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Thermodynamic limit of spin systems on random graphs
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We utilize the graphon—a continuous mathematical object which represents the limit of convergent sequences
of dense graphs—to formulate a general, continuous description of quantum spin systems in thermal equilibrium
when the average coordination number grows extensively in the system size. Specifically, we derive a closed set
of coupled nonlinear Fredholm integral equations which governs the properties of the system. The graphon forms
the kernel of these equations, and their solution yields exact expressions for the macroscopic observables in the
system in the thermodynamic limit. We analyze these equations for both quantum and classical spin systems,
recovering known results and providing analytical solutions for a range of more complex cases. We supplement
this with controlled, finite-size numerical calculations using Monte Carlo and tensor network methods, showing
their convergence towards our analytical results with increasing system size.
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I. INTRODUCTION

The physical properties of interacting systems are strongly
affected by the connectivity of their components. For instance,
network topology plays a decisive role in the rate of disease
spreading in infectious disease models [1], while systematic
studies have been undertaken on the effect of connectivity on
the synchronization of oscillators [2–5].

In interacting spin systems, the same ideas hold true:
frustration causes the manifestation of exotic phases of mat-
ter such as a spin liquids [6], and small-world effects alter
the underlying universality class of ordered-disordered phase
transitions [7]. The difficulty of solving the many-body prob-
lem (especially in the quantum regime), however, means a
more general characterization of how network topology in-
fluences strongly correlated systems is unknown.

When disorder is absent and the average coordination num-
ber becomes large, interacting many-body systems fall into
the mean-field universality class and become amenable to
simpler mathematical and computational approaches [8–12].
Despite mostly being applied to translationally invariant sys-
tems, the mean-field approach is known to be valid for
an infinite multitude of networks, whether homogeneous
or heterogeneous [13]. Although it is only exact in the
thermodynamic limit and when the average coordination
number grows proportionally with the system size [14],
mean-field theory can provide meaningful physical predic-
tions for low-dimensional systems [15,16]. Within the field
of graph theory, network structures—whether heterogeneous
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or homogeneous—with an extensive coordination number are
well characterized. Their thermodynamic limit is succinctly
described by the graphon [17,18], a continuous mathematical
object which represents the limit of a sequence of adjacency
matrices as the number of vertices tends to infinity and the
average coordination number grows extensively.

Here we utilize the graphon in the study of interacting spin
systems. This allows us to formally take the thermodynamic
limit and derive an exact, continuous theory for the limit of
sequences of discrete Hamiltonian on graphs of increasing
size and average coordination number. Specifically, we take a
very general spin Hamiltonian defined over an arbitrary graph
and, for sequences of dense graphs whose limit is known to
converge to a given graphon, derive a coupled set of integral
equations which exactly describes the equilibrium physics of
the limit of the corresponding sequence of Hamiltonians. The
graphon forms the kernel in these integral equations, and the
physics of the system can be directly studied as a function of
this object.

Taking several classical and quantum example models, we
demonstrate the utility of these integral equations, (i) verify-
ing previous results on all-to-all spin systems, (ii) proving the
existence of a finite-temperature phase transition in the classi-
cal Ising model for any graphon, and (iii) deriving analytical
solutions for the equilibrium observables of spin models on
nontrivial, heterogeneous networks. We reinforce our analyt-
ical solutions with large-scale, finite-size Monte Carlo and
tensor network simulations. Although the spin systems we
treat in this work are commonly studied due to their relevance
as models of real-world magnetism, they also find application
in many other branches of science, including the political,
social, and biological sciences [19–21].

II. HAMILTONIAN

Our starting point is L qubits placed on the L vertices
of graph GL. The graph is specified by an L × L symmetric
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adjacency matrix AGL with elements Av,v′ which dictate
the (weighted) connections between vertices (qubits) v, v′ ∈
[1, . . . , L], [1, . . . , L]. The Hamiltonian reads

H (GL ) = 1

L

L∑
v,v′=1
v>v′

Av,v′

⎛
⎝ ∑

α=x,y,z

Jασ̂ α
v σ̂ α

v′

⎞
⎠+

∑
v∈V

α=x,y,z

hασ̂ α
v′ ,

(1)

with Jα, hα ∈ R and σ̂ α
v being the Pauli spin operator act-

ing along the α spin axis on vertex v [22]. Our focus is
on graphs where 0 � Av,v′ � 1 and

∑
v,v′ Av,v′ ∝ L2. When

the graph is unweighted (Av,v′ ∈ {0, 1}), we refer to the
graph as “dense” because the average coordination number
diverges with system size. The factor of 1

L in H (GL ) is nec-
essary to ensure a finite, nontrivial energy density. A variety
of well-known models—including the Curie-Weiss [23] and
Lipkin-Meshkov-Glick [24,25] models—are contained within
our Hamiltonian. The restriction 0 � Av,v′ � 1 and the ho-
mogeneous nature of the field strengths, however, preclude
our Hamiltonian from including disordered models such as
spin-glass systems [26,27].

III. THEORY

In this work, by utilizing tools from graph theory and
mean-field theory, we formulate an explicit, exact, continu-
ous description of this system in thermal equilibrium in the
thermodynamic limit. In order to describe our continuum for-
malism we must first introduce the concept of a graphon. This
can be done by taking the vertices v = 1, . . . , L of a graph
GL and performing the change in variables: x = v/L ∈ [0, 1].
We then define WGL (x, y) : [0, 1]2 → [0, 1], a real symmetric
stepped function over the unit square such that for a given
(x, y) ∈ Iv × Iv′ , where Iv = [(v − 1)/L, v/L], WGL (x, y) =
Av,v′ . With a well-defined metric for the similarity of two
graphs, it can be shown that for certain sequences of graphs
(GL )L∈N the limit limL→∞ WGL (x, y) converges to a well-
defined symmetric function W (x, y) known as a “graphon”
[17,18]. In the Appendixes we discuss these metrics in detail
and provide theorems for the convergence of graph sequences
under these metrics. Importantly, it is also possible to move
in the opposite direction and, given a graphon W (x, y), con-
struct sequences of finite graphs whose limit is W (x, y). These
finite graphs can be constructed via one of two methods,
“stochastic” or “weighted” sampling of W (x, y), and we use
GS

L and GW
L to refer to their respective realizations over the

vertices v = 1, . . . , L. They can be constructed by defining
the quantity

Pv,v′ = L2
∫

Iv×Iv′
W (x, y)dxdy, Iv = [(v − 1)/L, v/L].

(2)

The adjacency matrix of the unweighted graph GS
L is

then defined by setting Av,v′ = 1 with probability Pv,v′ and
Av,v′ = 0 otherwise. The adjacency matrix of the weighted
graph GW

L is defined by setting Av,v′ = Pv,v′ . A given sequence

of such realizations is guaranteed to converge to the graphon
W (x, y) in the limit L → ∞.1

With the definition of the graphon in hand, the central result
of this paper can be presented.

Theorem 1. Let (GL )L∈N = (G1, G2, . . . ) be a sequence
of finite-size graphs generated as stochastic or weighted re-
alizations of the graphon W (x, y). Then for a given inverse
temperature T = 1/β the macroscopic properties of the equi-
librium states of the sequence of Hamiltonians H (GL )L∈N =
(H (G1), H (G2), . . . ) converge and are determined by the so-
lution of the following coupled integral equations:

λα (x) = −Jα

∫ 1

0

W (x, y)λα (y) tanh[β�(y)]

�(y)
dy + hα, (3)

with α = x, y, z; �(x) = +
√

[λx(x)]2 + [λy(x)]2 + [λz(x)]2;
and the three functions λα (x), with α ∈ {x, y, z}, each being
continuous, real valued, and defined over the domain [0,1].

In order to prove Theorem 1 and arrive at Eq. (3) we state
the following intermediate theorem.

Theorem 2. Let f (H ) = − 1
Lβ

ln{Tr[exp(−βH )]} be the free

energy density of a dL × dL many-body Hamiltonian, where
β ∈ R�0 and d is the dimension of the local Hilbert space. Let
GS

L and GW
L be the stochastic and weighted realizations on L

vertices of a graphon W (x, y), respectively. For an arbitrary set
of real, finite values for the parameters {Jx, Jy, Jz, hx, hy, hz}
the following is true:

| f (H (GS
L )) − f (H (GW

L ))| = O(L−1/2), (4)

which vanishes in the limit L → ∞.
Theorem 2 is a significant generalization of Theorem 1

in Ref. [28], which proved this result solely for sequences
of Erdős-Rényi graphs, which correspond to the constant
graphon. The proof of Theorem 2 (which can be found in
Appendix A) relies on more general statistical properties of
random graphs.

With Theorem 2 in hand, Theorem 1 follows by (i) fo-
cusing strictly on the sequence (GW

L )L∈N = (GW
1 , GW

2 , . . . ) of
weighted finite realizations of W (x, y), (ii) applying mean-
field theory (which is exact here in the thermodynamic limit),
and (iii) taking the continuum limit of the resulting equa-
tions by invoking the definition of the graphon. Appendix A
contains full proofs of both Theorems 1 and 2.

If we can solve Eq. (3) for the functions
{λx(x), λy(x), λz(x)}, then we have determined the
equilibrium physics of the limit of the sequence
(H (G1), H (G2), . . . ). The functions {λx(x), λy(x), λz(x)}
are a change in variables from the continuum limit of the
spin degrees of freedom in the Hamiltonian. They directly
encode the physical properties of the equilibrium state:
the magnetization on site v in the thermodynamic limit is
specified by 〈σα (x)〉 with x = limL→∞ v

L and is related to the

1We point out that the Hamiltonian in Eq. (1) is invariant under
AGL → AGL A, Jα → Jα/c. This degree of freedom on the graphon
and the Pv,v′ is trivial as it does not affect its functional form — which
is what governs the resulting equilibrium physics.
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λ functions by

〈σα (x)〉 = −λα (x)tanh[�(x)]

�(x)
. (5)

The total magnetization along a given spin direction is

Mα = lim
L→∞

1

L

L∑
v=1

〈σα
v 〉 = −

∫ 1

0

λα (x)tanh[�(x)]

�(x)
dx. (6)

The validity of the mean-field approximation here means we
can compute multipoint correlators as products of on-site
expectation values.

How can we solve Eq. (3) and find {λx(x), λy(x), λz(x)}?
In general there is no analytical solution, and we will
be restricted to numerical methods. Nonetheless, there are
certain cases where they can be solved analytically. Con-
sider the case in which the graphon is degenerate, i.e.,
W (x, y) =∑n

i=1 fi(x) fi(y), where n is finite and fi(x) :
[0, 1] → [0, 1]. Substitution into the above equation tells us
λα (x) =∑n

i=1 cα
i fi(x), where cα

i are real-valued coefficients
which depend on the field strengths hα , the couplings Jα ,
and the inverse temperature β but do not depend on x. These
coefficients cα

i are the solution of the set of 3n coupled
equations which results from the substitution of λα (x) =∑n

i=1 cα
i fi(x) into Eq. (3). For a given set of Jα and hα and

a value of β we therefore have a closed form for λα (x) and
various observables in the system. In our examples in the main
text (further examples, including nondegenerate graphons, are
considered in the Appendix C) we focus on n = 1 because
such graphons can be manipulated to yield closed forms for
the equilibrium properties of the system.

IV. CLASSICAL ISING MODEL

We first set Jx = Jy = hx = hy = hz = 0 and Jz = −1, re-
alizing the classical Ising model with zero field. Utilizing
sgn(z) tanh(β|z|) = tanh(z), our integral equations reduce to

λz(x) =
∫ 1

0
W (x, y) tanh[βλz(y)]dy. (7)

The Z2 spin-flip symmetry is encoded in the fact that if
λz(x) is a solution to the equation, then so is −λz(x). More-
over, there is clearly always a trivial solution λz(x) = 0 ∀x
which corresponds to the disordered paramagnetic state with
zero magnetization. Applying Banach’s fixed-point theorem
[29] to Eq. (7) tells us that, with certainty, when β <

supx∈[0,1]

∫ 1
0 W (x, y)dy, this is the only solution. For larger

values of β, however, a nontrivial solution exists which corre-
sponds to a ferromagnetic phase. For instance, when β → ∞,
we have λz(x) = ∫ 1

0 W (x, y)dx 
= 0 ∀x. Thus, following this
analysis, we know that λz(x, β ) cannot be smooth and con-
tinuous over x ∈ [0, 1] and β ∈ [0,∞] and there must exist
a finite-order transition between the ferromagnetic solution
and the paramagnetic solution at some critical temperature.
Our continuum description therefore allows us to prove the
existence of a ferromagnetic-paramagnetic phase transition
for the Ising model on any dense graph—with a corresponding
analytical upper bound on this temperature. A similar argu-
ment can be applied to a number of the limits of Eq. (1).

Now let us treat some explicit examples. We first consider
W (x, y) = p whose stochastic realizations are GER(p): the
Erdős-Rényi graph over L vertices where each edge appears
independently with probability p. Observe from Eq. (7) that
in this case λz(x) = λz = p tanh(βλz ) and is independent of
x. Substituting this into Eq. (6) gives us the familiar self-
consistent equation Mz = tanh(βpMz ) for the magnetization
Mz of the classical Ising model under the mean-field approx-
imation. The edge probability p re-scales the temperature in
the all-to-all model and the randomness of the model has
no effect on the macroscopic physics in the thermodynamic
limit—a result which has been proven to be general for spin
systems on Erdős-Rényi graphs [23,28].

We consider the more complex, separable graphon
W (x, y) = xy, whose stochastic realizations dictate that each
pair of spins v and v′ interacts with strength 1 with probability
(vv′/L2) and strength 0 otherwise. One can also choose to
directly interpret the deterministic realization of the graphon,
in which each pair of spins interacts with a strength (vv′/L2).
Both interpretations lead to the same physics in the thermo-
dynamic limit—this follows directly from Theorem 2. From
Eq. (7) we derive ( see the Appendix B) σ z(x) = tanh(βcx)
and Mz = ln[cosh(c)]

c , where c is the real-valued solution of the
equation

12c2 − π2 + 24cln(1 + e−2c) − 12PL2(−e−2c) = 24c3

β

(8)

and PL2 is the polylogarithm function of order 2. The critical
inverse temperature βc is βc = 3: the supremum of the left-
hand side of the above equation for c ∈ [0,∞].

In Fig. 1 we plot the total magnetization Mz and the
local magnetization σ z(x) versus β based on our analytical
solution. We also perform finite-size Monte Carlo numerics
for Mz for increasing system size [by constructing stochastic
realizations of W (x, y)] and demonstrate convergence to our
analytical solution. We compare these results to the graphon
W (x, y) = 1

4 . As the temperature increases, both systems un-
dergo a second-order phase transition characterized by typical
mean-field exponents. For the graphon W (x, y) = xy, how-
ever, the convergence to a fully ferromagnetic state at zero
temperature is slower. This convergence can be determined
analytically by expanding Eq. (8) for large β and substitut-
ing into Mz = ln[cosh(c)]

c , yielding Mz = 1 − 2 ln(2)
β

. There is
thus a direct linear convergence of the magnetization to unity
with temperature T = 1

β
versus the exponentially fast con-

vergence associated with the homogeneous W (x, y) = const
case.

This slow convergence is a result of the “left boundary”
of the system. In Fig. 1(b) we see that the local magneti-
zation at small values of x, where the spin-spin couplings
are very weak, is very small even deep in the ferromagnetic
regime. This “boundary effect” means the T = 0 state has
a finite magnetic susceptibility to changes in temperature,
i.e., dMz

dT |T =0 = −2 ln(2). In the homogeneous case we have
dMz

dT |T =0 = 0. While both systems are mean field in terms of
their universal behavior, they exhibit very different physics in
the ferromagnetic regime.
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(a) (b)

FIG. 1. Magnetization of the classical Ising model for the
graphons: W (x, y) = xy and W (x, y) = 1

4 . (a) Top: Total magneti-
zation density Mz versus inverse temperature β for L → ∞. Black
dash-dotted lines give the asymptotic derived by taking the large-β
limit of the respective closed-form equations. Red circles correspond
to Monte Carlo simulations of finite, L = 800, randomly sampled
graphs GS

L derived from W (x, y) = xy. Bottom: Percentage differ-
ence in Mz for the exact result in the thermodynamic limit versus
finite-size Monte Carlo simulations at several L (crosses show L =
100, triangles show L = 200, squares show L = 400, and circles
show L = 800). For each β and L, 100 stochastic samples GS

L are
realized, and the data (both top and bottom plots) are averaged
over these. Further details are provided in the Appendix. (b) On-site
magnetization σ z(x) versus β and x for the graphon W (x, y) = xy in
the thermodynamic limit.

V. TRANSVERSE FIELD ISING MODEL

We now consider a quantum example: the transverse field
Ising model. Our integral equation is [setting Jx = Jy = hy =
hz = 0 and hx = −h, Jz = −1 in Eq. (1)]

λz(x) =
∫ 1

0

W (x, y)λz(y) tanh{β
√

h2 + [λz(y)]2}√
h2 + [λz(y)]2

dy. (9)

We focus on the ground state by taking the limit β → ∞.
We can again use Banach’s fixed-point theorem here to prove
the existence of a disordered-ordered phase transition with
an upper bound of the critical field strength hc given by the
supremum of the marginal of the graphon.

We now consider some specific examples. First, taking the
Erdős-Rényi graphon W (x, y) = p straightforwardly yields

the solution Mz =
√

1 − h2

p2 , consistent with a rescaled trans-

verse field Ising model with all-to-all coupling [28].
There are, however, other less trivial graphons for which

an exact analytical solution for the ground state properties can
be found. Consider the separable case W (x, y) = √

xy. Some
algebra on Eq. (9) ( see the Appendix C) leads to 〈σ x(x)〉 =

h√
h2+g2x

and 〈σ z(x)〉 = − g
√

x√
h2+g2x

, with

g =
{√

2
3

√
1 + (1 − 3h)

√
1 + 6h h < 1

2 ,

0 otherwise.
(10)

Integrating the expression (see the Appendix C) for the trans-
verse magnetization then gives the following closed form for

FIG. 2. Properties of the ground state of the transverse field
Ising model on the graphon W (x, y) = √

xy. Results for the con-
stant graphon are included for reference. (a) Energy density versus
transverse field strength h. The orange line represents the analytic
solution in the thermodynamic limit. Markers represent numeri-
cal calculations averaged over 100 finite stochastic realizations of
W (x, y) = √

xy on L = 400 sites. Inset: Percentage difference be-
tween the ground state energy calculated for L = 100, 200, and 400
(crosses, triangles, and circles, respectively) site random-exchange
realizations of W (x, y) and the exact solution for L → ∞. (b) Total
transverse (unfaded) and longitudinal (faded) magnetization densi-
ties of the ground state. Inset: Two-point correlator 〈σ x ( 1

4 )σ x ( 3
4 )〉.

(c) von Neumann entanglement entropy (EE) of W (x, y) = √
xy

averaged over 100 stochastic realizations on L = 400 sites. The
partition is between the first xL sites of the system and the remain-
ing (1 − x)L sites. The red curve corresponds to the entanglement
entropy at x = 2/3 for h = 0 → 1. The dotted black line is the fit
EE(x = 2/3) = −0.136 log2(h − 0.5) − 0.089. (d) Analytical result
for the on-site magnetization σ x (x) versus transverse field strength h
and position x for the graphon W (x, y) = √

xy.

the total transverse magnetization density:

Mx =
⎧⎨
⎩

6h

3h+
√

2+9h2+(2−6h)
√

1+6h
h < 1

2 ,

1 otherwise.
(11)

The total longitudinal magnetization density can also be ob-
tained in closed form (see the Appendix C). Our methodology
has yielded an analytic expression for the magnetization (in
the thermodynamic limit) of the transverse field Ising model
on a complex, highly inhomogeneous graph structure.

In Fig. 2 we plot these solutions alongside those for the
constant graphon. The left boundary of the system, which
has very weak z-z coupling, modifies the physics of the sys-
tem and makes it more susceptible to the transverse field
than the all-to-all case. The transverse field susceptibility
versus site index x can be derived from Eq. (10), yielding
limh→0

d〈σ x (x)〉
dh | = δ(x), where δ(x) is the Dirac delta func-

tion. There is a singularity in the susceptibility on the left
boundary of the system at zero field strength in the ferromag-
netic regime. It is not present in the all-to-all model. Critical
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exponents for the magnetizations at the phase transition can
be found via expansion of the analytical results, and they are
consistent with the mean-field universality class and equiva-
lent for the two graphons.

In Fig. 2 we also provide finite-size simulations of the
ground state on random-exchange realizations of W (x, y) us-
ing density matrix renormalization group [30] calculations on
a matrix product state ansatz. We reach system sizes on the
order of ∼100 spins, observing convergence to our analytical
solution. We verify this convergence for local observables and
nonlocal ones, where exact, analytical results can be obtained
via the mean-field approximation.

Importantly, from these tensor network numerics we can
go beyond mean-field theory and obtain the entanglement
entropy of the ground state on a finite system—something
currently inaccessible to our continuous formalism. This is
nonzero and diverges logarithmically with the transverse field
strength as criticality is approached: h → 0.5−. We also find
the entanglement depends on only the ratio x = N/L, where N
is the partition size. This scaling is reminiscent of the entan-
glement properties of the all-to-all transverse field Ising model
[24]. Here we observe it in a heterogeneous dense graph sys-
tem, suggesting a possible universal mechanism underpinning
the scaling of entanglement entropy in these models.

VI. CONCLUSION

We have successfully utilized tools from graph theory to
derive a set of integral equations which describes the physics
of generic spin models with a large density of interactions
in the thermodynamic limit—whether classical or quantum.
Our formalism straightforwardly reproduces known results
and, most importantly, can be used to uncover the equilib-
rium properties of more complex systems. We observed how
inhomogeneity in the underlying graphs alters the magnetic
properties of the system.

Our work opens a up a number of further avenues for future
research. First, extending our formalism to describe the out-
of-equilibrium dynamics of a spin system on a dense graph is
a natural direction. While an analytical solution is known for
the all-to-all case [W (x, y) = 1] in the Lipkin-Meshkov-Glick
model (a model whose dynamics was recently realized on a
quantum simulator [25]), our graph-theoretic approach could
open up solutions for a whole range of dense graphs. The
quantum fluctuations which deviate finite-size results from the
mean-field case would be stronger there.

Second, graphon estimation is the process of estimating the
continuous graphon W (x, y) from which a given finite graph
G could have been drawn [31–33]. Therefore, when studying
spin models on a large, connected structure (the structure need
not necessarily be dense; graphon estimation can be done for
quasisparse graphs too [32,33]), one can estimate the graphon
W (x, y) and solve our equations to obtain an approximate
solution to the equilibrium physics of the system.
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APPENDIX A: PROOF OF THEOREMS 1 AND 2

We restate the Hamiltonian from the main text,

H (GL ) = 1

L

L∑
v,v′=1
v>v′

Av,v′

(∑
α

Jασ̂ α
v σ̂ α

v′

)
+
∑
v∈V
α

hασ̂ α
v′ , (A1)

where all definitions are retained and α = x, y, z. We now
prove Theorems 1 and 2 from the main text, which are restated
below.

Theorem 1. Let (GL )L∈N = (G1, G2, . . . ) be a sequence
of finite-size graphs generated as stochastic or weighted re-
alizations of the graphon W (x, y). Then for a given inverse
temperature T = 1/β the macroscopic properties of the equi-
librium states of the sequence of Hamiltonians H (GL )L∈N =
(H (G1), H (G2), . . . ) converge and are determined by the so-
lution of the following coupled integral equations:

λα (x) = −Jα

∫ 1

0

W (x, y)λα (y) tanh[β�(y)]

�(y)
dy + hα,

(A2)

with α = x, y, z; �(x) = +
√

[λx(x)]2 + [λy(x)]2 + [λz(x)]2;
and the three functions λα (x), with α ∈ {x, y, z}, each being
continuous, real valued, and defined over the domain [0,1].

Theorem 2. Let f (H ) = − 1
Lβ

ln{Tr[exp(−βH )]} be the free

energy density of a dL × dL many-body Hamiltonian, where
β ∈ R�0 and d is the dimension of the local Hilbert space. Let
GS

L and GW
L be the stochastic and weighted realizations on L

vertices of a graphon W (x, y) respectively. For an arbitrary set
of real, finite values for the parameters {Jx, Jy, Jz, hx, hy, hz}
the following is true:∣∣ f (H

(
GS

L

)) − f
(
H
(
GW

L

))∣∣ = O(L−1/2), (A3)

which vanishes in the limit L → ∞.
We will first prove Theorem 1 by assuming that Theorem 2

is true. Then we will prove Theorem 2 to complete the proof.
We first perform a mean-field treatment of H (GL ) for

some arbitrary graph GL with adjacency matrix elements Av,v′

and take L → ∞. Let σ̂ α
v = 〈σ̂ α

v 〉 + δ̂α
v , substitute it into the

Hamiltonian, and ignore terms of order δ̂2. The result is (up to
a constant)

H (GL ) =
∑

v

Hv

=
∑
v,α

σ̂ α
v

[
1

L

(
L∑

v′=1

Av,v′Jα〈σ̂ α
v 〉
)

+ hα

]
. (A4)

013011-5



AMY SEARLE AND JOSEPH TINDALL PHYSICAL REVIEW RESEARCH 6, 013011 (2024)

Within this mean-field approximation the equilibrium state of
the system is given by

ρ(β ) = exp(−βH )

Tr[exp(−βH )]
=

L⊗
v=1

exp(−βHv )

Tr[exp(−βHv )]
=

L⊗
v=1

ρv,

(A5)

where the reduced density matrix on each site ρv is, explicitly
(in the basis spanned by the eigenstates of σ z), the following
2 × 2 matrix:

ρv = 1

2λv

(
λv − λz

vtanh(βλv ) −(λx
v − iλy

v

)
tanh(βλv )

−(λx
v + iλy

v )tanh(βλv ) λv + λz
vtanh(βλv )

)
,

(A6)

where we have defined λv = √(λx
v )2 + (λy

v )2 + (λz
v )2 and

λα
v = 1

L (
∑

v′ Av,v′Jα〈σ̂ α
v′ 〉) + hα .

By taking the expectation values 〈σα
v 〉 associated with

ρv we find the λα
v variables must obey the following self-

consistency relation:

λα
v = − 1

L

(
L∑

v′=1

JαAv,v′λα
v tanh(βλv′ )

λv

)
+ hα, (A7)

with v = 1, . . . , L and α = x, y, z. The set of values {λα
v }, with

v = 1, . . . , L and α = x, y, z, which solves the 3L nonlinear
equations described by Eq. (A7), thus fully characterizes the
mean-field equilibrium state associated with H .

Now we wish to take the continuum limit of Eq. (A7).
First, we define the following: x = v/L, dx = 1/L, λα

v =
λα (x), and λv = λ(x). We assume that the adjacency ma-
trix has been generated as a weighted realization of some
graphon W (x, y), i.e., Av,v′ = L2

∫
Iv×Iv′ W (x, y)dxdy, Iv =

[(v − 1)/L, v/L]. Substituting this into Eq. (A7) gives us

λα (x) = −
⎛
⎝ ∑

y=1/L,2/L,...,L

JαL2
( ∫

Iv×Iv′ W (x, y)dxdy
)
λα (x) tanh[βλ(y)]

λ(y)

⎞
⎠dx + hα. (A8)

Now we take L → ∞, which implies L2(
∫

Iv×Iv′ W (x, y)
dxdy) → W (x, y), and the summation becomes an integral.
We can then write down the coupled, continuous mean-field
equations

λα (x) = −Jα

∫ 1

0

W (x, y)λα (y) tanh[β�(y)]

�(y)
dy + hα, (A9)

with α = x, y, z and �(x) =
√

[λx(x)]2 + [λy(x)]2 + [λz(x)]2.
They govern our system in the thermodynamic limit of the
sequence of graphs generated from the graphon W (x, y). Al-
though we explicitly used the weighted realization GW

L of
W (x, y), Theorem 2 tells us that the equilibrium properties of
the system that arise as the solution of Eq. (A9) are equivalent
for both GW

L and GS
L as L → ∞. Thus, these equations govern

the properties of any sequence of finite graphs which converge
to W (x, y), not just weighted ones.

The equations in Eq. (A9) are coupled, nonlinear Fredholm
integral equations with the graphon acting as the kernel. From
the solution set {λx(x), λx(y), λy(z)} to these equations we can
obtain the on-site magnetizations via

σα (x) = −λα (x) tanh[β�(x)]

�(x)
, (A10)

and the total magnetization density is Mα = ∫ 1
0 σ (x)dx.

In order to complete the proof of Theorem 1 we need to
prove Theorem 2, which was assumed previously. We recall a
lemma proven in Ref. [28] which will be helpful in completing
the proof.

Lemma 1. Let (AL )L∈N = (A1, A2, . . . ) and (BL )L∈N =
(B1, B2, . . . ) be two sequences of many-body Hermitian ma-
trices. The matrices AL and BL in the sequence have size
dL × dL, with d being fixed and the dimension of the local
Hilbert space. Let DL = AL − BL and λD

Max be the largest
(in terms of the absolute value) eigenvalue of DL. If |λD

Max|

= O(Lκ ), then | f (AL ) − f (BL )| = O(Lκ−1), which vanishes
for κ < 1 as L → ∞.

We begin by defining the following operator:

DL := H (GS
L ) − H (GW

L ) =
∑

α=x,y,z

Dα
L

=
∑

α=x,y,z

1

L

⎛
⎜⎜⎝

L∑
i, j=1
i< j

AS
i j σ̂

α
i σ̂ α

j −
L∑

i, j=1
i< j

AW
i j σ̂

α
i σ̂ α

j

⎞
⎟⎟⎠, (A11)

where AS
i j are the matrix elements of GS

L and AW
i j are the matrix

elements of GW
L , which are finite stochastic and weighted

realizations of some graphon W (x, y).
We proceed to evaluate the eigenvalues of the operator

Dα
L . As such, consider its eigenstates |σα

1 , . . . , σ α
L 〉, where

σ̂ α
i |σα

1 , . . . , σ α
L 〉 = μi|σα

1 , . . . , σ α
L 〉, with μi = ±1, depending

on whether the ith spin is pointing “up” or “down” in that
basis. We define μi j := μiμ j and consider the eigenvalue

〈σα
1 , . . . , σ α

L |Dα
L |σα

1 , . . . , σ α
L 〉

= 1

L

⎛
⎜⎜⎝

L∑
i, j=1
i< j

AS
i jμi j −

L∑
i, j=1
i< j

AW
i j μi j

⎞
⎟⎟⎠. (A12)

We proceed to show that, independent of the eigenstate
|σα

1 , . . . , σ α
L 〉, this eigenvalue grows, at most, as L1/2 in the

large-L limit. From there we can invoke Weyl’s inequality to
show that the eigenvalues of DL grow asymptotically as L1/2

and subsequently invoke Lemma 1 to complete the proof of
Theorem 1.

To prove the L1/2 growth of Eq. (A12), we begin with
the Hoeffding inequality. It states that for independent ran-
dom variables Y1, . . . ,Yn for which ai � Yi � bi, the sum Sn
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:= Y1 + Y2 + ... + Yn is bounded as

P(|Sn − E(Sn)| � t ) � 2 exp(− 2t2∑n
i=1(ai − bi )2

), (A13)

with the factor of 2 stemming from the fact we have incorpo-
rated both the upper and lower Hoeffding bounds together. We
will apply this bound to Eq. (A12).

Let us construct the set X := {Xi j}, which consists of
the L(L−1)

2 random variables Xi j := AS
i jμi j (we have i, j =

1, . . . , L and i > j). Observe that since AS
i j ∈ {0, 1} (the graph

GS
L is simple) and μi j is either 1 or −1, we have −1 � Xi j � 1.

Also, E(Xi j ) = E(AS
i j )μi j = AW

i j μi j , where E(AS
i j ) denotes the

expected value. In our case, however, all of the Xi j quantities
are not independent—the sign of Xi j is determined from the
sign of Xik and Xk j . This can be dealt with by applying the
Hoeffding bound to the Xi j’s with positive and negative signs
separately.

A given eigenvector |σα
1 , . . . , σ α

L 〉 will consist of a number
of spins pointing up (σi = +1), with the remainder pointing
down (σi = −1). Define M =∑L

k=1 σk; then it can be checked
that of the L(L−1)

2 parameters μi j , L2+M2−2L
4 are positive, and

L2−M2

4 are negative. We therefore partition the set X := {Xi j}
into two sets as follows:

xA := {Xi j |μi j = 1},
xB := {Xi j |μi j = −1}.

We would like also to keep track of the values AW
i j μi j , so we

partition the set {μi jAW
i j } into

x̄A := {μi jAW
i j |μi j = 1},

x̄B := {μi jAW
i j |μi j = −1}.

We can now invoke the Hoeffding bound on each set sep-
arately since each set now consists of independent random
variables. We have two sums on which to invoke the bound:

SA :=∑M2+L2−2L
4

l=1 xA
l and SB :=∑ L2−M2

4
l=1 xB

l , where we use xA
l

and xB
l to refer to elements from xA and xB, respectively.

Likewise, we will use x̄A
i and x̄B

i to refer to individual
elements of x̄A and x̄B, respectively. Then we observe that,

due to E(Xi j ) = AW
i j μi j , we have E(SA) =∑M2+L2−2L

4
l=1 x̄A

l and

E(SB) =∑ L2−M2

4
l=1 x̄B

l .
Equation (A13) then gives two bounds:

P(
∣∣SA − E(SA)

∣∣ � t1) � 2 exp

( −2t2
1

L2 + M2 − 2L

)
,

P(
∣∣SB − E(SB)

∣∣ � t2) � 2 exp

( −2t2
2

L2 − M2

)
.

We combine these bounds to obtain

P

⎛
⎜⎜⎝
∣∣∣∣∣∣∣∣

L∑
i, j=1
i< j

μi jA
S
i j −

L∑
i, j=1
i< j

μi jA
W
i j

∣∣∣∣∣∣∣∣
� t1 + t2

⎞
⎟⎟⎠

� 4 exp

( −2t2
1

L2 + M2 − 2L

)
exp

( −2t2
2

L2 − M2

)
. (A14)

Since we fixed the magnetization M of the eigenstate in
deriving the above bound, we should take the union bound
over

( L
1
2 (L+M )

)
eigenstates with magnetization M. We will de-

note an eigenstate with magnetization M as |σM〉, resulting in
the new bound

⋃
|σM 〉

P

⎛
⎜⎜⎝
∣∣∣∣∣∣∣∣

L∑
i, j=1
i< j

μi jA
S
i j −

L∑
i, j=1
i< j

μi jA
W
i j

∣∣∣∣∣∣∣∣
� t1 + t2

⎞
⎟⎟⎠

� 4

(
L

1
2 (L + M )

)
exp(

−2t2
1

L2 + M2 − 2L
) exp

( −2t2
2

L2 − M2

)
.

(A15)

Now we observe that the following is true:(
L

1
2 (L + M )

)
exp

( −2t2
1

L2 + M2 − 2L

)
exp

( −2t2
2

L2 − M2

)

�
(

L
L
2

)
exp

(
− t2

1 + t2
2

L2

)
, (A16)

where L ∈ N, |M| � L and t1, t2 ∈ R+.
This leads us to the following:

⋃
M

⋃
|σM 〉

P

⎛
⎜⎜⎝
∣∣∣∣∣∣∣∣

L∑
i, j=1
i< j

μi jA
S
i j −

L∑
i, j=1
i< j

μi jA
W
i j

∣∣∣∣∣∣∣∣
� t1 + t2

⎞
⎟⎟⎠

� 4(L + 1)

(
L
L
2

)
exp

(
− t2

1 + t2
2

L2

)
, (A17)

where the union bound has again been used. Now we observe
that if t1 + t2 = O(Lγ ), then t2

1 + t2
2 = O(L2γ ), where γ ∈ R.

Using the fact that
(L

L
2

) ∼
√

2
Lπ

2L for large L and also using

2L = eLln(2), we then arrive at

⋃
M

⋃
|σM 〉

P

⎛
⎜⎜⎝
∣∣∣∣∣∣∣∣

L∑
i, j=1
i< j

μi jA
S
i j −

L∑
i, j=1
i< j

μi jA
W
i j

∣∣∣∣∣∣∣∣
� O(Lγ )

⎞
⎟⎟⎠

� 2(L + 1)

√
2

Lπ
exp[Lln(2) − O(L2γ−2)], (A18)

which vanishes unless γ � 3
2 . This leads us to〈

σα
1 , . . . , σ α

L

∣∣Dα
L

∣∣σα
1 , . . . , σ α

L

〉 = O
(
L

1
2
) ∀M, |σ 〉. (A19)

Now from Weyl’s inequality we know that the eigenvalues of
the operator DL = H (GS

L ) − H (GW
L ) are therefore bounded as

O(L1/2). From here we can invoke Lemma 1 with κ = 1/2,
and Theorem 2 is proven.

APPENDIX B: ANALYTICAL SOLUTION OF THE
CLASSICAL ISING MODEL FOR W (x, y) = xy

We wish to solve Eq. (7) with W (x, y) = xy, i.e., identify
the function λz(x) which solves

λz(x) =
∫ 1

0
xy tanh[βλz(y)]dy. (B1)
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We start by observing that λz(x) = f (β )x, where f (β ) is a
real-valued function of β that is independent of x. Substituting
this into Eq. (B1) and defining c = β f (β ) give us

c

β
=
∫ 1

0
y tanh(cy)dy. (B2)

We can perform the integration here analytically. First, we
perform integration by parts and expand into exponentials:

∫ 1

0
y tanh(cy)dy

= 1

c2

([
1

2
y2 tanh(cy)

]c

0

− 1

2

∫ c

0
y2 sech2(y)dy

)

= 1

c2

(
c2 tanh(c2)

2
−
∫ c

0

2y2e−2y

(1 + e−2y)2
dy

)
. (B3)

Now the integral on the right-hand side can be dealt with by
observing that e−2y

(1+e−2y )2 =∑∞
n=1(−1)n−1ne−2nx, giving us

c2
∫ 1

0
y tanh(cy)dy

= c2 tanh(c2)

2
−

∞∑
n=1

(−1)n−1n
∫ c

0
2y2e−2nydy

= c2 tanh(c2)

2
−

∞∑
n=1

(−1)n{1 + e−2cn[1 + 2cn(1 + cn)]}
2n2

.

(B4)

We can evaluate the series by splitting up the numerator
and using known results,

c2
∫ 1

0
y tanh(cy)dy = 1

2
− π2

24c2
+ 1

c
ln(1 + e−2c)

− 1

2c2
PL2(−e−2c). (B5)

We can then use this result to reduce Eq. (B1) to Eq. (8) from
the main text:
1

β
= 1

24c3
[12c2 − π2 + 24cln(1 + e−2c) − 12PL2(−e−2c)].

(B6)

Additionally, it is straightforward to observe that Mz =∫ 1
0 σ z(x)dx = ∫ 1

0 tanh(cx)dx = ln[cosh(c)]
c .

APPENDIX C: ANALYTICAL SOLUTION OF THE
GROUND STATE OF THE TRANSVERSE FIELD

ISING MODEL FOR W (x, y) = √
xy

We wish to solve Eq. (9) in the main text with W (x, y) =√
xy and β = ∞, i.e.,

λz(x) = √
x
∫ 1

0

√
yλz(y)√

h2 + [λz(y)]2
dy, (C1)

again observing that this implies λz(x) = √
xg(h), where g(h)

is some real-valued function of h, giving∫ 1

0

y√
h2 + g2(h)y

dy = 1, (C2)

which we can solve for g(h) [we restrict h and g(h) to be
positive real without loss of generality] using a series of sub-
stitutions. This yields

2[2h3 − 2h2
√

h2 + g2(h) + g2(h)
√

h2 + g2(h)]

3g4(h)
= 1, (C3)

which has the solution

g(h) =
{√

2
3

√
1 + (1 − 3h)

√
1 + 6h h < 1

2 ,

0 otherwise,
(C4)

as in the main text. The transverse and longitudinal magnetizations are determined by the integrals Mx = ∫ 1
0

h√
h2+g2(h)x

dx and

Mz = − ∫ 1
0

g(h)
√

x√
h2+g2(h)x

dx, respectively. The first, by direct integration, yields Eq. (11) in the main text. The second can be done

by an extensive series of trigonometric substitutions and results in the following closed-form expression:

Mz(x) =
⎧⎨
⎩

(1+s){2
√

(1−s)(4+18h2−4s)−9h2[2 ln(3)+2 ln(h)−2 ln(−√
2−2s+√

2+9h2−2s)]}
108h2(−1+2h)

0 otherwise,
(C5)

where s = (−1 + 3h)
√

1 + 6h.

APPENDIX D: FURTHER EXAMPLE GRAPHONS

In this Appendix we consider further graphons which were not treated in the main text but frequently appear in the literature
on graphons.
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1. Stochastic block models

The stochastic block graphon is typically utilized in statistical analysis of networks because they are useful in uncovering
clustering in networks [35]. The graphon can be expressed as

W (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

p11 if (x, y) ∈ X1 × X1,

p12 if (x, y) ∈ X1 × X2,

. . .

pkk if (x, y) ∈ Xk × Xk,

(D1)

with pi j = p ji and Xi specifying disjoint subdomains of [0,1] such that ∪k
i=1Xi = [0, 1]. We write �Xi to indicate the width of

the interval Xi. The continuous mean-field equations then take on the following form:

λα (x) = −Jα

k∑
j=1

∫
Xj

pi jλ
α (y) tanh{β

√
[λx(y)]2 + [λy(y)]2 + [λz(y)]2}√

[λx(y)]2 + [λy(y)]2 + [λz(y)]2
dy + hα ∀x ∈ Xi. (D2)

Observe that we can immediately infer from this that λα (x) is constant across each of the domains Xi. We can thus define
λα

i = λα (x) ∀x ∈ Xi and reduce Eq. (D3) to

λα
i = −Jα

k∑
j=1

�Xj

pi jλ
α
j tanh

[
β

√(
λx

j

)2 + (λy)2
j + (λz

j

)2]
√(

λx
j

)2 + (λy
j

)2 + (λz
j

)2 + hα, (D3)

a series of equations which becomes increasingly complicated to solve as the number of clusters increases. In the case of a single
cluster we recover the case of an Erdős-Rényi graph.

2. Growing uniform attachment

The growing uniform attachment graphon is given by W (x, y) = 1 − max(x, y) [36]. The graphs which are finite realizations
of this graphon will consist of nodes in which the average connectivity of a node varies uniformly across the graph. Such graphs
are therefore highly inhomogeneous in their average vertex connectivity. Substituting W (x, y) = 1 − max(x, y) into Eq. (A9)
and differentiating the left- and right-hand sides twice with respect to x lead us to the following coupled second-order with
Ordinary Differential Equations (ODE’s):

d2λα (x)

dx2
= Jα λα (x) tanh [β

√
λx(x)2 + λy(x)2 + λz(x)2]√

λx(x)2 + λy(x)2 + λz(x)2
, (D4)

with α = x, y, z, boundary conditions λα (1) = 0, and dλα (x)
dx |x=0 = 0 ∀α.

3. Maximally irregular graph

The maximally irregular graph is the finite connected graph in which each site (other than one pair) has a different coordination
number from all the others [28]. Taking the thermodynamic limit of the adjacency matrix results in the graphon

W (x, y) =
{

1 x + y � 1,

0 otherwise, (D5)

and the integral equations in Eq. (A9) reduce (upon differentiation) to the following three coupled first-order ODEs:

dλα (x)

dx
= −Jα λα (1 − x)tanh{β

√
[λx(1 − x)]2 + [λy(1 − x)]2 + [λz(1 − x)]2}√

[λx(1 − x)]2 + [λy(1 − x)]2 + [λz(1 − x)]2
, α = x, y, z, (D6)

with boundary conditions λα (1) = 0 ∀α. Such equations are known as functional differential equations and have been studied
extensively in both mathematics and the applied sciences [37].

APPENDIX E: NUMERICAL DETAILS

1. Classical Ising model

For the finite-size data plotted in Fig. 1 of the main text
we used Monte Carlo simulations. Specifically, for a given L
we drew a finite random-exchange realization of the graphon
W (x, y) = xy, and for a given temperature β we utilized the
Metropolis-Hastings algorithm to generate NSamples = 5000
for the magnetization density Mz. We used a Markov chain

length of 250 between each sample and threw away the first
1000 samples. For each L we took 100 stochastic realizations
of the graphon W (x, y) and averaged our results over them.
There are thus two sources of statistical error in our simu-
lations: the error from sampling a finite number of stochastic
realizations and the error from taking a finite number of Monte
Carlo samples. In Fig. 3 we plot the standard error of the
mean from both of these sources; the values are negligible in
comparison to the scale (0 → 1) of Fig. 1 in the main text.
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FIG. 3. (a) Standard error of the mean for the Monte Carlo cal-
culations of Mz for the classical Ising model on stochastic finite-size
realizations of W (x, y) = xy. The top plot is the standard error of the
mean from 5000 Monte Carlo samples of Mz at a given β and L. Data
points are averaged over 100 stochastic realizations of W (x, y). The
bottom plot is the standard error of the mean from the 100 stochastic
realizations of W (x, y) averaged over the 5000 samples taken for
each realization. (b) Relative standard error of the mean (standard
error of the mean as a percentage of the mean) for the ground state
energy of the transverse field Ising model calculated via DMRG.
Standard error is that originating from the 100 stochastic realizations
of W (x, y) = √

xy at a given h and system size L.

2. Transverse Ising model

For the data plotted in Fig. 2 of the main text we used
the density matrix renormalization group (DMRG) algorithm
to find the ground state of the transverse field Ising model.
For a given L we drew a finite stochastic realization of the
graphon W (x, y) = √

xy. Then, for a given field strength h
we took a random matrix product sate with a small bond
dimension χ and successively performed DMRG sweeps, let-
ting the bond dimension double every fourth sweep until the
energy converged to within 0.1% of that for the previous bond
dimension. There is thus only one source of statistical error
in this simulation: the error from sampling a finite number
(100) of stochastic realizations. In Fig. 3 we plot this error as
a percentage and observe that it is on the order of 0.1%. The
ordering of the sites (from left to right) of the matrix product
state was taken to be identical to the ordering v = 1, . . . , L of
the sites of the graph.

APPENDIX F: THE GRAPHON AS THE LIMIT OBJECT
OF DENSE GRAPH SEQUENCES

We provide mathematical details on how the graphon W
is the limit object of a sequence of dense graphs (Gn)n∈N ,
where n is the number of vertices. This Appendix closely
follows Ref. [38], although the theory on graph limits was first
developed in Ref. [17]. The interested reader should consult
either of those for more detail.

Consider two simple graphs F and G, where we define the
number of vertices of F to be k and that of G to be n. A
homomorphism from F to G is a map which preserves edges.
This means that given an edge (i, j) ∈ E (F ) [here E (F ) is the
edge set of F ] and a homomorphism h, there is always an edge
(h(i), h( j)) ∈ E (G), the set of edges of G. Let hom(F, G)
indicate the number of homomorphisms from F into G. The

homomorphism density t (F, G) is then defined as

t (F, G) = hom(F, G)

nk
. (F1)

The homomorphism density is the probability of a random
map from graph F to graph G being a homomorphism since
nk is the total number of maps from a graph with k vertices to
a graph with n vertices.

Suppose that, instead, we are given a graphon, such as
WG, the stepped graphon corresponding to graph G, which
is defined as WG(x, y) = Av,v′ for (x, y) ∈ [(v − 1)/n, v/n] ×
[(v′ − 1)/n, v′/n] (with A being the adjacency matrix of G).
In this case, the homomorphism density is defined as

t (F,WG) =
∫

[0,1]k

∏
(i, j)∈E (F )

W (xi, x j )
∏
i∈1:k

dxi. (F2)

Here the same definition holds for any arbitrary graphon W .
The homomorphism density with reference to a finite graph

F indicates the relative likelihood of graph G or, more gen-
erally, graphon W containing an instance of F inside of it. If
two graphs or graphons have similar homomorphism densities
for all simple graphs F , then those graphs are similar. The
definition of convergence of a sequence of graphs hinges
precisely on this concept.

Definition 1. Convergent graph sequence. A sequence (Gn)
of simple graphs with V (Gn) → ∞ as n → ∞ converges if
the subgraph densities t (F, Gn) converge for all simple graphs
F .

The above definition allows us to precisely define in what
sense W can be considered a limit object.

Theorem 3. Let (Gn) be a sequence of simple graphs with
V (Gn) → ∞. If (Gn) converges, a graphon W exists such that
t (F, Gn) → t (F,W ) for all simple graphs F [38].

Theorem 3 tells us that if the sequence (Gn) converges,
then some limit object—the graphon—exists which captures
the limiting homomorphism density counts of the sequence of
graphs for all simple graphs.

There is a second, equivalent definition of convergence
which us allows us to define W as an appropriate limit of
a sequence of dense graphs. This definition utilizes the cut
distance of two graphs.

Definition 2. Cut distance. Given two graphons W and W ′,
define the cut distance between them to be

δ�(W,W ′)

:= inf
φ,ψ

sup
S,T

∣∣∣∣
∫

S×T
[W (φ(x), φ(y)) − W ′(ψ (x), ψ (y))]

∣∣∣∣,
(F3)

where the infimum is taken over all vertex relabelings φ of
W and ψ of W ′. The supremum is taken over all measurable
subsets S and T of [0, 1].

The cut distance is a metric on the space of graphons (up to
weak isomorphism). It maximizes the difference between the
integral of the two graphons on measurable intervals S and T ,
which together form a box S × T . This step can be thought of
as maximizing the difference in edges between those vertices
contained in S × T . The infimum is then taken on that chosen
interval over all measure-preserving maps in order to ensure
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that the cut distance is zero for weakly isomorphic graphons.
The following theorem can then be proven from the above
definitions.

Theorem 4. Given a sequence (Gn) of simple graphs with
|V (Gn)| → ∞ as n → ∞, the sequence is said to converge to
graphon W if δ�(WGn ,W ) → 0 as n → ∞ [38].

This theorem provides an alternative definition for the
graphon as a limit object. In this definition, we envisage
instead the pixelated adjacency matrix of the sequence of

simple graphs Gn approaching (via the cut distance) that of
the limit object W .

Importantly, the above definitions and theorems can be
generalized to sequences of weighted graphs by requiring the
graphs to have uniformly bounded edge weights. Moreover,
we emphasize that these limits make sense only for sequences
of dense graphs because it can be shown that sparse graph
sequences always have as their limit the graphon W (x, y) = 0
for all x and y.
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