic oscillator
with undamped natural frequency εk and damping rate 2γ .
When the damping rate is increased, the mode k undergoes a
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transition from under- to overdamped oscillations—or, equiv-
alently, from PT-symmetric to PT-breaking—when εk = 2γ

in Eq. (65). It is interesting to compare how different ob-
servables are affected by this overdamping transition. The
oscillation frequencies of the topological disorder parameters
of the SSH model and the Kitaev chain are determined by
the soft modes ks,±, and directional pumping transitions occur
when either of these modes becomes overdamped. According
to our definition of these modes, ks,− is the first to become
overdamped, as shown in the phase diagrams in Figs. 11,
13, 18. But even when ks,− is overdamped while ks,+ is not,
for a system with PBC or a subsystem that is not on the
left end of a system with OBC, the topological disorder pa-
rameters exhibit underdamped oscillatory decay as illustrated
in Fig. 12. To observe this behavior, it seems to be crucial
that the disorder parameters act nontrivially on sufficiently
large subsystems of size �. Indeed, underdamped oscillatory
decay persist until leveling, caused by the finiteness of �,
sets in. As an important example of a local observable with
support on only a small number of lattice sites, we consider
the density autocorrelation function in the steady state of the
driven-dissipative long-range Kitaev chain. As we show in
the following, upon increasing the strength of dissipation γ ,
the decay of the density autocorrelation function becomes
overdamped as soon as the first momentum mode becomes
overdamped, i.e., at the transition from the PT-symmetric to
the PT-broken phase. Concomitantly, one of the base oscilla-
tion periods of the density autocorrelation function diverges.
However, the exponent that governs this divergence is fully
determined by PT symmetry, and its value is not modified by
long-range couplings.

The density autocorrelation function is defined as

Al (t ) = −4〈(nl (t ) − 1/2)(nl (0) − 1/2)〉SS, (187)

where nl = c†
l cl and the normalization is chosen to obtain a

simple expression in terms of Majorana fermions. We evaluate
the density autocorrelation function in the steady state, which
for γl = γg is at infinite temperature. In Appendix F, we derive
and solve the equation of motion for the density autocorrela-
tion function. The solution can be expressed in terms of sums
over contributions from momentum modes, each containing
a factor e−iλ±,kt . This form immediately implies overdamped
late-time decay in PT-mixed and PT-broken phases. In these
phases, the dominant contribution stems from the mode with
the smallest decay rate, given by γs in Eq. (145). But this mode
is nonoscillatory. In contrast, in the PT-symmetric phase,
the density autocorrelation function shows oscillatory decay.
As detailed in Appendix F, in the thermodynamic limit, the
rescaled density autocorrelation function e4γ t Al (t ) can be
written as a sum of squares of integrals of the form

I = 1

π
Im

(∫ π

0
dk fk

eiωkt

ωk

)
, (188)

where fk = 2Jk + μ or fk = 1. We obtain the asymptotic be-
havior of the density autocorrelation function for t → ∞ by
evaluating these integrals in a stationary phase approximation
[89]. To apply this method, we need to identify the sta-
tionary points k0 determined by ω′

k|k=k0 = ε′
k|k=k0 = 0, where

primes denote derivatives with respect to k. According to our

discussion of the dispersion relation in Sec. VIII B, the sta-
tionary points in the interval 0 � k0 � π are given by k0 ∈
{0, kb, π}. The asymptotic behavior of the integral in Eq. (188)
is determined by momenta close to the stationary points, and
we obtain

I ∼ 1√
2πt

(Is(0) + 2Is(kb) + Is(π )), (189)

where the terms Is(k0) oscillate at the frequencies ωk0 ,

Is(k0) ∼ fk0 sin
(
ωk0t + sgn

(
ω′′

k0

)
π/4

)
ωk0

∣∣ω′′
k0

∣∣1/2 . (190)

For α < 3, the second derivative ω′′
k is undefined at k0 = 0,

and the corresponding contribution to I has to be dropped.
We omit the lengthy explicit asymptotic expression for Al (t ).
But the asymptotic result for I already shows that the density
autocorrelation function exhibits oscillatory decay with the
base frequencies ω0, ωkb , and ωπ .

As discussed in Sec. VIII B, the minimum of εk is at 0,
kb, and π , for μ < μb,<, μb,< < μ < μb,>, and μb,> < μ,
respectively. Therefore, upon increasing γ , gap closings with
ωk0 → 0, which mark the transition to the PT-mixed phase,
occur at these momenta, similarly to ωks,± going to zero at
directional pumping phase transitions. However, while the
exponents that describe the critical behavior of ωks,± are mod-
ified in the presence of long-range couplings as described by
Eq. (186) and illustrated in Fig. 19, the base frequencies of
the density autocorrelation function always vanish as a square
root of the deviation δγ = γ − γc of the dissipation rate γ

from the critical value for the transition to the PT-mixed phase,
ωk0 ∼ |δγ |1/2.

The value of 1/2 of the exponent is, in fact, determined
by PT symmetry. For the Kitaev chain, the PT symmetry
condition takes the same form as given in Eq. (25) for the
SSH model, but for the matrix x′

k = xk · σ corresponding to
the traceless part of the matrix xk defined in Appendix F,
and given explicitly by xk = (2
k,−2Jk − μ,−i2γ ) [37].
Without resorting to the explicit form of xk for the Kitaev
chain, PTS implies that xx,k, xy,k ∈ R whereas xz,k ∈ iR, such

that ωk =
√

x2
x,k + x2

y,k − (ixz,k )2 . At the transition to the PT-
mixed phase, the difference under the square root vanishes
for a particular momentum k0. For the example of the Ki-
taev chain, ixz,k = 2γ , and a gap closing occurs at γ = γc,
where x2

x,k0
+ x2

y,k0
− 4γ 2

c = 0. If we now set γ = γc + δγ and
approach the gap closing by taking the limit δγ → 0, we find

ωk0 =
√

x2
x,k0

+ x2
y,k0

− 4(γc + δγ )2 ∼ |δγ |1/2, (191)

in agreement with the analysis of response functions in
Ref. [85]. We stress that this result follows directly from the
reality conditions imposed upon xx,k , xy,k , and ixz,k by PT
symmetry, and holds also for more general forms of xz,k .

Finally, we note that for an isolated system with xz,k = 0
such that ωk =

√
x2

x,k + x2
y,k , gap closings require that xx,k0 =

xy,k0 = 0. Considering again the Kitaev chain with xx,k = 2
k

and xy,k = −2Jk − μ, gap closings occur at k0 = 0, π where
xx,k0 = 2
k0 = 0. Then, with μ = μc,≶ + δμ, we obtain ωk0 ∼
|δμ|. In contrast, the soft-mode frequencies vanish for γ = 0
as ωks,± ∼ |δμ|1/2, which provides further evidence for the
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independence of dynamical criticality at the boundaries of
directional pumping phases.

IX. CONCLUSIONS AND OUTLOOK

Through the study of quantum quenches in driven-
dissipative many-body systems, our work determines PT
symmetry as the principal driver of local relaxation to a PT-
symmetric generalized Gibbs ensemble for two fundamental
classes of quadratic fermionic models. In this way, we sub-
stantially extend the field of quantum quenches and relaxation
of many-body systems by establishing local equilibration also
for open systems with finite coupling to external reservoirs.

We have presented the theoretical framework of the
PTGGE for driven-dissipative versions of the SSH model
and the Kitaev chain, which can be regarded as natural
open-system generalizations of paradigmatic examples of
one-dimensional topological insulators and superconductors.
These models differ by the presence of a weak U(1) symmetry
[69], which leads to the vanishing of anomalous correlations
in the open SSH model, even though the coupling to reservoirs
breaks particle number conservation. Our analysis shows that
PT symmetry of the quadratic Liouvillian is the fundamental
property leading to coherent local relaxation in the presence
of temporally uniform and spatially global exponential decay.

After rescaling observables to compensate this exponen-
tial decay, key features of the quench dynamics of isolated
systems are revealed to persist in the PT-symmetric phase.
This includes the light cone spreading of correlations and the
linear-growth and volume-law saturation of the contribution to
the subsystem entropy due to the propagation of pairs of en-
tangled quasiparticles—however, with modified quasiparticle
dynamics and statistics. Based on a dissipative quasiparticle
picture [38–40], we have proposed an analytical conjecture
for the time evolution of the quasiparticle-pair contribution to
the subsystem entropy in the space-time scaling limit, which
is in excellent agreement with our numerical results.

Furthermore, we have provided a detailed analysis of the
dynamics of topological disorder parameters—the dual string
order parameter and the subsystem fermion parity for the
SSH model and the Kitaev chain, respectively. In the isolated
versions of these models, the topological disorder parameters
show oscillatory decay for quenches from the trivial to the
topological phase. This pumping phenomenon becomes direc-
tional in driven-dissipative systems, i.e., the pumping of string
order and fermion parity happens at different rates through
the left and right ends of a subsystem. The pumping rates
are determined by soft modes of the PTGGE, and based on
this insight, we have formulated analytical conjectures for the
time evolution of the topological disorder parameters, which
we have found to match numerical simulations very well.
Interestingly, there are parameter regimes in which there is
pumping through only one end of a subsystem. This has led us
to introduce the notion of directional pumping phases. As we
have demonstrated using the example of a Kitaev chain with
long-range hopping and pairing, directional pumping phases
do, in general, not coincide with the phases determined by the
breaking of PT symmetry. Moreover, we have identified a dis-
tinct form of dynamical criticality at the transitions between
directional pumping phases, and we have shown that the

critical exponents that govern the divergences of pump-
ing rates are modified when the effective long-wavelength
description is modified due to the presence of long-range
couplings.

Our work opens up interesting prospects for future re-
search. An important next step is to establish the generality
of our results, in particular, of relaxation to the PTGGE.
Our reasoning leading to the PTGGE applies to all fermionic
many-body systems described by a quadratic Liouvillian with
a fully PT-symmetric phase, and can be extended straightfor-
wardly to more general quench protocols, such as for systems
prepared in excited or mixed states; and we have presented
first results for generalizations of the PTGGE to quadratic
bosonic systems and to noninteracting fermionic systems with
quadratic Hermitian jump operators in Ref. [37]. However, it
remains to be seen whether relaxation to a suitably defined
PTGGE occurs more generally in PT-symmetric integrable
driven-dissipative systems [53,63,125–136].

Furthermore, a possible topological origin of the zero
crossings of the topological disorder parameters that occur
after quenches to the gapless PT-mixed phase warrants further
investigation. In Ref. [85], zero crossings of the subsystem
parity were studied in a Kitaev chain with OBC and for a
subsystems given by the left half of the chain. Then, crossings
occur only within the gapped fully PT-symmetric phase, and
have been attributed to the nontrivial non-Hermitian topology
of the postquench Liouvillian. Our finding, that zero crossings
occur for a subsystem at the right end of a chain with OBC and
or in a chain with PBC also within the PT-mixed phase, raises
the question whether the dynamical entanglement-spectrum
bulk-boundary correspondence [4,104,137] can be extended
to such phases and how it can be refined to distinguish be-
tween left and right entanglement cuts.

In addition to topological disorder parameter pumping
or, equivalently, entanglement spectrum crossings, nonana-
lyticities of the Loschmidt echo, which have been dubbed
dynamical quantum phase transitions [8,138,139], have also
been proposed as a dynamical signature of topology [6]. In-
deed, for the isolated Kitaev chain, the soft-mode period ts
coincides with the period of singularities of the Loschmidt
echo. It will be interesting to see whether a suitable gener-
alization of the Loschmidt echo to open systems [140–142]
can capture the existence of two distinct soft-mode periods
ts,+ �= ts,− in the driven-dissipative Kitaev chain.
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APPENDIX A: TIME EVOLUTION
OF THE COVARIANCE MATRIX

In this Appendix, we derive and solve the equation of mo-
tion of the covariance matrix for time evolution generated by
a quadratic Liouvillian. We consider models with and without
a weak U(1) symmetry, such that the state of the system
is described by a covariance matrix of the form given in
Eq. (6) for complex Dirac fermions and Eq. (64) for Majorana
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fermions, respectively. Representative examples are provided
by the driven-dissipative SSH model and the Kitaev chain
considered in the main text. In both cases, the covariance
matrix takes the general form

〈O(t )〉 = tr (Oρ(t )) = tr(Oe−iLtρ0) = tr(eiL†t (O)ρ0), (A1)

where O is quadratic in fermionic operators, and Her-
mitian conjugation of the Liouvillian L is defined with
respect to the Hilbert-Schmidt inner product of operators,
〈A, B〉HS = tr(A†B). That is, the defining relation for L† reads
〈A,LB〉HS = 〈L†A, B〉HS. As stated in Eq. (90), we find L† =
H − iD†, where we have used that H = H†; the adjoint
dissipator D† is given in Eq. (91). By taking the derivative
of Eq. (A1) with respect to time,

d

dt
〈O(t )〉 = i tr(eiL†t (L†(O))ρ0) = i〈(L†O)(t )〉, (A2)

we see that in order to obtain the evolution equations for the
covariance matrices in Eqs. (6) and (64), we have to identify
the relevant operator O and apply L† to this operator.

1. Complex Dirac fermions

We first consider a quadratic particle-number conserving
Hamiltonian, defined in terms of 2L complex fermionic anni-
hilation and creation operators cl and c†

l , respectively,

H =
2L∑

l,l ′=1

c†
l Hl,l ′cl ′ . (A3)

The Hamiltonian of the SSH model in Eq. (4) is obtained
as a special case of this general form. Further, we consider
linear jump operators that describe particle loss and gain as in
Eq. (11), with bath matrices given in Eq. (12).

a. Equation of motion of the covariance matrix

To derive the equation of motion of the covariance matrix,
it is convenient to consider the single-particle density matrix
defined by (note the order of indices in the definition of Ql,l ′ )

Cl,l ′ (t ) = 〈Ql,l ′ (t )〉, Ql,l ′ = c†
l ′cl , (A4)

as an auxiliary quantity, which is related to the covariance
matrix by

G = 1 − 2C. (A5)

According to the discussion above, we can obtain the equation
of motion of the single-particle density matrix by applying L†

to Ql,l ′ . To that end, it is convenient to introduce the notation

Ql,l ′ = c†
l ′cl =

2L∑
m,m′=1

c†
mPl ′,l

m,m′cm′ , Pl ′,l
m,m′ = δm,l ′δm′,l . (A6)

The action of the HamiltonianH is then given by

HQl,l ′ = [H, Ql,l ′ ] =
2L∑

m,m′=1

[H, Pl ′,l ]m,m′Qm′,m, (A7)

and the contribution from the adjoint dissipator D† for arbi-
trary loss and gain coefficients reads

D†Ql,l ′ = −
2L∑

m,m′=1

{Ml + Mg, Pl ′,l}m,m′Qm′,m + 2Mg,l,l ′ .

(A8)

Combining Eqs. (A7) and (A8), we obtain

L†Ql,l ′ = −
2L∑

m,m′=1

(Pl ′,lZ − Z†Pl ′,l )m,m′Qm′,m − i2Mg,l,l ′ ,

(A9)

where the matrix Z is defined in Eq. (14), and we have used
that the bath matrices defined in Eq. (12) are Hermitian. By
inserting Eq. (A9) in Eq. (A2), and using relations such as

2L∑
m,m′=1

(Pl ′,lZ )m,m′ tr(Qm′,mρ) = tr(Pl ′,lZC) = (ZC)l,l ′ ,

(A10)

where the trace on the left-hand side and after the first equality
applies to operators and matrices, respectively, we obtain

dC

dt
= −i(ZC − CZ†) + 2Mg, (A11)

which immediately leads to the equation of motion of the
covariance matrix given in Eq. (13).

b. Formal solution of the equation of motion

To find the solution of Eq. (13), we employ the following
ansatz [143]:

G(t ) = Q(t )G0Q(t )† − iP(t )Q(t )†, (A12)

where initial conditions are given by G0 = G(0), Q(0) = 1
and P(0) = 0. This ansatz satisfies Eq. (13) if

dQ

dt
= −iZQ,

dP

dt
= −iZP + i2(Ml − Mg)Q−†. (A13)

The solutions to these equations read Q(t ) = e−iZt and

P(t ) = i2Q(t )
∫ t

0
dt ′ Q(t ′)−1(Ml − Mg)Q(t ′)−†. (A14)

To perform the integration over time, we express the matrix Z
as Z = V �V −1, where � is a diagonal matrix with entries λl .
For the last term in Eq. (A12), R(t ) = −iP(t )Q(t )†, we find

Rl,l ′ (t ) = −i2V [(V −1(Ml − Mg)V −†) ◦ K (t )]V †, (A15)

where

Kl,l ′ (t ) = 1 − e−i(λl −λ∗
l′ )t

λl − λ∗
l ′

, (A16)

and where A ◦ B denotes the Hadamard product, i.e.,
the element-wise product given by (A ◦ B)l,l ′ = Al,l ′Bl,l ′ .
The above form of R(t ) is particularly convenient to evaluate
the covariance matrix numerically.
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2. Majorana fermions

Next, we consider a quadratic Hamiltonian for 2L
Majorana fermions,

H = i

4

2L∑
l,l ′=1

wlAl,l ′wl ′ , (A17)

where without loss of generality we assume that A is antisym-
metric, A = −Aᵀ. The representation of the Hamiltonian of
the Kitaev chain Eq. (60) in this form is provided in Ref. [37].
We further consider linear jump operators and define the bath
matrix M through

Ll =
2L∑

l,l ′=1

Bl,l ′wl ′ , M = BᵀB∗, (A18)

which includes Eq. (61) as a special case.

a. Equation of motion of the covariance matrix

In analogy to Eq. (A4), we define a single-particle density
matrix for Majorana fermions,

�l,l ′ (t ) = i〈Wl,l ′ (t )〉, Wl,l ′ = wlwl ′ , (A19)

such that the covariance matrix in Eq. (64) is given by � =
� − i1. To calculate the action of L† on Wl,l ′ and thus obtain
the equation of motion of the single-particle density matrix,
we write Wl,l ′ as

Wl,l ′ = wlwl ′ =
2L∑

m,m′=1

wmPl,l ′
m,m′wm′ , Pl,l ′

m,m′ = δm,lδm′,l ′ .

(A20)

The Hamiltonian contribution to L†Wl,l ′ is given by

HWl,l ′ = [H,Wl,l ′ ] = i
2L∑

m,m′=1

[A, Pl ′,l ]m,m′Wm′,m. (A21)

Next, we calculate the action of the dissipator on Wl,l ′ :

D†Wl,l ′ = −4
2L∑

m,m′=1

{MR, Pl ′,l}m,m′Wm′,m + 8Mᵀl,l ′ , (A22)

where we have used that the real part MR = Re(M ) and the
imaginary part MI = Im(M ) of the bath matrix are symmetric
and antisymmetric, respectively. Combining Eqs. (A21) and
(A22) we obtain

L†Wl,l ′ = i
2L∑

m,m′=1

(XᵀPl ′,l + Pl ′,lX )m,m′Wm′,m − i8Mᵀl,l ′ ,

(A23)

where

X = −A + 4MR. (A24)

We obtain the equation of motion for the single-particle den-
sity matrix by inserting Eq. (A23) in Eq. (A2), which then
leads to the equation of motion for the covariance matrix,

d�

dt
= −X� − �Xᵀ − Y, (A25)

where Y = −8MI .

b. Formal solution of the equation of motion

For the sake of completeness, we note that the formal
solution of Eq. (A25) reads

�(t ) = e−Xt�(0)e−Xᵀt −
∫ t

0
dt ′ e−X (t−t ′ )Ye−Xᵀ(t−t ′ ). (A26)

The integral over time can be performed as detailed in
Ref. [37].

APPENDIX B: BIORTHOGONAL REPRESENTATION
OF QUADRATIC OPERATOR EVOLUTION

In this Appendix, we discuss how the biorthogonal eigen-
vectors of the matrix Z defined in Eq. (14) contribute to the
expectation value 〈O(t )〉. For concreteness, let us consider
an observable that is quadratic in fermionic operators, O =∑

l,l ′ c†
l Ol,l ′cl ′ , such that by using Eqs. (A4) and (A5) the

expectation value can be expressed in terms of the covariance
matrix as

〈O(t )〉 = 1

2

∑
l,l ′

Ol,l ′ (δl,l ′ − Gl ′,l (t )). (B1)

Further, we focus on balanced loss and gain rates, such that
Ml − Mg = 0 in the evolution equation (13). Then, the solu-
tion to the evolution equation that satisfies the initial condition
G(0) = G0 reads

G(t ) = e−iZt G0eiZ†t =
2L∑

l,l ′=1

e−i(λl −λ∗
l′ )t vR,l (v

†
L,lG0vL,l ′ )v

†
R,l ′ ,

(B2)

where we have employed the spectral decomposition Z =∑2L
l=1 λlvR,l v

†
L,l . Here, vL,l and vR,l are left and right eigen-

vectors of Z , respectively, corresponding to the eigenvalues
λl . The left and right eigenvectors obey the biorthogonality
condition v†

L,lvR,l ′ = δl,l ′ . We can thus write the evolution of
the expectation value of the observable O as

〈O(t )〉 = tr (O)

2
− 1

2

2L∑
l,l ′=1

e−i(λl −λ∗
l′ )t (v†

L,lG0vL,l ′ )(v
†
R,l ′OvR,l ).

(B3)

Therefore the evolution of a quadratic operator can be ex-
pressed in terms of matrix elements of the initial covariance
matrix G0 and the observable O between left and right eigen-
vectors of Z , respectively. For Gaussian states, expectation
values of observables that involve products of more than
two fermionic fields can be reduced to expectation values of
quadratic operators by employing Wick’s theorem.

APPENDIX C: DIAGONALIZATION OF zk

The non-Hermitian Bloch Hamiltonian of the driven-
dissipative SSH model, zk = z11 + zk · σ defined in Eq. (20),
can be diagonalized in the PT-symmetric phase by applying
two consecutive rotations by a real and an imaginary angle,
respectively, as described by the nonunitary matrix

Uk = Uz,−φkUy,−iθk+π/2 = e−i(φk/2)σz e[(θk−iπ/2)/2]σy , (C1)
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where the angles φk and θk are defined by the relations

εkeiφk = J1 + J2 cos(k) + iJ2 sin(k), (C2)

θk = acosh

(
εk

ωk

)
= asinh

(
2
γ

ωk

)
. (C3)

This leads to the following representation of zk:

zk = z11 + ωkUkσzU
−1
k , (C4)

with the dispersion relation of the driven-dissipative SSH
model ωk given in Eq. (33). For the isolated SSH model with

γ = 0, the above relation reduces to Eq. (27).

APPENDIX D: PROOF OF EQ. (159)

As explained in Sec. III A, due to the weak U(1) symmetry
of the driven-dissipative SSH model, if there are no anomalous
correlations in the initial state, no such correlations will be
generated in the dynamics, and, therefore, the state of the
system is at all times fully determined by the covariance
matrix defined in Eq. (6). Consequently, describing the state in
terms of a covariance matrix for Majorana fermions appears to
be unnatural and inefficient. However, as stated in Eq. (156),
the dual string order parameter has a simple representation
in terms of Majorana fermions, which, by applying Wick’s
theorem, immediately leads to the expression Eq. (157) for
the expectation value of the dual string order parameter as
the Pfaffian of a submatrix �� of the Majorana covariance
matrix. In this Appendix, we provide a proof for Eq. (159)
which relates �� to the reduced covariance matrix G1,� defined
in terms of complex fermions—confirming that there is no
information in �� that is not already contained in G1,�. For
simplicity, we consider a translationally invariant state of a
system with PBC, but these assumptions are not crucial.

We begin by defining a complex covariance matrix that in-
cludes anomalous correlations 〈clcl ′ 〉 and 〈c†

l c†
l ′ 〉, even though

these vanish for the SSH model:

Fl,l ′ = 〈[Cl ,C†
l ′ ]〉, (D1)

with C = (c1, c†
1, . . . , c2L, c†

2L )ᵀ. The Majorana covariance
matrix for the SSH model, introduced in Sec.VII A, can then
be written as

� = iR†
2LFR2L, (D2)

where the matrix converting between Majorana and complex
fermions is given by

R� =
�⊕

l=1

1√
2

(
1 −i

1 i

)
. (D3)

We want to understand the structure of the submatrix ��

introduced in Eq. (158). To that end, we first consider the
structure of F . For a translationally invariant state, F can be
decomposed into 4 × 4 blocks fl which can be expressed in

terms of the elements of the covariance matrix Eq. (6) as

fl−l ′=

⎛
⎜⎜⎜⎜⎝

G2l−1,2l ′−1 0 G2l−1,2l ′ 0

0 −G2l ′−1,2l−1 0 −G2l ′,2l−1

G2l,2l ′−1 0 G2l,2l ′ 0

0 −G2l ′−1,2l 0 −G2l ′,2l

⎞
⎟⎟⎟⎟⎠,

(D4)

where the zero entries are due to the vanishing of anomalous
correlations. Next, we consider the transformation to Majo-
rana fermions in Eq. (D2). For a 4 × 4 block γl of �, we obtain

γl = iR†
2 flR2. (D5)

To calculate the dual string order parameter according to
Eq. (157), we require not the full matrix � but rather the sub-
matrix �� specified in Eq. (158). This submatrix is composed
of 2 × 2 blocks (γ�)l that are cut out from the center of the
4 × 4 blocks γl and given by

(γ�)l−l ′

=1

2

(
i(G2l−1,2l ′−1 − G2l ′−1,2l−1) −(G2l−1,2l ′ + G2l ′,2l−1)

G2l,2l ′−1 + G2l ′−1,2l i(G2l,2l ′ − G2l ′,2l )

)
.

(D6)

When we decompose the covariance matrix as G = G1 + G2

in analogy to Eq. (48), a drastic simplification of (γ�)l results
from the symmetry properties of G1 and G2 stated in Eq. (59).
In particular, we find that the contribution due to G2 drops out,

(γ�)l−l ′ =
(

iG1,2l−1,2l ′−1 −G1,2l−1,2l ′

G1,2l,2l ′−1 iG1,2l,2l ′

)
. (D7)

Comparing this to the block structure of G given by

g1,l−l ′ =
(

G1,2l−1,2l ′−1 G1,2l−1,2l ′

G1,2l,2l ′−1 G1,2l,2l ′

)
, (D8)

we find that

(γ�)l = iP†
1 g1,l P1, (D9)

where P� is defined in Eq. (160). For the full matrices �� and
G1,�, this relation leads to Eq. (159).

APPENDIX E: POLYLOGARITHM AND RIEMANN
ZETA FUNCTION

The polylogarithm and the Riemann zeta function are de-
fined as [144]

Liα (z) =
∞∑

n=1

zn

nα
, ζ (α) =

∞∑
n=1

1

nα
= Liα (1). (E1)

To make analytical progress when working with the polylog-
arithm, we employ the series expansions of Liα (eik ) around
k = 0 and k = π . The expansion around k = 0 reads [144]

Liα (eik ) = �(1 − α)(−ik)α−1 +
∞∑

n=0

ζ (α − n)

n!
(ik)n, (E2)
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which holds for |k| < 2π and α /∈ N, and where �(α) is the
gamma function. For α ∈ N, the expansion is given by [145]

Liα (eik ) = (ik)α−1

(α − 1)!
(Hα−1 − ln (−ik))

+
∞∑

n=0
n �=α−1

ζ (α − n)

n!
(ik)n, (E3)

where Hα =∑α
n=1

1
n is the αth harmonic number with H0 =

0. The expansion of the polylogarithm around k = π reads

Liα (eik ) = −
∞∑

n=0

η(α − n)

n!
[i(k − π )]n, (E4)

where η(α) = (1 − 21−α )ζ (α) is the Drichlet eta function.

APPENDIX F: DENSITY AUTOCORRELATION FUNCTION

The connected density autocorrelation function defined in
Eq. (187) can be regarded as a special case of the Majorana
four-point function

Bl1,l2,l3 (t ) = 〈Wl1,l2 (t )W2l3−1,2l3 (0)
〉
SS, (F1)

where Wl,l ′ is given in Eq. (A20) and, for γl = γg, the expec-
tation value in the steady state reduces to taking the trace,
〈. . . 〉SS = tr(· · · )/2L. Note that l1, l2 ∈ {1, . . . , 2L} label Ma-
jorana modes whereas l3 ∈ {1, . . . , L} is a lattice-site index.
The relation W2l−1,2l = i2(nl − 1/2) leads to

Al (t ) = 〈W2l−1,2l (t )W2l−1,2l〉SS = B2l−1,2l,l (t ). (F2)

As we show in the following, a closed equation of motion
can be obtained for four-point functions of the general type
given in Eq. (F1). Solving this equation yields the full time
dependence of the density autocorrelation function.

According to the quantum regression theorem, the two-
time average in Eq. (F1) can be calculated as [146]

Bl1,l2,l3 (t ) = tr
(
Wl1,l2 e−iLt

(
W2l3−1,2l3ρSS

))
= tr

(
eiL†(

Wl1,l2

)
W2l3−1,2l3ρSS

)
, (F3)

where the adjoint Liouvillian is defined in Eq. (90). By taking
the derivative with respect to time, we obtain

dBl1,l2,l3

dt
= i tr

(
L†
(
Wl1,l2

)
e−iLt

(
W2l3−1,2l3ρSS

))
, (F4)

and inserting here Eq. (A23) leads to

dBl1,l2,l3

dt
= −

2L∑
m=1

(
Xl1,mBm,l2,l3 + Bl1,m,l3 Xᵀm,l2

)
. (F5)

In the last term, we have used 〈W2l3−1,2l3〉SS = i2〈nl3 −
1/2〉SS = 0. Let us now consider a system with PBC and
exploit translational invariance to represent Bl1,l2,l3 (t ) in terms
of 2 × 2 blocks,

bl1−l3,l2−l3 =
(

B2l1−1,2l2−1,l3 B2l1−1,2l2,l3

B2l1,2l2−1,l3 B2l1,2l2,l3

)
, (F6)

that depend only on relative coordinates. Indeed, note that
here all three of l1, l2, l3 ∈ {1, . . . , L} are lattice-site indices.
Similarly, we introduce 2 × 2 blocks of the matrix X . Rewrit-
ten in terms of block matrices, the equation of motion reads

dbl,l ′

dt
= −

L∑
m=1

(
xl−mbm,l ′ + bl,mxᵀl ′−m

)
. (F7)

This equation can be solved straightforwardly in momentum
space. To this end, we introduce the discrete Fourier trans-
forms of the block matrices,

bk,k′ = −i
L∑

l,l ′=1

e−i(kl+k′l ′ )bl,l ′ , xk = −i
L∑

l=1

e−ikl xl , (F8)

in terms of which Eq. (F7) can be recast as

dbk,k′

dt
= −i

(
xkbk,k′ + bk,k′xᵀk′

)
. (F9)

This equation of motion is solved by

bk,k′ (t ) = e−ixkt bk,k′ (0)e−ixᵀ
k′ t , (F10)

where the initial condition bk,k′ (0) in momentum space can be
obtained by taking the discrete Fourier transform of bl,l ′ (0) =
−iσyδl,0δl ′,0, leading to bk,k′ (0) = −σy. In the PT-symmetric
phase, where ωk ∈ R>0 for all k ∈ BZ, we find

b1,2
k,k′ (t ) = − ie−4γ t

[
ak (t )ak′ (t )∗+

(
cos (ωkt )−2γ

ωk
sin (ωkt )

)

×
(

cos (ωk′t ) + 2γ

ωk′
sin (ωk′t )

)]
, (F11)

where ak (t ) = (2Jk + μ − i2
k ) sin(ωkt )/ωk . Finally, we ob-
tain the density autocorrelation function as

Al (t ) = b1,2
0,0(t )

= i

L2

∑
k,k′∈BZ

b1,2
k,k′ (t )

= e−4γ t

[
|A1,l (t )|2 − 4γ 2A2,l (t )2 +

(
dA2,l (t )

dt

)2
]
,

(F12)

where

A1,l (t ) = 1

L

∑
k∈BZ

ak (t ), A2,l (t ) = 1

L

∑
k∈BZ

sin(ωkt )

ωk
. (F13)

In the thermodynamic limit, sums over momenta are replaced
by integrals over k ∈ [−π, π ]. Since the range of integration
is symmetric, the contribution to ak (t ) that contains 
k and is
odd in k can be dropped. For ωk ∈ R>0, we may thus write

A1,l (t ) = 1

π
Im

(∫ π

0
dk (2Jk + μ)

eiωkt

ωk

)
,

A2,l (t ) = 1

π
Im

(∫ π

0
dk

eiωkt

ωk

)
. (F14)

The asymptotic behavior of these integrals for t → ∞ can
be obtained by means of a stationary phase approximation as
described in Sec. VIII D.
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