
PHYSICAL REVIEW RESEARCH 6, 013007 (2024)

Straintronics with single-layer MoS2: A quantum Monte Carlo study
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Using state-of-the-art quantum Monte Carlo (QMC) methods, we study straintronic properties of a single
MoS2 monolayer. 2D MoS2 is a quintessential straintronic material for which many experiments have been
performed. First, we determine the equilibrium atomic structure which is not known experimentally and is strictly
needed to correctly determine the straintronic properties. That enables us to precisely analyze the quasiparticle
band gaps for any applied biaxial strain, which we describe by a bivariate paraboloid function of lattice constant
and internal structural parameter. Using the fixed-node QMC calculations fitted by analytical formulas, we
localize the following excited state crossings between the direct, K → K, and indirect � → X and K → K/2
excitations. Based on this highly accurate many-body treatment, we predict a gauge factor of 136 meV/% for the
K → K transition and a fairly narrow window of ≈2.8% from compressive to mildly tensile strains, accounting
for only ≈0.3 eV band gap change maintaining the direct character of the gap. Consequently, we suggest that,
compared to other 2D materials, such as phosphorene, there is only a limited straintronic tuneability in this
material often studied for its straintronic properties. QMC results are compared to results of standard DFT
modeling, which reveal insights into the corresponding inaccuracies and therefore open a window for educated
use of rapid DFT approaches.
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I. INTRODUCTION

Two-dimensional (2D) materials have a range of superior
electronic, optical, thermal, spin, and magnetic properties
[1–7]. In particular, 2D materials usually possess ultrahigh
carrier mobility and field-effect switching ratios, which make
them ideal materials for field-effect and digital logic tran-
sistors [8]. In addition, 2D materials with appropriate and
tuneable direct band gap have achieved extremely efficient
photon absorption, emission, and photoelectric conversion
and have been widely used in the field of optoelectronic de-
vices [9]. To meet more demands, various techniques have
been exploited to modulate their properties, including doping,
alloying, forming van der Waals heterostructures, and strain
engineering [10–12].

One of the most distinguishing properties of 2D materi-
als is their ability to continuously tune their properties. Due
to their atomic thickness, 2D materials are highly sensitive
to external perturbations, such as strain. Their resilience to
mechanical deformations allows application of strains well in
excess of 10%. For instance, graphene [13] and MoS2 [14]
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have been shown to sustain strains of ≈25% and ≈11%,
respectively. By applying strain, the lattice and electronic
structure is modulated as well as their various properties.
Strain engineering has been recently widely used in the semi-
conductor industry. For instance, by applying tensile strain
in a silicon transistor, the carrier mobility can be greatly en-
hanced [15]. However, bulk single crystals can only withstand
strain of up to ≈2%, largely limiting their strain modulation.
This is where 2D materials able to withstand much larger
strain loads come to fruition.

Application of strain to 2D materials [10–12], or straintron-
ics, developed as an emerging field enabling unqiue tuneable
functionalities. Many straintronic experiments have been per-
formed on 2D MoS2 [16–20]. These experiments which have
applied subpercent mainly uniaxial strains have demonstrated
gauge factors in the range of 30–125 meV/% with band gap
tuning of a few dozens of meV. In contrast, the study of
single-layer phosphorene, using the highly accurate quantum
Monte Carlo methods [21] (QMCs), we have predicted that
single-layer phosphorene not only exhibits a similar band gap
gauge factor to MoS2 of ≈100 meV/%, but, at the same time,
it keeps the direct � → � nature of the band gap over a very
large window of applied strains primarily in the tensile region,
thus making tuning of the band gap accessible within several
tenths of eV [22].

Our use of the benchmark-quality QMC methods is mo-
tivated by our previous results for freestanding single-layer
phosphorene [22,23]. The major mainstream methods, such
as DFT and GW, depending on the approximations used,
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exhibited spreads of the quasiparticle band gaps of the or-
der of ≈1 eV. Benchmarking of these various results against
experimental results is complicated by experimental uncer-
tainties due to impacts from dielectric embedding, capping,
presence of defects, and different sensitivities of experimental
probes to their presence, leading to a comparable spread of
the experimental values of ≈1 eV. Such uncertainty is fairly
typical for electronic properties of 2D materials. Therefore,
a high-quality many-body calculation is highly desirable for
understanding the various factors affecting the results and for
opening up a path of educated tuning [22,23]. For instance, the
fixed-node QMC value of the quasiparticle gap in equilibrium
[22] was within chemical accuracy from the experimental
value for freestanding single-layer phosphorene [24] and the
straintronic properties are expected to match the same level of
accuracy [22].

Motivated by previous success, we have now also applied
the QMC methods to a straintronic study of single-layer
MoS2. In particular, a benchmark-quality quasiparticle band
gap has been determined for a wide range of applied strain.
In addition, we obtained insights into structural parameters in
and out of equilibrium at the QMC level and therefore also
offer high-quality equilibrium data. We have also determined
the boundaries separating the region of the direct K → K
transition and the � → K (tensile strains) and K → K/2
(compressive strain). Interestingly, while small in absolute
value, the spin-orbit couplings (SOCs) have a non-negligible
effect on the precise location of the boundaries. Our study
revealed a high value of gauge factor but, surprisingly, only
a fairly limited range of strains (≈2.8%) from compressive
to mildly tensile, accounting for only ≈0.3 eV band gap
change, maintaining the direct character of the gap. However,
as for the more important tensile strain, at variance with
phosphorene where most of the direct band gap tuning is
in the tensile region by many percent, MoS2 can only sus-
tain ≈0.5% bidirectional tensile strain before the band gap
changes from direct K → K to indirect � → K. As a natu-
ral reference, these results for the quintessential straintronic
MoS2 material are compared with results for freestanding
phosphorene obtained with the same benchmark fixed-node
QMC methods [22]. Several DFT [25–27] and even GW [28]
straintronic studies have been previously published. Hence,
for the purpose of methods benchmarking, our QMC results
are compared with results of the ubiquitous DFT methods in
commonly used approximations (GGA, hybrids) so as to offer
insights into their biases.

II. COMPUTATIONAL METHODS

The electronic quasiparticle band gap, � f , in monolayer
MoS2, for structure, see Fig. 1, is calculated as singlet-singlet
vertical excitation energy,

� f ≈ Ess
v = Es

1 − Es
0 , (1)

with E0 and E1 being the ground and first excited states.
The neutral gap defined by Eq. (1) under present conditions
corresponds to the fundamental gap [29]. We use periodic
boundary conditions where E0 and E1 were computed by the
diffusion Monte Carlo method in fixed-node approximation
using variational Monte Carlo trial wave functions with the

FIG. 1. Structure and basic structural parameters of the mono-
layer MoS2. (a) Top view of the structure. (b) Side view with the
basic structural parameters: a, the lattice parameter, and the internal
structural parameter b.

nodal hypersurfaces determined by DFT orbitals using the
generalized gradient approximation DFT-PBE [30] at the �

point of the Brillouin zone, with short-range correlations de-
scribed by the Jastrow factor [21]. The DFT calculations were
also performed in hybrid DFT-HSE [31] and DFT-B3LYP [32]
models. The rational for selecting the DFT-PBE exchange-
correlation functional for fixing the nodal hypersurfaces is
motivated by its ability to describe the equilibrium properties,
deformation energies, and boundaries between different ex-
citations in fairly good agreement with the fixed-node QMC
results.

Of key importance is finite-size scaling of each excitation
considered. Finite-size scaling was performed for a series of
periodic supercells, see Fig. 2, with N/Ne = 9/234, 12/312,
and 15/390 primitive unit cells and number of electrons for
K → K and � → K transitions and with 12/312 and 18/468
supercells for the K → K/2 transition, using linear scaling
with 1/N [23]. As shown in Fig. 3 for K → K and � → K
transitions, the 9, 12, and 15 approximants provide a well con-
verged solution. Contrary, the K → K/2 transition is much
more difficult to converge and larger approximants, namely,
12 and 18, had to be used. The structural parameters a and b
for the largest approximants used for the finite-size scaling ap-
pear to be well converged as well [33]. The finite-size scaling
is statistically converged to within the chemical accuracy.

Experimentally, the strain can be applied either uniaxially
or biaxially. Since experimental application of biaxial strain
leads to a gauge factor more than twice larger than application

FIG. 2. Structural approximants. Various structural supercells
sizes considered for selection of finite-size scaling. Supercells con-
taining 9, 12, 15, and 18 primitive unit cells were used in present
calculations.
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FIG. 3. Finite-size scaling for all three points, see the inset, used
in the parabolic approximation for the K → K, �→K, and K→K/2
transitions.

of uniaxial strain and the higher symmetry of the problem
reduces significantly the computational cost, we have studied
only the effect of biaxial strain. The strain was applied in a
diagonal direction by adjusting the lattice parameter a, see
Fig. 1, considering deformations of up to ≈±10% both com-
pressive and tensile. In determination of strained properties,
we follow the procedure recently developed for straintronic
study of phosphorene [22], namely, by treating them as a
full optimization problem in the space of two structural vari-
ables: lattice parameter a and one internal parameter b, see
Fig. 1. Around the minima, the data for E0 were fitted by 2D
paraboloid functions used to find the lowest point on the b
subspace, leaving us to further deal with only single-variate
functions, E0 = f (a). The excited state E1 is computed only at
the minimum for the internal parameter b. By comparison, in
phosphorene [22] the optimalization is more complex, as there
we deal with optimization in 4D space (two lattice parameters
a, b and two internal coordinates x and y).

As known experimentally [34], 2D MoS2 exhibits pro-
nounced SOC effects. However, our energy scale is dictated
by the straintronic effect and on that energy scale the SOC
effects are non-negligible but fairly small. Therefore, rather
than sampling them via QMC [35], we have applied them
perturbatively via DFT-PBE modeling on top of our QMC
results. For more details, see Appendix C.

QMC calculations were performed with the QMCPACK
suite of codes [36]. All DFT calculations, including the SOC
effects, were done with the QUANTUM ESPRESSO package
[37]. For more technical details, see Ref. [33].

III. RESULTS AND DISCUSSION

A. Quasiparticle band gap

To set the stage, we first scanned the band gap response to
strain by DFT-PBE techniques [33]. In equilibrium, the band
gap in single-layer MoS2 is direct at K [16]. Application of
strain, in general, modifies the nature of the band gap and
other gap types corresponding to different transitions occur

FIG. 4. Fundamental gap as a function of applied strain. (a) Fun-
damental gap, � f , for the K → K transition as calculated in
fixed-node QMC and in DFT-PBE treatment. (b) Change of � f by
applied diagonal strain with respect to the equilibrium � f within
each approach. Zero strain corresponds to the fixed-node QMC
value; the respective fixed-node QMC and DFT-PBE equilibrium
values are indicated by black and red vertical dashed lines.

[33]. Accordingly, we have first selected our QMC calcula-
tions to be confined primarily to the K → K region of the
band gap, i.e., close to the equilibrium and, then again, using
the fixed-node QMC, and determined the boundaries of the
direct K → K transition and the K → K/2, corresponding to
compressive strains, and to � → K corresponding to tensile
strains. The procedures used here are scaled down from the
4D to 2D procedures we developed for straintronic study of
phosphorene [22].

The fixed-node QMC fundamental (quasiparticle) gap at
the K point as a function of applied strain is shown in Fig. 4(a);
parameters of the paraboloid fit can be found in Appendix B.
In Fig. 4, the fixed-node QMC result is compared to DFT-
PBE, which was used to fix the nodal hypersurfaces. Results
of the other DFT models shown in Appendixes A–C indicate
that DFT-PBE gives results overall in best agreement with the
fixed-node QMC.

The trends in both QMC and DFT-PBE are qualitatively
similar; compressive strain increases the gap whereas ten-
sile strain diminishes it. Note that the QMC and DFT-PBE
curves are essentially parallel, the main difference between
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the QMC and DFT descriptions being the band gap reduction
by ≈1 eV in the DFT-PBE description and a shift of the
DFT-PBE minimum by about +0.76%, see also Sec. III C
below. For our QMC optimized structure at equilibrium we
obtain a = 3.159 ± 0.0006 Å, b = 1.577 ± 1.2e-5 Å, and � f

= 2.69 ± 0.051 eV. The DFT-PBE results are a = 3.180 Å,
b = 1.566 Å, and � f = 1.69 eV. These QMC results are
a valuable reference as the structural properties of 2D ma-
terials may, in principle, be heavily influenced by substrates
which typically provide unintentional property tuning of both
electronic and structural properties in experiments. However,
this tuning of structural properties is fairly minute in MoS2.
To provide a quantitative measure for the effect, we provide
a comparison with the 3D 2H-MoS2 crystal: a = 3.160 Å,
b = 1.586 Å. Clearly, in this system where the layers are
purely vdW bonded, the effect on the structural parameters is
very limited. This is at variance with single-layer phosphorene
where, presumably due to at least a partial interlayer chemical
bonding, the structural parameters are fairly strongly affected
by the substrates [22]. The small differences in structural
properties between fixed-node QMC and experiment on 3D
crystal is likely due to the weak vdW interlayer interaction, the
difference between fixed-node QMC and DFT-PBE is more
likely caused by the +0.76% difference in the equilibrium
lattice constant; see also Sec. III C. More difficult is the com-
parison of the quasiparticle band gaps with experiments. For
instance, a single-layer MoS2 band gap can be modulated
from 2.8 eV to 1.9 eV by dielectric environment [38] which,
as discussed above, had negligible effect on the structural
properties due to the pure vdW interaction with the substrates.
Comparison of fixed-node QMC equilibrium properties with
hybrid functionals and many-body perturbation theory within
GW approximation (GW) is compiled in Appendix A. DFT-
HSE provides the best lattice parameter and the DFT-B3LYP
the best band gap albeit the least accurate lattice parameter.
Comparison with the GW shows fairly good agreement of the
quasiparticle band gap, especially in the self-consistent GW of
2.76 eV [39].

The computed biaxial band gap tuning for the K → K is
depicted in Fig. 4(b). We extract gauge factors of 136 and 107
meV/% close to the zero strain point for the fixed-node QMC
and DFT-PBE, respectively. Experimentally, the biaxial gauge
factors are found 2.3 times the uniaxial strain ones [20], which
would correspond to ≈60 (QMC) or 47 meV/% (DFT-PBE)
uniaxial gauge factor. The gauge factors extracted from other
treatments, see Table I, are surprisingly similar, suggesting
that the different gaps respond to strain in a very similar man-
ner. The experimental values for the uniaxial gauge factors for
A and B excitons vary in a wide range of ≈(40–125) meV/%
[19]; see Table I. Despite the wide strainability, most of the ex-
periments use only subpercentage strains and the resulting gap
tuning is of the order of a few hundredths of eV and they only
cover the region of the K → K transition. It should also be
noted that the experimental gauge factors are extracted from
either photoluminiscence (PL) or optical absorption (OA),
i.e., they correspond to optical gaps, whereas the computed
gauge factors correspond to quasiparticle gaps. We presume
that the wide spread of the experimental data is at least partly
due to the substrate tuning, similarly to the situation with the
experimental band gap value.

TABLE I. Calculated and experimental gauge factors. First line:
Comparison of calculated QMC, GW, DFT-PBE, DFT-HSE, and
DFT-B3LYP and experimental (PL, OA) gauge factors (in meV/%
of applied strain) for the K → K transition. The first entry of the
calculated values corresponds to the biaxial strain as directly cal-
culated. The second entry is the value adjusted by a factor of 2.3,
corresponding to the relation experimentally determined between
biaxial- and uniaxial strains [20]. The experimental values is the data
compiled from Refs. [17–20], which correspond to uniaxial strain.
The GW results are from Ref. [28]. Last two lines: The calculated
biaxial gauge factors for the � → K, and K → K/2 transitions.
Note that no experimental values are available as the experiments
have been limited to too small strain loads. All calculated data are
based on quasiparticle band gap data close to the transition points
(K → K–� → K and K → K–K → K/2), whereas all experimental
data are based on optical band gaps as determined by PL and OA.
No distinction is made between A and B excitons as the spin-orbit
splitting is two small on the straintronics energy scale, see also
Sec. III B.

Gauge factor

Transition QMC GW PBE HSE B3LYP exp

K → K 136/60 138/60 104/47 149 145 40–125
� → K 227 271 198 198 196
K → K/2 42 83 40 41 41

B. Boundaries between different band gap types

The different band gaps corresponding to different ex-
citations have initially been pre-screened in the DFT-PBE
model [33]. To outline the boundaries of the direct K → K
band gap more accurately, we have performed fixed-node
QMC calculation of the boundaries between the K → K and
the � → K and K → K/2 due to applied strain and con-
structed the band-gap phase diagram; see Fig. 5. The band-gap
gauge factors in those three areas (K → K, � → K, K →
K/2) are determined as well; see Table I. The boundaries
are determined from intersections between the corresponding
parabolas for fitting parameters; see Appendix B. The bound-
aries in DFT-PBE and fixed-node QMC look qualitatively
similar, the main difference being that all the DFT-PBE band
gaps are almost rigidly reduced by ≈1 eV and the region of di-
rect K → K-type band gap is smaller in the DFT-PBE model
(2.79 vs. 2.03%). Our QMC calculation predicts the K → K
direct band gap to be stable up to ≈0.51% tensile strain, which
agrees very well with the experimental tuning in the tensile
strain of up to ≈0.6% [17,19].

Inspection of Fig. 5 reveals that the SOCs, while rather
small at the straintronics energy scale, do cause noticeable
changes in the boundaries separating the different band-gap
types. For instance, without the SOCs, the region of the di-
rect K → K band-gap type would reduce by ≈0.6% and the
boundary between the K → K and � → K band-gap type
would coincide with zero strain and, hence, the above men-
tioned agreement with the straintronic experiments would be
lost.

The direct K → K band gap in MoS2 of ≈2.8% mostly in
the compressive strain region is significantly smaller than that
of the direct � → � band gap in phosphorene, which extends
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FIG. 5. Boundaries between K → K, � → K, and K → K/2. (a) The boundary between K → K, � → K, and K → K/2 as a function
of applied biaxial strain as calculated in fixed-node QMC. (b) The same but for the DFT-PBE results. The dashed lines are the gaps with
spin-orbit coupling corrections calculated in points 1–3 and fitted by quadratic formulas; see the main text. The zero strain (indicated by
broken vertical lines in each description) is aligned to the fixed-node QMC value. (c) Illustration of the different band gap types, K → K,
� → K, and K → K/2 in the full-relativistic DFT-PBE description corresponding to point 2. A and B label the A and B excitons; see the main
text.

well over 10%, primarily into the tensile strain region, and
is essentially only limited by the mechanical breakage of the
material [22].

Inspection of the band-gap phase diagrams obtained
by DFT-HSE, DFT-B3LYP hybrid functionals, and GW in
Appendix A and QMC and DFT-PBE analyzed above strongly
suggest that all of them are qualitatively similar. In particular,
they all feature similar gauge factors and the curvatures of the
lines separating the different excitations are also very similar,
see Tables III and IV, meaning that the response of those
excitations to strain is described with comparable accuracy
in all treatments considered. What separates them are the
values of the band gaps (vertical offsets), the relative values of
the band gaps corresponding to the different excitations, and
the equilibrium structures, see Sec. III C and Appendix A.
As a result, the boundaries are shifted in an ad hoc manner
compared to fixed-node QMC: In GW and DFT-B3LYP, the
K → K bad gap cannot be tuned into the tensile region, while
the opposite is true in DFT-HSE, which allows for significant
tuning in the tensile strain and is very limited in the compres-
sive strain. Overall, the DFT-PBE band-gap phase diagram
appears most akin to the fixed-node QMC. In conclusion, only
electronic structure methods simultaneously featuring ultra-
accurate band gaps for all types of excitations and accurate
equilibrium structures, such as fixed-node QMC, can provide
faithful band-gap phase diagram.

C. Ground-state properties

Finally, we discuss the deformation energies (QMC, DFT-
PBE, DFT-HSE, and DFT-B3LYP), Fig. 6; parameters of
the paraboloid fits can be found in Appendix B. The de-
formation energies in all DFT descriptions are qualitatively
similar to that of fixed-node QMCs. The main difference being
the lattice constants which differ by +0.66%, −0.28%, and
+2.25% from the fixed-node QMC for DFT-PBE, DFT-HSE,
and DFT-B3LYP, respectively. As a result, the DFT-HSE func-
tional provides the most accurate description of deformation
energies. However, the DFT-HSE provides a band gap in

equilibrium 0.45 eV too small and a band-gap phase diagram
artificially exaggerating the strain tuning in the tensile region.

IV. CONCLUSION AND OUTLOOK

Using state-of-the-art QMC methods, we have determined
straintronics functionalities of single-layer MoS2. Based on
this highly accurate many-body treatment, we predict the
gauge factor of 136/59 meV/% for biaxial (uniaxial) strain,
in line with the experimental values of ≈100 meV/% which,
though, exhibit huge spreads. Such values of gauge factors
are comparable to what we also determined for single-layer
phosphorene [22]. We have also localized the excited state
crossings between the direct K → K, � → K, and K → K/2
excitations under biaxial strain. In our QMC study, we have
only studied three selected excitations, but applied strain will
continuously affect the entire band structure and, hence, will
affect the carrier effective mass. Strain may also affect the

FIG. 6. Ground-state properties. Deformation energies in
eV/unit cells, in fixed-node QMC, and in DFT- PBE, DFT-HSE, and
DFT-B3LYP treatments.
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TABLE II. Comparison of equilibrium properties in various
treatments. Compared are equilibrium lattice constant a, quasipar-
ticle band gap � f , and SOC splitting at the K point in fixed-node
QMC, GW, DFT-PBE, DFT-HSE, and DFT-B3LYP treatments. The
first entry for the GW quasiparticle band gap corresponds to G1W0

[40] and the second entry to self-consistent GW [39]. Note that the
SOC splitting added to fixed-node QMC is based on DFT-PBE.

Equilibrium data

Method QMC GW PBE HSE B3LYP

a (Å) 3.159±0.0006 3.18 3.18 3.15 3.23
� f (eV) 2.69±0.051 2.84 1.69 2.24 2.38

2.76
SOC splitting (meV) 144 146 144 187 187

band structure in a discontinuous manner when the order of
two bands with different curvatures is abruptly changed at
a critical value of applied strain [22]. In MoS2, the window
where the direct K → K band gap is maintained is from
−2.26% to 0% (compressive) and from 0 to 0.51% (tensile).
Application of the strain in that interval changes the band gap
merely by ≈0.3 eV. This is in line with experimental finding
suggesting band gap modification by ≈0.05 eV due to applied
tensile strain of ≈0.5% [16], in agreement with our fixed-node
QMC model. This is smaller by an order of magnitude when
compared to some other 2D materials, such as phosphorene
[22], where both the applicable strain window and the quasi-
particle gap modification maintaining the direct band gap are
both significantly larger. This fairly limited straintronic func-
tionality is surprising for a quintessential straintronic material
for which most of the straintronic experiments have been
performed [16].

Comparison of band-gap phase diagrams computed with
different exchange-correlation functionals has revealed that
a precise location of the excitation crossings requires ultra-
accurate electronic and atomic structure treatments which
describe, with high accuracy, all the band gaps (and form of
the bands forming them) and their mutual relation in addition
to correct equilibrium structure. Such requirements are not
satisfied with most DFT functionals and, hence, they predict
erratic results.

The same highly accurate QMC methodology could now
be equally well applied to other 2D materials or to other tuning
options, such as layer engineering, dielectric embedding, cap-
ping, or their combination. The latter factors are under poor
experimental control and account for the huge differences
in the measured properties. Hence, given the high accuracy
of the QMC method, combined with the precise control of
the system, the QMC-computed results may challenge the
accuracy of the experimental results.
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APPENDIX A: COMPARISON OF RESULTS
FROM VARIOUS TREATMENTS

Here we compare our fixed-node QMC results to results of
standard DFT and GW modeling, which reveal insights into
the corresponding inaccuracies and therefore open a window
for educated use of the rapid DFT approaches. The equilib-
rium parameters are collected in Table II. Comparison of the
fixed-node QMC straintronic properties with the DFT-PBE
which was used to fix the nodal hypersurfraces is in the main
text, Figs. 4 and 5. Here we add comparisons with results of
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TABLE IV. Parameters of fits of strained gap spin-orbit splittings. Fitted parameters of Eq. (B1) for spin-orbit band-gap splittings of K →
K, � → K, and K → K/2 transitions in various descriptions. The entry for the QMC corresponds to spin-orbit couplings added perturbatively
via DFT-PBE. In the other DFT treatments (HSE, B3LYP), the spin-orbit couplings are treated consistently at the given DFT exchange-
correlation model.

Spin band 1 2 3 4

xc transition c0 c1 c2 c0 c1 c2 c0 c1 c2 c0 c1 c2

K → K 2.767 −12.759 28.037 2.761 −12.566 26.500 2.617 −12.834 27.965 2.623 −13.027 29.501
QMC and PBE � → K 2.676 −25.086 49.106 2.670 −24.893 47.571

K → K/2 3.077 3.266 −26.909 3.149 3.084 −24.806 3.005 2.816 −23.341 3.221 3.534 −28.374

K → K 2.761 −12.566 26.500 2.617 −12.834 27.965 2.623 −13.027 29.501 2.767 −12.759 28.037
PBE � → K 2.670 −24.893 47.571 2.676 −25.086 49.106

K → K/2 3.149 3.084 −24.806 3.005 2.816 −23.341 3.221 3.534 −28.374 3.077 3.266 −26.909

K → K 2.3218 −13.475 36.890 2.136 −13.864 37.804 2.337 −13.259 35.226 2.151 −13.647 36.140
HSE � → K 2.401 −26.101 58.310 2.417 −25.885 56.646

K → K/2 2.520 3.887 −26.995 2.334 3.498 −26.081 2.611 4.385 −31.116 2.425 3.997 −30.202
� → K 2.822 −25.674 56.084 2.839 −25.457 54.638
K → K/2 2.942 3.8040 −27.577 2.756 3.426 −26.729 3.032 4.28 −31/841 2.847 3.910 −30.993

hybrid DFT functionals (DFT-HSE and DFT-B3LYP) and re-
sults of GW modeling [28]. The comparison in Fig. 7 suggests
an extreme sensitivity of the straintronic diagrams to both
structural and electronic structure details. Inspection of Fig. 7
shows that while DFT-HSE artificially enlarges the region of
the tensile strain, DFT-B3LYP reduces the region of tensile
strain to zero and artificially enhances the region of compres-
sive strain with respect to the fixed-node QMC. Similarly to
DFT-B3LYP, GW also reduces the region of tensile strain to
zero but has a narrower region of compressive strain than
fixed-node QMC. Hence, taking into account all DFT and GW
results, the DFT-PBE shows qualitatively the best agreement
with fixed-node QMC, see Fig. 5.

APPENDIX B: STRAINED GAP, FIT PARAMETERS,
AND EQUATIONS

From finite-size scaling, the infinite-size limits were
extracted for three explicitly QMC calculated values
(1–3, see Fig. 3) through which a quadratic form was fitted:

� f (a) = c0 + c1 × a + c2 × a2. (B1)

The fitting parameters in formula Eq. (B1) are compiled in
Table III. Quadratic fits were also used to fit the deformation
energies, see Table III.

APPENDIX C: SPIN-ORBIT COUPLING CORRECTIONS

The fixed-node QMC calculations are performed without
SOC taken into account. However, as is also well-known
experimentally, the SOC is fairly weak but non-negligible in
MoS2 [16]. The effect of SOC was in the fixed-node QMC
calculations applied a posteriori as a correction calculated
at the DFT-PBE level. For that purpose, we have performed
band-structure calculation for the MoS2 monolayer along the
�-K-M-� path using the QUANTUM ESPRESSO code again
in DFT-PBE approximation and with a mesh of 20 × 20 k-
points [41] for Brillouin zone integration. To assess the effect
of SOC, two sets of calculations have been performed, a
fully relativistic and scalar-relativistic with two sets of pseu-
dopotentials, namely, fully relativistic (scalar relativistic) to
calculate the electronic band structures with (without) the
presence of the SOC.

To determine the spin-splitting parameters along the given
path, the symmetry constraints have been taken into account.

FIG. 7. Comparison of boundaries between K → K, � → K, and K → K/2 in various DFT and GW treatments. The diagrams are plotted
against fixed-node QMC equilibrium. The respective GW, DFT-HSE, and DFT-B3LYP zero-strain states are indicated by dashed vertical lines.
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FIG. 8. SOC effects calculated with DFT-PBE exchange-correlation functional for three strained structures. Top panel: Results of scalar
relativistic modeling; Bottom panel: Results of fully relativistic description. Calculations have been made for three different strain loads which
were used in constructing the quadratic fits. For location of the points, refer to Fig. 5 in the main text.

Spin splitting of the bands was not allowed at the � point and
along the M-� path. On the other hand, the spin splitting of the
top valence band reaches the maximum value at the K point,
while the maximum spin splitting of the lowest conduction
band is located on the �-K path, close to the K/2 point. The
calculations were performed at three different strains, labeled
(1)–(3) in Fig. 8, which summarizes the results. For location
of points (1)–(3), refer to Fig. 5 of the main text. In addition
to DFT-PBE, fully relativistic DFT calculations were also
performed with the DFT-HSE and DFT-B3LYP and used in
constructing the DFT-HSE and DFT-B3LYP band-gap phase
diagrams in Fig. 7. The effect of the exchange-correlation
functional on the SOC splitting was found minute. The

parameters of SOC corrections fitted with quadratic formu-
las Eq. (B1) are summarized in Table IV for all models
considered.

The DFT-PBE spin splitting values of 130 meV, 151 meV,
and 158 meV for the top valence band at the K point for the
three structures of interest suggest that there is a moderate
effect of strain on the spin-splitting value. The zero-strain
reference is 148 meV [42]. For the bottom conduction band
at the K point, we obtain the values 18 meV, 3 meV, and
1.5 meV (the spin-splitting value in the zero-strain case is
3 meV [43]). Finally, spin-splitting values of the bottom
conduction at the K/2 point are 45 meV, 81 meV, and
85 meV.
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