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Fluctuation-driven self-trapping in Bose-Bose mixtures
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We investigate the collective dynamics of two-component Bose-Einstein condensates in a double well poten-
tial. By taking into account the Lee-Huang-Yang (LHY) correction from quantum fluctuation, we find that the
LHY term, though much smaller than the mean field interactions, can significantly change the coherent oscil-
lating behaviors of the bosonic Josephson junction in the regime of g12 � −√

g11g22. Besides the quantitative
renormalization to the plasma frequencies of the Josephson oscillations, a series of unexpected nonzero fixed
points beyond mean field emerges in the stationary state. More remarkably, unique macroscopic self-trapping
states, which are usually absent in the mean field dynamics, can be sustained by the LHY nonlinearity. Our results
reveal the nontrivial LHY effect on the Josephson dynamics, which can be tested in the current experiment.
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I. INTRODUCTION

Quantum fluctuations around the ground state can have
profound effects in the underlying systems beyond mean field.
One salient example is the Lee-Huang-Yang (LHY) correction
on the ground state energy of a dilute Bose gas [1,2], which
may stabilize a quantum droplet state against the mean-field
collapse in Bose-Bose mixtures [3–8] or dipolar gases [9–12].
More recently, by fully suppressing the mean field energy, a
LHY fluid governed by quantum fluctuations was proposed
[13] and observed [14]. These beyond-mean-field states high-
light the importance of the LHY correction and stimulate
on-going works to study the nontrivial LHY-related physics
[15–23] (for reviews, see [24,25]).

In the low-energy limit, the LHY correction to the ground
state energy, for a two-component Bose gas of equal mass m,
takes the form of [2,3,13]

ELHY =
∫

dr

[
32

√
2π

15

h̄2

m

∑
±

(a11n1 + a22n2 ± κ )
5
2

]
, (1)

where κ =
√

(a11n1 − a22n2)2 + 4a2
12n1n2 with ni and ai j de-

noting the density and scattering length, respectively. Such
a contribution emerging as a nonlinear term in the Gross-
Pitaevskii (GP) description [3,24] would change the dynamics
of the condensate. Of particular interest, if a double-well-
like potential is applied to achieve a Bose-Josephson junction
(BJJ) [26], a natural question arises: how are the bosonic
Josephson physics [27–32], such as the notable macroscopic
quantum self-trapping (MQST) [33,34], as well as the Joseph-
son oscillations being affected by the LHY term? Specifically,
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in the regime of a competing interspecies attraction [3,13]
where the mean-field energy is suppressed, the intriguing
LHY effects may become prominent, which however has
never been revealed so far.

In this work, we study the collective dynamics of a binary
Bose-Einstein condensate (BECs) in a double well potential
[35–40]. By taking into account the quantum LHY correction,
we find that the nonlinear LHY term, though much smaller
than the mean field interactions, can significantly change the
coherent oscillations of the condensates, giving rise to rich
dynamical behaviors with unique features. It shows that the
LHY term can considerably renormalize the frequencies of
the plasma oscillations in the Josephson regime. More remark-
ably, the LHY term itself can drive a dynamical transition to
distinct MQST phases, in sharp contrast to the mean-field cor-
respondence where such MQST is usually absent. We attribute
this to the LHY nonlinearity induced nontrivial fixed points of
the underlying dynamical equations beyond mean field. These
results, which are accessible in the current experiment, reveal
the nontrivial role played by the quantum fluctuation in the
bosonic Josephson effects and open an avenue to investigate
the intriguing LHY physics beyond mean field in a dynamical
way.

II. MODEL AND FORMULISM

We consider a binary BECs comprised of two internal
states (labeled as i = 1, 2) confined in a symmetric double-
well potential. In the presence of the LHY correction given by
Eq. (A2), the dynamics of the condensates can be described
by the modified Gross-Pitaevskii equations [24]

ih̄
∂�i

∂t
=

⎡
⎣− h̄2

2m
∇2 + Vdw +

∑
j

gi jn j

+ 128
√

π

3

h̄2

m
aii(a11n1 + a22n2)

3
2

⎤
⎦�i, (2)
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where �i(r) is the condensate wave function for the ith
component ni = |�i|2, and gi j = 4π h̄2ai j/m is the interaction
strength between component i and j. Vdw is a symmetric state-
independent double-well like potential [41]. For simplicity,
here we have assumed a competing (attractive) interaction
g12 = −√

g11g22 (g11, g22 > 0) such that the lower branch in
ELHY is vanishing.

Within the two-mode approximation for each component,
we can expand �i � ψiL(t )�L(r) + ψiR(t )�R(r) with the
ground state �L(R)(r) of the isolated left (right) well, and
derive the coupled motional equations for the amplitudes
ψiL(R) ≡ √

NiL(R)eiθiL(R) with NiL(R) and θiL(R) being the atom
number and phase of the ith component in the left (right) well,
which are given by

ih̄
∂ψiL

∂t
=

⎡
⎣EL

i +
∑

j

U L
i jNjL + αL

LHYaii(a11N1L

+ a22N2L )
3
2

⎤
⎦ψiL − JψiR, (3a)

ih̄
∂ψiR

∂t
=

⎡
⎣ER

i +
∑

j

U R
i j NjR + αR

LHYaii(a11N1R

+ a22N2R)
3
2

⎤
⎦ψiR − JψiL. (3b)

Here, EL(R)
i , U L(R)

i j , J, and α
L(R)
LHY are parameters character-

izing the intrawell energy, atom-atom interactions, interwell
tunneling, and LHY correction, respectively. For a symmetric
potential, we have EL

i = ER
i , U L

i j = U R
i j ≡ Ui j , and αL

LHY =
αR

LHY ≡ αLHY.
In terms of the relative particle number difference zi =

NiL−NiR
Ni

and phase difference φi = θiR − θiL, Eq. (3) can be
recast as (h̄ = 1),

żi = −
√

1 − z2
i sin φi, (4a)

φ̇i = �MF(−γ )(i−1)(z1 − γ z2) + zi√
1 − z2

i

cos φi

+�LHYγ 2(i−1) fγ (z1, z2), (4b)

with

fγ = (z1 + γ 2z2)
1 + γ 2 + 1

2

√
(1 + γ 2)2 − (z1 + γ 2z2)2√

1 + γ 2 +
√

(1 + γ 2)2 − (z1 + γ 2z2)2
.

Here we have rescaled the time as 2Jt → t and intro-
duced dimensionless parameters �MF = U11N/4J , �LHY =
αLHYa

5
2
11( N

2 )
3
2 /2J, and γ 2 = U22/U11 � 1. N = N1 + N2 is

the total atom number, and in this work we consider an equal
population of both components, i.e., N1 = N2 = N/2. Despite
the complicated form of LHY correction to the (relative)
phase variation, it respects a Z2 symmetry, i.e., Eq. (4) is
invariant under the transformation zi → −zi and φi → −φi.

In a semiclassic correspondence, Eq. (4) describes the
dynamics of two coupled nonrigid pendulums, where the
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FIG. 1. Plasma frequencies ω1 (a) and ω2 (b) as functions of
�LHY for different γ = 1 (blue solid), 1.5 (red dashed), and 2 (green
dash dotted). Here, �MF = 10.

conjugate variables {zi, φi} obeying the canonical relations
żi = − ∂H

∂φi
and φ̇i = ∂H

∂zi
are governed by the Hamiltonian

H = �MF

2
(z1−γ z2)2−

∑
i

√
1 − z2

i cos φi+�LHY[(1 + γ 2)2

× (1 + γ 2 +
√

(1 + γ 2)2 − (z1 + γ 2z2)2)
1
2

− 1

5
(1 + γ 2 +

√
(1 + γ 2)2 − (z1 + γ 2z2)2)

5
2 ]. (5)

It’s interesting to see that the LHY term introduces a fractional
power nonlinearity on the “angular momentum” zi, which
dictates the dynamical behaviors of two-component BJJ in the
LHY regime �LHY/J ∼ 1, and leads to rich physics beyond
mean field.

III. JOSEPHSON OSCILLATIONS

For small amplitude oscillations (|zi|, |φi| � 1) around the
ground state zi,0 = φi,0 = 0, Eq. (4) can be linearized as

żi � −φi, (6a)

φ̇i � �MF(−γ )(i−1)(z1 − γ z2)

+�LHYγ 2(i−1) f̃γ (z1 + γ 2z2) + zi, (6b)

where f̃γ = 3
2

√
1+γ 2

2 . Solving the above equations we can ob-
tain two eigenmodes of the linear sinusoidal oscillations with
the Josephson plasma frequencies ω1,2, as shown in Figs. 1(a)
and 1(b). For a symmetric interaction γ = 1, these two modes
reduce to z1(t ) = z2(t ) ∼ sin(ω1t ) with ω1 = √

3�LHY + 1,

and z1(t ) = −z2(t ) ∼ sin(ω2t ) with ω2 = √
2�MF + 1, in

analog to the in-phase and out-of-phase librations of two
coupled pendulums. As �MF 	 �LHY, one has ω2 	 ω1 cor-
responding to the collective (slow) density and (fast) spin
oscillations, respectively. Note that, though the LHY term
does not affect the spin oscillation (ω2), it remarkably renor-
malizes the oscillating frequency ω1 of the density, in contrast
to the mean-field ω1,MF = 2J where the LHY correction is
absent. For asymmetric interactions γ > 1, the decoupled
density and spin modes at γ = 1 get mixed, with both fre-
quencies ω1,2 being changed considerably.

Beyond the linear regime, a full simulation of Eq. (4) gives
generalized nonsinusoidal Josephson oscillations of zi and
φi due to the intrinsic anharmonicity. Specifically, when the
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TABLE I. Nonzero fixed points and their stabilities (γ = 1).

φs
1/φ

s
2 ±(zs

1/zs
2) (�LHY = 0) ±(zs

1/zs
2) (�LHY > 0)

π/π zs
1 = −zs

2 > 0
(�MF > 1

2 ), stable.
(i) zs

1 = −zs
2 > 0 (�MF > 1

2 ),
stable;

(ii) zs
1 = zs

2 > 0 (�LHY > 1
3 ),

stable (�LHY � �∗
LHY);

(iii) zs
1 > zs

2 > 0, zs
2 > zs

1 > 0
(�LHY > �∗

LHY), unstable.

π/0 zs
1 > zs

2 > 0 (�LHY > 1
6�MF

);
Nonea

stable.
0/π zs

2 > zs
1 > 0 (�LHY > 1

6�MF
),

None stable [42].

0/0 None None

a“None” means that the nonzero fixed point does not exist.

nonlinear interactions are dominant, a remarkable phe-
nomenon known as the MQST [33] may appear in the BJJ,
where the Z2 symmetry is dynamically broken with a spon-
taneous population imbalance of atoms in the double well.
As we will show in below that the LHY term, though much
smaller than the strength of the mean-field interactions, can
lead to unique MQST states beyond mean field.

IV. FIXED POINT AND STABILITY ANALYSIS

We proceed by considering the fixed points of Eqs. (4),
which characterize the possible MQST around a stationary
state. By setting all the derivatives as zero in Eq. (4), we
have φs

i = 0 or π while zs
i is generally obtained by numer-

ically solving two coupled equations [41]. Then for small
perturbations around the fixed point, i.e., (zi, φi ) = (zs

i +
δzi, φ

s
i + δφi ), we linearize Eq. (4) to obtain ( ¨δz1, ¨δz2)T =

M(δz1, δz2)T with M being the drift matrix and (· · · )T

denoting the transposition. Diagonalizing M to obtain two
eigenfrequencies −ω2

±, a stable fixed point requires ω2
± � 0.

There always exists a zero solution zs
1 = zs

2 = 0, while the
nonzero fixed points and their stabilities for different cases at
γ = 1 are listed in Table I, where ± reflects the Z2 symmetry.
One can see that in the presence of a LHY term, a series of
new fixed points beyond mean field arise.

For γ = 1, a symmetric solution zs
1 = zs

2 �= 0 develops at
a critical �c

LHY = 1/3 for the case φs
1/φ

s
2 = π/π , which in-

creases quickly with �LHY, as shown in Fig. 2(a). Such a
symmetric fixed point emerging from the spin-exchanging
symmetry becomes stable when �LHY � �∗

LHY with

�∗
LHY = (2�MF)1/3

√
1 + 1/(2�MF)1/3

√
2(2 + 1/(2�MF)1/3)

,

across which another two unstable asymmetric solutions set
up. While for the case φs

1/φ
s
2 = π/0 (0/π ), an asymmetric

zs
1 > zs

2 > 0 (zs
2 > zs

1 > 0) can be found for �LHY > �c
LHY =

1/6�MF. These nontrivial fixed points (for most of the cases)
are dynamically stable and can only exist in the presence of
LHY correction, in contrast to the soly antisymmetric solution
zs

1 = −zs
2 = ±

√
1 − 1/4�2

MF (�MF > 1/2) of the π/π case
in the mean field.
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FIG. 2. (a) Evolution of the nonzero fixed points versus �LHY for
φs

1/φ
s
2 = π/π (blue solid) and π/0, 0/π (red dashed and green dash

dotted) at γ = 1; (b) Critical �c
LHY versus γ for φs

1/φ
s
2 = π/π (blue

solid) and π/0 (red dashed). �MF = 10.

For γ > 1, due to the breaking of Z2-type spin-exchanging
symmetry, the nonzero solutions are generally asymmetric
with the critical �c

LHY shown in Fig. 2(b). For the π/π

case, �c
LHY decreases with γ and approaches

2
√

2
√

γ 2+1
3γ 2(γ+1)2 for

�MF 	 1. While for the π/0 case, �c
LHY → 2

√
2(γ−1)

3
√

γ 2+1γ 2(γ+1)

depends nonmonotonically on γ . Note that for the 0/π case
(refer to Table II), we have �c

LHY = 0 for γ = √
1 + 1/�MF,

meaning that the LHY-induced nonzero solution in this case
can survive in the mean field for sufficient asymmetric in-
teractions. We have also examined the stabilities of these
nonzero fixed points and find that most of them are stable,
as summarized in Table II.

The emerging of the nontrivial fixed points brought by the
LHY correction can not only manifest as self-trapping of the
atomic populations in steady states, but also indicate that more
interested dynamical MQST with 〈zi(t )〉 �= 0 beyond mean
field may appear in this system when away from the fixed
points.

V. FLUCTUATION-DRIVEN SELF-TRAPPING

Generally speaking, the dynamical MQST happens when
the nonlinear interaction energy of an initial state is dominant
over the kinetic energy (tunneling). To distill the effect of
LHY term, we are interested in the regime of z1(0) ∼ γ z2(0)
where the initial mean-field interaction energy of the state is
nearly vanishing. In this case, the MQST is always absent
for arbitrary initial phase φi(0) and mean-field interaction
�MF > 0 if �LHY = 0. The including of the LHY correction
can significantly change the mean-field scenario, and we will
see below that a finite but small �LHY would sustain a high-
lying self-trapping state due to the positive energy corrections
from quantum fluctuations. For simplicity, we first assume
φ1(0) = φ2(0). For γ = 1, both components exhibit the same
evolution behaviors governed by

ż = −
√

1 − z2 sin φ, (7a)

φ̇ = z√
1 − z2

cos φ +
√

2�LHYz
2 + √

1 − z2√
1 + √

1 − z2
, (7b)
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TABLE II. Nonzero fixed points and their stabilities for γ > 1.

φs
1/φ

s
2 ±(zs

1, zs
2) (�LHY = 0) ±(zs

1, zs
2) (�LHY > 0)

π/π zs
1 > −zs

2 > 0 for �MF > 1
1+γ 2 , stable. zs

1 > −zs
2 > 0 for �MF > 1

1+γ 2 , stable; zs
1 > zs

2 > 0 for

�LHY > 2
√

2

3
√

1+γ 2

�MF+�MFγ 2−1
�MFγ 2+2�MFγ 3+�MFγ 4−γ 4−1

, unstable.

π/0 None. zs
1 > zs

2 > 0 for �LHY > 2
√

2

3
√

1+γ 2

−�MF+�MFγ 2+1
�MFγ 2+2�MFγ 3+�MFγ 4−γ 4+1

, stable

for �LHY � ��,1
LHY or �LHY � ��,2

LHY
a.

0/π zs
2 > zs

1 > 0 for �MF > 1
γ 2−1

, stable. zs
2 > zs

1 > 0 for �MF > 1
γ 2−1

, stable;zs
2 > zs

1 > 0 for

�LHY > 2
√

2

3
√

1+γ 2

�MF−�MFγ 2+1
�MFγ 2+2�MFγ 3+�MFγ 4+γ 4−1

and �MF < 1
γ 2−1

,

stable.

0/0 None. None.

aThe imaginary parts of the eigenfrequencies ω± are nonzero for ��,1
LHY < �LHY < ��,2

LHY, see [41] for more details.

where z1 = z2 ≡ z and φ1 = φ2 ≡ φ. Compared to the mean-
field dynamics of a single-component BJJ [33], here the
atomic nonlinearity fully depends on the LHY correction.

From Eq. (7), a dynamical MQST of z emerges when the
energy of an initial state is larger than the threshold Eth = 2 +
8
5�LHY. This can be achieved if �LHY > �th

LHY with

�th
LHY = 1 +

√
1 − z2(0) cos φ(0)

2
√

2[(1+
√

1−z2(0))
1
2 − 1

5 (1 +
√

1 − z2(0))
5
2 ] − 4

5

.

(8)

In Figs. 3(a) and 3(b), we show the dynamical evolution of
z(t ) and the corresponding energy contour given by Eq. (5)
in the z-φ space under the initial conditions z(0) = 0.6 and
φ(0) = π for different �LHY. With the increasing of �LHY,
a dynamical transition from sinusoid-type oscillations around
z = 0 to anharmonic oscillation with nonzero 〈z(t )〉 �= 0 can
be clearly identified, suggesting the MQST arises for �LHY >

�th
LHY � 0.3733 from Eq. (8).
Such a LHY driven self-trapping can also be found for

more general γ (>1) and φ1(0) �= φ2(0). For example, in
Figs. 3(c) and 3(d), we show the evolutions of zi(t ) and φi(t )
at γ = 1.5 for φ1(0)/φ2(0) = π/0. There are two types of
self-trapping states: for small �LHY in Fig. 3(c), both zi(t )
and φi(t ) exhibit small-amplitude oscillations; while for rel-
atively large �LHY in Fig. 3(d), zi(t ) shows large-amplitude
oscillation and the phase φi(t ) begins to run, corresponding
to the so-called “π phase” and “running phase” MQST [34].
Notice that the required LHY parameter to trigger the MQST
for γ > 1 is much smaller than the symmetric case, facilitat-
ing the observation in realistic experiments. We would like
to point out that, besides the regular oscillating behaviors
discussed above, irregular oscillations with chaotic features
[43–45] may be also found in this system especially in the
regime of large �LHY, which however, is beyond the scope of
this work and we leave it for the future study.

VI. DISCUSSION AND CONCLUSION

So far, we have focused on a competing interaction with
δg ≡ 1 + g12/

√
g11g22 = 0, which may be not exactly tuned

in experiment. Deviating from δg = 0, both branches in
Eq. (A2) would contribute to the dynamics in general [41].
In Fig. 4, we plot the critical �c

LHY as a function of δg. One
can see �c

LHY decreases with δg gradually, indicating that the
main results governed by the LHY term would not be changed
essentially until a sufficiently large δg beyond which the mean
field interactions take over.

In the experiment, the BJJ has been realized in diverse
setups [27,28,32], where arbitrary initial conditions can be
generally prepared and the dominating mean field dynamics is
observed. To detect the LHY effect reported in this work, one

FIG. 3. (a) Time evolution of z(t ) for �LHY = 0 (top), 0.37 (mid-
dle), and 0.38 (bottom); (b) Constant energy contour in the z-φ plane
for �LHY = 0 (black thin solid), 0.37 (blue dash dotted), 0.38 (red
solid), 0.6 (yellow dashed), and 0.9 (green dotted), respectively;
Time evolutions of zi(t ) and φi(t ) at γ = 1.5 for (c) �LHY = 0.07 and
(d) �LHY = 0.2. The initial conditions are [z(0), φ(0)] = [0.6, π ]
for (a) and (b), and [z1(0), φ1(0), z2(0), φ2(0)] = [0.6, π, 0.4, 0] for
(c) and (d). �MF = 10.
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FIG. 4. Critical �c
LHY as a function of δg for γ = 1 (blue solid)

and 1.6 (red dashed). Here φs
1/φ

s
2 = π/π and �MF = 10.

can tune the interactions to the regime of δg ≈ 0 by the Fesh-
bach resonance [46]. For example, the competing interactions
of two hyperfine states |1,−1〉 and |1, 0〉 of 39K [14] are a11 �
33.3a0, a22 � 84.2a0, and a12 � −53.2a0 (a0 the Bohr radius)
with γ = √

a22/a11 � 1.6; this gives the critical �LHY ≈ 0.06
and 0.16 of the two types of MQST in Figs. 3(c) and 3(d) with
the same initial conditions. Considering the LHY correction is
about several percents of the mean field energy for the typical
atomic density with gas parameter na3 ∼ 10−5 − 10−4 [47],
the LHY parameter �LHY can be tuned by varying the mean
field �MF and/or the interwell tunneling J to address the
relevant regime in this work.

To conclude, we have investigated the LHY effect on the
collective dynamics of a two-component BJJ. A remarkable
dynamical transition to unique self-trapping states together
with a series of nontrivial fixed points beyond mean field are
predicted to appear even for a tiny LHY correction, which
arises from the quantum fluctuations. Our work paves a new
way to explore the unusual LHY physics within the current
experiment. Future studies may include the Josephson effect
in the droplet regime with δg < 0, the LHY effect on the
chaotic dynamics of the BJJ and the Measure synchronization
[48,49].
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APPENDIX A: DERIVATION OF THE MODEL

We consider a binary Bose-Einstein condensate (BECs)
comprised of two internal states (labeled as i = 1, 2) of mass
m in a double-well potential, with the mean field energy
given by

EMF =
∫

dr
∑
i=1,2

�∗
i (r)[− h̄2∇2

2m
+ Vdw(r)

+ 1

2

∑
j=1,2

gi jn j (r)]�∗
i (r), (A1)

Distance

FIG. 5. Schematic of the double-well potential.

where ni = |�i|2 is the density with �i(r) (i = 1, 2) being
the condensate wave function for the ith component. gi j =
4π h̄2ai j/m represents the strength of the contact interaction
between the atoms of component i and j with ai j being the
corresponding s-wave scattering length. Vdw is a (symmet-
ric) state-independent double-well-like potential (see Fig. 5),
which for instance may be formed by splitting a trap into two
parts with a periodic potential [27] or using a single periodic
unit of an optical superlattice [32]. Beyond mean field, the
quantum fluctuations would contribute to the ground state
energy. To the leading order, it gives to the notable LHY
correction, which, for the two-component Bose gas, is

ELHY =
∫

dr

[
32

√
2π

15

h̄2

m

∑
±

(a11n1 + a22n2

±
√

(a11n1 − a22n2)2 + 4a2
12n1n2)

5
2

]
. (A2)

In this work, we are interested in the regime of competing
(attractive) interactions with g12 � −√

g11g22 (g11, g22 > 0),
i.e., a12 � −√

a11a22 (a11, a22 > 0), where the mean field
interactions are (partly) suppressed. To proceed, we first con-
sider g12 = −√

g11g22, i.e., δg ≡ g12 + √
g11g22 = 0. In this

case, the lower “−” branch in Eq. (A2) is vanishing. Then,
the dynamics of the condensates in the presence of LHY
correction can be described by the modified Gross-Pitaevskii
equations [24]

ih̄
∂�1

∂t
=

[
− h̄2∇2

2m
+ Vdw + g11n1 + g12n2

+ 128
√

π

3

h̄2

m
a11(a11n1 + a22n2)

3
2

]
�1, (A3a)

ih̄
∂�2

∂t
=

[
− h̄2∇2

2m
+ Vdw + g12n1 + g22n2

+ 128
√

π

3

h̄2

m
a22(a11n1 + a22n2)

3
2

]
�2. (A3b)

For weakly interacting BECs in a double-well potential, the
two-mode approximation can be applied, and we expand the
condensate wave function �i as

�i(r, t ) � ψiL(t )�L(r) + ψiR(t )�R(r), (A4)
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where ψiL(R)(t ) is the time-dependent amplitude and �L(R)(r)
is the ground state in the isolated left (right) well, satisfying

∫
dr|�L|2 =

∫
dr|�R|2 = 1,∫

dr�∗m
L �n

R =
∫

dr�∗n
R �m

L � 0 (m, n � 1), (A5)

Ni =
∫

dr|�i|2 =
∫

dr|ψiL|2 +
∫

dr|ψiR|2

= NiL + NiR. (A6)
Substituting Eq. (A4) into Eq. (A3) and taking use of

Eq. (A5), we arrive at the dynamical equations for the am-
plitudes ψiL(R) (i = 1, 2):

ih̄
∂ψiL

∂t
=

⎡
⎣EL

i +
∑

j

U L
i j |ψ jL|2 + αL

LHYaii(a11|ψ1L|2 + a22|ψ2L|2)
3
2

⎤
⎦ψiL − JψiR, (A7a)

ih̄
∂ψiR

∂t
=

⎡
⎣ER

i +
∑

j

U R
i j |ψ jR|2 + αR

LHYaii(a11|ψ1R|2 + a22|ψ2R|2)
3
2

⎤
⎦ψiR − JψiL, (A7b)

where

EL(R)
i =

∫
dr�∗

L(R)

(
− h̄2

2m
∇2 + Vdw

)
�L(R),

U L(R)
i j = gi j

∫
dr|�L(R)|4,

α
L(R)
LHY = 128

√
π

3

h̄2

m

∫
dr|�L(R)|5,

J = −
∫

dr�∗
L

(
− h̄2

2m
∇2 + Vdw

)
�R

(A8)

are parameters characterizing the intrawell energy, mean-field interaction, LHY correction, and interwell tunneling, respectively.
For a symmetric potential considered in this work, we have EL

i = ER
i , U L

i j = U R
i j ≡ Ui j , and αL

LHY = αR
LHY ≡ αLHY.

By writing ψiL(R) ≡ √
NiL(R)eiθiL(R) with NiL(R) and θiL(R) being the atom number and phase of the ith component in the left

(right) well, and further introducing the relative particle number difference zi = NiL−NiR
Ni

and phase difference φi = θiR − θiL,
Eq. (A7) can be rewritten as (h̄ = 1),

żi = −2J
√

1 − z2
i sin φi,

φ̇i =
∑
j=1,2

Ui jNjz j + 2J
zi√

1 − z2
i

cos φi + αLHYaii f (z1, z2),
(A9)

where

f (z1, z2) = (a11N1z1 + a22N2z2)(a11N1 + a22N2 + 1
2

√
(a11N1 + a22N2)2 − (a11N1z1 + a22N2z2)2)√

a11N1 + a22N2 +
√

(a11N1 + a22N2)2 − (a11N1z1 + a22N2z2)2
. (A10)

For a balanced population of both components, i.e., N1 = N2 = N
2 with N the total particle number, by introducing dimensionless

parameters �MF = U11N/4J , �LHY = αLHYa
5
2
11( N

2 )
3
2 /2J, and γ = √

U22/U11 � 1, and rescaling the time as 2Jt → t , we finally
obtain the dynamical equations (4a) and (4b) in the main text, which are

żi = −
√

1 − z2
i sin φi,

φ̇i = �MF(−γ )(i−1)(z1 − γ z2) + zi√
1 − z2

i

cos φi + �LHYγ 2(i−1) fγ (z1, z2),
(A11)

with fγ (z1, z2) = (z1 + γ 2z2)
1+γ 2+ 1

2

√
(1+γ 2 )2−(z1+γ 2z2 )2√

1+γ 2+
√

(1+γ 2 )2−(z1+γ 2z2 )2
.
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APPENDIX B: FIXED POINT AND THE STABILITY ANALYSIS

The fixed point of the system is given by the stationary solution of Eq. (A11), which is obtained by setting all the derivatives
as zero, yielding √

1 − z2
1 sin φs

1 = 0,

√
1 − z2

2 sin φs
2 = 0,

�MF
(
zs

1 − γ zs
2

) + zs
1√

1 − (
zs

1

)2
cos φs

1 + �LHY fγ
(
zs

1, zs
2

) = 0,

�MFγ (γ zs
2 − zs

1) + zs
2√

1 − (
zs

2

)2
cos φs

2 + �LHYγ 2 fγ
(
zs

1, zs
2

) = 0. (B1)

Solving the first two equations, one has φs
i = 0 or π (i = 1, 2), while zs

i is obtained from the last two equations in above, which
depending on φs

i . To study the stability of the resultant fixed point, we consider small fluctuations (δzi, δφi) around the stationary
point (zs

i , φ
s
i ), i.e. zi = zs

i + δzi and φi = φs
i + δφi, and then linearize Eqs. (A11) to obtain:

δżi = −
√

1 − (zs
i )2 cos φs

i δφi,

δφ̇i = �MF(−γ )(i−1)(δz1 − γ δz2) + [
1 − (

zs
i

)2]− 3
2 cos φs

i δzi + �LHYγ 2(i−1) f ′
γ

(
δz1 + γ 2δz2

)
,

(B2)

where we have taken use of Eq. (B1) and

f ′
γ = ∂ f

∂z
|z=zs

1+γ 2zs
2
=

3
2 (1 + γ 2)2 + 3

2 (1 + γ 2)
√

(1 + γ 2)2 − (
zs

1 + γ 2zs
2

)2 − 3
4

(
zs

1 + γ 2zs
2

)2

(1 + γ 2 +
√

(1 + γ 2)2 − (
zs

1 + γ 2zs
2

)2
)

3
2

. (B3)

From Eq. (B2), we have (
δz̈1

δz̈2

)
= M

(
δz1

δz2

)
, (B4)

where M is a 2 × 2 drift matrix with the elements

M11 = −�MF

√
1 − (zs

1)2 cos φs
1 − 1

1 − (zs
1)2

− �LHY

√
1 − (zs

1)2 cos φs
1 f ′

γ ,

M12 = γ�MF

√
1 − (zs

1)2 cos φs
1 − γ 2�LHY

√
1 − (zs

1)2 cos φs
1 f ′

γ ,

M21 = γ�MF

√
1 − (zs

2)2 cos φs
2 − γ 2�LHY

√
1 − (zs

2)2 cos φs
2 f ′

γ ,

M22 = −γ 2�MF

√
1 − (zs

2)2 cos φs
2 − 1

1 − (zs
2)2

− γ 4�LHY

√
1 − (zs

2)2 cos φs
2 f ′

γ . (B5)

Diagonalizing M, we arrive at two eigenfrequencies

ω2
± = 1

2 (−M11 − M22 ±
√

(M11 − M22)2 + 4M12M21). (B6)

A stable fixed point requires ω2
± � 0, and the critical value

is given by the lower branch with ω− = 0, which gives
M11M22 = M12M21.

Before proceeding, we notice that there always exists a
zero solution zs

1 = zs
2 = 0 for all cases, while the nonzero so-

lution always appears in a pair with the form of ±(zs
1, zs

2) �= 0
due to the Z2 symmetry. In the following, we mainly discuss
the nonzero (stationary) solutions and their stabilities in dif-
ferent cases with (φs

1, φ
s
2) = (π, π ), (0, π ), (π, 0), and (0,0).

We will see that the LHY correction can induce a series of

unique nontrivial fixed points, which play essential roles in
the collective dynamics.

Case I: (φs
1, φ

s
2) = (0, 0). In this case, only the zero solu-

tion zs
1 = zs

2 = 0 exists, corresponding to the ground state of
the system.

Case II: (φs
1, φ

s
2) = (π, π ). In this case, a pair of nonzero

solutions ±(zs
1, zs

2) (zs
1 � −zs

2 > 0) appear in the mean field
when �MF > �c

MF = 1
1+γ 2 for �LHY = 0, which are dynami-

cally stable and become antisymmetric (zs
1 = −zs

2) for γ = 1
with �c

MF = 1
2 . While beyond mean field with �LHY > 0, new

013014-7



ZHENG-YAN LIU, AN-CHUN JI, AND QING SUN PHYSICAL REVIEW RESEARCH 6, 013014 (2024)

0 0.5 1 1.5
0

0.5

1

0 0.5 1 1.5
-20

0

20

40

0 0.5 1 1.5
-50

0

50

100

150
(a) )c()b(

FIG. 6. Nonzero fixed points zs
1,2 (a) and the corresponding eigenfrequencies ω2

± (b), (c) of small fluctuations in the π/π case. Here, γ = 1
for (b), and γ = 1.5 for (c). �MF = 10.

asymmetric solutions ±(zs
1, zs

2) (zs
1 � zs

2 > 0) develop when
�LHY > �c

LHY with

�c
LHY = 2

√
2

3
√

1 + γ 2

�MF + �MFγ
2 − 1

�MFγ 2 + 2�MFγ 3 + �MFγ 4 − γ 4 − 1
.

(B7)

Specifically for γ = 1, the above asymmetric solutions are
symmetric (zs

1 = zs
2) with �c

LHY = 1
3 , which is independent on

the mean field parameter �MF. More interestingly for γ =
1, besides the Z2 symmetry, there is another symmetry that
Eq. (B1) is invariant by exchanging zs

1 ↔ zs
2. This gives rise to

another two pairs of asymmetric solutions ±(zs
1, zs

2),±(zs
2, zs

1)
(zs

1 > zs
2 > 0) when �LHY > �∗

LHY with

�∗
LHY = (2�MF)

1
3

√
1 + (2�MF)−

1
3

√
2[2 + (2�MF)−

1
3 ]

. (B8)

As shown in Fig. 6, these asymmetric solutions are dynami-
cally unstable, while the symmetric ones become stable when
�LHY � �∗

LHY, where ω− = 0 for �LHY = �∗
LHY.

Case III: (φs
1, φ

s
2) = (π, 0) or (0, π ). In the mean field with

�LHY = 0, there is only zero solution for both cases. While in
the presence of LHY term, nonzero solutions can exist with
the (asymmetric) fixed points and corresponding critical LHY
parameters given by

(π, 0) : ±(zs
1, zs

2) (zs
1 > zs

2 > 0),

�c
LHY = 2

√
2

3
√

1 + γ 2

−�MF + �MFγ
2 + 1

�MFγ 2 + 2�MFγ 3 + �MFγ 4 − γ 4 + 1
,

(B9)

and

(0, π ) : ±(zs
1, zs

2) (zs
2 > zs

1 > 0),

�c
LHY = 2

√
2

3
√

1 + γ 2

�MF − �MFγ
2 + 1

�MFγ 2 + 2�MFγ 3 + �MFγ 4 + γ 4 − 1
.

(B10)

For γ = 1, above solutions for both cases relate to each other
under zs

1 ↔ zs
2 with the same �c

LHY = 1
6�MF

. Notice that from
Eq. (B10) of the (0, π ) case, we have �c

LHY � 0 when γ �√
1 + 1

�MF
, meaning that the nonzero solutions induced by the

LHY correction in the (0, π ) case can survive in the mean
field if the interactions are sufficiently asymmetric. As shown
in Fig. 7, except for ��,1

LHY < �LHY < ��,2
LHY where the eigen-

frequencies ω± have imaginary parts [i.e., (M11 − M22)2 +
4M12M21 < 0] and thus are unstable [referred to the dashed
lines in Figs. 7(d) and 7(e)], the asymmetric solutions in these
two cases are stable against small perturbations, indicating the
“π -phase” self-trapping around these fixed points.

APPENDIX C: LHY EFFECT FOR δg > 0

In this section, we consider a general case with δg > 0,
such that both branches in the LHY correction (A2) would
contribute to the collective dynamics. Similar to the first sec-
tion, after a tedious but straightforward derivation, we can
obtain the dimensionless dynamical equations for the relative
number difference zi and phase difference φi, which are

żi = −
√

1 − z2
i sin φi,

φ̇i = �MFγ
2(i−1)zi + �MFβz j �=i + zi√

1 − z2
i

cos φi + 1

16
�LHYγ 2(i−1)(μ(1)

+ + μ
(1)
− − μ

(2)
+ − μ

(2)
− ). (C1)
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FIG. 7. Nonzero fixed points zs
1,2 (a)–(c) and the corresponding eigenfrequencies ω2

± (d)–(f) of small fluctuations in the π/0 (a), (b), (d),
(e) and 0/π (a), (c), (d), (f) cases. The green-dashed lines in (d) and (e) denote the real parts of ω± where the imaginary parts are not zero for
��,1

LHY < �LHY < ��,2
LHY and thus unstable. Here, γ = 1 for (a) and (d), and γ = 1.5 for others. �MF = 10.

Here

μ
(1)
+ =

(
1 + 1 + z1 − γ 2(1 + z2) + 2β2(1 + z2)

κ+

)(
1 + z1 + γ 2 + γ 2z2 + κ+

) 3
2 ,

μ
(1)
− =

(
1 − 1 + z1 − γ 2(1 + z2) + 2β2(1 + z2)

κ+

)(
1 + z1 + γ 2 + γ 2z2 − κ+

) 3
2 ,

μ
(2)
+ =

⎛
⎝1 +

−(1 − z1) + γ 2(1 − z2) + 2 β2

γ 2 (1 − z1)

κ−

⎞
⎠(

1 − z1 + γ 2 − γ 2z2 + κ−
) 3

2 ,

μ
(2)
− =

⎛
⎝1 −

−(1 − z1) + γ 2(1 − z2) + 2 β2

γ 2 (1 − z1)

κ−

⎞
⎠(

1 − z1 + γ 2 − γ 2z2 − κ−
) 3

2 ,

(C2)

with

κ± =
√

[1 ± z1 − γ 2(1 ± z2)]2 + 4β2(1 ± z1)(1 ± z2), (C3)

and β ≡ g12

g11
(< 0). We further introduce a dimensionless

δg ≡ δg
g11

= β + γ . Then for β = −γ , we have δg = 0 and
Eq. (A11) is recovered. For a general δg > 0, one can solve
Eq. (C1) to find the dynamical evolutions as well as the fixed
points of the system. In Fig. 8, we give the evolutions of zi and
φi for δg = 0.05 under the same initial conditions used in the
main text. We can see that similar dynamical behaviors can

be identified in different cases, suggesting the main results
discussed in the main text would be not changed essentially
for δg > 0. Moreover, the threshold LHY parameter to trigger
the MQST is found to be even lower than the case of δg = 0,
which is reflected on the decreasing of the critical LHY pa-
rameter �c

LHY for nontrivial fixed points with δg, as shown in
the main text.
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FIG. 8. (a) Time evolution of z(t ) for �LHY = 0 (top), 0.21 (middle), and 0.22 (bottom); time evolutions of zi(t ) and φi(t ) at γ = 1.6
for (b) �LHY = 0.02 and (c) �LHY = 0.16. The initial conditions are [z(0), φ(0)] = [0.6, π ] for (a) and [z1(0), φ1(0), z2(0), φ2(0)] =
[0.6, π, 0.4, 0] for (c). Here, δg = 0.05 and �MF = 10.

[1] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and
eigenfunctions of a Bose system of hard spheres and its low-
temperature properties, Phys. Rev. 106, 1135 (1957).

[2] D. M. Larsen, Binary mixtures of dilute Bose gases with re-
pulsive interactions at low temperature, Ann. Phys. 24, 89
(1963).

[3] D. S. Petrov, Quantum mechanical stabilization of a collapsing
Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).

[4] D. S. Petrov and G. E. Astrakharchik, Ultradilute low-
dimensional liquids, Phys. Rev. Lett. 117, 100401 (2016).

[5] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and
L. Tarruell, Bright soliton to quantum droplet transition in a
mixture of Bose-Einstein condensates, Phys. Rev. Lett. 120,
135301 (2018).

[6] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture
of Bose-Einstein condensates, Science 359, 301 (2018).

[7] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk,
F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M.
Fattori, Self-bound quantum droplets in atomic mixtures in free
space, Phys. Rev. Lett. 120, 235301 (2018).

[8] C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F.
Ancilotto, M. Modugno, F. Minardi, and C. Fort, Observa-
tion of quantum droplets in a heteronuclear bosonic mixture,
Phys. Rev. Res. 1, 033155 (2019).

[9] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and T.
Pfau, Self-bound droplets of a dilute magnetic quantum liquid,
Nature (London) 539, 259 (2016).

[10] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of quantum droplets in a strongly dipolar
Bose gas, Phys. Rev. Lett. 116, 215301 (2016).

[11] C. Mishra, L. Santos, and R. Nath, Self-bound doubly dipo-
lar Bose-Einstein condensates, Phys. Rev. Lett. 124, 073402
(2020).

[12] J. C. Smith, D. Baillie, and P. B. Blakie, Quantum droplet states
of a binary magnetic gas, Phys. Rev. Lett. 126, 025302 (2021).

[13] N. B. Jørgensen, G. M. Bruun, and J. J. Arlt, Dilute fluid
governed by quantum fluctuations, Phys. Rev. Lett. 121, 173403
(2018).

[14] T. G. Skov, M. G. Skou, N. B. Jø rgensen, and J. J. Arlt,
Observation of a Lee-Huang-Yang fluid, Phys. Rev. Lett. 126,
230404 (2021).

[15] Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner,
Three-dimensional droplets of swirling superfluids, Phys. Rev.
A 98, 013612 (2018).

[16] G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno,
M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions
of self-bound quantum droplets, Phys. Rev. Lett. 122, 090401
(2019).

[17] X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang,
B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and
vortices, Phys. Rev. Lett. 123, 133901 (2019).

[18] L. He, P. Gao, and Z.-Q. Yu, Normal-superfluid phase separa-
tion in spin-half bosons at finite temperature, Phys. Rev. Lett.
125, 055301 (2020).

[19] H. Hu and X.-J. Liu, Consistent theory of self-bound quantum
droplets with bosonic pairing, Phys. Rev. Lett. 125, 195302
(2020).

[20] R. N. Bisset, L. A. Peña Ardila, and L. Santos, Quantum
droplets of dipolar mixtures, Phys. Rev. Lett. 126, 025301
(2021).

[21] Y. Ma, C. Peng, and X. Cui, Borromean droplet in three-
component ultracold Bose gases, Phys. Rev. Lett. 127, 043002
(2021).

[22] L. Lavoine, A. Hammond, A. Recati, D. S. Petrov, and
T. Bourdel, Beyond-mean-field effects in rabi-coupled two-
component Bose-Einstein condensate, Phys. Rev. Lett. 127,
203402 (2021).

[23] L. Dong and Y. V. Kartashov, Rotating multidimensional quan-
tum droplets, Phys. Rev. Lett. 126, 244101 (2021).

[24] Z.-H. Luo, W. Pang, B. Liu, Y.-Y. Li, and B. A. Malomed, A
new form of liquid matter: Quantum droplets, Front. Phys. 16,
32201 (2021).

[25] F. Böttcher, J. Schmidt, J. Hertkorn, K. S. H. Ng, S. D.
Graham, M. Guo, T. Langen, and T. Pfau, New states
of matter with fine-tuned interactions: quantum droplets
and dipolar supersolids, Rep. Prog. Phys. 84, 012403
(2021).

013014-10

https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1016/0003-4916(63)90066-6
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRevLett.120.135301
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1103/PhysRevResearch.1.033155
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.124.073402
https://doi.org/10.1103/PhysRevLett.126.025302
https://doi.org/10.1103/PhysRevLett.121.173403
https://doi.org/10.1103/PhysRevLett.126.230404
https://doi.org/10.1103/PhysRevA.98.013612
https://doi.org/10.1103/PhysRevLett.122.090401
https://doi.org/10.1103/PhysRevLett.123.133901
https://doi.org/10.1103/PhysRevLett.125.055301
https://doi.org/10.1103/PhysRevLett.125.195302
https://doi.org/10.1103/PhysRevLett.126.025301
https://doi.org/10.1103/PhysRevLett.127.043002
https://doi.org/10.1103/PhysRevLett.127.203402
https://doi.org/10.1103/PhysRevLett.126.244101
https://doi.org/10.1007/s11467-020-1020-2
https://doi.org/10.1088/1361-6633/abc9ab


FLUCTUATION-DRIVEN SELF-TRAPPING IN BOSE-BOSE … PHYSICAL REVIEW RESEARCH 6, 013014 (2024)

[26] R. Gati and M. K. Oberthaler, A bosonic Josephson junction,
J. Phys. B: At. Mol. Opt. Phys. 40, R61 (2007).

[27] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Direct observation of tunneling and nonlinear
self-trapping in a single bosonic Josephson junction, Phys. Rev.
Lett. 95, 010402 (2005).

[28] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and
d.c. Josephson effects in a Bose-Einstein condensate, Nature
(London) 449, 579 (2007).

[29] A.-C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Josephson effect for
photons in two weakly linked microcavities, Phys. Rev. Lett.
102, 023602 (2009).

[30] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Classical
bifurcation at the transition from Rabi to Josephson dynamics,
Phys. Rev. Lett. 105, 204101 (2010).

[31] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac,
L. Ferrier, I. Sagnes, E. Galopin, A. Lemaître, G. Malpuech,
and J. Bloch, Macroscopic quantum self-trapping and Joseph-
son oscillations of exciton polaritons, Nat. Phys. 9, 275
(2013).

[32] G. Spagnolli, G. Semeghini, L. Masi, G. Ferioli, A.
Trenkwalder, S. Coop, M. Landini, L. Pezzè, G. Modugno, M.
Inguscio, A. Smerzi, and M. Fattori, Crossing over from attrac-
tive to repulsive interactions in a tunneling bosonic Josephson
junction, Phys. Rev. Lett. 118, 230403 (2017).

[33] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy,
Quantum coherent atomic tunneling between two trapped Bose-
Einstein condensates, Phys. Rev. Lett. 79, 4950 (1997).

[34] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy,
Coherent oscillations between two weakly coupled Bose-
Einstein condensates: Josephson effects, π oscillations, and
macroscopic quantum self-trapping, Phys. Rev. A 59, 620
(1999).

[35] S. Ashhab and C. Lobo, External Josephson effect in Bose-
Einstein condensates with a spin degree of freedom, Phys. Rev.
A 66, 013609 (2002).

[36] H. T. Ng, C. K. Law, and P. T. Leung, Quantum-correlated
double-well tunneling of two-component Bose-Einstein con-
densates, Phys. Rev. A 68, 013604 (2003).
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