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Multilevel variational spectroscopy using a programmable quantum simulator
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Energy spectroscopy is a powerful tool with diverse applications across various disciplines. Variational
quantum-classical algorithms based on programmable digital quantum simulators have emerged as promising
approaches for conducting spectroscopy on various models using a single device, despite facing significant quan-
tum and classical resource overheads. Here, we experimentally demonstrate multilevel variational spectroscopy
for fundamental many-body Hamiltonians using a superconducting digital quantum simulator. By exploiting
symmetries and the subspace search method, we achieve full spectroscopy for a four-qubit Heisenberg spin
chain, yielding an average energy deviation as small as 0.13 from the theoretical values, assuming unity cou-
pling strength. Our method, when extended to eight-qubit Heisenberg and transverse-field Ising Hamiltonians,
successfully determines the three lowest-energy levels. In achieving the above, we introduce a circuit-agnostic
compilation method that enhances the robustness of our simulator against signal crosstalk. Our study highlights
the combination of the subspace search method and symmetry-assisted resource efficiency in variational quantum
algorithms and lays the foundation for practical spectroscopy on near-term quantum simulators, with potential
applications in quantum chemistry and condensed matter physics.
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I. INTRODUCTION

Energy spectrum is a unique fingerprint of matter which
makes spectroscopy [1–4] an indispensable tool in a range
of scientific fields, including exoplanet composition determi-
nation, climate monitoring, and material synthesis. Recent
advances in quantum simulation have lead to the emergence
of analog and digital quantum simulators implemented on
various physical platforms, such as cold atoms [5], ion-traps
[6,7], nuclear magnetic resonance systems [8], photonic chips
[9–11], Rydberg atoms [12], and superconducting circuits
[13–20]. Although analog quantum simulators have been em-
ployed for spectroscopy by means of Fourier transform in a
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single-excitation manifold [21], their scalability and applica-
bility to arbitrary Hamiltonians remain limited.

Digital quantum simulators, based on programmable quan-
tum circuits, provide remarkable versatility and enable the
study of arbitrary Hamiltonians [22]. Variational quantum al-
gorithms, such as the variational quantum eigensolver (VQE)
[23], present a promising avenue for exploring practical
quantum applications using near-term quantum simulators.
By employing a hybrid approach that combines a quan-
tum simulator with a classical optimizer, VQE simulations
have successfully tackled ground-state problems of many-
body systems in quantum chemistry [24–29] and condensed
matter physics [30,31]. However, the considerable resource
overheads associated with both quantum and classical com-
ponents have restricted VQE spectroscopy for predominantly
targeting limited eigenstates in small system sizes [28,32–
36]. To make quantum variational spectroscopy extensible, it
is crucial to address resource overheads by simplifying the
ansatz and reducing variational parameters. In fact, symmetry
is a fundamental property that is found in every building
block of our universe. The interaction between particles in
strongly correlated many-body systems reveals several forms
of symmetries. Several theoretical [37–40] and experimental
[30,35,36] works tried to exploit such symmetries for either
reducing quantum and classical resources in a VQE algorithm
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or targeting multiple eigenstates. However, relying on symme-
tries alone is not sufficient to simulate those eigenstates that
share the same symmetries. An alternative way to simulate
multiple eigenstates is the subspace search VQE (SSVQE)
method [41] in which a quantum circuit is trained to simulate
several eigenstates using multiple orthogonal initial states.
By increasing the number of target eigenstates the SSVQE
becomes highly resource demanding [38], which makes its
experimental realization challenging and limited to small sys-
tem sizes [42]. Indeed, to make multilevel variational quantum
spectroscopy truly successful, one not only needs to combine
these techniques, but also to exploit error mitigation tech-
niques in both hardware and data processing levels, all adding
to the experimental complexity.

In this article, we present an experimental demonstration of
multilevel energy spectroscopy for fundamental many-body
Hamiltonians using VQE on a superconducting digital quan-
tum simulator. By employing a mix of symmetry-preserving
ansatzes, we significantly reduce circuit depth and the num-
ber of variational parameters while targeting multiple energy
levels in conjunction with the SSVQE method [41]. We also
introduce a circuit compiling method that conveniently cor-
rects for both spatial and temporal signal crosstalk, improving
the consistency of the gate performance in our device. All
these techniques are combined with error mitigation to en-
hance the accuracy of our method. We achieve full variational
quantum spectroscopy for all 16 states of a four-qubit Heisen-
berg spin chain, with the measured energies deviating from
their theoretical values by 0.13, on average, assuming a unity
coupling strength. We further extend our approach to eight-
qubit Heisenberg and transverse-field Ising Hamiltonians,
extracting the three lowest-energy eigenstates and demonstrat-
ing the potential of our method for multilevel spectroscopy
in many-body systems. Intriguingly, we find that, in the cases
where the cost function of the VQE algorithm contains several
terms, the best convergence result is obtained using a hy-
brid optimizer that combines the gradient-free Nelder-Mead
method with the gradient-based Adam method.

II. SUBSPACE SEARCH VARIATIONAL QUANTUM
EIGENSOLVER

As illustrated in Fig. 1(a), the VQE algorithm contains
a quantum hardware unit that executes a quantum circuit
consisting of an initialization part, a multilayer parame-
terized circuit, and measurement. The initialization circuit
prepares an initial state of an N-qubit system through unitary
operation |�〉=UI|0〉⊗N . The parameterized circuit, how-
ever, is described by a unitary operation U (�θ ), where �θ =
(θ1, θ2, . . . , θl ) are variational parameters. The action of U (�θ )
on the initial state creates the output state |�(�θ )〉=U (�θ )|�〉
for which an observable can be efficiently measured. A proper
cost function C(�θ ) is calculated from the measured data,
which is then fed into a classical optimizer to be minimized
through updating the circuit parameters �θ , a training process
until an optimal set of parameters �θ∗ is obtained.

In comparison to typical VQE algorithms, which find the
ground state of a given Hamiltonian with the cost func-
tion being its expectation value [23–27,30,43], we employ

a combination of several techniques to extend the spectrum
and target more excited states. For a system with known
symmetries, we can prepare an initial state with a specific
set of symmetry numbers and then apply the corresponding
symmetry-preserving circuit such that the search is restricted
within a certain manifold. In this way, one can easily obtain
the lowest-energy eigenstate in that manifold, but an excited
state to the whole system. For cases when the states are
indistinguishable by symmetry or when it is hard to prepare
the initial state, simulating the excited states requires either
adding additional penalizing terms in the cost function [34,44]
or simultaneous learning of multiple eigenstates through spe-
cial training methods, such as SSVQE [41]. In our experiment,
we use a general form for the cost function

C(�θ ) =
P∑

i=1

wi〈�i|U †(�θ )HU (�θ )|�i〉, (1)

where {|�i〉}P
i=1 are a set of P orthogonal initial states

and wi (real positive) are their weights with condition
w1>w2> · · · >wP. Note that the output states |�i〉=U (�θ )|�i〉
are naturally orthogonal due to the unitarity of U (�θ ). With
proper constraints imposed on these weights, one obtains
|Ei〉≈|�i(�θ∗)〉 through classical minimization of the cost
function, provided that the parameterized circuit exhibits
adequate expressibility. Parallel algorithms have also been de-
veloped to accelerate both the VQE [45] and even the SSVQE
algorithms [46].

III. EXPLOITING SYMMETRIES

To understand how symmetry is integrated into the al-
gorithm, let us first examine the well-known Heisenberg
spin-chain model that contains N spin-1/2 particles. The
Hamiltonian is expressed by

H = J
N−1∑
i=1

σ i · σ i+1, (2)

where J > 0 is the coupling strength and σ i = (σ i
x, σ

i
y, σ

i
z )

is the vector of Pauli operators at site i. The Heisenberg
Hamiltonian in Eq. (2) supports several symmetries includ-
ing (i) the magnetization in every direction, i.e., [H, Sα] = 0,
where Sα= 1

2

∑
i σ

i
α with α = x, y, z; (ii) the total spin, i.e.,

[H, S2
tot] = 0, where S2

tot = S2
x +S2

y +S2
z ; (iii) mirror symmetry,

i.e., [H,M] = 0, where the mirror operator M is defined
as M|b1b2 . . . bN 〉 = |bN . . . b2b1〉 with |bi〉 = |0〉 or |1〉 is
the qubit state at site i. These symmetries imply that all the
eigenstates |Ej〉 have a specific total spin s, namely, S2

tot|Ej〉 =
s(s + 1)|Ej〉, z-magnetization sz, given by Sz|Ej〉 = sz|Ej〉 in
which −s � sz � s, and the mirror symmetry m = ±1, given
by M|Ej〉 = m|Ej〉.

In general, each layer of our parameterized circuit contains
two consecutive sets of two-qubit operations N (θ ), acting
on odd and even bonds, followed by a series of single-qubit
rotations [see Fig. 1(a)]. In the case of the Heisenberg model,
N (θ ) acting on qubits i and i + 1 is chosen to be

NH(θ ) = eiθ(σ i
xσ

i+1
x +σ i

yσ
i+1
y +σ i

z σ
i+1
z ). (3)
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FIG. 1. Variational quantum algorithm with symmetry-preserving circuits. (a) Schematic diagram of a variational quantum algorithm
which is realized on a combination of a quantum simulator and a classical computer. The quantum circuit includes an initialization circuit UI ,
a parameterized symmetry-preserving circuit U (�θ ), and a measurement unit. The measurement results are fed into a classical optimizer for
minimizing a cost function C(�θ ) through iteratively updating the parameters �θ . (b) Ansatz circuits for preserving different symmetries. In the
top boxes are the two-qubit modular circuits used for the Heisenberg and transverse-field Ising problems. In the bottom are ansatz circuits
for preserving z-polarization (sz), total spin (s), mirror symmetry (m), and zz-product (πz), respectively. (c) Error mitigation using zero-noise
extrapolation. UI and U †

I are the initialization circuit and its reversal. Note that the N (θ/k) circuit is identical to the original N (θ ) circuit
except for single-qubit rotations according to the decomposition in (b). (d) False-color micrograph of the device.

An explicit design of NH(θ ) as well as symmetry-preserving
circuits are shown in Fig. 1(b). Since [NH(θ ), S2

tot] = 0, to
conserve the total spin s no single-qubit rotation is needed.
To conserve sz, the single-qubit operations are chosen to be
z-rotations, namely, Zθ = e−iθσz/2. Note that the s-conserving
circuit readily conserves sz. The mirror symmetry can be
easily preserved by choosing the gate parameters symmetri-
cally with respect to the middle of the chain and it may be
used in combination with the other symmetries. If the initial
state has mirror symmetry with m = ±1, then the symmetric
choice of the parameters, as shown in Fig. 1(b), results in
the output state with matching m. Note that the preservation
of a symmetry operator does not imply that we know the
eigenvalue for a given energy eigenvector. For instance, if the
Hamiltonian preserves mirror symmetry, we know that half of
the energy eigenstates have m = +1 and the other half have
m = −1. However, the distribution of the symmetry eigen-

values are model dependent and even may vary by system
size.

IV. ERROR MITIGATION

To diminish the effect of noise and improve the accuracy
of the extracted energies, we employ the zero-noise extrapo-
lation (ZNE) method [47–49] for error mitigation. To perform
ZNE, we rescale the circuit depths by a factor of k while
maintaining the same unitary. As shown in Fig. 1(c), for the
parameterized circuit U (�θ ), every N (θ ) operation is divided
into k consecutive repetitions of N (θ/k). Such a treatment
allows the noise-scaling factor k to be any positive integer.
For the initialization circuit UI, we append the UIU

†
I pairs,

which means k can only be odd numbered. To access more
choices in k and improve the statistics, for an even-numbered
k, we perform both cases of k = 2n−1 and k = 2n+1 for
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FIG. 2. Circuit compilation using the isomorphous waveform method. (a)–(c) Step-by-step compilation. An arbitrary quantum circuit
composed of modular single- and two-qubit gates (a) can be rearranged into periodic single-qubit (1-q) and two-qubit (2-q) gate cycles (b). Red
arrows indicate the identity filling and single-qubit gate squeeze operations. All SU(2) operations including identity operations are subsequently
compiled into two π/2 pulses according to the U3 decomposition (c). (d) Gate sequences used in the controlled-phase calibration, the local Z
phase calibration, and the VQE experiment for the Heisenberg model in which the initialization circuit (red solid box) and the N (θ ) circuit
(brown solid box) are indicated. The black dashed box indicates a section of the three circuits that share a common waveform as illustrated
in (c).

the initialization circuit and take the averaged outcome. After
obtaining the expectation value of the Hamiltonian for each
k, we employ an extrapolation method, based on either poly-
nomial or exponential fitting, to estimate the result at k = 0,
thereby obtaining the ZNE. In our experiment, we opted for
the exponential extrapolation method as it produced the lowest
fitting error and yielded results closer to the theoretical values.

V. SUPERCONDUCTING QUANTUM SIMULATOR

Our experiment is performed on a superconducting quan-
tum processor with a ring of 16 transmon qubits [Fig. 1(d)]
mounted inside a dilution refrigerator. A tunable coupler (also
a transmon qubit)connects each pair of neighboring qubits
and serves as an independent control knob for adjusting their
coupling strength. A shared control line is used for deliv-
ering both the single-qubit gate signal to the qubit and the

two-qubit gate signal to an adjacent coupler, reducing the
wiring efforts both on the chip and inside the refrigerator.
More details about the device can be found in Appendix D
and its eight-qubit predecessor [50]. In this experiment, we
use the coupler-assisted adiabatic controlled-Z (CZ) gate [51]
in conjunction with the net-zero pulsing technique to suppress
dephasing from low-frequency flux noise [52]. The CZ gate
fidelities when simultaneously applied are nearly 99% fidelity
on average.

VI. CIRCUIT-AGNOSTIC COMPILATION AGAINST
CROSSTALK

The VQE algorithms and the ZNE error mitigation of-
ten involve long circuits with parallel gate operations. It is
commonly seen in practice that the performance of modular
single- and two-qubit gates is inconsistent between calibration
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and final implementation, as the control signals are distorted
due to the spatial and temporal crosstalk effect that varies with
circuits. To combat this, we implement a generally applicable
compilation strategy named the isomorphic waveform. The
key idea is to maximally match the waveforms used during
calibration and subsequent implementations by rearranging an
arbitrary quantum circuit into interleaved layers of single- and
two-qubit gates and translating them into well-timed pulses
[Figs. 2(a) to 2(c). First, for two-qubit gates that cannot be
parallelized, one can always split them and insert a layer of
identity gates between them (identity filling). Then, multiple
concatenated single-qubit gates are squeezed into a single
SU(2) operation. Note that we also perform identity filling to
the “no gate” case. Now with one SU(2) operation for every
qubit during each cycle, we apply the U3 decomposition [53]
to compile the SU(2) operation into two physical π/2 pulses
and additional virtual Z gates, resulting in restless single-qubit
gate cycles. Since the virtual Z gates only affect the pulse
phases, the entire waveform shape is almost identical given
an arbitrary original circuit.

A direct consequence of this compiling scheme is that only
the π/2 pulses are required to calibrate. More importantly,
simultaneous calibration of these π/2 pulses immediately
accounts for microwave signal crosstalk because all pulses
have fixed shapes and hence fixed crosstalk influence; this
substantially reduces the efforts for performing crosstalk
compensation. In addition, the timing of both single- and
two-qubit pulses, is fixed during calibration and subsequent
experiments. In this way, pulse distortions — if not com-
pletely removable — can be more consistent in different
circuits; this makes the gate performance more predictable
for long circuits. Figure 2(d) shows the circuits used for
calibrating the controlled phase and single-qubit phase correc-
tion. With the isomorphous waveform method, their compiled
waveforms are almost identical to each other and to the
VQE circuits. In addition, the method is compatible with
randomized compiling [54], another powerful error mitigation
technique. The method may require more single-qubit gates to
be added to the circuits. However, this is unlikely to degrade
the whole circuit fidelity due to the fact that the SU(2) squeeze
operation can reduce the circuit depth and the fact that the
single-qubit gate fidelities are typically much better than the
two-qubit ones.

VII. FULL SPECTROSCOPY OF HEISENBERG
HAMILTONIAN WITH N = 4

After the processor is calibrated, we implement the full
energy spectroscopy of a four-qubit Heisenberg spin chain on
the selected qubits [Fig. 3(a)]. Since all the eigenstates have
definitive s, sz, and m numbers, the ground state |E1〉 must be
a global singlet (i.e., s = sz = 0), which we denote as |S1〉 =
|E1〉. Next in the spectrum are two triplets (i.e., s = 1), each
with degeneracy three corresponding to sz = 0,±1, which
we denote as |T (0,±1)

1 〉 = |E2,3,4〉 and |T (0,±1)
2 〉 = |E5,6,7〉 (the

superscript denotes the sz number). The spectrum then follows
with one more singlet |S2〉 = |E8〉 and one triplet |T (0,±1)

3 〉 =
|E9,10,11〉. The highest-energy states are a quintuple (i.e., s =
2) with degeneracy five corresponding to sz = 0,±1,±2,
namely, |Q(0,±1,±2)〉 = |E12,...,16〉.

To solve the singlet |S1〉 which is the ground state, one can
simply use the s-conserving circuit (three parameters) in com-
bination with mirror symmetry (to subtract one parameter)
illustrated in Fig. 1(b). Therefore, there are only two parame-
ters per layer. We prepare the initial state |�〉 = |ψ−〉⊗|ψ−〉,
where |ψ±〉 = (|01〉 ± |10〉)/

√
2. Since the initial state has a

total spin s = 0, the final state remains in the singlet manifold.
A simple average energy minimization with single weight
(P = 1) in the cost function (1) can estimate ES1 . The result
converges to a precise value for a circuit with L = 2 lay-
ers. Figure 3(b) shows the convergence of the cost function
versus optimization iterations and the energy estimation as
a function of noise-scaling factor k. The ground-state energy
extrapolated at k = 0 yields ES1 = (−6.570 ± 0.059) (theory:
−6.464) assuming J = 1. Note that our approach requires
only four parameters to train, while the widely used hardware
efficient ansatz [26] requires a total of three layers and 32
parameters. As shown in Ref. [38], the situation gets worse
as the system size or the number of target states in SSVQE
increases.

For singlet |S2〉, we resort to the SSVQE method by
training |S1〉 and |S2〉 simultaneously with double initial
states (P = 2 in the cost function). Unlike the ground state,
producing two orthogonal initial states with s = 0 requires
long-distance controlled-NOT gates, which are not available
in our device. We instead use the sz-conserving circuit with
L = 3 layers and two initial states |�1〉 = |0101〉 and |�2〉 =
|1010〉. To ensure that the final states fall into the s = 0 man-
ifold, an additional penalty term 〈S2

tot〉 is included in the cost
function (see Appendix B for details). Due to the complex
nature of the cost function, the training becomes much harder
than the ground state and takes about 24 hours until conver-
gence. We only obtain one successful convergence [Fig. 3(b)]
out of a few trials as the processor performance fluctuates
over time. Interestingly, we find that, in this case, the hybrid
optimization of Nelder-Mead (first 14 iterations) followed by
Adam performs better than either of them separately.

For the three triplet groups T1,2,3, the eigenstates can
be efficiently solved with fewer training tasks by identify-
ing symmetries in these states and choosing proper initial
states. To understand this, let us focus on the case of sz =
0. We use the total spin s-conserving circuit with mirror
symmetry with L = 2 layers. For the initial state |�1〉 =
(|0101〉−|1010〉)/

√
2 which is determined by symmetry num-

bers s = 1, sz = 0, m = −1, minimizing the average energy
yields the lowest eigenstate in the same-symmetry manifold,
which is exactly |T (0)

1 〉. Then applying the same trained cir-
cuit on |�2〉 = (|0011〉−|1100〉)/

√
2, which is orthogonal to

|�1〉, but shares the same symmetries immediately generates
|T (0)

3 〉. Similarly, applying the same trained circuit on |�3〉 =
(|0110〉−|1001〉)/

√
2 which is orthogonal to |�1〉 and |�2〉

but with m = +1 unambiguously results in |T (0)
2 〉. In this

manner, all three triplet states sz = 0 share a common trained
circuit and error mitigation is conducted separately [Fig. 3(c)].
The same treatment also works for the manifold of sz = ±1.
In Appendix B, we give the exact form of all the initial states
and their corresponding circuits.

The last manifold of the spectrum is a quintuple with
s = 2. Two eigenstates with sz = ±2 are easy to obtain as
all the spins are aligned. Therefore, we focus on generat-
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FIG. 3. Full spectroscopy of a four-qubit Heisenberg spin chain. (a) The left plot shows the device connectivity and the four active qubits
(solid circles). The right plot sketches the spectrum of the 16 states of the four-qubit Heisenberg spin chain which are grouped by degeneracy.
(b)–(d) VQE training and error mitigation for each of the 16 states including (b) the singlets S1 and S2, (c) the triplets T1, T2, and T3, and
(d) the quintuple Q. The top panels (gray background) in each figure plot the training curves of the cost function C(�θ ). The blue dots are the
mean values of the training curves with different initial parameters. The shades indicate two times the standard deviation. The bottom panels
(colored background) plot the error mitigation results for different training outcomes (green dots) and the exponential fit to their mean (green
line). The black arrows indicate the theoretical values. Note that the triplet states with the same sz values share a common trained circuit and
their energies can be obtained simply by switching the initialization circuit. (e) Comparison of the extrapolated zero-noise energies (red bars)
and the theoretical values (dashed boxes) for all 16 eigenstates. The error bars (blue bars) denote plus/minus two times the standard deviation.
All energies are given in units of J .

ing the three eigenstates with sz = 0,±1. Generating initial
states with total spin s = 2 and sz = 0,±1 is not easy with-
out long-distance controlled-NOT gates. Instead, we add the
penalty term 〈(S2

tot − 6)2〉 to the cost function with P = 1
to guarantee the convergence to the s = 2 manifold. We use

the sz-conserving circuit and the initial states |0101〉 (sz = 0),
|0111〉 (sz = −1), |0001〉 (sz = 1). In this case, we disregard
the use of mirror symmetry due to the lack of this property in
the initial states. The results are shown in Fig. 3(d). Again, we
find that similar to the SSVQE simulation of |S2〉 [Fig. 3(b)],

013015-6



MULTILEVEL VARIATIONAL SPECTROSCOPY USING A … PHYSICAL REVIEW RESEARCH 6, 013015 (2024)

FIG. 4. Low-energy spectroscopy of an eight-qubit Heisenberg and transverse Ising chain. (a) VQE training (left panels) and error
mitigation (right panels) for the three lowest eigenstates for the eight-qubit chain with the Heisenberg interactions. (b) Comparison of the
extrapolated zero-noise energies (red bars) and the theoretical values (dashed box) of the Heisenberg model. The error bars (blue bars) are
plus/minus two times the standard deviation from the measured values. (c) Same as (a) but with the transverse Ising interactions. (d) Same as
(b) but for the Ising model. The center panel at bottom shows the eight active qubits (solid circles). All energies are given in units of J .

the hybrid optimization of the gradient-free Nelder-Mead
(first 14 iterations) and gradient-based Adam method gives
the best convergence. In fact, when the cost function contains
several terms, the potential landscape becomes complex with
multiple local minima. It is likely that a few iterations by a
gradient-free optimizer, such as the Nelder-Mead, bring the
cost function to the vicinity of its global minimum whereas
a following gradient-based optimizer, such as Adam, facili-
tates the convergence. This can be seen from the immediate
drop in the cost function when switching from Nelder-Mead
to Adam at the 15th iteration in all the relevant cases. The
estimated energy eigenvalues of all the 16 states are compared
with the theory in Fig. 3(e). The average deviation is about
0.13, validating our approach for obtaining the full variational
spectroscopy.

VIII. PARTIAL SPECTROSCOPY OF HEISENBERG
HAMILTONIAN WITH N = 8

To show the scalability of our approach, we perform low-
energy spectroscopy for an eight-qubit Heisenberg Hamilto-
nian. We consider estimating the three lowest eigenenergies,
namely, ES1 , ET1 , and ET2 . For the ground state S1, we use
the s-conserving circuit with L = 3 layers, and the initial state
|�〉 = |ψ−〉⊗4. The training of the cost function (P = 1) and
the error mitigation results are shown in Fig. 4(a). For the
first excited state T (0)

1 , we use the s-conserving circuit with
L = 4 layers and the initial state |�〉 = |ψ−〉|ψ+〉|ψ−〉|ψ−〉.
Remarkably, there are 84 CNOT gates in one cycle of the

parameterized circuit and a total of 792 CNOT gates in the error
mitigation circuit with scaling factor k = 9. The consistency
in the measured data [middle panels of Fig. 4(a)] manifests
the consistency in our gate performance in large-scale cir-
cuits, owing to the isomorphous waveform technique. For
other choices of sz, one can simply change |ψ+〉 to |00〉 or
|11〉. Again, if one is interested to get both T (0)

1 and T (0)
2 ,

simultaneously, one has to use SSVQE with P = 2. While one
of the initial states is the same as before, the other one can
be |�〉 = |ψ−〉|ψ−〉|ψ+〉|ψ−〉. The results are shown in the
lower panels of Fig. 4(a), where the T (0)

1 trace is dropped for
clarity. The three estimated eigenenergies and their theoretical
values are compared in Fig. 4(b). While ES1 and ET1 can be
estimated very precisely, the energy ET2 shows a larger error.
This is because a circuit with L = 4 layers is not capable to
target two eigenstates simultaneously with high precision.

IX. PARTIAL SPECTROSCOPY OF TRANSVERSE ISING
HAMILTONIAN WITH N = 8

The key advantage of programmable digital quantum sim-
ulators is their capability in simulating different Hamiltonian
models. To show the versatility, we also perform on the same
device the variational spectroscopy for the transverse-field
Ising Hamiltonian

H = J
N−1∑
i=1

σ i
xσ

i+1
x + h

∑
i

σ i
z , (4)
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where J is the coupling strength and h is the transverse field
strength. This system has a critical point at h = J when the
ground state goes through a phase transition from an antifer-
romagnetic (for J < h) to a paramagnetic phase (for J > h)
[43,55]. We focus on extracting the low-energy spectrum of
the Hamiltonian (4) at its critical point, i.e., J = h, where the
eigenstates are highly entangled and expected to be harder for
the VQE algorithm. Note that, in digital simulation, we do not
need to specify the exact value of J and h. In fact, our eigenen-
ergies are given in units of J . The Hamiltonian commutes with
two operators, namely, the mirror operator M and the parity
operator 	z = ⊗N

i=1 σ i
z , which imply that every eigenstate has

two symmetry numbers, m = ±1 (i.e., M|Ej〉 = m|Ej〉) and
πz = ±1 (i.e., 	z|Ej〉 = πz|Ej〉). Hence, We can denote the
state as |E (m,πz )

j 〉. For simulating the transverse Ising Hamilto-
nian, the two-qubit operation N (θ ) is replaced with

NI(θ ) = e−iθσ i
xσ

i+1
x /2. (5)

The circuit used to construct NI(θ ) is depicted in Fig. 1(b).
To ensure the preservation of the 	z symmetry, the single-
qubit operations should all be z-rotations. Furthermore, mirror
symmetry is readily preserved by choosing parameters sym-
metrically with respect to the middle of the chain. The three
lowest-energy eigenstates are denoted as |E (1,1)

1 〉, |E (−1,−1)
2 〉,

and |E (1,−1)
3 〉. These three eigenstates possess symmetry num-

bers that allow their independent generation through the
appropriate choice of the initial state and a cost function
with only P = 1. We simulate these three eigenstates for both
four-qubit and eight-qubit Ising chains, presenting the result
for the eight-qubit case here. The four-qubit results and other
experimental details can be found in Appendix I. We employ
the πz-conserving circuit (L = 3) with mirror symmetry and
the initial state |�〉 = |000〉|φ(4,5)〉|000〉, where |φ(4,5)〉 rep-
resents the quantum state of qubits 4 and 5. To satisfy the
desired symmetries, |φ(4,5)〉 is chosen to be one of the Bell
states |φ+〉 = (|00〉+|11〉)/

√
2, |ψ−〉 and |ψ+〉 for estimating

E1, E2, and E3, respectively. The training and error mitigation
results are shown in Fig. 4(c). A good agreement between
the measured energies and the theoretical values is observed
[Fig. 4(d)].

X. GENERALITY

It should be noted that the results previously presented fo-
cused on the Heisenberg and Ising Hamiltonians as examples
due to their well-known symmetries. However, our approach
is not constrained to these two models. Indeed, combing
SSVQE and exploitation of symmetries can be applied to
any Hamiltonian for efficiently extracting its low-energy spec-
trum. In fact, there have been several attempts to exploit
symmetries in various models for solving problems in con-
densed matter [30], quantum chemistry [35,36], and machine
learning [37]. Determining the symmetry of a physical model
and designing a corresponding symmetry-conserving ansatz
is generally a nontrivial task. For instance, in the context of
molecular models, one would typically employ methods such
as the Jordan-Wigner or Bravyi-Kitaev mappings to transform
a molecular Hamiltonian into qubit Hamiltonians, thereby
enabling its simulation on qubit-based quantum simulators.

Specifically, when using the Jordan-Wigner transformation,
which maps the occupations of orbitals to excitations of
qubits, the conservation of particle numbers corresponds
to the conservation of excitation in qubits. Therefore, in
this case, one can utilize the sz-conserving ansatze that we
presented in the paper. Another example is time-reversal sym-
metry, which often arises in chemistry problems and results
in strictly real eigenstates. To preserve this symmetry in a
quantum circuit, one can simply apply a parameter rule to
constrain the variational ansatz to only produce states that are
strictly real [40].

XI. CONCLUSION

In our study, we present an experimental demonstration
of multilevel variational spectroscopy using a programmable
superconducting quantum simulator. To achieve such a task,
we incorporate a combination of several techniques into our
experiments. This includes (i) the inclusion of symmetries
in the circuit design; (ii) exploiting SSVQE for targeting
multiple eigenstates; (iii) introducing a circuit-agnostic wave-
form compilation technique for pulse optimization; and (iv)
performing ZNE error-mitigation technique. Our findings
highlight the resource efficiency afforded by symmetry and
the ability to target a greater number of states through the
implementation of the subspace search method and the inclu-
sion of penalty terms. Additionally, we discover that a hybrid
optimization strategy, which combines a gradient-free Nelder-
Mead with gradient-based Adam, offers faster convergence
when penalty terms are present in the cost function. This
suggests that, in a disrupted potential landscape caused by rel-
atively strong penalty terms, Nelder-Mead is less sensitive to
local minima, guiding the cost function toward its global mini-
mum. At this point, the Adam optimizer can rapidly converge.

Despite its advantages, there are several challenges that one
has to address for implementing our multilevel spectroscopy
method for a general system. First, a significant challenge is
the circuit depth overhead, which is inherent to the SSVQE al-
gorithm when the number of target states increases. Second, it
is generally nontrivial to determine the symmetries underlying
a given physical model. Third, finding the initialization circuit
and variational ansatz corresponding to its symmetry prop-
erties are not routine tasks and in general model dependent.
Fourth, even if one knows the initialization and the parameter-
ized ansatzes, it is not ensured that the hardware limitations,
such as limited connectivity, allows their implementation.
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TABLE I. State properties and VQE information for the four-qubit and eight-qubit Heisenberg model.

Four-qubit s sz z 〈Ĥ〉 C(�θ ) No. of parameters Optimizer No. of CNOTa

S1 0 0 1 −6.464 〈Ĥ〉 4 NMb 18(180)
S2 0 0 1 0.464 〈Ĉ1〉c 12 NM+Adam 27(243)
T (+1)

1 1 1 −1 −3.828 〈Ĥ〉 4 NM 18(207)
T (0)

1 1 0 −1 −3.828 〈Ĥ〉 4 NM 18(189)
T (−1)

1 1 −1 −1 −3.828 〈Ĥ〉 4 NM 18(207)
T (+1)

2 1 1 1 −1 〈Ĥ〉 4 NM 18(207)
T (0)

2 1 0 1 −1 〈Ĥ〉 4 NM 18(189)
T (−1)

2 1 −1 1 −1 〈Ĥ〉 4 NM 18(207)
T (+1)

3 1 1 −1 1.828 〈Ĥ〉 4 NM 18(207)
T (0)

3 1 0 −1 1.828 〈Ĥ〉 4 NM 18(189)
T (−1)

3 1 −1 −1 1.828 〈Ĥ〉 4 NM 18(207)
Q(+2) 2 2 1 3 〈Ĥ〉 2 NM 9(81)
Q(+1) 2 1 1 3 〈Ĉ2〉d 8 NM + Adam 18(162)
Q(0) 2 0 1 3 〈Ĉ2〉d 8 NM + Adam 18(162)
Q(−1) 2 −1 1 3 〈Ĉ2〉d 8 NM + Adam 18(162)
Q(−2) 2 −2 1 3 〈Ĥ〉 2 NM 9(81)
Eight-qubit
S1 0 0 1 −13.4997 〈Ĥ〉 12 NM 63(603)
T (0)

1 1 0 −1 −11.9289 〈Ĥ〉 16 NM 84(792)
T (0)

2 1 0 1 −10.0149 〈Ĉ3〉e 16 NM 84(792)

aNumber of CNOT gates in one cycle of parameterized circuit. In the brackets is the maximum number of CNOT gates used in error mitigation
(up to nine cycles).
bNM = Nelder-Mead algorithm.
c〈Ĉ1〉 = ω1(〈Ĥ〉1+β〈Ŝ2

tot〉1)+ω2(〈Ĥ〉2+β〈Ŝ2
tot〉2), ω1 = 2, ω2 = 1, β = 10.

d〈Ĉ2〉 = 〈Ĥ〉 + β〈(Ŝtot − 6)2〉, β = 5.
e〈Ĉ3〉 = ω1〈Ĥ〉1 + ω2〈Ĥ〉2, ω1 = 2, ω2 = 1.
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APPENDIX A: VQE TRAINING

To ensure that our convergence is accurate, we use a re-
stricted range of the initial parameters, which are uniformly
sampled from −π/2 to π/2. These parameters are used as a
starting point for the VQE training procedure. The variational
circuit with initial parameters is then compiled into isomor-
phic forms as described in the main text and further discussed

in Appendixes D to F. At each iteration, the cost function
is measured by measuring relevant correlation functions. To
ensure accuracy, each measurement is repeated around 6000
times. Then by feeding the cost function into our classical
optimizer, we obtain a new set of parameters �θ . We con-
sider three different ways for classical optimization, namely,
the gradient-free Nelder-Mead, gradient-based Adam, and a
hybrid of both. In the Nelder-Mead algorithm, the initial sim-
plex is uniformly sampled from −π/2 to π/2. In the Adam
optimizer, the initial parameters are also uniformly sampled
from −π/2 to π/2. The configuration of Adam optimizer is
chosen to be α = 0.1 for the learning rate, β1 = 0.9 for the
exponential decay rate of the first moment, β2 = 0.999 for
the exponential decay rate of the second-moment, and finally,
ε = 10−8 for numerical stability. In the hybrid optimization,
we utilize the Nelder-Mead for ∼15 iterations to obtain a

TABLE II. State properties and VQE information for the four-qubit and eight-qubit transverse Ising model.

Four-qubit z m 〈Ĥ〉 C(�θ ) No. of parameters Optimizer No. of CNOT

E1 1 1 −4.759 〈Ĥ〉 8 NM 12(117)
E2 −1 −1 −4.064 〈Ĥ〉 8 NM 12(117)
E3 −1 1 −2.759 〈Ĥ〉 8 NM 12(117)
Eight-qubit
E1 1 1 −9.838 〈Ĥ〉 24 Adam 42(378)
E2 −1 −1 −9.4689 〈Ĥ〉 24 Adam 42(378)
E3 −1 1 −8.7432 〈Ĥ〉 24 Adam 42(378)
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TABLE III. Circuits for the four-qubit Heisenberg model.

State Initialization Circuit Ansatz layer No. of layers
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TABLE IV. Table III continued.

State Initialization Circuit Ansatz layer No. of layers

013015-11
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TABLE V. Circuits for the eight-qubit Heisenberg model.

State Initialization Circuit Ansatz layer No. of layers

rough training result and then use Adam until the training
converges.

In most cases, the Nelder-Mead algorithm performed better
than the other two, see Tables I to II for specifying the best
optimizer for every single case. However, when the cost func-
tion contains several terms, e.g., in the SSVQE with P > 1
or in the presence of penalizing terms, the best optimization
method is often the hybrid method. This might be due to
the presence of multiple local minima in such a complex
potential landscape. In such cases, Nelder-Mead brings the
cost function to the vicinity of its global minimum but it is
slow to make the final convergence towards the exact location

of the global minimum. However, the gradient-based Adam
optimizer operates well when the cost function is close to
its global minimum. As a result, for complex multiterm cost
functions, hybrid optimizations seem to provide faster conver-
gence.

APPENDIX B: INITIAL STATE CONSTRUCTION

To approximate the desired eigenstate with the symmetry-
preserving ansatzes in VQE, the initialization needs to be
carefully chosen for the corresponding symmetry. For the
Heisenberg Hamiltonian with system size N = 4, the two sin-
glet eigenvectors |S1,2〉 share the symmetry of total spin s = 0,
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TABLE VI. Circuits for the four-qubit transverse Ising model.

State Initialization Circuit Ansatz layer No. of layers

z-magnetization sz = 0, and mirror symmetry m = 1. To tar-
get |S1,2〉, two initial states with these symmetry numbers are
required. These states can be obtained by Clebsch-Gordan
decomposition as |ψ−〉 ⊗ |ψ−〉 and

√
3

6 (|0101〉 + |1010〉 +
|0110〉 + |1001〉 − 2|1100〉 − 2|0011〉). The initialization cir-
cuit for the first can be easily obtained which is depicted in
Table III. However, the second requires a nontrivial initial-
ization circuit with long-distance controlled-NOT gates which
is not available in our device. Therefore, we use initial states
|0101〉 and |1010〉, see their corresponding quantum circuits in
Table III, with sz-conserving circuit to approximate S2 using
SSVQE.

The three triplets |T (0,±1)
1,2,3 〉 share the symmetry of total spin

s = 1. Each of these eigenstates is triply degenerate with sz =
0,±1. The corresponding mirror symmetry are m = −1 for
|T (0,±1)

1,3 〉, and m = +1 for |T (0,±1)
2 〉. Therefore, for each given

sz, we use the following initial states:

For sz = 0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|�1〉 = (|0101〉−|1010〉)/
√

2,

|�2〉 = (|0110〉−|1001〉)/
√

2,

|�3〉 = (|0011〉−|1100〉)/
√

2,

For sz = +1 :

⎧⎪⎪⎨
⎪⎪⎩

|�1〉 = (|0001〉−|0010〉+|0100〉−|1000〉)/2,

|�2〉 = (|0001〉−|0010〉−|0100〉+|1000〉)/2,

|�3〉 = (|0001〉+|0010〉−|0100〉−|1000〉)/2,

For sz =−1 :

⎧⎪⎪⎨
⎪⎪⎩

|�1〉 = (|0111〉−|1011〉+|1101〉−|1110〉)/2,

|�2〉= (|0111〉−|1011〉−|1101〉+|1110〉)/2,

|�3〉 = (|0111〉+|1011〉−|1101〉−|1110〉)/2.

The quantum circuits for generating these states are shown in
Tables III and IV.

For the quintuple |Q(0,±1,±2)〉, which is determined by total
spin s = 2, there are five degenerate eigenstates given by sz =
−2,−1, 0,+1,+2. To generate these eigenstates, we use an
sz-conserving circuit together with a penalty term added to the
cost function; see the main text for more details. Therefore,
the initial states for these five eigenstates are simply set to
be |1111〉, |0111〉, |0101〉, |0001〉, |0000〉. The corresponding
initialization circuits are shown in Table IV. It should be
noted that the initial states do not have mirror symmetry.
Nonetheless, we use antisymmetric parameters in the circuit
for |Q(0,±1)〉, which does not preserve mirror symmetry, but
reduce the number of parameters to train.

In the case of Heisenberg Hamiltonian with system size
N = 8, we simulate the three lowest eigenenergies. Similar to
the N = 4 case, the ground state |S1〉 is a global singlet with
total spin s = 0, z-magnetization sz = 0, and mirror symmetry
m = 1. The initial state for the ground state is |ψ−〉⊗4. For
the first excited state |T (0)

1 〉 with s = 1, sz = 0, m = −1, the
initial state is set to be |ψ−〉|ψ+〉|ψ−〉|ψ−〉. Since the second
excited state |T (0)

2 〉 share the same symmetry numbers as
the first excited state, its initial state can similarly choose
as |ψ−〉|ψ−〉|ψ+〉|ψ−〉. The initialization circuits for these
three initial states are shown in Table V. For other eigenstates
with sz = ±1, one can simply replace |ψ+〉 with |00〉 or |11〉.
The circuits are not shown, as they can be easily obtained by
replacing the circuit for |ψ+〉 with the circuit for |00〉 or |11〉.

The symmetry numbers for the low-energy spectrum of
Ising Hamiltonian with four-qubit and 8eight-qubit systems
are the same. Namely, the ground state |E1〉 is determined
by z = 1 for the parity operator 	z and m = +1 for mirror
symmetry M. Hence, its initial state for both system sizes
N = 4 and N = 8 is set to be |0〉⊗ N−2

2 |φ+〉|0〉⊗ N−2
2 . The second
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TABLE VII. Circuits for the eight-qubit transverse Ising model.

State Initialization Circuit Ansatz layer No. of layers

eigenstate, |E2〉, exhibits z = −1 and m = −1 symmetries,
with the initial state given by |0〉⊗ N−2

2 |ψ−〉|0〉⊗ N−2
2 . The third

eigenstate, |E3〉, has z = −1 and m = +1 symmetries, and
its initial state is expressed as |0〉⊗ N−2

2 |ψ+〉|0〉⊗ N−2
2 . The ini-

tialization circuits for these three eigenstates are shown in
Tables VI and VII.

APPENDIX C: ERROR MITIGATION

In our experiment, we utilize the initialization circuits to
prepare initial states that satisfy the corresponding Sz value
and ansatz circuits to conserve Sz. To ensure that the conser-

vation of Sz is maintained, we remove the data that fail to meet
this criterion.

To mitigate errors, we employ the zero-noise extrapolation
(ZNE) technique, which involves proportionally increasing
the entire circuit error. For the initialization circuit UI, we
increase the circuit error by a factor of k (where k = 2n+1
is an odd number) by replacing the circuit UI with (UIU

†
I )nUI.

However, if k = 2n, we take the average of (UIU
†
I )n−1UI and

(UIU
†
I )nUI to obtain the desired results. For the ansatz cir-

cuits, we can increase the circuit error by a factor of k by
substituting the original N (θ ) with N (θ/k)k . Such a proto-
col allows us to utilize even noise-scaling factors, improving
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FIG. 5. Schematic diagram of the measurement setup. One set of the readout resonator, qubit, tunable coupler, the shared control line, and
corresponding wiring is shown.

the statistics during extrapolation given a limited circuit
length.

APPENDIX D: DEVICE MEASUREMENT SETUP

The processor is made of aluminum on sapphire using
a recipe similar to that in Ref. [50] and bonded in an alu-
minum sample box which is then mounted inside a Blufors
LD400 dilution refrigerator with a base temperature of about
12 mK. The sample box is shielded by two layers of cryop-
erm cylinders. Figure 5 depicts the schematic diagram of the
measurement setup.

The qubits have alternating frequencies between 3.8 GHz
and 4.2 GHz, designed for suppressing residual ZZ inter-
actions. The couplers idle at their maximum frequencies of
6.4 GHz and their couplings to the qubits are about 100 MHz.
The readout resonators designed at ∼7 GHz have photon loss
rates of 1 MHz and a dispersive shift of 0.6 MHz. Eight
resonators share a common transmission line to which a 20

fF capacitor is added at the input end to prevent photons from
entering this port.

The XY microwave signal for single-qubit gates is synthe-
sized by up-converting intermediate-frequency signals with a
single-tone microwave carrier using an IQ mixer. To ensure
high signal quality without reflections and spurious frequen-
cies, an isolator and a band-pass filter are used. The fast Z
signal for two-qubit gates is combined with the XY signal
using a diplexer at room temperature. The combined signal
is then attenuated and filtered at multiple cold stages of the
DR for noise suppression. A custom-made low-pass IR filter
is added to each control line at the mixing-chamber stage
which attenuates signals at the qubit frequency by approxi-
mately 25 dB while allowing low-frequency signals to pass
through.

The multiplexed readout signal is generated from up-
conversion using an IQ mixer, filtered by a 7-GHz band-pass
filter, and attenuated at different temperature stages before
entering the device. The output signal is sequentially ampli-
fied by a HEMT amplifier at 4 K and an amplifier at room
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FIG. 6. Qubit T1 time. Cumulative distribution of the repeated
measured T1 relaxation times for the selected eight qubits (inset).

FIG. 7. Crosstalk characterization. Cumulative distribution of
measured microwave (XY ) and flux (Z) crosstalk ratios with the
median values indicated.

FIG. 8. CZ pulse shape. The unipolar hyperbolic tangent pulse
with different values for the edge parameter ε.

FIG. 9. CZ pulse shape and leakage. (a) The measured popula-
tions of the target qubit q0 versus the shape parameter ε and the pulse
amplitude δA referenced to a certain value under the echoed CZ pulse
train sequence shown above. Here the number of repeated cycles is
4. The red fringe in the middle corresponds to a controlled phase of
π . (b) The measured populations of the control qubit q1 under the
same sequence described in (a). The region with more population
(red) indicates more leakage.

temperature before being down-converted and demodulated.
To block noise from higher-temperature stages, circulators
and filters are used at the output port.

The repeated characterization result of the T1 relaxation
time is shown in Fig. 6. The T1 times of the eight selected
qubits used in our experiment generally range from 40 µs
to 80 µs, each showing a typical fluctuation of 10–20 µs.
The average flux fluctuation in our device is estimated to
be approximately 60 μ�0. The measured ZZ interaction
between neighboring qubits is around 10 kHz and there-
fore considered negligible. More device details are listed in
Table VIII.

FIG. 10. Controlled phase and local Z phase calibration. (a) Pro-
gressive tuning of the pulse amplitude with respect to the controlled
phase calibration with an increasing number of cycles. On the top
is the calibration circuit. (b) Progressive tuning of the local Z phase
correction induced by the CZ pulse with an increasing number of
cycles. On the top is the calibration circuit.
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FIG. 11. Energy landscape of the S1 state in the four-qubit Heisenberg model. (a)–(f) The measured and theoretical values of the cost
function in the S1 case as a function of different pairs of variational parameters selected from the set {θ0, θ1, θ2, θ3}. On the figures are plotted
two convergence trajectories (orange and magenta).

TABLE VIII. Device parameters and gate fidelities.

Qubit Q10
a Q11

a Q12
a Q13

a Q14 Q15 Q0 Q1

Cavity frequency (GHz) 6.928 7.093 6.968 7.122 6.998 7.172 6.895 7.052
Qubit frequency (GHz) 3.704 4.221 3.799 4.219 3.705 4.235 3.780 4.223
Anharmonicity (MHz) −213.0 −203.4 −211.5 −202.8 −212.8 −204.5 −211.2 −201.4
Dispersive shift of |1〉 (MHz) 0.6 0.6 0.6 0.45 1 0.5 0.6 0.5
One-qubit gate error (simul.)(%) 0.21 0.63 0.53 0.32 0.15 0.95 0.25 0.89
Lifetime, T1 (µs) 53 49 69 58 61 65 54 50
Ramsey decay time, T2

a (µs) 8 22 7 6 7 11 12 15
Echo decay time, T2E (µs) 20 29 20 19 24 22 30 19
Readout fidelity of |0〉(%) 0.927 0.940 0.901 0.926 0.861 0.942 0.924 0.944
Readout fidelity of |1〉b (%) 0.886 0.925 0.887 0.879 0.843 0.888 0.868 0.896
Coupler (Group A) C10–11 C12–13 C14–15 C00–01

CZ gate error (simul.)(%) 0.96 0.69 1.24 1.33
ZZc (kHz) 10.4 12.2 15.3 12.2
Coupler (Group B) C11–12 C13–14 C15–00

CZ gate error (simul.)(%) 2.12 0.99 1.24
ZZc (kHz) 10.0 10.5 9.5

aQubits used in the four-qubit experiment. See Fig. 6 for the indexing information of the qubits.
bBoth the |2〉 and |1〉 states are treated as the |1〉 state with the shelving protocol.
cThe ZZ interaction strength between neighboring qubits is measured when couplers are biased at their idling point.
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APPENDIX E: SINGLE-QUBIT GATES

The microwave signal or XY crosstalk is a major source of
errors when performing parallel single-qubit gates. In our ex-
periment, we use a hybrid strategy to combat the XY crosstalk.
For qubits with significant crosstalk and with frequencies
close to each other (usually the next-nearest-neighbor qubits),
we calibrate and add the compensation signal for crosstalk
cancellation [56]. Aside from those, we rely on the isomor-
phous waveform strategy presented in the main text which
compiles the circuit into restless single-qubit cycles and au-
tomatically corrects for crosstalk. The flux or Z crosstalk
can be effectively canceled by adding compensating signals.
The statistics of both XY and Z crosstalk—4% for XY and
0.2% for Z (median value)—in our device are shown in
Fig. 7.

For single-qubit gates, we employ the U3 decomposition
[53] with the need for calibrating Xπ/2 pulses only. We use 30-
ns-long Xπ/2. We add an additional 10-dB attenuation at room
temperature to rescale the pulse amplitudes to approximately
half of the maximum digital-to-analog converter (DAC) out-
put range for better signal quality. To simultaneously calibrate
these Xπ/2 gates, we use the pulse train technique which pro-
gressively tunes up the pulse amplitude and drag coefficients
with increasing cycle number. We characterize our calibrated
single-qubit gate errors using simultaneous cross-entropy
benchmarking (XEB), with the result shown in Table VI.
The simultaneous single-qubit gate fidelities are limited by T2

times and residual crosstalk effect.

APPENDIX F: TWO-QUBIT GATES

The CNOT gates used in our experiment are synthesized
from native CZ gates and single-qubit gates. We use the
coupler-assisted adiabatic CZ gate scheme demonstrated in
our previous work [51]. The bipolar net-zero pulse technique
is used here for improving robustness against low-frequency
flux noise and minimizing signal distortion. For a unipolar
half, we employ a hyperbolic tangent pulse shape described
by

V (t ) = A
tanh[4ε(1/2 − |t |/τ )]

tanh(2ε)
, −τ/2 < t < τ/2, (F1)

where A and τ are the pulse amplitude and width, respectively.
ε is a parameter controlling pulse shape. Pulse profiles with
different ε parameters are shown in Fig. 8. A larger ε value
tends to make the pulse rise more rapidly and hence less
adiabatic. In our setup, we set all the CZ pulse duration to
60 + 60 ns (τ = 60 ns for each pole) as a trade-off between
leakage and decoherence errors.

During the CZ gate calibration, we first calibrate the flux
signal (Z) distortion and use inverse-infinite impulse response
(IIR) filters to predistort our pulses. Then, we calibrate the
flux (Z) crosstalk among different control lines and cancel it
with a compensation pulse. The shape parameter ε is decided
by performing the echoed CZ pulse train as a function of ε

and pulse amplitude A [Figs. 9(a) and 9(b)]. The control qubit
population reveals the information about the controlled phase
while the target qubit population reveals the information about

FIG. 12. Low-energy spectroscopy of a four-qubit Ising spin
chain. (a) VQE training (left panels) and error mitigation (right
panels) for the three lowest eigenstates for the four-qubit chain with
the transverse Ising interactions. (b) Comparison of the extrapolated
zero-noise energies (red bars) and the theoretical values (dashed
box) of the transverse Ising model. The error bars (blue bars) are
plus/minus two times the standard deviation from the measured
values.

the leakage. Monitoring both helps us determine the appropri-
ate value for ε. Here we choose ε ≈ 2 in our experiment.

Once the shape of the CZ pulse is determined, the only
left pulse parameter to calibrate is the pulse amplitude A,
which can be progressively tuned using the same echoed pulse
train sequence [Fig. 10(a)]. A similar procedure is followed to
obtain the local Z phase correction for both qubits [Fig. 10(b)].
Note that we divide the CZ gates in the eight-qubit chain
into two groups (Table VIII). These calibrations are simul-
taneously performed for qubit pairs in the same group. The
calibrated CZ gates are simultaneously benchmarked using
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parallel two-qubit XEB. The average gate fidelities are ap-
proximately 0.99 after subtracting the single-qubit gate errors
(Table VIII).

APPENDIX G: READOUT

To improve the fidelity of the readout, we employ the
shelving technique as described in Ref. [57]. This method
involves the addition of extra πe f pulses to all qubits before
executing the measurement pulse. When the demodulated sig-
nal falls within the |e〉 or | f 〉 region, it is regarded as the
|e〉 state. Consequently, any finite relaxation from the | f 〉 to
the |e〉 state during the readout pulse does not contribute to
single-shot readout errors. The πe f pulses are calibrated con-
currently, with a pulse width of 200 ns. The readout correction
matrix is determined by preparing all the 2N computational
states and measuring the probability of each resulting out-
come.

APPENDIX H: POTENTIAL LANDSCAPE

To validate the accuracy of our convergence, we use the
four-qubit Heisenberg state S1 as an example. The measured
potential profiles are compared to theory for six different
pairs of θ (four parameters) in Figs. 11(a) to 11(f). On
these figures, we also plot trajectories of two convergence
traces, showing how they reach the minimum in all these
dimensions.

APPENDIX I: FOUR-QUBIT ISING MODEL

Figure 12 shows the experimental results for the four-qubit
transverse Ising model. With similar training and error mitiga-
tion procedures, we obtain the three lowest-energy states E1,
E2, and E3. The circuits used in the experiment are listed in
Table VI.
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