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Relaxation time as early warning signal of avalanches in self-organizing systems
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Avalanches are sudden, destructive, and extremely difficult to forecast natural disasters that can result in
numerous fatalities and extensive property damage. Given the immense danger posed by avalanches, there is
a significant amount of attention paid to accurately predicting these events. We investigate the predictability
of large avalanches in a class of self-organizing systems, which change their internal structure or function in
response to external circumstances by manipulating or organizing other elements of the same system. Here, we
propose a practical relaxation time to replace a traditional recovery time, and importantly, the relaxation time
does not require the removal of part of the resources (perturb state variables) in the environment. This work
provides examples of the forest fire model and sandpile model as self-organizing systems in which the relaxation
time successfully predicts the onset of large avalanches. Furthermore, the relaxation time can show a consistent
with the increasing trend in both oscillatory and nonoscillatory bifurcations, suggesting that the relaxation time
is more universal than traditional indirect metrics such as the variance and the lag-1 autocorrelation function. We
aim to identify early warning signals before the onset of large avalanches and provide scientific evidence and
significant information for managers to formulate mitigation countermeasures and strategic decisions.
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I. INTRODUCTION

The dynamics of self-organizing systems [1–10] in na-
ture often occur in terms of catastrophic shifts [11–16] or
avalanches [17–19]. Avalanche events are increasingly attract-
ing the attention of scientists and decision makers since of
their impact on ecosystems, which is exacerbated by our in-
creasing global environmental degradation [8,20]. Examples
of avalanches include forest fires [21–23], landslides [24–27],
earthquakes [28–30], solar flares [31–33], and neuronal activ-
ity [34,35]. Avalanches are natural disasters that are sudden,
destructive, and extremely difficult to forecast, and can cause a
large number of casualties and heavy property losses [36–39].
Due to the potential hazards posed by avalanches, there is a
significant amount of attention paid to predicting these events.

Systems with self-organized criticality [40–47] properties
can spontaneously evolve to a critical state in which small
changes trigger major avalanches due to subtle interdependen-
cies between elements [48,49]. The conjecture of avalanche
events with self-organized criticality leads to an adverse rec-
ommendation to efforts of a class of self-organizing systems
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prediction. This is because self-organized criticality means
that it is difficult to predict where and when an avalanche will
occur and how strong it will become [50–55]. Understanding
the self-organizing behavior of systems under changing en-
vironmental conditions and improving capabilities to predict
large avalanches are priorities for research [56,57]. An influ-
ential approach to predicting the onset of large avalanches is
to estimate changes in the critical exponent, and good results
have been obtained [58–65]. Despite its appeal, the critical
exponent in fact has a limitation: The results of the critical ex-
ponent usually require high-resolution spatial data, and such
data are sometimes not available [60,66–68].

Both theoretical and experimental studies have shown that
the recovery rate from perturbation should go to zero as the
system approaches a tipping point, and this is the essence of
critical slowing down [69–71]. Much work has been focused
on ways to infer critical slowing down from indirect indicators
such as variance [72–74] and lag-1 autocorrelation [75–77].
Although these indicators are associated with critical slowing
down in simple stochastically forced models [8,74,78], the
indirect indicators do not always respond in a simple way [79].
It has been confirmed by experiments that trends in indirect
indicators emerged in the climate [8], the food web of a lake
[80], and laboratory populations of water fleas [7] systems,
but were not all consistent. The simplest way to measure the
close to a tipping point would be to directly measure the
recovery time at which the system state returns to its initial
equilibrium state after a perturbation [81,82]. A perturbation
experiment (recovery time) is the most direct way to measure
critical slowing down and may be more informative than other
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warning signals in some cases [9,70]. However, they may
be difficult to implement both for practical and conceptual
reasons. Not only it is difficult to remove a part of the biomass
of a population, but such perturbation may potentially trigger
itself a transition if it pushes the state of the system beyond its
present basin of attraction [9,11,83]. How to measure critical
slowing down, while it does not remove part of the resources
(perturb state variables) in the environment, is a difficult prob-
lem that we urgently need to solve.

In this paper, we propose a practical relaxation time (re-
laxation rate) to replace a traditional recovery time (recovery
rate). Importantly, the advantage of applying the relaxation
time indicator is that it does not require the removing of
part of the resources (perturb state variables) in the environ-
ment. This work provides examples of the forest fire model
and the sandpile model as self-organizing systems where the
lag-τ autocorrelation function was calculated by extracting
low-resolution time series data in the simulation. Then, the
lag-τ autocorrelation function is fitted by the damped sine
wave function to obtain the relaxation time. Therefore, the
relaxation time can be a practical indicator to predict a class
of self-organizing systems and provides a viable perspective
to predict avalanche events.

The paper is organized as follows. In Sec. II A, we present
detailed expressions for the predictive indicators. In Sec. II B,
we propose a practical relaxation time (relaxation rate) to
replace a traditional recovery time (recovery rate). In Sec. III,
we describe the details of the forest fire model and the sandpile
model. In Sec. IV, we apply the relaxation time, relaxation
rate, variance, and lag-τ autocorrelation indicators to identify
the onset of large avalanches in self-organizing systems (i.e.,
forest fire and sandpile model). In Sec. V, we develop strate-
gies to prevent avalanches in forest fires. Finally, in Sec. VI,
we discuss our results and draw conclusions.

II. METHODS

A. Indicators

Critical slowing down can give rise to larger fluctuations
near the equilibrium state of the system, which leads to an
increase in the variance of the system prior to the transitions.
The variance of the state variable is defined as [74,79]:

σ 2 = 1

M

M∑
t=1

(ρ(t ) − μ)2, (1)

where M denotes the rolling window sizes, ρ(t ) is the state
variable density at time t , and μ is the mean.

The lag-τ autocorrelation function is the correlation be-
tween values that are τ time periods apart. The lag-τ
autocorrelation function ACF (τ ) can be calculated by the
following relation [8,78,84]:

ACF (τ ) = E [(ρ(t ) − μ)(ρ(t + τ ) − μ)]

σ 2
, (2)

where τ is the lag time and E [· · · ] denotes the mathematic
expectation.

The lag-τ autocorrelation function is fitted by the following
damped sine wave function [15,85,86]:

ACF (τ ) = A exp
(
− τ

T

)
sin

(
π

τ − τc

ω

)
+ y0, (3)

where T is the relaxation time, defined as the time required to
recover from the unstable to the stable state. A, τc, ω, and y0

are amplitude, phase shift, period, and offset, respectively.
The relaxation rate (λ) can be used as an indicator of

whether a system is getting close to the tipping points
[9,70,82]. The relaxation rate is similar to the concept of the
recovery rate and is defined as the reciprocal of the relaxation
time (T ), i.e.,

λ = 1/T . (4)

B. Theory of critical slowing down

We illustrate the theory of critical slowing down using a
well-known plant population model [87]:

dX

dt
= rX

(
1 − X

K

)
− γ

X 2

X 2 + a2
+ ξ (t ), (5)

where X is population density, r is the growth rate (set to
1.0), K is the carrying capacity (set to 10), γ is the maxi-
mum grazing rate (set to 2.45 for high resilience and 2.60 for
low resilience), a is the efficiency of the grazer (set to 1.6),
and ξ (t ) is the Gaussian white noise defined as 〈ξ (t )〉 = 0
and 〈ξ (t )ξ (t ′)〉 = 2σδ(t − t ′), in which σ is the noise inten-
sity (set to 0.1). The panel in Fig. 1(a) shows stable (solid
lines) and unstable (dashed lines) equilibria for different graz-
ing rates. The grey dotted arrows in the figure show that
stable equilibria are attracting, while unstable equilibria are
repelling. We refer to an equilibrium as stable if the system
tends to return to it after experiencing small perturbations or
fluctuations. Conversely, an equilibrium is considered unsta-
ble if the system does not return to it after such perturbations.

Understanding whether a system is approaching a tipping
point will be of great practical importance. The resilience
of a system is defined as the magnitude of perturbation that
the system can withstand without falling into an alternative
state [83,88]. A system in a stable state with high resilience
[see Fig. 1(b)] and one with low resilience [see Fig. 1(c)] are
compared by the so-called “ball-in-a-cup” diagram. The ball
denotes the state of the system, which moves towards a stable
equilibrium with a velocity proportional to the steepness of the
basin of attraction (yellow area). In Fig. 1(b), a perturbation
would need to be quite strong to push the high-resilience sys-
tem from its stable state X = 6.22 to the other stable state at
X = 1.51. In contrast, the “ball-in-a-cup” diagram in Fig. 1(c)
illustrates that a smaller push is required for the low-resilience
system to transition from X = 5.55 to X = 1.37. Therefore,
the system with lower resilience is closer to the tipping point.
However, without a realistic mathematical model to evalu-
ate the impact of perturbations of different magnitudes, it
becomes difficult to employ resilience as an indicator for
detecting critical transitions.

The stability of the system provides a more practical way of
assessing whether the system is approaching a tipping point.
Stability is defined as the time that it takes for the system state
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FIG. 1. As a system approaches a catastrophic bifurcation (such as F1 or F2), there are some characteristic changes in the nonequilibrium
dynamics. (a) shows the change in stable (solid lines) and unstable (dashed lines) equilibria as the grazing rate changes. (b) and (c) show the
effective potential landscape of the system for different grazing rates. Critical slowing down as an indicator that the system has lost resilience
and may therefore be tipped more easily into an alternative state. Recovery rates upon small perturbations [(d) and (f)] are slower if the basin of
attraction is small (c) than when the basin of attraction is larger (b). Red arrow width represents the time it takes for the system state to return
to its initial state after a perturbation (10% reduction in resources), which is called the recovery time. The effect of this critical slowing down
may be measured in stochastically induced fluctuations in the system state [(e) and (g)] as increased relaxation time [(h) and (j)], variance and
lag-1 autocorrelation function [(i) and (k)].

to return to its equilibrium state following a small external
perturbation [9,89]. As depicted in Fig. 1(a), systems with
higher resilience possess larger and deeper basin of attraction
in their landscapes, allowing them to recover more quickly
from small perturbations than systems with lower resilience.
The systems with higher resilience have a faster recovery time
of 3.75 units, as shown in Fig. 1(d). In contrast, the systems
with lower resilience have a slower recovery time of 4.98
units, as shown in Fig. 1(f). This phenomenon is known as
critical slowing down [10,69–71], where the recovery time
should increases (or the recovery rate should decreases) as the
system approaches a tipping point.

Figures 1(e) and 1(g) show a simulated time-series subject
to noise for a system with higher resilience (left) and lower
resilience (right). There is evidence that certain characteristic
changes in the pattern of fluctuations are expected to occur
when approaching a bifurcation in such systems [6,90–92].
Because critical slowing down leads to a decrease in the in-
trinsic rates of change of the system, the state of the system at
any given moment becomes more and more like its past state.
The resulting increase in “memory” of the system can be mea-
sured from the lag-τ autocorrelation function of the system
[78,93–95]. We then fit the lag-τ autocorrelation function with

a damped sine wave function to finally obtain the relaxation
time. Relaxation time is defined as the time required to recover
from the unstable to the stable state, and its definition is
similar to the concept of stability. In Figs. 1(h) and 1(j)], the
more resilient systems have a shorter relaxation time (1.77
units), while the less resilient systems have a longer relaxation
time (3.04 units). Near the tipping point, the relaxation time
and the traditional recovery time increase simultaneously [see
Figs. 1(f) and 1(j)]. It can be seen that the relaxation time is
proportional to the traditional recovery time. This means that
we could use the relaxation time (relaxation rate) to replace
the traditional recovery time (recovery rate), and importantly
the relaxation time does not require the removing part of the
resources (perturb state variables) in the environment. Critical
slowing down leads to system states becoming more simi-
lar to each other, which is reflected as an increase in lag-1
autocorrelation function [see Figs. 1(i) and 1(k)]. Similarly,
since systems with lower resilience are slower to return to
equilibrium, the external perturbations may accumulate and
push the system further away from equilibrium, resulting in an
increase in variance [see Figs. 1(i) and 1(k)]. In summary, the
phenomenon of critical slowing down leads to these possible
early warning signals in the dynamics of a system approaching
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FIG. 2. Trends in indicators preceding to large avalanches for the forest fire model with system sizes (the first column) L2 = 256 × 256,
(the second column) L2 = 512 × 512, and (the third column) L2 = 1024 × 1024. [(a)–(c)] Transient time series for the tree density ρ(t ).
Arrow illustrates the rolling window (50% of the time series) used for computing early warning signals. [(d)–(f)] Relaxation time provides an
increasing trend in the three different system sizes. [(g)–(i)] Relaxation rate goes to zero as the system approaches large avalanches. [(j)–(l)]
Variance gives an early warning signal, but with a weaker rising trend than relaxation time. [(m)–(o)] The trend of lag-τ autocorrelation
function depends on the lag time. When lag time is an odd number [see blue sphere, green circle, and orange pentagon in (m)–(o)], it will
be a decreasing trend, while when lag time is an even number [see black square, purple triangle, and red hexagon in (m)–(o)], it will be an
increasing trend. Note that tipping point was determined by the theoretical percolation threshold pc ≈ 0.593. The p increases linearly by 0.005
for each time step in the range 0.005 � p � 0.900. The grey band identifies the state after large avalanches and the parameter of the tipping
point is Time = 118.

a bifurcation: increased relaxation time (or decreased relax-
ation rate), increased recovery time (or decreased recovery
rate), increased variance and increased lag-1 autocorrelation
function.

III. SELF-ORGANIZING SYSTEMS

A. Forest fire model

We considered that the time scales of tree growth and burn-
ing down of tree clusters are separated [21,23,59]. Burning
trees evolve on a fast time scale, whereas trees grow on a
slow time scale [96]. In other words, burning trees can burn
the entire cluster of trees in days to months, so they have
a maximum time scale of months. In contrast, trees take up
to decades to grow into a dense forest. Here, we investi-
gate a stochastic forest fire model that evolves in continuous
time. Each cell on a L × L square lattice is either empty or
occupied by a tree. The state of the system is updated by
three dynamical rules: (i) At an empty cell, a tree grows with
probability p. (ii) Lightning strikes each cell with probability
k � p, followed by instantaneously burning the entire nearest
neighbor cluster if that cell has trees. Note that we use the von
Neumann neighborhood. (iii) All burning trees become empty

cells. The tree growth probability p increases linearly over the
interval [0.005, 0.900], resulting in the avalanches. After each
stepwise change in the control parameter, the tree density ρ of
the lattice is stored for calculation.

To avoid limited scale effects, the number of cells L × L
must be chosen to be much larger than the maximum cluster
of trees. Various system sizes between 128 to 1024 (L = 128,
256, 512, and 1024) are screened. For a real wildfire model in
ecology, the size of the cells should be approximately between
6 and 55 ha [23,97], so that each “tree” actually describes the
behavior of a larger forest. Therefore, a simulation with L =
1024 can represent a forest of up to 512 000 km2 [23]. In
our simulations, we assume that tree growth probability p is
between 0.005 to 0.900, and lightning strike probability k is
0.0001.

B. Sandpile model

We consider the two-dimensional sandpile model on a
square lattice of size L × L, where integer variables z(x, y) �
0 represent local energies [46,98–100]. One perturbs the sys-
tem by adding grains at the central site according to

z(x, y) �→ z(x, y) + 1. (6)
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FIG. 3. Trends in indicators prior to large avalanches for the sandpile model with system sizes (the first column) L2 = 5 × 5, (the second
column) L2 = 9 × 9, and (the third column) L2 = 15 × 15. [(a)–(c)] Normalized avalanche size as a function of the number of grains and time.
The horizontal dashed lines in (a)–(c) indicate the large avalanches S/L2 � 0.8. [(d)–(f)] Time series for the average sandpile density ρ(t ).
Arrow illustrates the rolling window (50% of the time series) used for computing early warning signals. [(g)–(i)] Relaxation time provides an
increasing trend in the three different system sizes. [(j)–(l)] Relaxation rate goes to zero as the system approaches large avalanches. [(m)–(o)]
Variance gives an early warning signal, but with a weaker rising trend than relaxation time. [(p)–(r)] The lag-τ autocorrelation function also
has an increasing trend, which is consistent with the variance. The number of grains increases linearly by 1.0 for each time step. The grey band
identifies the state after large avalanches, and the parameters of the tipping point are Time = 56 (the first column), Time = 176 (the second
column), and Time = 512 (the third column).

Our model is a cellular automaton that describes the inter-
actions of an integer variable with its nearest neighbors. In
two-dimensions, z(x, y) is updated synchronously as follows:

z(x, y) → z(x, y) − hc, (7)

z(x ± 1, y) → z(x ± 1, y) + 1, (8)

z(x, y ± 1) → z(x, y ± 1) + 1. (9)

if z(x, y) exceeds a critical value hc (set to hc = 4 through-
out this work). We assume open boundary conditions with
energies fixed to zero at the boundary. The integer variables
may be thought of as the local slope of the sandpile in some
direction. If the slope is too steep, the sand slides, reducing
the slope but increasing the slope for the neighbors. The
system is set up with empty initial conditions z(x, y) = 0.
It then evolves over time until avalanches occur. After each
incremental increase in the number of grains, the avalanche
size S and the average sandpile density ρ of the lattice are
recorded for subsequent analysis.

IV. EARLY WARNING SIGNALS OF AVALANCHES

The tree density ρ is plotted versus the tree growth prob-
ability p for the three system sizes [see Figs. 2(a)–2(c)].
Arrow indicates the rolling window (50% time series for the
tree density) used for computing early warning signals. At
low tree growth probability p < pc, the trajectories of the
tree density ρ(t ) indicate periodic oscillations. At the critical
probability (percolation threshold pc ≈ 0.593 [101–103]), the
so-called spanning clusters (large avalanches) emerge and the
sharp decrease of the tree density ρ is observed. When tree
growth probability p is increased further, the tree density is
approximately zero since more and more cells become part
of the spanning clusters. Figures 2(d)–2(f) display the results
of relaxation time for different system sizes. For the three
system sizes L = 256, 512, and 1024, the relaxation time sig-
nificant increase by five orders of magnitude before the large
avalanches. Therefore, the relaxation time would provide an
effective approach to predict the onset of the large avalanches
in self-organizing systems. In practice, the relaxation time
may be difficult to apply for direct comparisons. Therefore,
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FIG. 4. Trends in indicators prior to the largest avalanches for the sandpile model with system sizes (the first column) L2 = 5 × 5, (the
second column) L2 = 9 × 9, and (the third column) L2 = 15 × 15. [(a)–(c)] Normalized avalanche size as a function of the number of grains
and time. The horizontal dashed lines in (a)–(c) indicate the largest avalanches S/L2 ≈ 1.0. [(d)–(f)] Time series for the average sandpile
density ρ(t ). Arrow illustrates the rolling window (50% of the time series) used for computing early warning signals. [(g)–(i)] Relaxation
time provides an increasing trend in the three different system sizes. [(j)–(l)] The relaxation rate goes to zero as the system approaches largest
avalanches. [(m)–(o)] Variance gives an early warning signal, but with a weaker rising trend than relaxation time. [(p)–(r)] The lag-1, lag-2,
and lag-3 autocorrelation function provide do not exhibit significant signals, but higher lag times produce larger trends. The number of grains
increases linearly by 1.0 for each time step. The grey band identifies the state after largest avalanches, and the parameters of the tipping point
are Time = 76 (the first column), Time = 380 (the second column), and Time = 688 (the third column).

the relaxation rate indicator would be more effective. In
Figs. 2(g)–2(i), the relaxation rate goes to zero as the system
approaches the large avalanches. In Figs. 2(j)–2(k), the vari-
ance also show the rising trend before the large avalanches.
For larger systems [see Fig. 2(l)], unfortunately, the variance
provides no useful signal due to the weak amplitude of the
tree density quasiperiodic oscillations. In Figs. 2(m)–2(o),
the lag-τ autocorrelation function ACF (τ ) displays the cor-
relation between values that are τ time periods apart. The
autocorrelation function decreases at lag-1, lag-3, and lag-5,
while it increases at lag-2, lag-4, and lag-6. This may be
due to the fact that the forest fire model yields oscillations
with a period 2. As a result, bifurcations with an oscillatory
component yield an increasing or a decreasing trend, which
depends on the relationship between the lag times and the
period of oscillations. These show that the scheme of requir-
ing increasing variance and lag-1 autocorrelation function to
predict the onset of avalanches is not always useful. It also
suggests that the autocorrelation function should be computed
at multiple lag times and not just at lag-1.

Figures 3(a)–3(c) show how the normalized avalanche size
varies with increasing grain number and time for the large
avalanche. Note that here the large avalanche is defined as
a normalized avalanche size equal to or greater than 0.8.
The transient time series of average sandpile density for the
three system sizes as shown in Figs. 3(d)–3(f). Arrow indi-
cates the rolling window (50% time series for the average
sandpile density) used for computing early warning signals.
Figures 3(g)–3(i) show the relaxation time as a function of
the number of grains and time. Obviously, the relaxation time
shows a recognizable trend (significant increase) before the
large avalanches occur. The relaxation rate, defined as the
reciprocal of the relaxation time, is close to zero as the system
approaches an avalanche [see Figs. 3(j)–3(l)]. As gradually
increasing the number of grains brings the self-organizing
system to the tipping point spontaneously, the external per-
turbations may accumulate which leads to an increase in
variance [see Figs. 3(m)–3(o)]. The lag-1, lag-2, and lag-3
autocorrelation functions show increasing trends for different
system sizes, with more significant trends at higher lag times
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FIG. 5. The lag-τ autocorrelation function for the forest fire model with system sizes (a) L2 = 256 × 256, (b) L2 = 512 × 512, and (c) L2 =
1024 × 1024 and the sandpile model with system sizes [(d) and (g)] L2 = 5 × 5, [(e) and (h)] L2 = 9 × 9, and [(f) and (i)] L2 = 15 × 15.
[(a)–(c)] Autocorrelation function of tree density as functions of lag time (blue diamonds). [(d)–(f)] Autocorrelation function of average
sandpile density as functions of lag time (blue diamonds) in the large avalanches. [(g)–(i)] Autocorrelation function of average sandpile
density as functions of lag time (blue diamonds) in the largest avalanches. The red solid lines correspond to fitted curves of the damped sine
wave function of the form A exp(−τ/T ) sin[π (τ − τc )/ω] + y0, where A, T , τc, ω, and y0 are use as the free fitting parameters. The closer
coefficient of determination (R2) is to 1.0, and the fitting degree of the indicator is better.

[see Figs. 3(p)–3(r)]. This suggests that the autocorrelation
function should be calculated at multiple lag times and may
provide a more accurate early warning signal.

To compare the performance of early warning signals un-
der different avalanche sizes, we studied not only the indicator
trends before the large avalanches [see Fig. 3] but also those
before the largest avalanche [see Fig. 4]. Figures 4(a)–4(c)
show how the avalanche size varies with increasing grain
number and time for the largest avalanche. Note that here
the largest avalanche is defined as a normalized avalanche
size approximately equal to 1.0. In Figs. 4(d)–4(f), we used
longer transient time series of average sandpile density for
the three system sizes. Arrow indicates the rolling window
(50% time series for the average sandpile density) used for
computing early warning signals. The relaxation time [see
Figs. 4(g)–4(i)], relaxation rate [see Figs. 4(j)–4(l)], vari-
ance [see Figs. 4(m)–4(o)], and lag-τ autocorrelation function
[see Figs. 4(p)–4(r)] indicators are calculated separately for

comparison with corresponding indicators in Fig. 3. In the
scenario undergoing the largest avalanche [Figs. 4(g)–4(r)],
the trajectory shows a strong increasing (decreasing) trend
in relaxation time (relaxation rate) and variance, but no dis-
cernible trend in the lag-1, lag-2, and lag-3 autocorrelation
function. Therefore, the protocol of requiring increasing the
variance and the autocorrelation function of lower lag time
to represent the early warning signal fails in this case. For-
tunately, since the relaxation time is obtained by fitting the
autocorrelation function at multiple lag times, it still provides
an early warning signal prior to the large avalanches. Accord-
ing to this criterion, the relaxation time (relaxation rate) is a
more sensitive and robust indicator than lag-τ autocorrelation
function.

In Figs. 5, we show the lag-τ autocorrelation function
for different system sizes at a moment before the avalanche.
We find excellent agreement (coefficient of determination
[104,105]: R2 > 0.9) between the numerical (blue diamond
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FIG. 6. These spatial snapshots correspond to the different
growth patterns. [(a)–(c)] Diamond, [(d)–(f)] square, and [(g)–(i)]
random growth patterns (protection strategies) for different tree den-
sities (the first column) ρ = 0.60, (the second column) ρ = 0.70, and
(the third column) ρ = 0.80 (living trees, empty cells, and burning
trees are shown in blue, white, and red, respectively). Burning area
(red) is 0.488% (a), 1.270% (b), and 12.500% (c) in the first rows,
0.888% (d), 2.441% (e), and 6.250% (f) in the second rows, and
29.785% (g), 65.820% (h), and 79.785% (i) in the bottom rows, re-
spectively. Compared with the burning area (maximum cluster size)
of the random growth patterns, those for the best growth patterns
(i.e., diamond or square protection strategies) are several orders of
magnitude smaller. The system size is chosen for L2 = 32 × 32,
which can represent a forest of up to 16 000 km2 [23].

symbols) and fitting (red solid lines) results, which allows us
to extract a relaxation time T explicitly. It means that the lag-τ
autocorrelation function with either oscillations of period 2
[see Figs. 5(a)–5(c)] or exponential decay [see Figs. 5(d)–5(i)]
could both be well fitted by the damped sine wave function.

V. PREVENTION OF AVALANCHES IN FOREST FIRE

In Fig. 6, we show the spatial snapshots of diamond,
square, and random growth patterns. The diamond growth
pattern is more suitable than a square growth pattern in the
presence of small tree densities ρ � 0.70. Conversely, the
square growth pattern is more suitable for greater tree densi-
ties ρ � 0.70. This means that we can choose different growth
patterns (protection strategies) depending on the tree density
when the signal is activated. For instance, the construction of
biological fire forest belts and road engineering can prevent
the onset of avalanches by dividing a large forest area into an
optimal number of smaller areas.

We provide three different conservation strategies for the
prevention of avalanches. A diamond growth pattern is a local
optimal tiling, i.e., occupying empty cells on the basal plane
(tree density p = 0.5 and maximum cluster size Smax = 1) and

less than or equal to the set burning area (maximum cluster
size). A square growth pattern is a simple square tiling, and a
linear growth pattern is a simple linear tiling. Table I presents
the diamond, square, and linear growth patterns compared to
each other. For Smax � 16, the diamond growth pattern is the
best choice among the three growth patterns. However, when
Smax � 25, the best growth pattern becomes the square growth
pattern. These findings suggest that a diamond growth pattern
is more suitable than a square growth pattern in the presence
of the small burning area (maximum cluster sizes: Smax � 16).
Conversely, the square growth pattern is more suitable for
a greater burning area (maximum cluster sizes: Smax � 25).
A major limitation of a small burning area is tree densities
less than 0.70. In addition, there is no limitation for a greater
burning area. The same results are observed for the three
system sizes (L = 128, 256, 512), which implies that there
are no scale effects in our growth patterns.

Table II shows the results on diamond, square, linear, and
random growth patterns, and the best result in each block
is in bold. Compared with the burning area of the random
growth patterns, those for the best growth patterns are several
orders of magnitude smaller. Moreover, when the tree density
ρ ≈ 0.6, it will lead to an increase in the burning area by
two orders of magnitude, especially for the random growth
pattern. This is because most cells form a dense spanning
cluster, as previously noted. Our aim is to provide scientific
evidence and significant information for managers to formu-
late mitigation countermeasures and strategic decisions prior
to the onset of avalanches.

VI. DISCUSSION

How to measure critical slowing down, while it does not
remove part of the resources (perturb state variables) in the
environment, is a challenging problem that we urgently need
to solve. In this work, a relaxation time is proposed to identify
the onset of large avalanches in self-organizing systems. The
advantage of using the relaxation time indicator is that it does
not require the removal of part of the resources (perturb state
variables) in the environment, since the relaxation time is
determined by fitting the lag-τ autocorrelation function. In
practice, it is not easy to make direct comparisons by using
relaxation time. Therefore, the relaxation rate indicator would
be a more effective measure and could be used as an indicator
of whether the system is close to a tipping point. The system
is close to a tipping point the relaxation time should increase
(or the relaxation rate should decrease), and this is the essence
of critical slowing down. This work shows that relaxation rate
is an excellent way to measure critical slowing down. Further-
more, relaxation time and relaxation rate offer complementary
information to indirect indicators (such as variance and lag-1
autocorrelation) and should be added to the repertoire of tools
for predicting tipping points in real systems.

The findings from Ref. [72] demonstrate that bifurcations
with an oscillatory component (Hopf/Flip/Neimark-Sacker)
produce in either an increasing or decreasing trend in the
lag-τ autocorrelation function, which depends on the rela-
tionship between the lag time and the period of oscillation.
By contrast, bifurcations without an oscillatory component
(Fold/Transcritical/Pitchfork) only produce an increasing
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TABLE I. Tree density on the diamond, square, and linear growth patterns for different burning areas (maximum cluster sizes). Tree
densities of three growth patterns were compared for the different system sizes. Bold text indicates the best growth pattern (i.e., maximum tree
density).

Maximum Tree density (ρ) Tree density (ρ) Tree density (ρ)
cluster size (L2 = 128 × 128) (L2 = 256 × 256) (L2 = 512 × 512)

(Smax) 1sta 2ndb 3rdc 1sta 2ndb 3rdc 1sta 2ndb 3rdc

5 0.6270 0.5591 0.5026 0.6260 0.5591 0.5010 0.6255 0.5564 0.5005
9 0.6704 0.6329 0.5071 0.6686 0.6289 0.5020 0.6676 0.6270 0.5011
16 0.6945 0.6857 0.5089 0.6923 0.6857 0.5016 0.6921 0.6809 0.5014
25 0.7151 0.7257 0.5265 0.7161 0.7257 0.5023 0.7158 0.7231 0.5027
36 0.7196 0.7583 0.5233 0.7136 0.7583 0.5026 0.7138 0.7583 0.5020
49 0.7234 0.7931 0.5291 0.7182 0.7871 0.5090 0.7175 0.7842 0.5070
64 0.7179 0.8052 0.5199 0.7198 0.8052 0.5026 0.7145 0.8052 0.5030
... ... ... ... ... ... ... ... ... ...

100 0.7337 0.8301 0.5610 0.7199 0.8238 0.5313 0.7166 0.8206 0.5059
400 0.7593 0.9106 0.7578 0.7484 0.9106 0.6104 0.7251 0.9071 0.5614
900 0.8789 0.9395 0.8789 0.7812 0.9395 0.7812 0.7575 0.9358 0.6386

aDiamond growth pattern.
bSquare growth pattern.
cLinear growth pattern.

trend in the lag-τ autocorrelation function. According to
these principles, we conjecture that the forest fire model
should be oscillatory bifurcations, while the sandpile model
should be nonoscillatory bifurcations. Furthermore, the previ-
ous relaxation time is typically obtained by fitting the lag-τ
autocorrelation function with an exponential decay function,
but it was only applicable to the case of nonoscillatory bifur-
cations [15,85,106,107]. Here, our proposed relaxation time is
applicable not only to nonoscillatory bifurcations but also to
oscillatory bifurcations. A possible explanation for this might
be that the lag-τ autocorrelation function analytical approx-
imation (eλ|τ | cos ω0τ ) [72] has a similar mathematical form
to the damped sine wave function (A exp(−τ/T ) sin[π (τ −
τc)/ω]) in the oscillatory bifurcations. In the other case, the

lag-τ autocorrelation function analytical approximation (eλ|τ |)
[72] also has a similar mathematical form to the damped sine
wave function in the nonoscillatory bifurcations if the sine
function (sin[π (τ − τc)/ω]) is equal to 1. Here, the relaxation
rate (λ) is defined as the reciprocal of the relaxation time (T ),
i.e., λ = 1/T . In summary, the relaxation time shows a con-
sistent increasing trend in both oscillatory and nonoscillatory
bifurcations when compared to traditional indirect metrics
such as the variance and the lag-1 autocorrelation function.
This suggests that the relaxation time is a more universal.

Although there are important discoveries revealed by these
studies, there are also limitations. On the one hand, constant
conditions and spatial homogeneity are assumed in our for-
est fire model [23]. In the real world, however, fluctuating

TABLE II. The burning area (maximum cluster size) on the diamond, square, linear, and random growth patterns for different tree densities.
The burning area of four growth patterns was compared for the different system sizes. Bold text indicates the best growth pattern, which
corresponds to the smallest value of the burning area. Unlisted values are less than the value of the next row. For the “4th” columns, 100
independent simulation runs were performed and results represent the mean ± standard deviation.

Maximum cluster size ( Smax) Maximum cluster size ( Smax) Maximum cluster size ( Smax)
(L2 = 128 × 128) (L2 = 256 × 256) (L2 = 512 × 512)

Tree density (ρ) 1sta 2ndb 3rdc 4thd 1sta 2ndb 3rdc 4thd 1sta 2ndb 3rdc 4thd

0.50 1 1 1 248 ± 55 1 1 1 365 ± 90 1 1 1 488 ± 99
0.55 4 81 822 ± 288 4 81 1442 ± 43 4 81 2166 ± 593
0.60 5 9 190 5490 ± 1527 5 9 190 24212 ± 4865 5 9 190 103297 ± 15514
0.65 8 16 237 9877 ± 216 8 16 237 39993 ± 357 8 16 237 161070 ± 618
0.70 13 25 295 11223 ± 93 13 25 295 44972 ± 159 13 25 295 180148 ± 316
0.75 140 36 373 12188 ± 67 140 36 373 48820 ± 122 140 36 373 195353 ± 250
0.80 504 64 505 13075 ± 54 504 64 505 52289 ± 115 504 64 505 209227 ± 236
0.85 698 121 697 13917 ± 49 698 121 697 55681 ± 88 698 121 697 222692 ± 172
0.90 1103 324 1135 14747 ± 37 1103 324 1135 58993 ± 75 1103 324 1135 235892 ± 160

aDiamond growth pattern.
bSquare growth pattern.
cLinear growth pattern.
dRandom growth pattern.
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FIG. 7. Characteristic early warning signals preceding the os-
cillatory and nonoscillatory bifurcations in the Ricker model.
(a) Simulated response of population abundance (blue) to increasing
growth rate superimposed on Flip bifurcation diagram (black) of the
deterministic model (solid, stable state/limit cycle; dashed, unstable
state). (b) Simulated response of population abundance (blue) to
increasing harvesting effort superimposed on Fold bifurcation dia-
gram (black) of the deterministic model (solid, stable state; dashed,
unstable state). Arrow illustrates the rolling window (50% of the
time series) used for computing early warning signals. [(c)–(d)]
Relaxation time provides an increasing trend in both oscillatory and
nonoscillatory bifurcations. [(e)–(f)] Relaxation rate goes to zero
as the system approaches bifurcations. (g) Variance provides an in-
creasing trend in the oscillatory bifurcation, but with a weaker rising
trend than relaxation time. (h) Variance provides no useful signal in
the nonoscillatory bifurcation. (i) The trend of lag-τ autocorrelation
function depends on the lag time for the oscillatory bifurcation.
When lag time is an odd number [see blue sphere, green circle,
and orange pentagon], it will be a decreasing trend, while when lag
time is an even number [see black square, purple triangle, and red
hexagon], it will be an increasing trend. (j) The lag-τ autocorrelation
function provides no significant increasing trend for the nonoscilla-
tory bifurcation. The grey band identifies the state after bifurcations,
and the parameters of the tipping point are Time = 417 (oscillatory)
and Time = 438 (nonoscillatory).

environmental conditions and spatial heterogeneity are con-
sidered [108,109]. For instance, the spatial occurrence of most
wildfires are not random, since these wildfires are started
by people. In the future, we will consider the factors that
influence the direction and speed of wildfire spread, including
wind, orography, weather, and climate. On the other hand, a
number of recent studies have shown that the relaxation time
decreases as one approaches the critical point in the conserved
Manna sandpile systems [110–112]. A possible explanation
for this might be that the conserved systems are the cause
of this result. In other words, Dhar and Pradhan et al. stud-
ied the one-dimensional conserved Manna sandpile systems,
whereas we study a two-dimensional nonconserved finite-size
sandpile system. Although our work is insufficient to describe
the evolution of the real forest fire and sandpile accurately,
it provides a viable perspective to predict avalanche events.

Extending the relaxation time into more realistic scenarios
with self-organizing systems, such as landslides, earthquakes,
and neuronal activity, would be interesting.

As satellite remote sensing technology advances, the in-
creasing availability and resolution of data provide better
opportunities to predict the onset of avalanches in self-
organizing systems [113]. Existing research uses multiscale
satellite data to detect early warning signals of tree mortality
in boreal North America [114]. They link these two data
sources (i.e., time series of tree-level growth patterns and
satellite-based indices) to show that early warning signals of
mortality are evident. In the future, we intend to combine
these two data sources (i.e., time series data source and spatial
snapshot data source) to predict the occurrence of avalanches.
How to use spatial snapshot data to estimate the recovery rate
is the main challenge currently. To solve this problem, there
is an urgent need to develop new indicators based on spatial
snapshot data, and this is a goal for future work. In addition,
we can also develop more effective early warning signals
by using machine learning or deep learning techniques to
provide accurate results for preventing the onset of avalanches
[115]. Finally, the development and experimental validation of
early warning signals for avalanches remains an open research
direction.
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APPENDIX: CHARACTERISTIC EARLY WARNING
SIGNALS PRECEDING THE OSCILLATORY AND

NONOSCILLATORY BIFURCATIONS

We illustrate the early warning signals preceding the oscil-
latory and nonoscillatory bifurcations by using a Ricker-type
model that describes the logistic growth of a population
subject to harvesting [72,116]. The model is written as
follows:

Nt+1 = Nt exp

[
r

(
1 − Nt

K

)
+ σεt

]
− F

N2
t

N2
t + h2

, (A1)

where Nt is the population size at time t , r is the intrinsic
growth rate, K is the carrying capacity, F is the maximum
rate of harvesting, h is a half-saturation constant, σ is the
noise amplitude and εt is a normal random variable with zero
mean and unit variance. Baseline parameters are r = 0.75,
K = 10, F = 0, h = 0.75, σ = 0.04. The model exhibits a
Fold bifurcation at F = 2.36, and a Flip (period-doubling)
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bifurcation at r = 2.00 followed by a sequence of further Flip
bifurcations to chaos.

We simulate two bifurcation scenarios, namely the oscil-
latory and nonoscillatory bifurcations. On the one hand, the
harvesting rate F increases linearly over [0, 2.7], resulting
in a Fold bifurcation. On the other hand, the growth rate r
increases linearly over the interval [0.5, 2.3] resulting in a
Flip bifurcation. Both scenarios are simulated for 500 time
steps.

We associate avalanches with a mathematical instability,
called bifurcations [78,92,117–120]. The relaxation time as

an indicator for evaluation of bifurcations with oscillations
and non-oscillations: an example of Ricker model can be
seen in Fig. 7. Compared to conventional indirect metrics
such as variance and lag-1 autocorrelation function, the re-
laxation time can show a consistent with the increasing trend
in both oscillatory and nonoscillatory bifurcations, indicating
that the relaxation time is more universal. We expect that these
findings will stimulate theoretical and experimental work to
provide more precise and accurate methods for addressing
avalanche events such as forest fires, landslides, and earth-
quakes in future research.
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