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Helicity-dependent optical control of the magnetization state emerging
from the Landau-Lifshitz-Gilbert equation
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It is well known that the Gilbert relaxation time of a magnetic moment scales inversely with the magnitude of
the externally applied field, H , and the Gilbert damping, α. Therefore, in ultrashort optical pulses, where H can
temporarily reach high amplitudes, the Gilbert relaxation time can momentarily be extremely short, reaching
even picosecond timescales. Here we show that for strong enough ultrashort pulses, the magnetization can
respond within the optical cycle such that the optical control of the magnetization emerges by merely considering
the optical magnetic field in the Landau-Lifshitz-Gilbert (LLG) equation. Surprisingly, when circularly polarized
optical pulses are introduced, an optically induced helicity-dependent torque results. We find that the strength
of the interaction is determined by η = αγ H/ fopt , where fopt and γ are the optical frequency and gyromagnetic
ratio, respectively. Our results illustrate the generality of the LLG equation to the optical limit and the pivotal
role of the Gilbert damping in the general interaction between optical magnetic fields and spins in solids.
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I. INTRODUCTION

The ability to control the magnetization order parameter
using ultrashort circularly polarized (CP) optical pulses has
attracted a great deal of attention since the early experiments
of the all-optical helicity dependent switching (AO-HDS) [1].
This interaction was found intriguing since it appears to have
all the necessary ingredients to be explained by a coherent
transfer of angular momentum, yet it occurs at photon ener-
gies of 1−2 eV, very far from the typical resonant transitions
in metals. The technological applications and fundamental
scientific aspects steered much debate and discussion, and the
experiments that followed found dependencies on a variety
of parameters including material composition [2–4], magnetic
structure [5,6], and laser parameters [1,7,8], that were often
experiment specific. Consequently, a multitude of mecha-
nisms that entangle photons, spins, and phonons have been
discovered [9].

Ferromagnetic resonance (FMR) experiments are usually
carried out at the GHz range. In contrast, optical fields os-
cillate much faster, at ∼400−800 THz. Therefore, it seems
unlikely that such fast-oscillating fields may interact with
magnetic moments. However, the amplitude of the magnetic
field in ultrashort optical pulses can, temporarily, be very large
such that the magnetization may respond extremely fast. For
example, in typical experiments [1,7,10] having 40-fs–1-ps
pulses at 800 nm, with energy of 0.5 mJ that are focused
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to a spot size of ∼0.5 mm2, the peak magnetic flux density
can be as high as ∼5 T, for which the corresponding Gilbert
relaxation time reduces to tens of picoseconds in typical
ferromagnets.

Here we show that ultrashort optical pulses may control
the magnetization state by merely considering the optical
magnetic field in the Landau-Lifshitz-Gilbert (LLG) equation.
The principle behind the interaction is that the magnetization
is incrementally affected within each optical cycle, such that
a significant net torque can build up over the entire pulse
duration in typical experimental conditions. We find that the
strength of the interaction is determined by η = αγ H/ fopt,
where fopt and α are the angular optical frequency and the
Gilbert damping, respectively, and γ is the gyromagnetic ra-
tio. Accordingly, the loss of spin angular momentum to the
lattice is key to the interaction. Moreover, we show that for cir-
cularly polarized pulses, the polarity of the optically induced
torque is determined by the optical helicity. From a quanti-
tative analysis, we find that a sizable effective out-of-plane
field is generated, which is comparable to that measured ex-
perimentally in ferromagnet/heavy-metal (FM/HM) material
systems [11]. However, our calculations indicate that an ad-
ditional in-plane field is required to explain the experimental
observations such as the optical spin-transfer torque (OSTT)
[12] explored by Freimuth et al. [13]. Our results provide an
additional torque to the AO-HDS [1,6,14–16] that has been
considered on grounds of thermal [17–21], photomagnetic
[22,23], and optomagnetic [7,11,24] mechanisms. The critical
role of α brings an additional explanation as to why a helicity-
dependent torque is found in a variety of material systems that
consist of heavy metals, such as Pt and Pd [6,13,25,26], which
are excellent absorbers of spin angular momentum.

The LLG equation is typically not applied in the optical
limit, and hence requires an alternative mathematical frame-
work whose principles we adopt from the Bloch equations
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for semiconductor lasers [27–29]. We exploit the analogy
between the magnetization state and the Bloch vector of a
two-level system (TLS) [30–34] by transforming the LLG
equation under a time-varying magnetic field excitation to
the dynamical Maxwell-Bloch equations in the presence of
an electrical carrier injection. In this transformation, the +ẑ
and −ẑ components of the magnetization are mapped to the
occupation of the ground- and excited states of the TLS so
that the reversal of the magnetization is described in terms of
population transfer between the states.

The paper is organized as follows: We begin by trans-
forming the LLG equation to the density matrix equations
of a TLS. We then identify the mathematical form of a time-
dependent magnetic field in the LLG equation, �Hpump↓↑, that
is mapped to a time-independent carrier injection rate into
the TLS. Such excitation induces a population transfer that
varies linearly in time, and accordingly to a magnetization
switching profile that is also linear in time. The mathematical
�Hpump↓↑ field emerges naturally as a temporal impulselike

excitation. We then show that when α is sizable, �Hpump↓↑
acquires a CP component whose handedness is determined
by the direction of the switching. By substituting �Hpump↓↑ for
an experimentally realistic picosecond CP Gaussian optical
magnetic pulse, we show that it can also exert a net torque on
the magnetization. In this case as well, the helicity determines
the polarity of the torque. Finally, we present a quantitative
analysis that is based on experimental data [11].

II. RESULTS

A. Derivation of �Hpump↓↑

The LLG equation describing the dynamics of the mag-
netization, �M, where the losses are introduced in the
Landau-Lifshitz form is given by [35]

d �M
dt

= − γ

1 + α2
�M × �H − γα

1 + α2

1

Ms

�M × �M × �H . (1)

Here Ms and �H are the magnetization saturation and
the time-dependent externally applied magnetic field, respec-
tively. We define �Heff by

�Heff
�=

(
�H − α

Ms

�H × �M
)

, (2)

and in addition, κ
�= γ

1+α2 (Heff x − jHeff y)/2 and κ0
�=

γ

1+α2 Heff z, where κ and κ0 can be regarded as effective AC

and DC magnetic fields acting on �M, respectively [31]. We
transform �M to the density matrix elements of the Bloch state
in the TLS picture having energy quantization along ẑ by sub-
stituting the longitudinal component of �M for the population
difference, ρ11 − ρ22 = Mz/Ms, and the transverse compo-
nents for the off-diagonal term ρ12 = (Mx − jMy )/2Ms [36].
The normalization condition is ρ11 + ρ22 = Ms. Under this
transformation, the LLG equation takes the form

ρ.
11 = − jκρ21 + c.c.

ρ.
22 = jκρ21 + c.c.

ρ.
12 = − jκ0ρ12 + jκ (ρ11 − ρ22). (3)

Equation (3) describes a general TLS subjected to an effec-
tive field via κ and κ0. We compare it to the Bloch equations

describing a semiconductor laser that is electrically pumped
[28,36,37]:

ρ.
11 = �1 − γ1ρ11 + j

2
[(ρ12 − ρ21)(V12 + V21)

−(ρ12 + ρ21)(V12 − V21)]

ρ.
22 = �2 − γ2ρ22 − j

2
[(ρ12 − ρ21)(V12 + V21)

−(ρ12 + ρ21)(V12 − V21)]

ρ.
12 = −( jωTLS + γinh )ρ12 + j(ρ11 − ρ22)V12. (4)

In this reference model, �1 and �2 are injection rates of
carriers to the ground and excited states of the TLS, respec-
tively. They are assumed to be time independent and represent
a constant injection of carriers from an undepleted reservoir
[28]. γ1 and γ2 are the relaxation rates of the ground and
excited states, and γinh is the decoherence rate due to an
inhomogeneous broadening. V12 is the interaction term and
ωTLS is the resonance frequency of the TLS. Typically, h̄ωTLS

represents a time-independent interband energy gap, where
h̄ is the reduced Planck constant. However, here ωTLS can
depend on time. Figure 1(a) illustrates schematically the anal-
ogy between the magnetization dynamics and the electrically
pumped TLS. From Eqs. (3) and (4) we find the connection
between the LLG equation expressed in the density matrix
form and the model of the electrically pumped TLS:

�1 − γ1ρ11 + [MyR{V12} + MxI{V12}] = − jκρ21 + c.c.

�2 − γ2ρ22 − [MyR{V12} + MxI{V12}] = jκρ21 + c.c.

−( jωTLS + γinh )ρ12 + jMzV12 = − jκ0ρ12 + jκMz.

(5)

The pumping of the excited and ground states by the
constant �1 and �2 rates implies that the reversal of the
magnetization along the ∓ ẑ direction is linear in time. Using
Eq. (5) we find κ , and hence a field �H , that produces such �1

and �2. The application of such a field as the sole excitation
in the LLG equation results in γ1 = γ2 = V12 = 0, and con-
sequently ρ.

11 = �1 = −�2. We define this field as �Hpump↓↑:

�Hpump↓↑ = ±�p

M2
s − M2

z

⎛
⎝ My

− Mx

0

⎞
⎠. (6)

�Hpump↓↑ depends on the temporal state of �M, while �p =
γ�1/(1 + α2) is the effective field strength parameter. Ap-
plying such �Hpump↓↑ requires to know a priori the state of �M;
therefore, we refer to it as a mathematical field. �Hpump↓ and
�Hpump↑ induce a linear transition of �M towards the –ẑ and +ẑ

direction, respectively. The constant carrier injection rate in
the Bloch picture requires that �Hpump↓↑ diverges as �M reaches
the poles of the Bloch sphere.

Figure 1(b) presents the outcome of the application of
�Hpump↓↑ by numerically integrating the LLG equation. �M was

initialized in the x̂ direction, so that �Hpump↓↑ is polarized in
the ŷ direction and drives �M in the ẑ direction. The figure
illustrates �H (t ), Mz(t ), and the ẑ torque, (− �M × �H )z, for
alternating �Hpump↓ and �Hpump↑ that switch �M between ∓Msẑ.
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FIG. 1. (a) Left panel: Illustration of �M on the Bloch sphere.
Right panel: Illustration of the electrically pumped TLS. (b) Inter-
action with �Hpump↓↑ of Eq. (6). The figure illustrates the temporal
plots of Mz/Ms, �Hpump↓↑,y, and (− �M × �H )z normalized to unity.
|�p| = 4.53 × 1010 A2/m2, corresponding to �τ↓↑ = 30 ps. Alter-
nation between �Hpump↓ and �Hpump↑ is indicated by the shaded areas
and occurs when |Mz| reaches 0.99Ms. (c) Interaction with �Hpump↓↑
and a more realistic trailing edge, for the same conditions in (b). Full
lines correspond to �Hpump↓ and dashed lines correspond to �Hpump↑.
The simulations in (b) and (c) are presented for Ms = 3 × 105A/m
and α = 0.025 [38], and �Hpump↓ was turned on at t = 0.

The magnitude of �p determines the switching time, �τ↓↑,
chosen here to describe a picosecond regime. Equation (5)
yields �τ↓↑ = (1 + α2)Ms/(γ�p) ≈ Ms/γ�p, in which Mz

is driven from Mz = 0 to Mz
∼= ±Ms (for derivation, see Ap-

pendix A). It is seen that (− �M × �H )z is constant when �Hpump↓
or �Hpump↑ are applied so that the switching profile of Mz is
linear in time. It is also seen that �Hpump↓↑ requires that | �H |
diverge as Mz approaches ±Ms, which is not experimentally
feasible. To account for a more realistic excitation, in Fig. 1(c)
we simulated a pulse whose trailing edge was taken as a
reflection in time of �Hpump↓↑, and that is shorter by an order
of magnitude as compared to the leading edge. In this case
�H �= �Hpump↓↑ and does not induce a transition so that �M re-

mains in its final state when �H is eventually turned off.

B. Effect of the Gilbert damping on �Hpump↓↑

The polarization state of �Hpump↓↑ is determined from
the polarization state of the transverse components of �M.

FIG. 2. Temporal evolution of the components of �M under the
influence of alternating �Hpump↓ and �Hpump↑ for (a) α = 0.025 and
(b) α = 0.25. An RCP (LCP) component in the trajectory of �M
is acquired for the application of �Hpump↓ ( �Hpump↑). Insets illustrate
the trajectory of �M along the Bloch sphere. Black dashed lines
indicate the alternation between �Hpump↓ and �Hpump↑. In panel (b)
|�p| = 4.78 × 1010 A2/m2 to preserve �τ↓↑ while the large α was
chosen for visualization purpose.

Particularly, if Mx(t ) and My(t ) follow a circular trajec-
tory, �Hpump↓↑ acquires a CP component as readily seen from
Eq. (6). In Figs. 1(b) and 1(c), α was relatively small, so
that the damping torque was negligible and �M remained in
the x−z plane. Therefore, �Hpump↓↑ remained linearly polar-
ized in ŷ. Next, we show that for larger α, My(t ) becomes
appreciable such that �Hpump↓↑ acquires an additional CP
component. This result emerges naturally from the Bloch
picture: we recall that the transverse components of �M
are expressed by the off-diagonal density matrix element,
ρ12 = (Mx − jMy )/2Ms. According to Eq. (4), ρ12 oscil-
lates at ωTLS and decays at the rate γinh, whereas the sign
of ωTLS determines the handedness of the transverse com-
ponents of �M. Namely, the ratio between ωTLS and γinh

determines the magnitude of the circular component in the
(Mx(t ), My(t )) trajectory. Under the application of �Hpump↓↑,
Eq. (5) yields ωTLS = ±γ�pαMs/[(M2

s −M2
z )(1 + α2)] and

γinh = ∓γ�pMz/[(M2
s −M2

z )(1 + α2)] readily showing that
|ωTLS/γinh| = αMs/Mz increases with α, so that �Hpump↓↑ ac-
quires an additional CP component (see Appendix B for
full derivation). Figure 2 illustrates these results. Panel (a)
presents the components of �M(t ) for the same simulation
in Fig. 1(b). It is seen that My(t ) is negligible and thus
�Hpump↓↑ remains linearly polarized. When α is increased, an

elliptical trajectory of �M in the x−y plane emerges, while
the constant transition rate of Mz persists as illustrated in
Fig. 2(b). In this case, �Hpump↓↑ acquires a right-CP (RCP) or
left-CP (LCP) component depending on the choice of �Hpump↓
or �Hpump↑.
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FIG. 3. (a) Magnetization reversal induced by an RCP Gaussian
pulse for α = 0.035, Ms = 3 × 105 A

m , η = 2.5 × 10−4, and tpeak =
10 ps. Top and middle panels depict the temporal evolution of the x
and y components of �M and �Hopt in normalized units. Bottom panel
depicts Mz/Ms. (b) Mz/Ms, for the application of an LCP pulse. (c)
Magnetization reversal induced by an RCP Gaussian pulse for η = 1
and tpeak = 50 fs. Top panel presents the temporal behavior of | �Hopt|
and τα , where Hcrit = Hth/

√
2 and H1/2 = 0.27Hth. Second and third

panels depict the temporal evolution of the x and y components of
�M and �Hopt in normalized units. Bottom panel depicts Mz/Ms. (d)

Mz/Ms, for the application of an LCP pulse. In (c) and (d), black
solid lines represent the analytical solution of �/Ms. Insets: trajectory
along the Bloch sphere for t > 55 fs.

C. Interaction with optical CP Gaussian pulses

The coupling between the handedness and reversal direc-
tion in an ultrashort excitation is reminiscent of the switching
reported in AO-HDS experiments [1,7,8,18] and emerges
naturally in our model. These results call to examine the
interaction of the CP magnetic field of a short optical pulse
with �M. Figure 3(a) presents the calculation for experi-
mentally realistic settings following Refs. [7,10,18], where
only the optical magnetic field is substituted into the LLG

equation. The results are shown for an 800-nm optical mag-
netic field of an RCP Gaussian optical pulse modeled by

�Hopt (t ) = Hpeak (
cos(ωoptt )
sin(ωoptt )

0
)e−(t−tpeak )2/2τ 2

p . The pulse has a dura-

tion determined by τp, an angular frequency ωopt, and a peak
amplitude Hpeak that is reached at t = tpeak. In our simulations
τp = 3 ps and tpeak = 10 ps. The pulse energy was ∼5 µJ
and assumed to be focused to a spot size of ∼100 µm2, for
which Hpeak = 8 × 106 A/m. Such spot size is much larger
than typical size of a domain wall; therefore, the exchange
energy is accounted for in the macrospin approximation. Here
we take α = 0.035, which is typical for Pt/Co-based systems
[6,13,25,39]. For such conditions, the Gilbert relaxation time
corresponding to Hpeak is τα = 1

αγ Hpeak
≈ 16 ps [40,41]. It

is readily seen that for such τα the magnetization responds
within the duration of the optical pulse, indicating that the
interaction between the optical pulse and �M becomes possible
by the LLG equation. Following the interaction, Mz = −5 ×
10−4 · MS , namely a sizable net longitudinal torque results,
which builds up from cycle to cycle of the optical radiation.
This torque is not affected significantly by the anisotropy field,
as discussed in Appendix C.

This mechanism is fundamentally different from the pre-
cessional switching mechanism by an optically induced DC
longitudinal field. Such field can be generated, for example,
by the inverse Faraday effect (IFE), which arises from the
optical electrical field in contrast to the optical magnetic field
considered here. An equivalent effective DC magnetic field,
Bz

eff , required for such transition within 10 ps is estimated to be
∼50 mT (see Appendix C). In agreement with the prediction
of the TLS model, pulses of the opposite helicity induce an
opposite transition as shown in Fig. 3(b). The strength of
the interaction depends on the ability of �M to decay towards
the oscillating optical magnetic field within the optical cycle.
Hence, the magnitude of τα is key to the interaction. Accord-
ingly, for a given pulse duration, we define the interaction
strength parameter η = 2παγ Hpeak/ωopt, which expresses the
ratio between τα and the optical cycle and is 2.5 × 10−4 in
Fig. 3(a).

D. Dynamics in the η → 1 limit

The principles of the interaction can be better understood
at the limit where η → 1 and for which the interaction can be
described analytically. To this end, we set η = 1 so that the
Gilbert relaxation time equals the optical cycle. The higher
optical magnetic fields required for this limit are achievable
using conventional amplified femtosecond lasers, for example
by focusing an ∼5-mJ pulse into a spot size of ∼1 µm2. How-
ever, in practical experiments such pulses surpass the typical
damage threshold of the metallic film. Nevertheless, the study
of the LLG equation in this limit is instructive. Figure 3(c)
illustrates the results for an RCP �Hopt pulse of a duration of
20 fs determined by the full width at half maximum of the
intensity. The figure reveals the different stages of the inter-
action. During the leading edge, for t < ∼ 40 fs, the relative
phase between �Hopt and �M seems arbitrary. As tpeak is reached,
the Gilbert relaxation time becomes as short as the optical
cycle, allowing �M to follow �Hopt until it is entirely locked
to �Hopt. In this case, �M undergoes a right-circular trajectory
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about ẑ. The switching of �M takes place at the final stage
of the interaction: During the trailing edge of the pulse, the
amplitude of �Hopt reduces and τα extends, thereby releasing
the locking between �M and �Hopt. In this case, the switch-
ing profile of Mz is monotonic linear-like in time, closely
resembling the transition stemming from a constant carrier
injection rate in the Bloch picture. The optically induced tran-
sition can be described analytically following the calculation
presented in Appendix D, from which we find the transition
rate:

�/Ms = ∓ 3

2
√

2
ln

(
4

3

)
1

τp
[√

ln
( Hpeak

0.27Hth

) −
√

ln
( Hpeak

Hth/
√

2

)] ,

(7)
where Hth = ωopt

2πγα
is the value of Hpeak at η = 1. The rate

�/Ms is plotted as well in Fig. 3(c) and reproduces the nu-
merical calculation. � depends on the ratio between Hpeak and
Hth and is only weakly dependent on Hpeak. Namely, when
Hpeak � Hth, the circular trajectory of �M in the x−y plane
persists longer after tpeak, but as the amplitude of the pulse
decays below Hth/

√
2, �M is driven out of the x−y plane and

the reversal takes place (see Appendix E). This analysis also
holds for LCP pulses, which result in an opposite reversal of
�M, as shown in Fig. 3(d).

III. DISCUSSION: COMPARISON WITH EXPERIMENTS

η describes the efficiency of the interaction, namely, the
ability of �M to follow �Hopt. When η � 1, as in the case
of experimentally realistic intensities, the transition is partial
as seen in Figs. 3(a) and 3(b). In this case, an incremental
torque acts on the magnetization within each optical cycle
and builds up to a sizable effective torque over the pulse
duration. This illustrates the pivotal role of α since η ∝ α,
and is explored in detail in Appendix E. Interestingly, the
AO-HDS effect was found in a variety of material systems
that included Pt, which was introduced to induce a perpen-
dicular magnetic anisotropy [25,26] by the Pt/Co interface.
However, Pt is also well known to be an efficient sink for
spin angular momentum [42,43]; therefore, it also increases
α and enhances the optically induced torque according to
the LLG equation. This trend is readily seen in the measure-
ments carried out by Choi et al. [11] in a variety of FM/HM
systems.

The time-resolved magnetization dynamics measured in
Ref. [11] further provide quantitative data for testing our
calculations. To this end, we simulate an optical pulse having
a fluence of 2.35 mJ/cm2 and the same sample parame-
ters of the Co/Pt and Fe/Pt systems of Ref. [11] (Appendix
C). From the response of My, Choi et al. estimated Bz

eff =
1 mT. Following the same analysis, we find from our
calculations Bz

eff = 0.25 mT, which is of the same order
of magnitude. Choi et al. further calculated Bz

eff induced
by the IFE from the theories by Mondal [44], Berrita [45],
and Qaiumzadeh [46], and found a large range of predicted
Bz

eff ∼ 3 × 10−6 − 40 T for the same conditions. Addi-
tionally, from the theory derived by Freimuth et al. [13]
that was based on first-principles electronic structure cal-
culations and the Keldysh nonequilibrium formalism, Choi

et al. estimated Bz
eff ∼ 1.5− 20 mT. Overall, it is seen

that the effective transverse torque emerging from the LLG
equation can be of comparable magnitude to that generated
by the IFE.

In the same manner, an effective transverse field By
eff can

also be evaluated from the Mz dynamics. From the experi-
mental data presented by Choi et al., By

eff is found to be in the
range of ∼0.05−0.87 mT for the various Co-, Fe-, and Ni-
based samples. In our calculations we find By

eff = 0.014 mT.
Namely, an additional contribution to By

eff should be ac-
counted for. Freimuth et al. [13] found that the electrical field
associated with the magnetic field of the typical ultrashort
pulses affects the electronic band structure. Consequently, the
resultant nonequilibrium Keldysh states were shown to induce
an OSTT [12] wherein spin-polarized photocarriers are gen-
erated according to the optical selection rules and contribute
to By

eff . Namely, the helicity-dependent torque stemming from
our calculations should be considered alongside the IFE and
OSTT mechanisms. Interestingly, Freimuth et al. [13] showed
that the IFE and OSTT mechanisms are enhanced by the
spin-orbit coupling (SOC). Considering the LLG equation,
SOC also enhances α and consequently also the efficiency
parameter η, resulting in a larger optically induced torque.

IV. SUMMARY

To summarize, in this work we demonstrated that the con-
trol of the magnetization by an optical field arises from first
principles by introducing the magnetic part of the optical
radiation to the LLG equation. The principle of the interac-
tion is that the magnetization is incrementally affected within
each optical cycle such that a significant net torque can build
up over the entire pulse duration. This was seen from the
comparison between the experimentally realistic case where
η � 1 and the case of η = 1. The process is independent of
resonance conditions and is enhanced with increasing mag-
netic field amplitude and Gilbert damping. Using the TLS
model, we demonstrated the coupling between the optical
helicity state and the polarity of the longitudinal torque. A
quantitative analysis of the optically induced torque revealed
that it can be comparable to that generated by the IFE, and
further stressed the important role of the OSTT. Our results
illustrate the generality of the LLG equation to the optical
limit in the interaction between optical magnetic fields and
spins in solids.
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APPENDIX A: MAGNETIZATION SWITCHING
USING �Hpump

We start with the calculation of the time duration �τ

during which the �Hpump↓↑ fields have to be applied in or-
der to reverse the magnetization state, i.e., to drive Mz from
Mz = 0 to Mz = Ms (in the main text, �M is initialized in the x̂
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direction). Assuming that �Hpump↓↑ is the sole excitation acting
on �M, we have

|Ṁz| = |ρ.
11 − ρ.

22| = |�1 − �2|. (A1)

Under the application of �Hpump↓↑, �1 = −�2, so that∣∣Ṁz

∣∣ = 2|�1|. (A2)

We integrate both sides, for the duration �τ during which
Mz increases from 0 to Ms:∫ �τ

0
2�1 =

∫ �τ

0
M .

z. (A3)

The right-hand-side is simply multiplied by �τ , as �1 is a
constant:

2�1�τ = Ms. (A4)

We express �1 using �p:

γ�p

(1 + α2)
�τ = Ms. (A5)

Finally,

�τ =
(
1 + α2

)
γ�p

Ms. (A6)

Parameters

The parameters of the simulations of Figs. 1 and 2 in
the main text were chosen to model a realistic NM-FM bi-
layer sample such as the Pt/CoFeB system [47] with α =
0.025, thickness of the FM layer of tFM = 12 Å, and sat-
uration magnetization of Ms = 3 × 105A/m. In Fig. 3 in
the main text, α = 0.035, which is typical for Pt/Co-based
systems [39,48]

APPENDIX B: CALCULATION OF THE TLS TERMS

We implement the procedure described in Eq. (5) in
the main text in order to derive expression for the TLS
terms �1, �2, γ1, γ2, γinh, ωTLS, and V12 as a function
of terms from the LLGS equation �M, α, and �p. The
field �Hpump↓↑ from Eq. (6) in the main text has the
following form:

�Hpump↓↑ = ±�p

M2
s − M2

z

⎛
⎝ My

−Mx

0

⎞
⎠. (B1)

The “ ± ”−sign notation throughout this appendix cor-
responds to the application of either �Hpump↓ or �Hpump↑,
respectively.

We start with the generalized �Heff field [Eq. (2) in the main
text]:

�Heff ≡
[

�H − α

Ms

�H × �M
]
. (B2)

In component form it takes the following form:

�Heff =
⎛
⎝Heff x

Heff y

Heff z

⎞
⎠

= γ

1 + α2

⎛
⎜⎜⎝

∓�p
My

M2
s −M2

z
∓ 1

Ms

[
α�p

Mx
M2

s −M2
z
Mz

]
±�p

Mx
M2

s −M2
z

∓ 1
Ms

[
α�p

My

M2
s −M2

z
Mz

]
± α

Ms
�p

⎞
⎟⎟⎠.

(B3)

Next, we calculate κ and κ0 similarly to the main text:

κ = γ

2(1 + α2)
(Heff x − jHeff y)

= ∓ j
γ

2(1 + α2)
�p

Mx − jMy

M2
s − M2

z

, (B4)

κ0 = B′
z = ± γ

1 + α2

α

Ms
�p. (B5)

Before starting the calculations, we point out a useful iden-
tity:

(Mx − jMy)(Mx + jMy) = M2
x + M2

y = M2
s − M2

z ≡ 4ρ12ρ21

= 4A1A∗
2A2A∗

1 = 4|A1|2|A2|2

= 4ρ11ρ22 = 4ρ11

(
Ms − Mz

2

)

= 4ρ22

(
Ms + Mz

2

)
. (B6)

We now start the calculation in order to express the TLS
terms �1 and �2 from the rate equation of ρ11 [Eq. (3) in the
main text]:

ρ.
11 = j(κ∗ρ12 − κρ21) = − jρ21κ + c.c. (B7)

Substituting κ from Eq. (B4):

ρ.
11 = γ

2(1 + α2)

Mx + jMy

2

{
∓�p

Mx − jMy

M2
s − M2

z

}
+ c.c.

(B8)
Using the identity from Eq. (B6):

ρ.
11 = ∓ γ

2(1 + α2)
�p. (B9)

Similarly, for ρ.
22:

ρ.
22 = ± γ

2(1 + α2)
�p. (B10)

Using Eq. (4) in the main text:

ρ.
11 = �1 − γ1ρ11 + [My�{V12} + Mx�{V12}],

ρ.
22 = �2 − γ2ρ22 − [My�{V12} + Mx�{V12}].

Consequently, we express the TLS terms �1, �2, γ1,
γ2, V12:

�1 = ∓ γ

2(1 + α2)
�p, �2 = ± γ

2(1 + α2)
�p,

γ1 = 0, γ2 = 0, V12 = 0.
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Next, we express the two remaining TLS terms ωTLS and γinh using the rate equation of ρ12 in Eq. (3) the main text:

ρ.
12 = − jκ0ρ12 + jκ (ρ11 − ρ22). (B11)

Substituting κ and κ0 from Eqs. (B4) and (B5):

ρ.
12 = γ

1 + α2

{
− jρ12

[
± α

Ms
�p

]
− 1

2
(ρ11 − ρ22)

[
∓�p

Mx − jMy

Ms
2 − Mz

2

(
1 − j

αMz

Ms

)]}
. (B12)

Reformulating the expression with ρ12:

ρ.
12 = γ

1 + α2
· ρ12

{
− j

[
±�p

αMs

M2
s − M2

z

]
± Mz

Ms

[
�p

Ms

M2
s − M2

z

]}
. (B13)

Using Eq. (4) in the main text:

ρ.
12 = − ( jωTLS + γinh )ρ12 + jMzV12,

we express the TLS terms ωTLS and γinh:

ωTLS = ± γ

(1 + α2)

{
�p

αMs

M2
s − M2

z

}
,

γinh = ∓ γ

(1 + α2)

Mz

Ms

{
�p

Ms

M2
s − M2

z

}
.

APPENDIX C: EVALUATION OF THE EFFECTIVE
INDUCED FIELD

Following Ref. [11], we evaluate the effective field along
−ẑ from the small-angle dynamics of My by the effect of the
fieldlike torque:

My

Ms
= γ

∫
Beff (primary torque)dt ≈ γ Beff (primary torque)�tpulse,

(C1)

Beff (primary torque) = My

Ms

1

γ�tpulse
. (C2)

On the other hand, we can also evaluate the effective field
from the dynamics of Mz by the effect of a dampinglike
torque:

Mz

Ms
= 1 − e−�tpulse/τα = 1 − e−�tpulseαγ Beff (damping torque) , (C3)

Beff (damping torque) = ln

(
Ms

Ms − Mz

)
1

αγ�tpulse
. (C4)

FIG. 4. Magnetization dynamics induced by a 0.3-T RCP pulse,
for α = 0.025 and τp = 675 fs. Results are normalized by Ms.

For the case of Fig. 3(a) in the main text,
Beff (damping torque) = 50 mT.

In Fig. 4 we compare the action of our mechanism to that
demonstrated by Choi et al. [11] for a 10-nm Co/4-nm Pt
sample. The figure presents the optically induced dynamics of
My and Mz. We introduce an RCP pulse to the LLG equation
and set �tpulse = 1.1 ps, tpeak = 2.5 ps, and α = 0.025. In
Fig. 4 we find that introducing a CP optical field of 0.3 T
in the LLG equation results in My = 8.3 × 10−6 and Mz =
4.3 × 10−7, so that Bz

eff (primary torque) = My

Ms

1
γ�tpulse

∼ 0.25 mT

and By
eff (primary torque) = Mz

Ms

1
γ�tpulse

∼ 0.014 mT.
The influence of the magnetic anisotropy on

Beff (primary torque) was examined as well. To this end, we
introduced the anisotropy field �Hanis = −Mzẑ to the LLG
equation in addition to the optical pulse simulated in Fig. 3(a)
of the main text. Figure 5 readily shows that the longitudinal
torque induced by the optical pulse remains unaffected by
�Hanis. The change in Beff (primary torque) was found to be smaller

than 10−4%.

APPENDIX D: DERIVATION OF �/Ms

The optically induced transition, for the case of η � 1, can
be described analytically by making the following assump-
tions. To this end, we define Hpeak corresponding to η = 1
by Hth = ωopt

2πγα
. We first assume that �M is already locked to

�Hopt at t = tpeak and precesses in the x−y plane, and that
the switching is initiated when the power of the pulse re-
duces to half the power of electromagnetic radiation having
| �H | = Hth. This occurs when �Hopt (t ) reaches the magnitude of
Hcrit = Hth/

√
2. We calculate the transition rate, �, from M .

z

when the ẑ torque is maximal. We find this point to occur
approximately when |Mz(t )| ∼ 0.5Ms at which | �Hopt (t )| re-
duces to H1/2 = 0.27Hth as shown in Fig. 6.

We consider the case of t > tpeak + tcrit , where tcrit =
τp

√
2 ln( Hpeak

Hth/
√

2
), and start by presenting the components of

Hopt (t ):

Hopt x(t ) = Hpeak cos(ωoptt )e−(t−tpeak )2/2τ 2
p ,

Hopt y(t ) = ±Hpeak sin(ωoptt )e−(t−tpeak )2/2τ 2
p ,
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FIG. 5. Inclusion of �Hanis. Temporal trace of the magnetization simulated for the same conditions as in Fig. 3(a) in the main text (a) without
the inclusion of anisotropy, and (b) with the inclusion of anisotropy. �M was initialized in the x̂ direction.

for the RCP and LCP pulses. We assume that Hpeak � Hth and
accordingly �M is locked to the optical pulse at t = tpeak, and
starts to decay from the x−y plane only after t = tpeak + tcrit .
We assume that Mx and My have Gaussian envelopes:

Mx(t ) = Ms cos(ωoptt )e−(t−tpeak−tcrit )2/2τ 2
M ,

My(t ) = ±Mssin(ωoptt )e−(t−tpeak−tcrit )2/2τ 2
M ,

for the RCP and LCP pulses, where tcrit and τM define their
Gaussian profile. τM is the relaxation rate of �M from the CP
motion, which we now turn to calculate: At t = tpeak + t1/2,
Hopt (t ) decreases to H1/2 and |Mz(t )| reaches 0.5Ms, so that

M2
x (t = tpeak + t1/2) + M2

y (t = tpeak + t1/2) = 3
4 M2

s .

In this case:

e−(t1/2−tcrit )2
/τ 2

M = 3
4 ,

FIG. 6. Numerical calculation of H1/2, the amplitude of the
Gaussian envelope of Hopt (t ) when |Mz(t )| decreases to 0.5Ms during

the reversal. Hpeak ∈ [ ω800 nm (1+α2 )
2πγα

, 150 · ω800 nm (1+α2 )
2πγα

], where ω800 nm

corresponds to an optical wavelength of 800 nm and α = 0.025. The
different curves correspond to applied pulses with three different
wavelengths λ ∈ {533, 640, and 800 nm} and two different pulse du-
rations τp ∈ {8 and 10 fs}. The three solid thin lines correspond to

H1/2 analytical = 0.27 ωopt (1+α2 )
2πγα

for the three different wavelengths and
reproduce the calculated curves well. H1/2 is seen to be independent
from τp.

which determines τM by the relation

τM = (t1/2 − tcrit )√
ln

(
4
3

)

= τp√
ln( 4

3 )

⎡
⎣

√
2 ln

(
Hpeak

0.27Hth

)
−

√
2 ln

(
Hpeak

Hth/
√

2

)⎤
⎦.

FIG. 7. First, second, and third panels depict the temporal evo-
lution of the normalized Mx and Hpulse x, My and Hpulse y, and Mz,
respectively. Fourth, fifth, and sixth panels depict the temporal evo-
lution of the not-normalized primary torque, damping torque, and ẑ
component of the total torque, respectively. Insets: ẑ component of
the primary (total) torque for t = 60−75 fs where the reversal of Mz

occurs. η = 1, α = 0.035, τp = 10 fs.
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FIG. 8. Magnetization switching induced by RCP and LCP
pulses, for α = 0.025 and τp = 10 fs, for a 1-µm wavelength.

Finally, using the normalization condition of �M, | �M|2 =
M2

s , we find that

Mz(t ) = ∓Ms

√
1 − e−(t−tpeak−tcrit )2/τ 2

M .

FIG. 9. Magnetization switching induced by RCP and LCP
pulses, for α = 0.0075 and τp = 10 fs, for a 1-µm wavelength.

FIG. 10. Magnetization switching cannot be induced by RCP and
LCP pulses when α = 10−4 and τp = 10 fs, for a 1-µm wavelength.

We calculated the transition rate, �, by taking the slope of
Mz(t ) at t = tpeak + t1/2, from which we find that

�

Ms
= ∓3

2

√
ln( 4

3 )

τM
≈ ∓ 0.305

τp
[√

ln
( Hpeak

0.27Hth

) −
√

ln
(Hpeak

Hth√
2

)] .

APPENDIX E: MAGNETIZATION REVERSAL INDUCED
BY CIRCULARLY POLARIZED MAGNETIC FIELD

PULSES

Figure 7 presents a similar simulation to Fig. 3(c) from the
main text with additional details on the torques. Figures 8–11
present the magnetization switching induced by circularly po-
larized pulses, in the absence of other excitations. The figures
illustrate the effect of different pulse amplitudes for LCP and
RCP pulses. They clearly show that while the phase-locking

condition Hpeak � Hth = ωopt (1+α2 )
2πγα

is fulfilled, the LCP pulses
fully reverse the magnetization towards +z while RCP pulses
reverse it towards −z. In Fig. 8 α = 0.025 while in Fig. 9
α = 0.0075. In this case, a smaller damping still results in
reversal. However, since the damping is at the core of the
interaction, for the case where α = 10−4 no reversal is built
from cycle to cycle for any pulse amplitude, as readily seen
in Fig. 10. In Fig. 11 α = 0.025 and the timescale is enlarged
by three orders of magnitude, namely to the ∼30-ps duration,
while the wavelength is increased to 1 mm. In this case, the
Hth amplitudes required for the full magnetization reversal
are also lower by three orders of magnitude as compared to
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FIG. 11. Magnetization switching induced by RCP and LCP
pulses, for α = 0.025 and τp = 10 ps, for a 1-mm wavelength.

the 30-fs pulses in Figs. 8–11. In Fig. 12 we show the pivotal
role of α to the interaction and simulate the same conditions

FIG. 12. Temporal trace of Mz/Ms simulated for the same condi-
tions as in Fig. 3(a) in the main text, for Hpeak = 7.3 × 107 A/m and
α = 0.025 (a), α = 0.035 (b), and α = 0.06 (c). It is readily seen that
the longitudinal torque is enhanced with α.

as in Fig. 3(a) in the main text for different α values and for
Hpeak = 7.3 × 107 A/m. It is readily seen that the response is
enhanced with α, namely Mz

Ms
= 0.014, 0.02, and 0.034 for

α = 0.025, 0.035, and 0.06, respectively.
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