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Error-robust quantum signal processing using Rydberg atoms
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Rydberg atom arrays have recently emerged as one of the most promising platforms for quantum simulation
and quantum information processing. However, as is the case for other experimental platforms, the longer-term
success of the Rydberg atom arrays in implementing quantum algorithms depends crucially on their robustness
to gate-induced errors. Here we show that, for an idealized biased-error model based on Rydberg atom dynamics,
the implementation of quantum signal processing (QSP) protocols can be made error robust, in the sense that the
asymptotic scaling of the gate-induced error probability is slower than that of gate complexity. Moreover, our
numerical results that use experimentally accessible parameters indicate that QSP iterates made out of more than
100 gates can be implemented with constant error probability. To showcase our approach, we provide a concrete
blueprint to implement QSP-based near-optimal Hamiltonian simulation on the Rydberg atom platform. The
proposed protocol substantially improves both the scaling and the overhead of gate-induced errors in comparison
to those protocols that implement a fourth-order product formula.
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I. INTRODUCTION

Neutral atoms have become a leading experimental plat-
form for accomplishing useful quantum information process-
ing tasks [1–9], as well as emulating a variety of nontrivial
Hamiltonian dynamics [10] and correlated states [11–15]. In
this success, the rich physics of neutral atoms has played an
essential role. On the one hand, the tightly confined hyperfine
states of the atoms interact very weakly with the environment
[7], making these states ideal for storing quantum informa-
tion [16–19]. On the other hand, the extended Rydberg states
enable strong interactions between the atoms [20], allowing
fast and high-fidelity multiqubit gates to be realized [1,3,21].
Moreover, the advances in trapping and manipulating alkali-
earth atoms resulted in drastic improvements in the error
characteristics of the one- and two-qubit gates on the neutral
atom platform [22–24], making it an important contender to
other leading platforms based on trapped ions [25,26] and
circuit quantum electrodynamics [27,28]. A distinctive ad-
vantage of neutral atoms compared to the other platforms is
that they can be trapped close to one another, resulting in a
scalable and dynamically reconfigurable [7,29] architecture.
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Similarly, the rich internal structure of neutral atoms results
in a uniquely versatile setup where both the unitary and
dissipative dynamics of the system can be tailored for the
specific quantum information task at hand [23,24,30–32].

Yet, as is the case with all current experimental plat-
forms for realizing quantum computation, Rydberg atoms
cannot be controlled without inducing significant unwanted
dynamics. Consequently, the protocols implemented for pro-
cessing quantum information involve errors and the resulting
computation is unreliable [33–35]. While fault-tolerant error-
corrected quantum computation is in principle possible
[36–38], the resources necessary for reaching the error-
correction threshold with the error rates achieved in current
experiments is daunting [39], despite promising developments
[32]. A direct way to reduce this resource cost is to increase
the robustness of the system against errors [39]. Therefore,
whether the rich physics of the Rydberg atoms can be lever-
aged to realize error-robust implementations of a broad class
of algorithms is crucial for the success of the platform.

The term error robust has been used colloquially in the
optimal control theory literature [40–42]. However, here we
use error-robust implementations of quantum algorithms as
a narrower and more powerful notion. By error-robust im-
plementations, we mean that the error probability associated
with the implementation of an algorithm scales slower than
the gate complexity of the corresponding circuit. Our first
contribution is a tool set to effectively demonstrate whether a
proposed implementation is indeed error robust. Specifically,
we introduce a definition of gate-induced error probability that
is dependent on the properties of the input quantum state, in
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contrast to conventional definitions based on average or worst-
case error probability [43,44]. This input-conditional error
probability, unlike its conventional counterparts, allows the
total error probability associated with an implementation of
a quantum algorithm to scale slower than the gate complexity
of the corresponding circuit.

As our main contribution, we utilize the mathematical
properties of the input-conditional error probability together
with the physical properties of the Rydberg atom platform
to design error-robust implementations of a wide range of
quantum algorithms. Specifically, we design error-robust im-
plementations of algorithms that can be expressed in an
iterative manner using quantum signal processing (QSP)
[45,46], a framework which unifies Hamiltonian simulation,
unstructured search, as well as phase estimation [47]. We
demonstrate that, assuming an idealized incoherent error
model based on the physics of Rydberg atoms, each iterate
of a QSP protocol can be implemented with constant error
probability with respect to the gate complexity of the corre-
sponding circuit. Moreover, we show that in an experimentally
accessible parameter regime [12,48], it is possible to realize a
more than 100-fold reduction of the error probability. Finally,
we demonstrate that the error probability associated with a
QSP-based error-robust implementation of the Hamiltonian
simulation algorithm is more than an order of magnitude
smaller than that of a state-of-the-art product-formula im-
plementation, in the case of the one-dimensional disordered
Heisenberg model [49,50]. Our work is primarily concerned
with incoherent error processes, which are dominant in the
current Rydberg atom platform [48,51,52] and leaves the in-
vestigation of the interplay between coherent errors and QSP
protocols for future studies.

Our approach consists of two steps. First, we identify
an incoherent error model which allows one to implement
each QSP iterate, given by the linear combinations of uni-
taries (LCU) [53], with only constant input-conditional error
probability. The main assumption of this error model is that
multiqubit controlled unitaries can be implemented with per-
fectly error biased so that no errors occur when the control
condition is not satisfied (i.e., the control qubit occupies a state
that results in the trivial evolution of the target qubits). While
such an error model is conceptually interesting, it can only
serve as a guideline for designing error-robust implementa-
tions of quantum algorithms because it is unlikely to be valid
for error processes in real quantum systems. Hence, as the
second step of our approach, we design Rydberg atom im-
plementations of strongly error-biased single-qubit controlled
unitaries and show that they can be used for error-robust
implementations of QSP iterates. In doing so, we utilize the
rich physics offered by the Rydberg atom platform, including
multiple Rydberg and hyperfine states, long-range Rydberg
blockade interactions, and electromagnetically induced trans-
parency (EIT). We emphasize that although this work focuses
on the Rydberg platform, the strategies developed in this work
are likely applicable to the broader range of physical platforms
for quantum information processing and pave the way to im-
provements in the capabilities of quantum devices in the near
future.

The paper is organized as follows. We provide a summary
of the main results and insights in Sec. II. We begin the

main text with the introduction to the input-conditional error
probability in Sec. II B, and discuss how our method takes into
account incoherent error processes, including those resulting
in correlated errors. In Sec. IV, we introduce QSP based on
a block-encoding unitary [54] implemented with LCU [53].
We also show that the structure of the LCU protocol can
be leveraged to drastically reduce the effects of errors with
error-biased controlled unitaries. In Sec. V, we design Ryd-
berg atom gates that have strongly biased-error characteristics.
We then provide concrete error-robust implementations of
QSP protocols on the Rydberg atom platform in Sec. VI.
We showcase our approach in Sec. VII by benchmarking the
error bound of QSP-based Hamiltonian simulation against two
other state-of-the-art Hamiltonian simulation algorithms. We
conclude with a discussion of our results and provide an out-
look for error-robust implementations using Rydberg atoms in
Sec. VIII.

II. MAIN RESULTS AND IDEAS

The main object of study of our work is the error probabil-
ity associated with implementations of quantum algorithms.
We demonstrate that it is possible to study the interplay be-
tween the error mechanisms and the circuit that implements
the quantum algorithm using an error measure that depends
on the input state. We refer to such an error measure as input-
conditional error probability.

We consider error-robust implementations that arise from
the aforementioned interplay on two levels of abstraction. At
the higher level, we show that if any concrete experimental
platform provides perfectly error-biased multiqubit controlled
unitaries, then it is suitable for the error-robust implementa-
tion of a wide range of QSP protocols. Then, we take this
observation as a guiding principle to design concrete and
detailed error-robust implementations of QSP protocols on
the Rydberg atom platform. In particular, we design Rydberg
atom gates which are strongly error biased in an experimen-
tally feasible parameter regime and construct a circuit which
results in an error-robust implementation of a QSP protocol.
In the rest of the section, we provide an informal discussion
of the main insights and results pertaining to each level.

A. Input-conditional error probability

The conventional approach to determining the upper bound
for the error probability associated with an implementation
of a generic quantum algorithm is to specify a universal gate
set and count the number of gates required for the implemen-
tation. However, this approach does not have the flexibility
to utilize any prior knowledge of the structure of the imple-
mentation, as it is based on the average or the worst-case
error probability of each gate that makes up the algorithm
[39,44]. In this work, we show that when partial knowledge of
the implementation is available, the upper bound on the total
error probability resulting from this conventional approach
can be extremely loose, even when we restrict ourselves to
only incoherent error processes. To demonstrate this point,
we use a definition of error probability that is conditional on
the input state of each gate. Moreover, we show that the def-
inition of such an input-conditional error probability fulfills
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important desiderata including the existence of a clear phys-
ical interpretation and an algorithm for efficient numerical
computation [44]. Surprisingly, for certain implementations,
the upper bound of the total input-conditional error probability
can in principle scale much slower than the gate complexity
for a wide range of algorithms. Here, we refer to such imple-
mentations as error-robust implementations.

B. Error-robust implementations of quantum signal processing

A great variety of quantum protocols are described as
functional transforms f (A) of high-dimensional linear op-
erators A. The well-known examples include Hamiltonian
simulation, where f (H ) = e−iHt [55] and HHL algorithm for
solving linear equations, where f (A) = A+ with + denoting
the Moore-Penrose pseudoinverse [56].1 The naive expecta-
tion is that the compilation of such algorithms is simple when
f (·) and the input A have simple classical descriptions.

Quantum signal processing (QSP) is an iterative compila-
tion method that formally fulfills this naive expectation when
f (·) is approximated by a low-order polynomial, and A is
sparse or approximated by a linear combination of a small
number of Pauli strings.2 Each iteration step of the QSP
protocol has two components, called the block-encoding walk
operator WA [54], which encodes the linear operator A (i.e.,
there exists a projector � such that �WA� = A), and the
processing unitary [45] which encodes a single rotation angle
φi. For a QSP protocol that terminates after l iterations, a
list of l + 1 angles {φi} determines the lth-order polynomial
approximation of the functional transform f (·). Importantly,
in many instances, the QSP protocols were shown to be near
optimal in terms of the number of iterations [57–59].

The QSP protocols can be simplified drastically when the
controlled version of WA (denoted CWA) is available. Then,
the processing unitary is a single-qubit rotation of the control
qubit. This is an important simplification from the perspective
of error-robust implementations since the single-qubit rota-
tion only contributes a constant to the error probability per
iteration. Consequently, the scaling of the error probability
associated with each iteration step of the QSP protocol is the
same as the scaling of errors for CWA. Given that many QSP
protocols are optimal in the number of iterations, whether
we can achieve an error-robust implementation of the QSP
protocol hinges on an error-robust implementation of CWA.

We find that the linear combination of unitaries (LCU)
method [46,58] is an especially well-suited compilation
method for an error-robust implementation of WA and CWA.
To implement the LCU protocol, A is decomposed as a linear
combination of N unitary Pauli strings {Pi}, with the associ-
ated coefficients {αi}. Then the classical data, consisting of
{αi} and {Pi}, are encoded by two separate unitaries V and Ū ,
which describe the evolution of the quantum system. On the
one hand, the state preparation unitary V acts on an ancillary
register of size na to prepare an amplitude encoding state

1See Refs. [46,47] for further examples.
2In contrast, compiling time-dependent Hamiltonian simulation is

difficult because then multiple functional transformations ft (·) and
their inputs At need to be explicitly specified.

V |0〉⊗na = ∑N
i αi|xi〉 for the coefficients {αi}. On the other

hand, Ū takes the different components {|xi〉} of the ancillary
state as control conditions for applying {Pi} to the system reg-
ister. Formally, Ū can be expressed as a product of controlled
Pauli operations Ū ≡ ∏N

i Cxi Pi. The walk operator is given by
WA ≡ (2�0 − I)V †ŪV , where �0 = (|0〉〈0|)⊗na ⊗ Isys [58].
In this work, we assume that the control conditions {|xi〉} are
bit strings in the computational bases.

We show that the following condition is sufficient for a
near-constant input-conditional error probability implementa-
tion of WA and its controlled version:

Condition 1: The required controlled unitaries are imple-
mented in a way that the errors are induced only when the
control condition is satisfied.

Although the implementation of CWA with constant error
probability is conceptually interesting, it is extremely unlikely
that any physical system satisfies Condition 1, especially for
large na. Instead, Condition 1 is a guideline for the Rydberg
atom gates we design for error-robust implementations of
QSP protocols. We call controlled unitary implementations
that approximately satisfy Condition 1 error-biased unitaries.
Error-biased unitaries are characterized by an error-bias pa-
rameter ηε which is the ratio of the error probability when
the control condition is not satisfied to that when it is satis-
fied. We call a unitary perfectly error biased when ηε = 0.
In the following two subsections, we give a summary of the
main ideas behind the proposed Rydberg atom gates which
approximately satisfy Condition 1 for single-qubit controlled
unitaries. In the implementation of Ū the unitaries that act
on the target register are multiqubit Pauli operations, while
for the state preparation unitary V , we utilize an efficient
multiqubit unitary which takes advantage of the long-range
interactions between the Rydberg atoms. In addition, we show
that perfectly error-biased single-qubit controlled unitaries
can be used to design an error-robust implementation of WA

when applied in a particular order.
Finally, the single-qubit controlled unitary CWA can be im-

plemented while retaining the near-constant error probability
if the following condition is satisfied:

Condition 2: The system consists of subsystems 2 addi-
tional long-lived auxiliary states.

Note that the neutral atoms already satisfy Condition 2 as
they have multiple long-lived hyperfine states. In the follow-
ing, we denote the walk operator as W and drop the subscript
for simplicity.

C. Designing error-biased Rydberg atom gates

We show that a single-qubit-controlled unitary that was
proposed in Ref. [60] has strongly biased-error characteristics.
The gate uses the Rydberg-blockade effect in combination
with electromagnetically induced transparency (EIT) [61,62],
and leverages the rich internal structure of the Rydberg atoms.
While the gate was proposed more than a decade ago our
work emphasizes its biased-error characteristics and use it to
achieve error-robust implementations of quantum algorithms.

We demonstrate that the single-qubit controlled gate intro-
duced in Ref. [60] drastically reduces the error-bias parameter
ηε by lowering the probability of errors in both the control and
target registers when the control condition is not satisfied. On
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the one hand, the probability of errors in the control register is
reduced when the control condition is not satisfied because the
EIT-based gate protocol starts by exciting the control atom to
the Rydberg state only if it is in the |0c〉 state. During this step,
for low enough drive powers, the control atom in state |1c〉
evolves almost trivially and the evolution results in negligible
errors. As a result, the error probability due to the control atom
is negligible when the control condition is not satisfied. On the
other hand, the error probability resulting from the dynamics
of the target atom is reduced when the control condition is not
satisfied, thanks to the EIT mechanism. In particular, when
the control atom is not excited to the Rydberg state, the EIT
mechanism ensures that the laser field that couples the hyper-
fine states to shorter-lived excited states is not absorbed (hence
the name “transparency”). Consequently, when the control
condition is not satisfied, the evolution of the target atoms is
also nearly trivial. In contrast, when the control condition is
satisfied, the Rydberg excitation of the control atom disturbs
the EIT mechanism, and the target qubit goes under a non-
trivial and error-inducing evolution. We use the decay rates
of experimentally accessible Rydberg levels to numerically
calculate ηε < 1

150 even when the error probability conditional
on the control condition being satisfied is only 1% and the
dipolar interaction strength is a few tens of MHz. Our results
should be considered as a first demonstration of strongly error-
biased controlled unitaries on a physical platform. Reducing
ηε further in any platform increases the platform’s potential
for error-robust implementations of QSP protocols.

Unfortunately, the single-qubit controlled unitaries dis-
cussed above do not have a straightforward generalization
to error-robust multiqubit controlled unitaries. However, we
demonstrate that an efficient and error-robust implementa-
tion of Ū is still possible with only single-qubit controlled
unitaries if we use an appropriate choice of the control
conditions |xi〉 together with a particular order with which
the single-qubit controlled unitaries are applied. Incidentally,
the choice of control conditions |xi〉 has the additional ad-
vantage of allowing for an error-robust implementation of
the state preparation unitary V , as we discuss in the next
subsection.

D. Designing the ancillary control register
for error-robust implementations

Central to our design of the ancillary control register for
error-robust implementations of QSP protocol is a multiqubit
Rydberg blockage gate, referred to as the one-hot amplitude-
encoding gate, or V1HE. V1HE prepares one-hot amplitude
encoding states which are superpositions of bit strings where
all but one of the qubits is in the zero logical state.

We consider the preparation of a tensor product of k one-
hot encoding address states where each register is of size nj

with j = (1, . . . , k). We show that such a state can be pre-
pared using

∏k−1
j=1 n j EIT-based single-qubit controlled V1HE

(denoted CV1HE) gates, with a total input-conditional error
probability of O(k), assuming that Condition 1 is perfectly
satisfied. Moreover, given the tensor product of k one-hot en-
coding states as the input state of the ancillary control register,
the associated Ū consisting of

∏k
j−1 n j control conditions can

be implemented with an input-conditional error probability of
O(k).

We emphasize that the tensor product of k one-hot en-
coding states allows us to encode N amplitudes in a small
ancillary register of size O(kN1/k ). While the size of the
ancillary register does not satisfy the theoretical lower bound
�(log N ), given a system register of nsite atoms, as many as
nk

site control conditions can be stored in an ancillary register of
size only O(knsite ).

The implementation of CV1HE gates fully utilizes the rich
physics of the Rydberg atoms, including the long-range dipo-
lar interactions, availability of Rydberg states with different
symmetries, as well as EIT. Our results thus highlight the
importance of concrete physical processes for realizing error-
robust implementations.

E. Proposal for Hamiltonian simulation

Finally, we showcase our approach in the context of Hamil-
tonian simulation algorithms. The first interesting observation
is that given that conditions 1 and 2 are perfectly satisfied,
the scaling of the input-conditional error probability for the
QSP-based Hamiltonian simulation is the same as the op-
timal gate complexity, given by the simulated space-time
volume [50,63]. We emphasize that this is despite the fact that
the number of gates required to implement QSP-based local
Hamiltonian simulation scales at least quadratically with the
system size.

Next, we compare the error robustness of the Rydberg
implementation of the QSP-based Hamiltonian simulation for
the disordered Heisenberg chain to that of a simulation al-
gorithm based on the fourth-order product formula. For a
fair comparison, we implement the product formula algorithm
using the error-biased Rydberg atom gate set designed for
QSP protocols. Hence, both implementations of the algorithm
enjoy increased robustness against errors. Still, assuming the
controlled unitaries are perfectly error biased, the QSP-based
implementation has better asymptotic scaling of error proba-
bility. Moreover, we find that the QSP-based implementation
has an overhead of the error probability that is reduced by
more than an order of magnitude with respect to the fourth-
order product formula.

The proposed implementation of the QSP-based Hamil-
tonian simulation algorithm has a few attractive features in
the context of near-term implementation. First, thanks to the
efficient design of the control conditions |xi〉, the number of
neutral atoms required to simulate a system of size � 200 can
be as small as 250 atoms, which is small enough to ensure the
near-term feasibility. Another factor that determines the near-
term feasibility of the proposed implementation is the depth
of the protocol, which is especially relevant for determining
the influence of the adverse effects of errors that are not gate
induced (i.e., errors affecting the hyperfine states of the neutral
atoms). Our estimations indicate that, for intermediate-scale
systems, the proposed Hamiltonian simulation algorithm can
be implemented in a time that does not exceed the lifetime of
the logical hyperfine states. However, given the current param-
eter regime describing the neutral atom experiments, the total
error probability is not small enough to implement a Hamilto-
nian simulation of the disordered Heisenberg chain with less
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than unity total error probability, except for small systems
consisting of less than 50 atoms. Even so, we expect the
concept of error-robust implementations to be advantageous
for near-term demonstrations of QSP-based quantum informa-
tion processing protocols when it is used in combination with
error-mitigation techniques [64]. Moreover, the combination
of the techniques introduced here with quantum error cor-
rection [32] promises to significantly ease realizations of
fault-tolerant quantum computation in platforms where gate-
induced incoherent errors dominate.

III. ERROR-ROBUST IMPLEMENTATIONS

The notion of error-robust implementations refers to meth-
ods to avoid unwanted processes that may occur during the
implementation of a quantum operation by leveraging one’s
knowledge of (i) the computational task at hand and (ii) the
dynamics of the controlled quantum system.

Error-robust implementation techniques are pervasive in
quantum control theory [42,65,66], where the focus is to
design control protocols for single- and two-qubit gates.
Here, the impact of decoherence can be reduced by avoiding
transitions to states susceptible to errors [42,67] and by de-
signing (decoherence-free) subspaces, which are insensitive
to the dominant error mechanisms [68–70]. In the context of
quantum control theory, the figures of merit for error-robust
implementations are the average error probability and the time
duration of the implemented gates.

On the other hand, error-robust implementation of quantum
protocols consisting of many gates has been, to the best of
our knowledge, considered only in the context of quantum
random access memories (QRAMs) with the bucket-brigade
(BB) architecture [71–73]. The error-robust implementations
of BB QRAMs focus solely on reducing error probability
associated with each memory query because the time required
for each query already scales logarithmically with the memory
size. Unfortunately, the short time to query is a feature that
comes at the cost of using as many qubits as the number
of items in the memory. In this setting, the implementation
of a QRAM is error robust if the probability of error scales
sublinearly with respect to the memory size.

The proposals detailed in Refs. [71–73] show that the
implementation of BB QRAM can be error robust, based on
considerations of the interplay between the circuit structure
and error processes. For instance, Ref. [72] proposes an error-
robust implementation of BB QRAM on a device consisting
of 2n switches, where each switch can either be in an error-
prone active state or an error-free idle state. As each memory
query of a BB QRAM results in only O(n) active switches,
the resulting protocol is error robust. More recent results of
Ref. [73] showed that the error robustness of the BB QRAM
implementation does not rely on the idle states being perfectly
error free, by carefully taking into account the propagation
of errors amongst O(2n) qubits during the implementation of
the QRAM unitary. However, it is not clear how the methods
used to demonstrate the error robustness of BB QRAM can
help design error-robust implementations of a wider class of
quantum algorithms, and to do so without the requirement of
an exponentially large system size.

Why have we not developed error-robust implementations
for quantum protocols other than the BB QRAM? The core
problem is the lack of a generic error measure that can sep-
arate the scaling of error probability from that of the circuit
size. Conventional upper bounds for the total error measure
increase linearly with both the circuit and the system size.
This is because the conventional error bounds are defined
on the worst- or average-case basis, assuming that we have
no knowledge of the input states of the gates [39,43,44]. To
see this formally, consider the worst-case error probabilities
ε(Ei,Wi ) defined using the trace distance between the desired
output states of unitary transformations W1 and W2 and the
respective erroneous processes E1 and E2:

ε(Ei,Wi ) ≡ max
ρ

tr|Wi(ρ) − Ei(ρ)|, i = {1, 2} (1)

where Wi(ρ) ≡ WiρW †
i , and |X | =

√
X †X . Then the total er-

ror measure of the erroneous process E2 ◦ E1(ρ) ≡ E2[E1(ρ)]
obeys the subadditivity bound (also called the chaining prop-
erty) [39,44,74]

ε(E2 ◦ E1) � ε(E1) + ε(E2). (2)

As a consequence, for a given quantum circuit C ≡ ∏ngate

i Wi

compiling a desired quantum algorithm using nuni perfect
unitaries {Wi}, and the erroneous implementations of each uni-
tary described by superoperators {Ei(·)} which satisfy ε(Ei) �
ε̄ ∀ i, the overall error measure associated with the implemen-
tation of C circuit is bounded by a linear function of gate
[39,43,44]. Given this correspondence between the number
of gates and the conventional error measures, determining
whether an implementation is error robust as discussed in the
Introduction requires us to define a different error measure. In
particular, we need an error probability that is neither average
nor worst case. In this work, we introduce such an error
measure and show how it can be used to design error-robust
implementations of QSP protocols.

Before defining the appropriate error probability, we
emphasize that here we focus primarily on gate-induced in-
coherent errors, instead of the error processes which affect
logical states in the absence of any external manipulation. The
reason for this preference is the fact that in a wide variety of
microscopic quantum systems, including the Rydberg atom
arrays considered in this work, the quantum states that rep-
resent the logical qubits are extremely long lived as long as
they are not manipulated. In these systems, the main error
mechanisms are incoherent and induced when we want to
control the dynamics of the system and implement the desired
sequence of gates.

We now turn to define input-conditional error probability,
which allows us to determine whether a given implementation
is error robust. Our definition is inspired by previous work
on Rydberg atoms that provided approximations of the error
probability associated with one- and two-qubit gates for each
initial state in the logical subspace [51,52]. Here, we anchor
these previous results to a definition of error probability that
also has attractive features from the perspective of quantum
information science.

Indeed, the error probability introduced here simultane-
ously satisfies many of the conditions put forward in Ref. [44]
for a “gold standard” in measures to compare real and ideal
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quantum processes. In particular, the error probability we de-
fine here is easily related to a distance measure between pure
states in the Hilbert space describing both the system and the
environment. Importantly, when the error processes are inco-
herent the input-conditional error probability obeys a type of
subadditivity bound, which allows us to lower bound the error
probability for complex circuits. Moreover, our definition of
error probability has a straightforward physical interpretation
and is easy to estimate using the experimentally accessible
properties of single atoms and simple time-dependent pertur-
bation theory [75,76]. Finally, the proposed error probability
is suitable for efficient numerical calculation, given an accu-
rate model of the controlled system. We also note that our
definition is an upper bound to the error probability based
on the trace distance between mixed states [39] (see Ap-
pendix A).

We define error probability using the fidelity between two
pure states that describe the system and the environment de-
grees of freedom: (i) the desired output state, simply given
by Wi|φ0〉, and (ii) the erroneous output state W̃i|φ0〉, which
results from the imperfect implementation. The error proba-
bility conditioned on the input state |φ0〉 is defined as

εi,φ0 ≡ 1 − |〈φ0|W †
i W̃i|φ0〉|2. (3)

We emphasize again that all transformations involved in this
definition are unitary, and that the input state |φ0〉 is taken into
account explicitly. It is easy to see that the error amplitude√

εi,φ0 has the properties of a distance measure between the
pure states W̃i|φ0〉 and Wi|φ0〉 [44].

The error probability defined in Eq. (3) has an especially
well-motivated physical interpretation for when the input
states are error free and no quantum correlations exist between
the controlled system and the environment. Formally, we de-
fine an error-free state as

|φ0〉 ≡ |φ0,sys〉 ⊗ |ψenv,0〉, (4)

where |φ0,sys〉 is the initial state of the system and |ψenv,0〉
is the initial reference state of the environment. Then we
decompose W̃1|φ0〉 as a linear combination of W1|φ0〉 and an
erroneous component

W̃1|φ0〉 ≡ α1,φ0 |φ1〉 +
√

1 − |α1,φ0 |2
∣∣E incoh

1

〉
. (5)

Here, |φ1〉 ≡ W1|φ0〉 = |φ1,sys〉 ⊗ |ψenv,0〉 is the desired output
state, and |E incoh

1 〉 represents the states of the system and the
environment when incoherent errors occur and the system
becomes entangled to the environment in an irreversible way.
Formally, ∣∣E incoh

1

〉 ≡ ∑
j

λerr, j

∣∣E incoh
1,sys,j

〉⊗ |ψ j,env,err〉, (6)

where 〈ψenv,0|ψ j,env,err〉 = 0 and {λerr, j} are the Schmidt val-
ues that quantify the amount of entanglement generated
between the system and the environment by the erroneous uni-
tary W̃ [39]. Moreover, we assume that the incoherent errors
are due to a Markovian process such that the state |E incoh

1 〉
obeys (Isys ⊗ |ψenv,0〉〈ψenv,0|)Ũ |E incoh

1 〉 = 0 for any erroneous
unitary Ũ . From a physical point of view, |α1,φ0 |2 is the prob-
ability that the initial state |φ0〉 transitions to W1|φ0〉 after it

evolves under W̃1.3 The probability amplitude α1,φ0 can be
taken to be real and positive without loss of generality. Hence,
the error probability ε1,φ0 associated with the implemented
unitary W̃1 is simply given by

ε1,φ0 = 1 − α2
1,φ0

.

Unlike the conventional measures [43,44], ε1,φ0 explicitly
keeps track of the input states |φ0〉; and therefore, it allows
us to design error-robust implementations where the error
probability scales slower than the number of erroneous gates.

The following two relations are especially useful in deter-
mining whether a given implementation is error robust. The
first relation allows us to estimate the error probability for
any initial state given the error probabilities for a complete
set of initial basis states. Given the error probabilities {εi,φk }
for an orthonormal basis {|φk〉}, the error probability εi,�

associated with the unitary W̃i acting on |�〉 ≡ ∑
k ak|φk〉 is

(see Appendix A for details)

εi,� ≈
∑

k

|ak|2εi,φk + O
(

max
k

ε2
k

)
. (7)

The second relation is an inequality that is similar to the sub-
additivity property discussed above. It allows us to calculate
the upper bound for the error probability for a circuit C ≡∏n

j=1 Wj , given the error probabilities ε j,φ j−1 for each unitary

Wj acting on the error-free state |φ j−1〉 ≡ ∏ j−1
l=1 Wl |φ0〉. In

particular, for a circuit C consisting of n unitaries, the error
probability obeys (see Appendix A for details)

εC,φ0 �
n∑

j=1

ε j,φ j−1 . (8)

An important aspect of the error bound in Eq. (8) is that
it is valid in the presence of time-correlated errors since
the erroneous component of the wave function is completely
discarded after each unitary {W̃i}. This feature is especially
important for errors resulting from black-body radiation in
Rydberg atoms, which we further discuss in Sec. V. We also
note that Ref. [50] uses a fidelity measure that shares this
feature.

How can we calculate {ε j,φ j−1}? We show that given an
input state |φ0〉 and a Markovian master equation describing
the driven and dissipative dynamics of the system, an upper
bound of error probability for each unitary Wj can be analyti-
cally calculated for time-independent or adiabatically control
pulses. In particular, considering a system evolving under Wj

and subject to jump operators {Cm}, the error probability in the
limit ε j,φ0 
 1 obeys (see Appendix A for details)

ε j,φ0 � τg

∑
ψ

pmax
ψ, j γψ. (9)

Here, τg is the time required for the implementation and pmax
ψ, j

denotes the maximum occupation of |ψ〉 during the evolution
described by Wj . The wave function |ψ〉 is the eigenstate

3We note that |α1,φ0 |2 is similar to the survival probability that is
defined in the randomized benchmarking literature |α1,φ0 |2, where
the target operation is identity.
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of the non-Hermitian effective Hamiltonian i
2

∑
m C†

mCm with
eigenvalue γψ/2 that is half the decay rate γψ [77]. As we
demonstrate in the following sections, that ε j,φ0 can be upper
bounded using analytical methods is an important feature of
the input-conditional error probability for the designing error-
robust implementations.

The proof of Eq. (9) follows from the results derived
using the stochastic wave-function description of dissipative
dynamics [77,78]. In particular, 1 − ε j,φ0 is the probability
that no quantum jumps occur during the system’s evolution
during W̃j . Hence, we can define the input-conditional error
probability as

ε j,φ0 ≡ 1 −
∣∣∣∣〈φ0|T exp

(
i
∫ τg

0
Hj,eff (t )

)
|φ0〉

∣∣∣∣
2

, (10)

where Hj,eff (t ) is the time-dependent effective non-Hermitian
Hamiltonian associated with the Markovian stochastic evo-
lution, T is the time-ordering operator, and τg is the gate
duration. Equation (9) results from bounding the right-hand
side of Eq. (10).

On the other hand, numerical bounds on error probability
are useful when predicting the performance of an implementa-
tion on a specific device. Luckily, it is also straightforward to
calculate ε j,φ0 using a numerical simulation of the Markovian
master equation, when such a description is valid. This can
be achieved through a simple modification of simulation of
the Markovian master equation, where each jump operator
Cm is augmented to construct a new jump operator C̃m ≡
Cm ⊗ |e〉flag〈g|, where |e/g〉flag are the states of an unphysical
auxiliary flag qubit. For the numerical simulation, the flag
qubit is initialized to the |g〉flag state. During the Markovian
evolution of the system, the flag qubit transitions to the |e〉flag

state whenever a quantum jump occurs. Hence, the error prob-
ability ε j,φ0 can be numerically calculated by measuring the
population in the |e〉flag state at the end of the simulation. In
our numerical calculations, we found that the occupation of
the flag qubit perfectly matches the estimates based on the
second term on the right-hand side of Eq. (9).

If we want to calculate the upper bound of the error
probability for a given circuit C, we need to have at least
partial knowledge of the ideal state |φi〉 after the application
of each unitary Wi. This is clearly not possible without prior
knowledge of the initial state |φ0〉 and the circuit C. Indeed,
the motivation behind using the worst- or average-case error
probabilities comes from the fact that, in general, we do not
have a concise description of each |φi〉. However, because
we are interested in implementing quantum signal processing
(QSP) protocols where the block-encoding unitary is real-
ized using linear combination of unitaries (LCU), we can
do better. As we will elaborate in the next section, during
most of the implementation of the LCU-based block-encoding
unitary, the probability that each ancilla qubit is in one of
the two logical states does not change. Moreover, the LCU
implementation is flexible with respect to how we encode
information in the ancillary degrees of freedom. Hence, we
can design the encoding of the ancillary degrees of freedom
such that the ancillae remain only in a restricted subspace
of the total Hilbert space during the implementation of the
LCU unitary. The evolution of the ancillary degrees of free-
dom within a carefully designed restricted subspace is at

the core of our proposal for error-robust implementations of
QSP protocols.

To summarize, in this section, we defined an error proba-
bility that is closely related to the fidelity on the joint Hilbert
space of the system and the environment. The defined error
probability satisfies most of the conditions put forward in
Ref. [44] for a successful error measure, including a clear
physical interpretation and ease of computation. In addition,
the error probability that we defined here allows one to keep
track of the error conditional on the input state of each uni-
tary that makes up the quantum protocol using Eqs. (7) and
(8). In the next section, we describe the LCU method for
compiling the block-encoding unitary and clearly state the
requirements for achieving an error-robust implementation
(see Sec. IV C). Then, in Sec. V, we shift our focus to a
detailed model of the Rydberg atom array and discuss the
implementation of single-qubit and multiqubit gates which are
useful for an error-robust implementation of QSP protocols.
In Sec. VII, we will calculate the overall error probabilities
for QSP protocols using Eq. (8) and the error model of each
Rydberg gate.

IV. BLOCK ENCODING BY LINEAR COMBINATIONS
OF UNITARIES (LCU)

Here we discuss the method of LCU [53], which offers a
generic and constructive strategy to implement QSP iterates.
In order to assess the time and space complexities of the LCU
method, we introduce the scaling variable N which denotes
the number of Pauli operators {Pi} that make up the target
block-encoded operator A. In particular, we consider A that
can be decomposed as

A =
N∑

i=1

|αi|2Pi, (11)

where Pi is a tensor product of single-qubit Pauli operators and∑N
i=1 |αi|2 = 1. It is conventional to restrict the weight of each

Pi, which is given by the number of its nonidentity factors. In
the context of Hamiltonian simulation, the number of coeffi-
cients required to implement a k-local Hamiltonian (i.e., each
Pi has a weight at most k) on a system consisting of nsite qubits
is N = O(nk

site ), while for geometrically local Hamiltonians
where the number of atoms within an interaction range is NI ,
we have N = O(Nk

I nsite ). It is important to note that in this
decomposition we assume that the coefficients {αi} are given
and cannot be further compressed into a smaller set.

In the following, we first review the LCU method formally,
and describe how quantum signal processing can be used
to implement approximate functional transformations of the
block-encoded operator A. Then in Sec. IV C, we demonstrate
that the LCU-based QSP iterates can be implemented with
constant input-conditional error probability when one has ac-
cess to perfectly error-biased multicontrol unitaries.

A. Algorithm

The LCU decomposition of the block-encoding unitary in
Eq. (16) consists of three unitaries [53]:

U = V †ŪV. (12)
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The block-encoding unitary acts on na ancilla qubits and
nsite system qubits. The unitary V rotates the na-qubit initial
ancilla state |0〉⊗na to a linear combination of computational
basis states {|xi〉} which encodes the precomputed classical
coefficients αi:

|�〉a ≡ V |0〉⊗na =
N∑

i=1

αi|xi〉. (13)

The operator V can be understood as an amplitude-encoding
state-preparation unitary [79]. We note that the number of
ancilla qubits na � �log N� depends on the choice of the basis
{|xi〉}.

Then, we apply the following conditional unitary opera-
tion:

Ū ≡
N∑
i

|xi〉〈xi| ⊗ Pi≡
N∑

i=1

Cxi Pi. (14)

In the following, we refer to {|xi〉} address states or control
conditions. When the control register is in |xi〉, it satisfies the
control condition of the controlled unitary Cxi Pi. The action of
Ū entangles each Pauli operator with an orthogonal address
state of the ancilla register

N∑
i=1

αi|xi〉 ⊗ |�sys〉 Ū−→
N∑

i=1

|xi〉 ⊗ (αiPi )|�sys〉. (15)

A unitary that block encodes a superposition of multiqubit
Paulis {Pi} is obtained by rotating the address space by an
application of V †,

V †Ū |�〉a ⊗ |�sys〉 =
N∑
i

|αi|2|0〉⊗na ⊗ Pi|�sys〉 + |�⊥〉

= |0〉⊗na ⊗ [A|�sys〉] + |�⊥〉, (16)

where the unnormalized wave vector |�⊥〉 satisfies
((|0〉〈0|)⊗na ⊗ 1)|�⊥〉≡�0|�⊥〉=0. Consequently, �0U�0

= A, and the block-encoding unitary has the form

U =̇
(

A ∗
∗ ∗

)
. (17)

We remind the reader that the unitarity of U implies that
the Hermitian operator block encoded in this way satisfies
||A|| � 1. Moreover, the block-encoding unitary implemented
through LCU is Hermitian (i.e., U † = U ).

An aspect of the LCU protocol that is especially important
for error-robust implementations is that we are free to choose
the relevant subspace of the ancillary degrees of freedom.
The original discussion of block-encoding unitary sets na =
�log (N )� [54] such that the relevant subspace is the whole
Hilbert space of the ancillary address register. Here, we show
that the implementations of the block-encoding unitary can
be made efficient if we use an address register that is con-
strained to states with only a small number of qubits in the |1〉
state.

B. Processing of block-encoded matrices by QSP

Next, we review the QSP framework introduced in
Refs. [45,58]. From the perspective of compiling quantum

subroutines and algorithms. QSP can be understood as an
efficient way of manipulating a block-encoded operator A to
realize the block encoding of a polynomial functional P(A).
The polynomial P(·) is defined through an ordered list of
n + 1 angles {φi}, whose size determines the order of the
polynomial as well as the query complexity of QSP. Here,
we give only a brief discussion of the QSP protocol such that
the requirements for its error-robust implementation become
evident. For an introduction to QSP, see Appendix C.

The QSP protocols proceed by iterating between a con-
trolled oracular unitary CW derived from the block-encoding
unitary U in Eq. (12), and a signal processing step, which
consists of a single-qubit rotation on the additional ancilla
(referred to as the exit ancilla) that controls the application
of W (see Fig. 1). Formally, the QSP protocol has the form

U =
[

n∏
i=1

eiφiσ
(e)
x CeW

]
eiφ0σ

(e)
x , (18)

where σ (e)
x acts on the exit ancilla. In the case of a qubitized

block-encoding unitary U = U †, oracular unitary W is simply
expressed as

W = (2�0 − I)U, (19)

where �0 is the projector to the all-zeros address state. As
emphasized in the Introduction, the iterative form of the QSP
protocols allows for error-robust implementations given that
the implementation of CW is error robust.

C. A sufficient condition for an error-robust
implementation of the QSP protocols

Here, we identify a condition, when satisfied, that allows
one to design error-robust implementations of LCU-based
QSP protocols with near-constant input-conditional error
probability. The condition we put forward is chosen to illus-
trate the possibility of error-robust implementations but it is
likely impossible to be perfectly satisfied in any physical re-
alization. Given this difficulty, the rest of our work will focus
on demonstrating that a more restricted and physically viable
set of conditions is sufficient for error-robust implementations
of LCU-based QSP protocols.

Consider an LCU-based QSP protocol implementing an
order-n polynomial transformation P(A) where the block-
encoded signal operator A is a linear combination of N k-local
Pauli operators. Then, if the required controlled unitaries are
implemented in a way that incoherent errors are induced
only when the control condition is satisfied (i.e., Condi-
tion 1 in Sec. II B is perfectly satisfied), then the said QSP
protocol can be implemented with an O(k + log N ) input-
conditional error probability. We remind the reader that the
control condition is satisfied when the control register oc-
cupies a state that results in a nontrivial evolution of the
target qubits.

To see how this condition results in such a drastic reduction
of the input-conditional error probability let us first calculate
the error probability in Sec. V E on the unitaries Ū in Eq. (12)
and 2�0 − I. The total error probability εŪ ,ψ for implement-
ing Ū is upper bounded by the sum of input-conditional
error probabilities for implementing each multicontrol Pauli
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FIG. 1. The circuit diagrams for the QSP protocols discussed in this work. (a) The multiqubit controlled Pauli operation Cxi Pi where the
control register is ancillary and the target register is the system that is controlled. (b) The decomposition of the QSP iterate W (notice the factor
of i difference with the definition in Ref. [45]), consisting of a multiqubit controlled phase gate where the target register is a single-“phase”
ancilla and the LCU-based block-encoding protocol. (c) The circuit decomposition of the QSP method for producing polynomials of block-
encoded matrices, which consists of controlled versions of the walk operator W conditioned on the state of an additional “exit ancilla.” In this
work, we show how to realize error-robust implementations of these circuits on the Rydberg atom platform.

operator. That is, considering Ū that consists of N multicon-
trol Pauli operators (see Sec. II B)

εŪ ,ψ �
N∑

j=1

εCx j Pj ,ψ j−1 , (20)

where |ψ j〉 stands for the error-free state at the end of the jth
controlled Pauli operation. If Cxj Pj results in errors only for
the component of |ψ j−1〉 along |x j〉, then defining

α j ≡ Tr[(〈x j | ⊗ I)|ψ j−1〉]/2nsite ,

we find

εCx j Pj ,ψ j−1 = ε0|α j |2k j, (21)

where ε0 is a constant describing the overall error probability
scale, and k j � nsite is the weight of the Pauli operator Pj

acting on a system of size nsite. Therefore, using the normal-
ization condition

∑N
j=1 |α j |2 = 1, we obtain

εŪ ,ψ � ε0 max
j

k j = O(k). (22)

The proposed implementation of Ū is error robust since the
number of gates that need to be implemented scales with
N . Similarly, because the reflection operator 2�0 − I can be
expressed as a multiqubit controlled Z operation, the input
conditional error probability associated with its implemen-
tation is <ε0 and does not scale with N . Finally, we note
that single-qubit controlled versions of both Ū and I − 2�0

can be implemented without changing the bound on the
input-conditional error probability, as long as Condition 1 is
satisfied. As a result, given multiqubit Pauli operations that
satisfy Condition 1, CW can be implemented with O(k) error
probability if the state preparation unitary V can be imple-
mented with O(k) error probability.

Surprisingly, the state preparation unitary V can be im-
plemented with only O(log N ) error probability if Condition
1 is satisfied. Consider a state preparation unitary V acting
on na ≡ �log N� qubits. Then the unitary V can be expressed
as a sequence of Õ(N ) multiqubit controlled single-qubit ro-
tation operations [80]. To see this, first order the qubits q j

from 1 to na and initialize each qubit in the |0〉 state. Then
for each qubit q j with j ∈ (0, . . . , na) apply 2 j−1 multiqubit
controlled single-qubit rotations, where the control atoms are
chosen from the set {ql} with l < j. It is then possible to
prepare any state that encodes a set of N � 2na precomputed
probability amplitudes (as in Sec. IV) using an appropriate
choice of the single-qubit rotation angles [80]. Now con-
sider an implementation of the circuit described above where
Condition 1 is satisfied. Although for each qubit qj , we ap-
ply a large number of controlled single-qubit rotations, the
probabilities that the control conditions of each multiqubit
controlled single-qubit rotation is satisfied sum up to 1 in the
same way that resulted in Eq. (22). Hence, given Condition
1 is satisfied, the total input-conditional error probability is
O(log N ). Moreover, a controlled version of this unitary can
be implemented without changing the error probability. As
a result, the implementation of CW has an input-conditional
error probability O[k + log (N )].

The above arguments show that near-constant error im-
plementations of LCU-based QSP protocols are possible
given perfectly error-biased multiqubit controlled unitaries.
However, it is clear that, in any physical setting, the gate
implementation will also result in errors when the control
condition is not satisfied, and Condition 1 cannot be per-
fectly satisfied. That is, the condition of having the perfectly
error-biased multiqubit controlled unitaries can only serve as a
guideline in the discussion of designing gates for error-robust
implementations of algorithms. In particular, the argument
presented in this subsection highlights the error-bias parame-
ter ηε , given by the ratio between the error probabilities when
the control condition is not satisfied over that when the control
condition is satisfied, as a key quantity of interest. Broadly
speaking, the constant scaling of the input-conditional error
probability holds for N < η−1

ε . The calculation of the error-
bias parameter ηε for realistic gate implementations using
Rydberg atoms is the focus of the next section. Specifi-
cally, we use analytical and numerical methods discussed
in Sec. II E to estimate ηε for two types of multiqubit
gates that can be implemented using Rydberg atoms. As we
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(a) (b) (c) (d)

FIG. 2. The level diagrams used in the proposed protocols in the laboratory frame. (a) The level diagram for the Rydberg atoms in the
control registers, where a hyperfine state is excited to the Rydberg manifold. (b)–(d) Three different level diagrams for the Rydberg atoms in
the target registers, each using the EIT mechanism [see (b)] to introduce biased errors that conditionally are on the state of the control register.
(c) The level diagram for the target atom of the CX (R) gate. The transfer between |1〉 and |r〉 is controlled by the energy shift of state |R〉,
followed by an excitation to the Rydberg state. (d) The level scheme of the multiqubit target register for the CV1HE gate. The state |1HE(ψ )〉 is
a one-hot encoding state where the atoms not in the |0〉 state occupy the single-qubit state |ψ〉. Here, the pairs of hyperfine states in (b) and
(c) are replaced by the multiqubit states |0〉⊗na and |1HE(R)〉.

conclude this general discussion of error-robust imple-
mentations of QSP protocols, we remind the reader that
implementing controlled unitaries with small ηε on any plat-
form will lead the way to the realization of error-robust
protocols.

V. RYDBERG ATOM GATES

In this section, we introduce the building blocks for error-
robust implementation of QSP protocols on the Rydberg atom
platform. We briefly review the relevant atomic level dia-
grams and discuss the associated dipolar interactions and
decoherence mechanisms in Sec. V A. The implementation of
single-qubit rotations is discussed in Sec. V B.

In Secs. V C and V D, we introduce two multiqubit gates
that utilize the Rydberg blockade mechanism. Each multiqubit
gate serves a different function in the error-robust implemen-
tation of the LCU-based block-encoding unitary. In Sec. V C,
we introduce a single-qubit controlled Pauli operation based
on electromagnetically induced transparency (EIT). We show
that in the parameter regime that is accessible to current
experiments, the error probability can be reduced by more
than a 100-fold when the control condition is not satisfied
(ηε < 1

200 ). The second multiqubit gate, which we refer to
as the one-hot encoding gate (see Sec. V D), allows us to
load the classically stored coefficient data {αi} efficiently to
orthogonal ancillary address states. The one-hot encoding gate
and its single-qubit controlled version are the building blocks
of the state preparation unitary V in the LCU protocol [see
Eq. (12)]. Surprisingly, when the Rydberg blockade radius is
larger than the system size, the one-hot encoding gate can be
implemented in constant time and with constant error prob-
ability. Moreover, our simulations for the controlled one-hot
encoding gate with two-target qubits show that ηε < 1

150 is
achievable. For both gates introduced here, we comment on
how the error characteristics will change as we increase the
number of target qubits, when appropriate.

However, because ηε can in principle be reduced, we
continue the discussion of error-robust implementations in
Secs. VI and VII assuming that Condition 1 is perfectly sat-

isfied. Moreover, we introduce what we call an error bounded
gate count (EBGC), which codifies the error characteristics of
the Rydberg atom gates under simplifying assumptions such
that we can evaluate the error robustness of a protocol without
referring to the exact lifetimes of different atomic states. To
this end, EBGC expresses the associated error probabilities
as simple fractions of the maximum error probability of a
single CNOT (controlled NOT) gate. EBGC allows us to clearly
demonstrate the error robustness of the proposed implementa-
tion of QSP protocols, in a similar fashion as in Sec. II E.

Using the EBGC, we construct a concrete error-robust
implementation of the QSP iterate in Sec. VI. In Sec. VII,
we benchmark the input-conditional error probability for
a Rydberg atom implementation QSP-based Hamiltonian
simulation algorithm against that of two state-of-the-art
Hamiltonian simulation algorithms [49,50]. There, we also
relax the assumptions of the EBGC and discuss the prospect
of realizing the proposed Hamiltonian simulation algorithm
on near-term devices.

A. Rydberg interactions, level diagrams,
and single-qubit rotations

The four level diagrams that are relevant to our imple-
mentation are shown in Fig. 2. The diagrams consist of three
types of states. Although these diagrams greatly simplify the
experimental reality, the three types of states provide sufficient
correspondence between our work and the experimental setup.
First, we have three long-lived hyperfine states |0〉, |1〉, and
|r〉. The states |0〉, |1〉 span the logical subspace of each atom,
and |r〉 is a long-lived auxiliary state. Second, we have a short-
lived intermediate state |P〉 that is useful for implementing
rotations between hyperfine states as well as those between the
hyperfine and Rydberg states. Lastly, we utilize high-energy
Rydberg states |R〉 and |Rp〉, which have shorter lifetimes than
the hyperfine states. In addition, the Rydberg states evolve
under an interacting Hamiltonian

HR =
∑

i j

Ji j |RiRj〉〈RiRj |, (23)
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where |RiRj〉 ≡ |Ri〉 ⊗ |Rj〉 describes the state in which the
ith and jth atoms located at positions ri and r j simultaneously
occupy the Rydberg state. The interaction strength has the
form Ji j ∝ 1

|ri−r j |ν with ν ∈ N, although it is often convenient
to model the spatial dependence as a step function which takes
the finite value J when |ri − r j | < Rb and vanishes otherwise.
Here, the distance Rb will be referred to as the “blockade ra-
dius.” We will use both descriptions of the dipolar interactions
depending on the context.

Let us now turn to the characteristic values describing
the strength and range of dipolar interactions as well as the
strength of main decoherence processes. For our constructions
in Sec. V, we need both short- and long-range dipolar interac-
tions. While the long-range dipolar interactions between the
Rydberg states are useful for the one-hot amplitude encod-
ing gate that we discuss in Sec. V D, the possibility using
short-range interactions plays an important role in implement-
ing a parallelized version of the controlled Pauli operators
required for Ū . Fortunately, the required characteristics can
be in principle realized with the current experimental setups
[8,51,81,82]. The two main factors which affect the range of
dipolar interaction between Rydberg atoms are (i) whether the
dipolar interactions are of long-ranged resonant dipole-dipole
type (ν = 3) or of short-ranged van der Waals type (ν = 6)
and (ii) the dipole moments associated with different Rydberg
states [8,51,81]. The short-range van der Waals type interac-
tions can reach up to 30 MHz at a distance of � 6 µm [48]. On
the other hand, the resonant dipolar interactions can be much
stronger at long distances compared to the van der Waals
potentials. The resonant dipolar interactions can be utilized by
applying an additional DC electric field on the Rydberg atoms,
which can result in an interaction strength of 1 MHz at a dis-
tance of 30µm [51,83,84]. The long-range interactions come at
the price of an anisotropic interaction strength that depends on
the angle between the interatomic axis and the electric field.
However, when the atoms are in a two-dimensional plane that
is orthogonal to the direction of the external electric field, the
interactions are effectively isotropic.

Next, we give a brief discussion of the decoherence mech-
anisms which determine the lifetime of the different energy
levels of the neutral atoms. In our work, we focus only
on alkaline-earth atoms. In these systems, the logical qubit
degrees of freedom are encoded in hyperfine states, whose
coherence times of these states can exceed 10 s [85–87].
The main decoherence mechanisms involve collisions with
the background atoms, light scattering, and fluctuations in
external control fields, as well as the magnetic noise, intensity
noise in optical traps, and motion of the atoms within the
trapping potential [6,88]. However, because the lifetime of the
hyperfine states is much longer than all other states used in
our protocols, we neglect the decoherence mechanisms that
affect the hyperfine states to a large extent. We comment on
the constraints due to the finite lifetime of the hyperfine states
for Hamiltonian simulation in Sec. VII.

On the other hand, the intermediate and Rydberg states that
enable quantum information processing with Rydberg atoms
have drastically different coherence properties compared to
those of the low-energy hyperfine states. As discussed in
Sec. II E, this separation of the decoherence rates is what
motivates us to study gate-induced errors. For alkali atoms,

Rydberg state lifetimes exceeding 250 μs were reported in
Ref. [89]. The main mechanisms for a finite lifetime are
spontaneous emission which causes transitions to states with
lower principal numbers and black-body radiation which
causes transitions to nearby Rydberg states. Black-body ra-
diation events have received considerable attention because
they can result in correlated errors that are challenging for
any fault-tolerant platform [32]: the final state of the atom
upon interacting with the ambient thermal radiation is a dark
Rydberg state, which continues to influence its neighbors
through strong dipolar interactions. However, the subaddi-
tivity property of the input-conditional error probability in
Eq. (8) implies that the effect of correlated errors such as
those results from BBR do not increase with time. Hence, for
the following calculations of the error probability, we use the
aggregate decay rate given by the experimentally accessible
lifetimes of the Rydberg states. We also note that the processes
due to black-body radiation can be slowed down substantially
by cooling the atoms down to μK temperatures [51]. Finally,
the errors due to decoherence mechanisms affecting the in-
termediate state |P〉 result in typical lifetimes of the order
of about 100 ns [48], which is primarily a result of radiative
decay processes.

In the following discussion, we assume that technical er-
rors due to laser phase and amplitude fluctuations and those
due to the finite-temperature atomic motion and the associ-
ated Doppler shift can all be eliminated by improved laser
systems and sideband cooling of the atomic motion [81,90–
93]. However, as discussed further below, we expect that, in
general, such technical errors will result in a smaller error-bias
parameter ηε , while increasing the overall error rate [e.g.,
ε0 in Eq. (22)]. The reason for this expectation is that the
neutral atom system is more susceptible to technical errors
when the atoms interact with the laser fields that control them.
However, the dynamics that we discuss below are designed to
reduce the interaction between the control fields and the atoms
when the control condition is not satisfied. We also assume
that whenever needed, the undesired interactions between the
target atoms can be substantially smaller than that between
the control and target atoms, using the techniques introduced
in Ref. [94], although for certain applications the desired
effect can be achieved solely through a suitable geometric
arrangement of the atoms.

B. Single-qubit rotations

For the implementation of single-qubit rotations, we
choose to use |P〉 as the intermediate state [see Fig. 2(a)].
Specifically, we can drive transitions between the logical
states |0〉 and |1〉 using a Raman scheme which virtually ex-
cites the short-lived intermediate state |P〉 [95]. As described
in Sec. II E, the probability of incoherent errors due to the
short lifetime of the intermediate state can be upper bounded
using the duration of the gate as well as the maximum occu-
pation probability of the |P〉 state.

C. EIT-based single-control multitarget unitary
on the Rydberg platform

In Sec. IV C, we determined that error-robust implemen-
tations of QSP protocols can be realized using error-biased
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FIG. 3. The pulse sequences for implementing the three conditional unitaries that are used to implement the algorithms in the QSP
framework. The strengths of each laser pulse are given in Fig. 2. (a) The pulse sequence for the conventional two-qubit conditional gate
(CNOT) on the Rydberg atom platform implemented via the blockade mechanism. Notice that there is substantial error probability both when
the control condition is satisfied and violated. (b) Implementation of the EIT-based blockade gate which results in an error model that is
strongly biased on the state of the control atom. Notice that the control laser on the target register is always on, and hence does not have a
number associated with it. (c) The laser pulse sequence for implementing the conditional excitation to the Rydberg state, denoted CX (R) in the
main text.

multiqubit controlled Pauli operations which accumulate er-
rors only when the control condition is satisfied.

Here, we describe the concrete protocol for error-biased
single-qubit controlled Pauli operations. In Sec. V C, we de-
scribe how these single-qubit controlled unitaries can be used
for an error-robust implementation of Ū . We also briefly
introduce a conventional multiqubit controlled gate imple-
mentation, that, despite not exhibiting strong error bias, is
useful for the error-robust implementation of the reflection
operation I − 2�0.

The gate we consider was first proposed in Ref. [60],
as a solution to realizing multitarget controlled gates where
the gate fidelity is minimally affected by the undesired or
residual dipolar interactions between the target qubits. In
this context, the advantage of the proposed implementation
is that it drastically reduces the excitation of atoms to the
Rydberg state during the protocol, independently of whether
the control condition is satisfied or not. This is in contrast to
the conventional two-qubit gates using the Rydberg blockade
[3,21,48], where the Rydberg state of the target atom is occu-
pied with near unity probability when the control condition is
satisfied.

Here, we argue that the single-qubit controlled Pauli op-
eration of Ref. [60] has an additional and underappreciated
feature that is a crucial resource for implementing error-robust
protocols. Specifically, the EIT-based gate results in a large
bias between the error probabilities conditional on the state
of the control qubit. Moreover, the ratio ηε between the error
probabilities when the control condition is not over is satisfied
can be changed using the relative ratio of the two laser intensi-
ties used for the implementation. Below, we demonstrate this
claim using both analytical and numerical simulation results.
We show that using experimental parameters reported in the
literature, ηε < 1150 is achievable for a few tens of target
atoms.

Protocol. We start the discussion of the EIT-based block-
ade gates with the implementation of a CNOT gate [60]. The
scheme uses the level scheme in Figs. 2(a) and 2(b) for the
control and target qubits, respectively. The target qubit is
continuously driven by a control field �c during the three-step
protocol depicted in Fig. 3(b). In the first step, the control

atom is excited to a Rydberg state if it satisfies the control
condition (say |1c〉). Second, lasers inducing the two time-
dependent probe Rabi frequencies |�p(t )|eiθ1 and |�p(t )|eiθ2

are shone on for the target atom. Finally, the population
in the Rydberg state of the control atom is deexcited to
the |1c〉.

The frequencies of the control and probe laser ampli-
tudes are such that the excitation to the Rydberg state is
two-photon resonant. In the following, we denote the de-
tuning between the hyperfine and intermediate states as �,
and define the radiative decay rates γR and γP of the states
|R〉 and |P〉, respectively. We also consider an experiment
satisfying a set of inequalities that define the perturbative
regime

J>
|�c|2
4�

� �max
p � {γR, γP},

where we have �max
p ≡ maxt |�p(t )|.

The second step of the protocol separates the EIT-based
protocol from its conventional counterparts [3,21]. Two sce-
narios are relevant for the evolution during the second step
(see Appendix B for detailed derivations):

(1) If the control atom is not in the Rydberg state, then
both logical states of the target atom evolve adiabatically in a
subspace spanned by

|ψd〉 = 1√
1 − x2

(|ψl〉 + x|R〉),

∣∣ψ̃d
〉 = 1√

2

(|0〉 − ei(θ1−θ2 )|1〉),
and eventually, return back to the initial state [60]. In the
above expression, we defined x ≡ |√2�p/�c| as a time-
dependent dimensionless quantity. The logical state |ψl〉 =

1√
2
(|0〉 + ei(θ1−θ2 )|1〉) is orthogonal to |ψ̃d〉. Most importantly,

neither |ψd〉 nor |ψ̃d〉 have a contribution from the short-lived
intermediate state |Pt 〉. Hence, the errors due to the occupation
of the short-lived |Pt 〉 state are eliminated as long as the EIT
condition is satisfied.

(2) If, on the other hand, the control condition is satisfied
and the control atom is excited to its Rydberg state, then
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the EIT condition is strongly violated. As a result, and the
transitions between the two logical states |0t 〉 and |1t 〉 are
mediated by the virtual excitation of the short-lived state |Pt 〉,
introducing errors due to the fast decay rate γP. Moreover,
because the control atom occupies the |R〉 state during the
evolution, the overall error probability is further increased.

Consequently, the error-biased feature of the EIT-based
Rydberg gate can be simply understood as a result of three
factors when the control condition is not satisfied (i.e., the
control atom is in initially in the |0c〉 state): (i) the control
atom is never excited to a short-lived Rydberg state, (ii) the
|Pt 〉 population is eliminated, and (iii) the occupation of the
Rydberg state |Rt 〉 can be reduced through the parameter
x2 
 1. Hence, we expect ηε ∝ x2. As indicated in Sec. V A,
ηε will decrease when we take into account the technical
errors that are relevant when the |P〉 and |R〉 states of the
target atoms are occupied. Indeed, the recent realization of the
EIT-based CNOT gate in Ref. [96] demonstrated the presence
of an error bias of η−1

ε ≈ 1.5 even when the technical errors
resulted in an overall gate fidelity of 0.55. While a detailed
analysis of the error processes relevant for this particular
experimental realization is out of the scope of our work, we
suspect that both the overall error probability as well as η−1

ε

can be drastically increased by improving the quality of the
laser drives and increasing �p and �c. Next, we support the
above claims using analytical estimations as well as numerical
calculations of the error probability defined in Sec. V E.

Analytic estimates of input conditional error probabilities.
Let us first briefly discuss the results of a perturbative analysis
of the dissipative evolution that results in the single-qubit
controlled Pauli operations. Detailed derivations and analysis
of the model that we used here can be found in Appendix B.
Here, we focus solely on the errors that occur during the
second step of the implementation.

The error probability when the control condition is not
satisfied is given by the population of the target Rydberg state

εinc
v ≈ τgγ̃Rx2, (24)

where τg is the duration of the gate, which is determined by
the effective Rabi frequency �̃ ∝ 1

τg
of the transition between

|0t 〉 and |1t 〉, given by

�̃ ≈ |�max
p |2

2�

(
1 + |�c|2

4�J

)
, (25)

in the case of � > 0. We emphasize that here the decay rate
γ̃R includes radiative decay processes including BBR-induced
transitions, as well as other technical error mechanisms that
become relevant when the target atom occupies the Rydberg
state. In Appendix B, we consider the error probability due
to the fluctuations in the energy of the target Rydberg states,
which can be caused by fluctuations in the frequency of the
control laser, or due to the dipolar interactions between the
target qubits. We find that given a maximum energy shift δE ,
the error probability scales with τgδEx2, and hence can be
included into γ̃R. On the other hand, when the energy shift
is caused by the dipolar interactions of strength Jtt between
neighboring target atoms in their Rydberg states, then the error
scales as τgJttx4. The diabatic corrections associated with the
probe pulse, which are proportional to x6 and are neglected in

the following discussion (see Ref. [60] and Appendix B for a
more detailed discussion).

On the other hand, when the control condition is satisfied,
there are multiple contributions to the error probability due to
incoherent processes

εinc
s ≈ τg

[(
�max

p

�

)2
γP

2
+ γ̃R +

( |�c|2
4�J

)2

x2γ̃R

]
, (26)

where the first term in the brackets is the radiative decay
probability from the intermediate state |P〉 of the target atom,
which can be approximated as ∼γP/�. The second and the
third terms in the brackets correspond to the errors due to
the occupation of the Rydberg state of the control and the
target atoms, respectively. Our numerical results, which use
experimentally relevant parameters, show that out of the three
contributions above, the error due to the decay processes af-
fecting the Rydberg state of the control atom is dominant.

Numerical demonstration of the error bias using realistic
parameters. We numerically verify the biased error character-
istic of the EIT-based single-qubit controlled Pauli operation
using realistic values for the relevant lifetimes and dipolar
interaction strengths. To determine the maximum suppres-
sion of errors, we use the reported values for the lifetimes
τR = 146 μs for the Rydberg state |n = 70, J = 1

2 , mj = − 1
2 〉

and τP = 115 ns for the intermediate state |n = 6 P3/2, F =
3, m = −3〉 [12].

We consider a simple scenario for implementing the single-
qubit controlled Pauli operation on multiple target atoms,
where �c, �, and �max

p are kept spatially constant, although
the width of the pulse profile �p(t )/�max

p can be spatially
dependent. We determine the maximum error εs and the error
bias ηε as we increase J � Jmin. Thus, it is conceivable that the
numbers reported here can be further improved by allowing
spatial variations in �c, �, and �max

p . However, such spatial
control may prove challenging when the spacing between the
atoms is small.

We pick the minimal dipolar interaction strength to be
Jmin/2π = 20 MHz, which in turn determines the largest dis-
tance between the control and the target qubits. In particular, it
is possible to achieve such interaction strengths at distances of
about 7–8 µm using resonant dipolar interactions and Rydberg
states with principal quantum numbers <100 [51,83].

Let us briefly discuss the choice of the other free param-
eters �c, �max

p , and �. The parameter �c/2π = 120 MHz is
chosen as large as possible without requiring drastic improve-
ments in the lasers conventionally used in the experiments.
Given �c, we choose �max

p /2π = 20 MHz. While the rough
discussion above suggests that this choice would only re-
sult in ηε = 1

18 , we find that ηε can be up to an order of
magnitude larger (see Fig. 4). The main reason for such an
increase in the error-bias parameter ηε is that when the control
condition is satisfied, the control atom occupies the Rydberg
state throughout the second step of the EIT-based gate, while
the target atom is driven with an adiabatic pulse of strength
�p(t ). Because the control atom should be in the Rydberg
state during the duration of the adiabatic pulse, the errors
due to the Rydberg occupation of the control atom domi-
nate. More specifically, in our simulations, we use a Gaussian
envelope of width σ = 2

√
π�/�̃2, and pick τg = 7σ in
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FIG. 4. The dependence of the total error-bias parameter ηε (in
green) and the error probability εs when the control condition is
satisfied (in blue) as a function of the dipolar interaction strength.
The detuning � is chosen to keep errors due to the fluctuations �J
in the strength of the dipolar interactions between the control and
the target atoms below 0.1% at a distance of 8 µm. We also depict
the ratio of the errors due only due to the occupation of the control
and target Rydberg states in black. The pulse length is adjusted for
each J according to Eq. (25). The remaining system parameters are
�/2π = 300 MHz, �c/2π = 120 MHz, and �max

p /2π = 20 MHz.

order to avoid the coherent errors in the rotation angle of the
target qubit.

Finally, the detuning � is set such that the dipolar inter-
action strength J > |�c|2/4� ≡ �EAC, where �EAC is the
AC Stark shift caused by the strong drive amplitude �c.
Intuitively, it is desirable to operate in the regime J � EAC,
such that we are in the blockade regime and the Rydberg state
becomes irrelevant to the evolution of the system when the
control condition is satisfied. We observe this trend in Fig. 4,
where as J increases, the dependence of both ηε and εs on J
decreases. On the other hand, as J approaches EAC, we see that
the EIT-based gate performs better. In particular, in the regime
J � EAC ηε increases and εs decreases. The reason for this
improvement is the increase in the effective Rabi frequency �̃

indicated by Eq. (25), given both � and J have the same sign.
Yet, the apparently improved performance of the EIT-based

gate comes at an important cost. Specifically, in the regime
J � EAC the effective Rabi frequency �̃ becomes dependent
on the strength J of the dipolar interactions. Consequently,
fluctuations �J in the dipolar interaction strength can po-
tentially be detrimental to the gate fidelity. However, recent
experiments have demonstrated that the main source of such
fluctuations can be drastically reduced. Specifically, Ref. [93]
has shown that positional uncertainties �R of about 10 nm are
achievable on a scalable platform by combining large aperture
lenses for the optical tweezer array with Raman sideband
cooling [91,92]. For dipolar interactions with J ∝ 1/Rα , an
uncertainty �R in the distance translates to �J/J = α�R/R,
implying that the effect of �J can be drastically reduced. We
emphasize that the fluctuations �J would likely increase the
bias parameter ηε because they result in errors only when the
control condition is satisfied. For the data presented in Fig. 4
we use �/2π = 300 MHz, which ensures that the maximum

fluctuations in �̃ obey ��̃

�̃
< 0.5% for �R = 10 nm and

R = 8 µm.
Generalization to multiple target and control qubits. The

multitarget generalization of the EIT-based controlled unitary
is obtained by simply increasing the number of target qubits
within the blockade radius of the control qubit. Although in
this scenario the interactions between the target atoms may
result in additional errors of the gate, such errors are reduced
dramatically because the probability that two target atoms
simultaneously occupy the Rydberg state is proportional to
x4 [60]. Hence, given that the target atoms are tightly packed
with an interatomic distance of 3 µm [93], we envision that our
calculations are relevant for up to 30 target atoms, assuming
that additional dressing techniques [94] can be used to ensure
that the interactions between the target atoms become negli-
gible compared to the interactions between the single-control
atom and the target atoms. That said, for many applications
of the QSP, and especially for the implementation of k-local
Hamiltonian simulation where k is a small number, the num-
ber of target atoms is small. For instance, considering only
2-local terms, we could place the target atoms at a distance
of 16 µm while keeping the target-to-control distance of 8µm.
Together with the fact that the double-occupation probability
scales with x4, the errors due to the van der Waals interactions
between the target atoms become negligible. In these applica-
tions, it may be more advantageous to simply transport a small
number of target atoms in the close vicinity of the target atom
and back [29].

In the proposed error-robust implementations of W , es-
pecially for the implementation of the reflection operator
I − 2�0, we also use multicontrol single-target unitaries,
whose error characteristics have been extensively studied in
Refs. [5,97]. Consider the case where the multibit control
condition is given as the all-zeros state and the desired op-
eration on the single target qubit is a NOT gate. To implement
this unitary, we first simultaneously excite each control qubit
in the |1〉 state to the Rydberg state. In the second step,
we apply a NOT gate on the target atom following the pulse
sequence in Fig. 3. When the control condition is satisfied,
none of the control atoms are excited to the Rydberg man-
ifold, and the NOT operation is applied. On the other hand,
if the control condition is not satisfied, the target atom goes
through a trivial evolution. Unlike the EIT-based single-qubit
controlled unitary, the multiqubit controlled unitary results in
a Rydberg excitation in either the control or the target register
independently of the control condition. Yet, the EBGC of
the protocol still depends crucially on the state |ψc〉 of the
control qubits. In particular, when the control condition is
the all-zeros state, the number of Rydberg excitations in the
control register is the average number of control qubits in
the |1〉 state. When multiple control qubits are excited to the
Rydberg state, the residual interactions between the control
qubits may result in further errors. However, we emphasize
that unlike earlier studies of multiqubit controlled-NOT gates
on the Rydberg atom platform [5,97], we apply multiqubit
controlled unitaries only in situations where the control reg-
ister has only a constant number of qubits in the |1〉 state (see
Sec. VI B). Better still, such residual interactions between the
control qubits can be eliminated using additional microwave
pulses [94].
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D. One-hot amplitude encoding gate

In the following, we introduce the one-hot amplitude en-
coding gate V1HE, which is at the core of the state preparation
unitary of the LCU protocol described in Sec. IV. V1HE

can be thought of as a generalization of the single-qubit
gate where long-range Rydberg interactions constrain the
many-body Hilbert space relevant for the evolution to a two-
dimensional subspace. Such constrained dynamics emerging
from the long-range dipolar interactions has been an important
focus in the literature [3,5,21,98]. For our discussion, the most
important similarity between the single-qubit gate and the
one-hot encoding gate is that they can both be used to store
classical information that is encoded in the duration t0 and the
amplitude � of the laser drive in quantum-mechanical degrees
of freedom. More specifically, the single-qubit rotation loads a
single amplitude α ≡ arcsin (�t ) on a single qubit. Similarly,
the one-hot amplitude encoding gate V1HE is a way of loading
M amplitudes {αi} where αi ∝ �i into M qubits in constant
time. Because our scheme encodes each {αi} as amplitudes of
a computational basis states with only one excitation (i.e., one
qubit in the |1〉 state), we refer to it as the one-hot amplitude-
encoding gate. From a physical point of view, the V1HE gate
loads the information encoded in the relative local intensity of
the laser field into orthogonal computational basis states of a
quantum register.

To better understand how V1HE can be implemented, con-
sider M closely spaced atoms such that the energy of the
Rydberg state of each atom is shifted by at least J due to the
presence of the other atoms occupying their Rydberg state. If
we then drive this system using M lasers whose frequency is
resonant with the |0〉 ↔ |R〉 transition and whose amplitudes
{�0αi} satisfy (�0/J )2 
 1, the dynamics of the system re-
sults in a nontrivial transformation of only a two-dimensional
subspace spanned by

|0〉⊗M and
∑

i

αi|1HE(R), i〉 ≡ |1HE(R)〉,

where
∑

i |αi|2 = 1 and we omit the {αi} the definition for
simplicity. Here we define the one-hot encoding basis states
|1HE(R), i〉 ≡ |0 . . . 0Ri0 . . . 0〉, each of which has only one
Rydberg excitation. Under these conditions, it is convenient
to project the drive Hamiltonian Hd = ∑M

i=1 �0αiσ
+ + H.c.

onto subspace given above, and work with the effective
Hamiltonian

H̄ ≡ P1Hd P1 = �0

( M∑
i=1

αi|1HE(R), i〉
)

〈0⊗M | + H.c., (27)

which is analogous to a Pauli operator in the constrained
Hilbert space (notice H̄2 = 1). A schematic for the implemen-
tation of V1HE is given in Fig. 5.

Given the initial state |0〉⊗M , evolving the system under
H̄ for time t∗ = π

|�0| prepares the following one-hot encoding
state:

U0R|0〉⊗M = e−it∗H̄ |0〉⊗M

=
M∑

i=1

αi|1HE(R), i〉 ≡ |1HE(R)〉. (28)

FIG. 5. (a) The experimental scheme for implementing V1HE. All
atoms are within each other’s blockade radii. The spatial dependence
of the drive amplitude is utilized to encode complex-valued classi-
cal data stored in the laser amplitudes �i ≡ �(xi ) into a quantum
register. (b) The relevant level diagram of M Rydberg atoms for the
configuration in (a). The one-hot encoding computational basis states
|1HE(R), i〉 have a single Rydberg excitation on the ith atom.

Notice that when each atom is driven by an independent
laser of fixed amplitude, the time to implement U0R scales
as O(1/

√
M ) due to collective enhancement [21]. Yet, for

our constructions, the run time of the one-hot encoding gate
remains constant if we require that V1HE maps the states in
the long-lived logical subspace back to the same subspace.
This requirement can be fulfilled by simply conjugating U1R

by a π pulse between the |1〉 and |R〉 states of each atom, as
implemented by the following evolution operator:

UσR = exp

(
it∗

1

M∑
i=1

(�1|Ri〉〈σi| + H.c.)

)
, (29)

where σ = {1, r} and t∗
1 = | π

2�1
|. Notice that, unlike t∗, the

time t∗
1 to implement UσR does not take advantage of the col-

lective enhancement resulting from the blockade interaction.
As a result, the time to implement V1HE is constant, assuming
that the blockade radius is larger than the system size.

The action of the resulting unitary on the logical subspace
can be clearly expressed as

V1HE ≡ U1RU0RU †
1R ≈ i(|1HE〉〈0|⊗M + H.c.) + ��=1HE,0,

where |1HE〉 ≡ ∑
i αi|1HE, i〉 and |1HE, i〉 denotes the bit

string where all qubits except the ith qubit are in the |0〉 state
and the ith qubit is in |1〉 state. ��=1HE,0 = I − |1HE〉〈1HE| −
|0〉〈0|⊗M is the orthogonal projector whose kernel is spanned
by |0〉⊗M and |1HE〉. Crucially, assuming perfect blockade,
V1HE results in a trivial evolution of all states other than |0〉⊗M

and |1HE〉.
Here we do not give a detailed discussion of the errors for

implementing the V1HE gate, as this has been widely discussed
in the literature. Instead, we give a brief review of previous
results [21,99–101], and provide numerical simulations only
for the controlled version of V1HE. Because we have at most
one atom in the Rydberg state during the implementation of
V1HE, the errors due to the radiative decay mechanism are the
same as those associated with a single-qubit gate where the
initial |0〉 state is completely transferred to the |1〉 state [100].
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On the other hand, the nonadiabatic errors resulting from the
finite value of the strength J of dipolar interactions grow as
O[(�0/J )2] [21,99], which only contributes a constant error
probability because O(�0) = O(1), as explained in the previ-
ous paragraph. Finally, we emphasize that because we are in
the blockade regime, the fluctuations in the dipolar interaction
strength between atoms do not have a strong influence on
the error probability. Reference [101] experimentally demon-
strated the preparation of a symmetric one-hot encoding state
consisting of up to about 100 atoms (also referred to as the
W state or the one-excitation Dicke state). Although the use
of one-hot encoding states for computation requires higher
fidelities than reported in these works, recent progress in the
control of Rydberg atoms [29,93] gives us confidence that
the methods described here will be applicable in near-term
quantum systems consisting of trapped neutral atoms.

1. Utilizing k-hot amplitude encoding states
through CV1HE gates

As discussed in Sec. V, achieving an error-robust imple-
mentation of QSP requires the preparation of address states
which are superpositions of products of one-hot bit strings.
In Sec. VI A we describe error-robust preparation of such
states using error-biased single-qubit controlled-V1HE (de-
noted CV1HE). Here, we provide the details of implementing a
single CV1HE and report numerical evidence of its biased-error
characteristics.

Unlike the situation with the tensor products of Pauli op-
erators, a controlled version of the V1HE gate is challenging
because V1HE utilizes interactions between the Rydberg states
amongst all atoms. Thus, we need to introduce a mechanism
to implement CV1HE. Our strategy is to use the interactions
between the target atoms to our advantage. To implement a
controlled version of V1HE, we consider a situation where the
target atoms are all in each other’s blockade radius. Moreover,
we utilize two types of Rydberg states: (i) the Rydberg state
|R〉 utilized in the implementation of V1HE in Sec. V D and (ii)
an additional Rydberg state |Rp〉 which is utilized to imple-
ment the EIT-based controlled version of V1HE. Importantly,
the angular momentum quantum numbers of |R〉 and |Rp〉
are different, such that the two states experience different en-
ergy shifts resulting from dipolar interactions with the control
atom. This allows the Rydberg population of a control atom
to disturb the two-photon resonance condition on the target
atoms without blocking the preparation of the |1HE(R)〉 state.

The implementation of the CV1HE gate, the dynamics of
the target register can be described by a five-level system
depicted in Fig. 2. There, the states |1HE(η)〉 denote one-
hot amplitude encoding states with the excited state in the
|η〉 ∈ {|1〉, |R〉, |P〉, |Rp〉}. The gate protocol based on an EIT
scheme is similar to the one discussed in Sec. V C, where
|0〉⊗nt and |1HE(R)〉 replace the two hyperfine states in the
implementation of the EIT-based controlled Pauli gate, and the
intermediate state of the EIT scheme is the one-hot encoding
state |1HE(P)〉. Finally, the state which controls whether the
EIT condition is satisfied is |1HE(Rp )〉. In short, the CV1HE

is implemented as a transition between |0〉⊗nt and |1HE(R)〉
controlled by the energy shift of |1HE(Rp )〉.

Numerical simulations with two target atoms indicate that
the CV1HE gate behaves identically to the EIT-based single-
qubit controlled Pauli operation when as long as the collective
Rabi frequency between the |0〉⊗nt and |1HE(R)〉 state remains
much slower than the interaction strength between the tar-
get atoms. Taking the interaction strength between the target
Rydberg states equal to that between the target and control
Rydberg states (i.e., Jct = Jtt = 2π × 30 MHz), we find that
the CV1HE can be implemented with the same values of �c

and � for each target atom, if we reduce �p ← �p/21/4. The
recalibration of the probe amplitude is necessary because of
the ×√

2 collective enhancement of the two-photon transition
between the initial |00〉 to 1√

2
(|0R〉 + |R0〉) in the target regis-

ter. The resulting error-bias parameter ηε ≈ 1
156 is larger than

that of the controlled Pauli gate discussed in Sec. V C, because
of the larger overlap between the initial state |00〉 and the
bright state 1√

3
(
√

2|00〉 + 1√
2
(|0R〉 + |R0〉)) when the probe

field �p is turned off. The error probability when the control
condition is satisfied εs = 0.85% is slightly larger than that
of the single-qubit controlled Pauli operation because of the
nonzero decay rate of the Rydberg states |R〉. We expect that
ηε to grow as we increase the number of target qubits because
of the overlap between the initial state |00〉 and the bright
state. Yet, this will result in at most an error-bias parameter
twice as large in the limit of large nt . The most important
experimental challenge is to make sure that the |R〉 states in
the target register do not interact strongly with the Rydberg
state of the control atom, while |Rp〉 states do.

E. Error-bounded gate count for the Rydberg platform

In the following, we define the error-bounded gate count
(EBGC) as a convenient tool to quantify the error probability
associated with the implementations of complex circuits. In
particular, EBGC allows us to determine the growth of error
probability as a function of scaling variables nsite and N ,
without the need to numerically simulate large systems.

In particular, EBGC (denoted nU for a unitary operation U )
codifies each unitary discussed in the previous subsection by
assigning them an error probability that is a simple fraction of
the error probability of a single CNOT gate. Thus, as we detail
below, EBGC is inevitable based on an idealization of the
Rydberg atom gates proposed in this work. Still, together with
the subadditivity property of the input biased-error probability
(see Sec. II E), the EBGC allows us to count the total error
probability of a QSP protocol in units of the error probability
associated with a single CNOT gate. EBGC also assigns a depth
count (denoted dU for a unitary U ) to each implemented gate
in units of tstep, taken to be the time it takes to achieve a
complete state transfer between the hyperfine and Rydberg
manifolds.

Three factors determine the EBGC: (i) the rotation angle
of single-qubit rotations, (ii) the dimensionality of the local
Hilbert space of each Rydberg atom, and (iii) the dependence
of the error probability on the state of the control qubit. In
the following, we assign an EBGC to each gate discussed in
Sec. V based on these three factors.

Single-qubit gates. Our protocols use a continuous family
of gates, such as single-qubit rotations by an arbitrary angle.
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TABLE I. The EBGCs for the native gates of the Rydberg system that are discussed in Sec. V. All gate counts are normalized by the
maximum error probability of a single CNOT gate. The input state of the control and target registers are |ψc〉 and |ψt 〉, respectively, and θ is the
single-qubit rotation angle. Most importantly, the cost of single-qubit-controlled unitaries depends on the probability that the control condition
is satisfied.

Rθ V1HE CX R
1 . . . X R

k CV1HE CU1 . . .Uk

EBGC |2θ/(3π )| 1 2/3|〈1c|ψc〉|2(1 + |〈1t |ψt 〉|2) 5/3 |〈1c|ψc〉|2 (2 + k)/3|〈1c|ψc〉|2
Depth |2θ/π | 2 4 5 3

Consider the single-qubit rotation

Rθ |0〉 ≡ cos (θ )|0〉 + sin (θ )|1〉, (30)

the error associated with implementation of Rθ on the Rydberg
atom platform is proportional to |2θ/π |. More precisely, we
assign an EBGC of | 2θ

3π
| to Rθ . Notice that this rule associates

1
3 error-bounded gates (in units of the error probability of a
CNOT gate) for each single-qubit Pauli operator. On the other
hand, the depth of the single-qubit unitary is 2θ/π , such that
a π/2 rotation has depth 1.

The error-robust protocols discussed in this work take ad-
vantage of the fact that each Rydberg atom has more than
two long-lived states. A local Hilbert space of more than
two dimensions entails that the experimentalist can choose
laser pulses which approximately act on a two-dimensional
subspace of the local Hilbert space. The EBGC assumes the
idealized scenario where this approximation, which is espe-
cially valid for weakly driven atomic systems, holds. Hence,
EBGC counts errors only when the atom is in a state with
a nonzero overlap with the subspace influenced by the laser
pulse. Consider as an example a laser pulse sequence imple-
menting the unitary that transfers an atom from the logical
hyperfine state |1〉 to the Rydberg state |R〉 (the level dia-
gram associated with each atom is discussed in more detail in
Sec. V A). Given the initial state |ψ〉 =

√
1 − |α|2|0〉 + α|1〉,

the unitary has an EBGC of 1/3|α|2 error-bounded gates.
Controlled Pauli gates. The EBGC assignment of CPi is

assessed in accordance with a physical error model in the
limit that the error bias is perfect (i.e., ηε = 0). The error
probability is the sum of those associated with the control and
target registers. For the operation where the input control state
is |ψc〉 = α|1〉c +

√
1 − |α|2|0〉, then the associated EBGC

is |α|2.
The knowledge of the target register’s state can also

be used to reduce the EBGC of controlled unitaries. For
example, consider the implementation of a single-qubit con-
trolled unitary CX (R) which transfers the target atom from
|1〉 to |R〉 conditioned on the state of a control atom. Given
the input state |ψc〉 =

√
1 − |α|2|0c〉 + α|1c〉 and |ψt 〉 =√

1 − |β|2|0t 〉 + β|1t 〉, the EBGC of the controlled unitary is
2/3|α|2(1 + |β|2) for a single target qubit. The depth of the
implementation is 4 (see Fig. 3 for the pulse sequence).

Extending EBGC for single-control multitarget unitaries
of the form CU1 . . .Uk ≡ CPi is straightforward. In this case,
given |ψc〉 =

√
1 − |α|2|0c〉 + α|1c〉 and assuming no knowl-

edge of the state of the target register, the error introduced
into the target register is nCPi = 2+k

3 |α|2, where the first and
the second terms stand for the errors from the control and
target atoms, respectively. Finally, considering a multicontrol

single-target Pauli operation where the control condition is the
all-zeros state, and a control register whose input state has
on average k qubits in the |1〉 state, the associated EBGC is
1
3 (1 + k), assuming that the dipolar interactions between the
control atoms can be eliminated. The depth of the implemen-
tation is 3. We emphasize again that the multiqubit controlled
unitary is not necessary for implementation that is robust to
gate-induced errors, but it is helpful in reducing the depth
of the implementation. As before, the EBGCs are subject to
modification when the state of the target register is known.

V1HE. Using the construction of the V1HE in Sec. V D and
considering its action on only one-hot encoding states, the
EBGC assignment is 1. Given the EBGC for V1HE, the EBGC
of CV1HE given the control qubit in |ψc〉 =

√
1 − |α|2|0〉 +

α|1〉 is nV1EH = 5/3|α|2. The depth of the implementation is
5, including the two transfer unitaries in Eq. (30).

The gate counts are summarized in Table I, for a given in-
put state |ψc〉 of the control register and the control condition
|1c〉.

We conclude this section by emphasizing that the EBGC
not only assesses an experimental scenario but also guides us
to design algorithms with lower EBGC by taking full advan-
tage of the structure of the errors relevant for that experimental
scenario. More specifically, EBGC allows us to demonstrate
that the structure of the errors relevant to the proposed Ry-
dberg atom gates can be leveraged to design error-robust
implementations of quantum algorithms. EBGC is especially
convenient when the numerical simulation of multiqubit gates
becomes difficult.

VI. ERROR-ROBUST IMPLEMENTATION
OF QSP PROTOCOLS

In this section, we describe protocols for error-robust im-
plementations of LCU-based QSP iterates, using the Rydberg
atom gates described in Sec. V. In these implementations, the
ancillary register uses address states |xi〉 (see Sec. IV) that are
in the span of product states of k one-hot amplitude encoding
states. We refer to these as k-hot encoding states. The resulting
implementation of CW has an EBGC scaling as O(k) when the
block-encoded operator A is a linear combination of k-local
Pauli strings acting on nsite qubits. The size ancilla register, on
the other hand, grows only linearly with k.

In Sec. VI A, we present the k-hot encoding state prepa-
ration unitary based on CV1HE gates (see Sec. V D 1), which
efficiently prepares ancillary states for an error-robust im-
plementation of LCU-based block encoding. In Sec. VI B,
we discuss the implementation of Ū that complements the
state-preparation protocol in Sec. VI A. Finally, in Sec. VI B,
we calculate the EBGC for CW .
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FIG. 6. (a) The recursion relation for constructing the k-hot encoding state-preparation unitary. (b) The building block of the k-hot
amplitude encoding state-preparation unitary. At each step of the state preparation only single-qubit controlled one-hot encoding gates CV1HE

are used.

A. Implementation of state-preparation unitary V

We demonstrate that it is possible to implement k-hot en-
coding state-preparation unitaries with an EBGC that grows
logarithmically with the number of address states, using
only V1HE gates and their single-qubit-controlled counterpart
CV1HE.

As a first step, we describe a state-preparation protocol that
uses 2 ancilla registers a1 and a2 of size na1 and na2 , respec-
tively; and prepares the following 2-hot encoded state ( the
associated unitary is denoted as V2HE|0〉⊗na1 +na2 ≡ |�2HE〉):

|�2HE〉 =
na1∑
l=1

β
(1)
l |1HE, l〉 ⊗

( na2∑
i=1

β
(2;l )
i |1HE, i〉

)
, (31)

where βn;l
i is the coefficient of the state |1HE, i〉 of the nth

ancillary register an, conditioned on the (n − 1)st ancilla reg-
ister being in the state |1HE, l〉. The circuit that implements
V2HE is depicted in Fig. 6. We implement the state-preparation
unitary by first applying V1HE,a1 on the first ancilla register.
Then, for each l ∈ (1, . . . , na), we apply V (l )

1HE on the second
ancilla register conditional on the lth qubit in a1 being in
state |1〉 (we denote such an operation as C1;a1,lV

(l )
1HE;a2

). Here,

V (l )
1HE denotes the one-hot encoding unitary associated with the

set of probability amplitudes {β (2,l )
i } for i = (1, . . . , na2 ). The

state-preparation protocol requires ntot = na1 + na2 ancillary
qubits and has an EBGC of only

nV2HE = 1

3

(
3 + 5

na1∑
l=1

∣∣β (1)
l

∣∣2) = 8/3.

In the calculation of EBGC, the first term is the EBGC of the
V1HE,a1 , and the second term is that of na1 controlled one-hot
amplitude encoding unitaries. The depth of the protocol is 3 +
5na1 (see Sec. V E) for details.

In order to implement the single-qubit controlled version
of V2HE, we use the auxiliary hyperfine state |r〉 of each atom
(see Sec. IV C). In particular, our strategy is to transfer each
atom in a1 from |1〉 to |r〉 conditioned on the state of the exit
ancilla being in |0ex〉. Hence, if the exit ancilla is |0ex〉, the
control condition is not satisfied for all unitaries {C1;a1,lV

(l )
1HE;a2

}

that make up the state-preparation unitary. In order to avoid
the V1HE;a1 to cause any transitions from the all-zeros state
to a state with any qubit occupying the |1〉 state, we also
apply V1HE;a1 conditionally on the exit ancilla being in |1ex〉.
The controlled transfer operation is uncomputed at the end
of the protocol such that the resulting state is in the logical
subspace. Such an implementation of controlled V2HE results
in an EBGC less than

nCV2HE = nV2HE + 2/3 + 2 = 16/3,

where the additional 2
3 results from the controlled V1HE;a1

operation and the two controlled transfer operations result in
an additional EBGC of 2. The depth of the implementation is
11 + 5na1

The preparation of the 2-hot encoding state clearly ex-
hibits a space-time tradeoff, assuming that the blockade radius
remains larger than the size of the ancillary register. When
we prepare a state with N address components with na1 = 1,
the protocol takes constant time, but the number of ancillae
scales as O(N ). Increasing na1 by L results in a protocol
that takes O(L) time but the number of ancillae is O(N/L).
The space-time tradeoff can be made more advantageous for
smaller ancillary registers if we encode the addresses in kHE
states. In particular, the protocol for the preparation of the
2HE state above can be concatenated over k ancillary registers
(see Fig. 6), of size nj . The size of the ancillary address
register grows linearly with k, while the number of address
states grows as

∏k
j=1 n j . If we set n j = nsite for a system reg-

ister of size nsite, the concatenated protocol requires O(knsite )
ancillae O(nk−1

site ) time, and encodes O(nk
site ) amplitudes. More

importantly for the discussion of error robustness, the EBGC
of the state preparation of kHE states is

nVkHE = 1

3

[
3 + 5

nk−1∑
lk−1=1

∣∣β (k−1)
lk

∣∣2

×
(

5 +
nk−2∑

lk−2=1

∣∣β (k−2;lk−1 )
lk−2

∣∣2(5+ k−3 times. . . )

)]

= 3 + 5(k − 1)

3
= O(k), (32)
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FIG. 7. The circuit diagrams for implementing the unitaries: (a) Ū2HE and (b) ŪkHE. The ancillary registers are denoted as ai. In (a), the
conditional Pauli operations with the curly brackets indicate a parallelized application. The same building block is repeated na2 times to
complete the application of Ū2HE. In (b), we depict the concatenation of unitaries which results in the application of ŪkHE. Although the circuit
suggests that the atoms in al remain in the Rydberg manifold as we apply Ūl−1HE, the atoms occupying the Rydberg state should be deexcited
to the long-lived |r′〉 state, to achieve an error-robust implementation.

dVkHE = 3 + 5
k−1∏
j=1

naj , (33)

where the depth can be calculated by simply counting the
number of controlled V1HE unitaries.

The prepared state is a product of k one-hot encoding
states, each associated with a different ancillary register

|�kHE〉 =
n1∑

l1=1

n2∑
l2=1

· · ·
nk∑

lk=1

β
(1)
l1

β
(2;l1 )
l2

. . . β
(k;lk−1 )
lk

k⊗
j=1

|1HE, l j〉.

(34)

We emphasize that our protocol allows one to adjust the am-
plitude associated with each k-hot computational basis state,
for instance, by using a regression tree decomposition of the
sorted list of coefficients {αi} [102]. The controlled version of
VkHE can be implemented using the same strategy used in the
case of V2HE, and the total EBGC is

nCVkHE = (
2 + 5

3

)
k = O(k).

In the above expression, the first term is the EBGC for the
single-qubit controlled transfer operations (assuming that all
k target registers encode one-hot encoding states), and we
used Eq. (33) to obtain the total EBGC. The depth of the
implementation is dCVkHE = dVkHE + 2 ∗ 3 + 2.

B. Implementation of ŪkHE

When the control conditions are encoded in k-hot encoding
basis states, ŪkHE can be implemented as a sequence of k-qubit
controlled Pauli operations. Here, we give a protocol for an
error-robust implementation of ŪkHE using only error-biased
single-qubit controlled unitaries described in Sec. V C. The
implementation has an EBGC of only O(k) when the block-
encoded operator can be decomposed in terms of k-local Pauli
operators.

The unitary UkHE can be implemented as a series of single-
qubit controlled Pauli operations (see Fig. 7). When k = 2,
U2HE can be implemented by the following protocol. For each
ancillary qubit l in the first ancillary register a1, do the follow-
ing:

(1) Apply Ca1l X
(R)
a2,1

. . . X (R)
a2,nl

to excite the qubits in the sec-
ond ancilla register to the Rydberg state conditionally on the
state of the lth qubit in a1 being in state |1a1,l 〉.

(2) Apply {CR;a2,i P
(l )
i } (in parallel whenever possible).

(3) Apply Ca1,l X
(R)
a2,1

. . . X (R)
a2,nl

.

Assuming all Pauli operators P(l )
i can be implemented in

parallel, the implementation depth of the above protocol is
(2dCX (R) + 1)na1 = 9na1 . We note that the second step requires
depth 1 as the control register is already excited to the Rydberg
manifold. The EBGC is

nŪ2HE
= 1/3

L∑
l=1

∣∣β (1)
l

∣∣2{8 +
na2∑
i=1

[∣∣β (2;l )
i

∣∣2supp
(
P(l )

i

)]}

� 1

3
(8 + k), (35)

where supp(P(l )
i ) denotes the weight of the Pauli operator that

is loaded in the address |1HE, l〉 ⊗ |1HE, i〉. It is important to
emphasize that the EBGC of the two Ca1l X

(R)
a2,1

. . . X (R)
a2,nl

oper-
ations is only 2 × 4/3 (first term in curly brackets) because
both ancillary registers are in one-hot encoding states (see
Sec. V E). Moreover, notice that the probability that the con-
trol condition of any CR;a2,i P

l
i is satisfied is multiplied by the

probability that the control condition of the Ca1l X
(R)
a2,1

. . . X (R)
a2,nl

is satisfied. In order to obtain the last equality, we used the
assumption that the Pauli strings {Pl

i } are k-local. We empha-
size that the EBGC that does not scale with nsite or N , but
only depends on the maximum weight of the multi-qubit Pauli
operators in the decomposition of the block-encoded operator.
Note also how we take advantage of the Rydberg state to avoid
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introducing new ancillae in the implementation of a two-qubit
controlled unitary [39].

As in the case of the controlled version of the state-
preparation unitary, a single-qubit controlled version of Ū2HE

can be implemented by simply transferring the ancillary con-
trol atoms in the |1〉 state to an auxiliary |r〉 state conditionally
on the exit ancilla being in |0ex〉. Then, Condition 1 is satis-
fied because none of the control conditions of the controlled
unitaries that make up ŪkHE are satisfied.

The above scheme can be extended to the case of k one-hot
encoding ancillary registers [see Eq. (34)] using single-qubit
controlled operations. Then the EBGC is increased by an
additional factor of O(k). In Fig. 7(b), we depict the circuit
identity which recursively implements ŪkHE. Considering a
scheme where the atoms in their Rydberg states in the lth
register are transferred to an auxiliary |r′〉 state when they
are not needed, EBGC of ŪkHE conditioned on a kHE state,
denoted by nŪkHE

, is given by

1

3

nak∑
lk=1

∣∣β (k)
lk

∣∣2
⎛
⎝8 +

nak−1∑
lk−1=1

∣∣β (k−1;lk )
lk−1

∣∣2(8+ k−2 times· · · )

⎞
⎠

� 1

3
[8(k − 1) + k)] = O(k), (36)

where we again consider k-local Pauli operators. The depth of
the above implementation is 9

∏k−1
j−1 naj .

C. Controlled-W gates

The final piece we need to calculate the EBGC of the CW
operation is the single-qubit controlled version of the reflec-
tion operator I − 2�0. This operation can be implemented
by simply blocking the evolution of the phase ancilla con-
ditionally on the exit ancilla. This can be done by exciting
the exit ancilla to the Rydberg state before the application of
the I − 2�0 (as described in Sec. V C) and then deexciting
the exit ancilla. Hence, when we use kHE address states, the
controlled version of I − 2�0 has an EBGC of 2

3 + nI−2�0

where the first term is due to the excitation of the exit ancilla.
The depth of the implementations is 2 + 3 = 5.

Finally, we can calculate the EBGC of W and CW , using
the above implementation of its constituents. For W operation
where the block-encoded signal operator is a linear superpo-
sition of k-local Pauli operations, we simply add the EBGCs
for each ŪkHE, VkHE, and I − 2�0 over k one-hot encoding
ancillary register to obtain a total EBGC of

nW � 2nVkHE + n(I−2�0 ) + nŪkHE

= 2

3
(5k − 2) + 2 + k

3
+
(

3k − 8

3

)
= 20k − 10

3
, (37)

dW = 2dVkHE + d(I−2�0 ) + dŪkHE
= 11 + 19

k−1∏
j=1

naj . (38)

On the other hand, the single-qubit controlled W operation
can be implemented by (i) applying the controlled transfer
operations between |1〉 and |r〉 before and after the imple-
mentation of V †

kHEŪkHEVkHE, (ii) implementing a single-qubit
controlled version of V1HE acting on the kth register, and
(iii) implementing a single-qubit controlled version of the

reflection operation. Hence, the associated EBGC obeys the
following inequality:

nCW � nW + 2k + 2 ∗ 2

3
+ 2

3
= 22k − 4

3
, (39)

where on the right-hand side of the inequality, the second term
is the EBGC of the single-qubit controlled transfer operations,
the third term is the EBGC of two single-qubit controlled V1HE

gates, and the last term is the additional EBGC needed to
implement a single-qubit controlled I − 2�0. The depth of the
implementation is

dCW = dW + 2 ∗ dCX (R) + 2 ∗ 2 = dW + 10.

As a result, as long as the EBGC is valid, the total error proba-
bility for the proposed implementation of QSP protocols does
not scale with the number N of Pauli operations that make
up the block-encoded signal operator. Next, we calculate the
EBGC of Hamiltonian simulation using QSP and compare it
to the EBGC of Hamiltonian simulation implemented through
the product formula.

VII. IMPLEMENTATION OF OPTIMAL HAMILTONIAN
SIMULATION PROTOCOLS ON THE RYDBERG

ATOM PLATFORM

In the previous section, we demonstrated that the imple-
mentation of the algorithmic primitives of the QSP framework
in Rydberg atoms is error robust. Next, we focus on Hamil-
tonian simulation as a particular application of QSP. The
concrete Hamiltonian simulation task allows us to benchmark
the EBGC of the QSP-based implementations of Hamiltonian
simulation against that of two other state-of-the-art implemen-
tations.

We first give an overview of different approaches to
the Hamiltonian simulation problem, including (i) Hamilto-
nian simulation algorithms based on product formulas, (ii)
QSP-based optimal Hamiltonian simulation of generic Hamil-
tonians, and (iii) optimal simulation algorithm of Ref. [50]
for geometrically local Hamiltonians (which we oversimplis-
tically refer to as block-decimated QSP). In Sec. VII B, we
compare these three approaches by comparing the EBGC
counts and circuit depths for implementations on the Rydberg
atom platform. The details of each Hamiltonian simulation
algorithm, as well as the explicit calculations of EBGC and
circuit depth, are presented in Appendix F. We note that for
geometrically local Hamiltonian simulation, the EBGC of
QSP-based Hamiltonian simulation scales with the simulated
space-time volume. That is, the EBGC of the error-robust
implementations has the same scaling as the optimal gate
complexity of geometrically local Hamiltonian simulation.
We also comment on the main challenges of implementing
Hamiltonian simulation with low total error probability, from
the perspective of error-robust implementations.

A. Hamiltonian simulation

The use of physical quantum systems to simulate quantum
dynamics has a rich tradition. The task of quantum Hamilto-
nian simulation is simply stated: given any initial state |ψ0〉
of n qubits, a Hamiltonian H , and evolution time t , construct
a sequence of quantum gates, which approximates the final
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state |ψ f 〉 = e−iHt |ψ0〉. In Ref. [55], Lloyd provided the first
demonstration that this task is feasible. The strategy of what
is now known as product formulas (PF) [39] is to make use
of the algebraic structure of the local terms in the expansion
H = ∑L

l=1 Hl through the Baker-Campbell-Haussdorf iden-
tity

exp (−iHt ) = (e−iH1t/re−iH2t/r . . . e−iHN t/r )r + O

(
(L�t )2

r

)
,

where � = maxl |Hl |, and r is the number of time slices used
in the approximation. For a fixed error tolerance ε, and a
geometrically local Hamiltonian for which O(L) = O(n) the
number of time slices required is quadratic in the simulated
space-time volume r = O[(nt )2/ε]. Since each time slice has
O(n) operations, the total gate complexity of the PF algorithm
is O(n3t2/ε). Higher-order PF exist [103], and at order 2k
the dependence of the gate complexity on the system size
improves to O(52kn2t/ε1/2k )), although in the limit of large
k, the prefactor becomes prohibitive. Recently, Ref. [104]
showed that in the case of a one-dimensional system with
nearest-neighbor interactions, the gate complexity can be re-
duced by a factor of n using an integral representation of the
Trotterization error. The resulting algorithm has a gate com-
plexity of O[(nt )1+1/2k/ε1/2k], which scales almost linearly in
the simulated space-time volume.

The PF algorithm of Ref. [104] for the one-dimensional
(1D) system with nearest-neighbor interactions analytically
demonstrates the validity of arguments put forward by Jordan,
Lee, and Preskill [63] which claimed that the simulation of
quantum dynamics generated by geometrically local Hamilto-
nians requires a gate complexity at least linear in the simulated
space-time volume. The more general question, “Can the
same gate complexity be obtained for any time-dependent
local Hamiltonian?”, was answered affirmatively by Haah,
Hastings, Kothari, and Low [50]. The gate complexity of
their algorithm is O[nt polylog(nt/ε)], which was proved to
be optimal even for simulating only local observables. From
the perspective of errors, the optimal gate complexity seems
to suggest that the error probability for implementing geo-
metrically local Hamiltonian simulation should scale at least
linearly with the simulated space-time volume.

At the first sight, the error probability for implementing
a QSP-based Hamiltonian simulation algorithm, as described
in Ref. [58], does not achieve the optimal scaling discussed
above, although the QSP-based algorithm has optimal query
complexity. This is because whether the gate complexity of
the algorithm is optimal depends on the gate complexity of
the QSP walk operator. Considering the implementation of the
walk operator described in our work, the gate complexity of
implementing the walk operator scales as O(N ) = O(nk ) for
a k-local Hamiltonian, hence, resulting in a total gate com-
plexity [O(N2t )] that is not optimal. However, the proposed
error-robust implementation of QSP protocols for k-local
block-encoded signal operators has an EBGC of only O(k) for
ηε = 0. Consequently, the EBGC of QSP-based Hamiltonian
simulation algorithm scales linearly with the query complex-
ity of the QSP protocol, which in turn matches the optimal
gate complexity.

TABLE II. The EBGCs and the depth associated with the pro-
tocols introduced in Sec. VI, for a k-hot encoding ancillary address
register.

VkHE ŪkHE I − 2�0 CW

EBGC (5k − 2)/3 3k − 8/3 (2 + k)/3 (22k − 4)/3

Depth 3 + 5
∏k−1

j=1 na j 9
∏k−1

j=1 na j 5 21 + 19
∏k−1

j=1 na j

B. Results

We calculate the EBGC and circuit depth of three
Hamiltonian simulation algorithms: (i) QSP-based simula-
tion algorithm of Ref. [58], (ii) block-decimated QSP of
Ref. [50], and (iii) fourth-order product formula, for the one-
dimensional disordered transverse field Heisenberg model

HDH =
nsite−1∑

i

σiσi+1 +
nsite∑

i

hiσ
(z)
i , (40)

where σiσ j = σ
(x)
i σ

(x)
j + σ

(y)
i σ

(y)
j + σ

(z)
i σ

(z)
j , and nsite is the

number of sites in the model, and hi is a random value drawn
uniformly from the interval [0,1]. We choose this model in
order to compare the cost of our implementation of QSP-
based Hamiltonian simulation to previous empirical studies
that used product formulas [49,104].

The EBGC of the QSP-based Hamiltonian simulation for
the model at hand is simply given by

nQSP = k∗(nCW + 1/3), (41)

dQSP = k∗(dCW + 1), (42)

where nCW and dCW are as in Table II, and k∗ is the number
of iterations needed to implement the QSP-based Hamiltonian
simulation, which obeys the following inequality [46]:

k∗ � eq||H ||t + ln (1/ε)

q
= O(tnsite ), ∀ q ∈ R+ (43)

where ||H || is bounded by the number of Pauli operators
4nsite. As result, both the EBGC and the circuit depth of
the QSP-based simulation algorithm scale with the simulated
space-time volume. Hence, both nQSP and dQSP are linearly
proportional to the optimal gate complexity of the Hamilto-
nian simulation problem [50,63].

To calculate the EBGC for the fourth-order product for-
mula, we use a number of iterations r that were numerically
estimated in Ref. [104]. For an error threshold ε = 10−3 and
t = nsite Ref. [104] finds

r ≈ 4n1.555
site . (44)

Moreover, in the case of the disordered Heisenberg model in
Eq. (40), the circuit depth for each iteration can be reduced
to constant through massive parallelization because HDH can
be decomposed into only seven sets of nonoverlapping gates.
Hence, the circuit depth for the fourth-order product formula
scales as O(r). In order to calculate the EBGC for implement-
ing each iteration on the Rydberg platform, we follow the
proposal of Ref. [30] and apply the EBGC assignments dis-
cussed in Sec. V E (see Appendix F 1 for details). We find that
the EBGC of each iteration of the first-order product formula
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TABLE III. The scaling of the EBGC and the circuit depth for
the three Hamiltonian simulation algorithms considered in this work
(assuming ηε = 0). The expressions for the fourth-order product
formula (PF), we assume t = nsite to be able to use the numerical
behavior observed in Ref. [49].

QSP
Block-decimated QSP

[50]
Fourth-order PF

[49]

EBGC O(nsitet ) O(nsitet ) O(n2.555
site )

Depth O(nsitet ) O(t ) O(n1.555
site )

is about half the number of two-qubit unitaries required for the
implementation (see Appendix F 1 for details). As a result, the
EBGC for the fourth-order product formula scales as O(n2.555

site )
given t = nsite.

Finally, we calculate the EBGC for the block-decimated
QSP-based Hamiltonian simulation algorithm of Ref. [50],
using the EBGC assignments in Sec. V E to the steps of the
implementation proposed in Ref. [50]. The EBGC for the
optimal algorithm in Ref. [50] has a similar form to that in
Eq. (42), and results in the same scaling with respect to the
simulated space-time volume (see Appendix F 1 a). On the
other hand, thanks to the block decimation, the circuit depth of
the optimal Hamiltonian simulation algorithm scales linearly
with the simulated time, which is quadratically better than
the circuit depth of the QSP-based simulation algorithm. A
summary of the scaling of EBGC for all three simulation
algorithms is given in Table III. We emphasize that because
we always use the same EBGC assignments for all three im-
plementations, our calculations result in a faithful comparison
between the different implementations.

In order to compare the overheads for EBGC and the cir-
cuit depth, we present the results of the EBGC calculations
shown in Fig. 8. Most strikingly, for nsite = 50, the QSP-based
Hamiltonian simulation of Ref. [58] has an EBGC [green in
Fig. 8(a)] that is more than an order of magnitude smaller
than that of the simulation algorithm based on the fourth-order

product formula (in blue). As discussed in the introduction
to this section, the block-decimated algorithm of Ref. [50]
(in orange), results in an optimal EBGC scaling for local
Hamiltonians, but it has an increased overhead compared
to the QSP-based algorithm, resulting from the overhead in
the query complexity due to the block decimation (see Ap-
pendix F 1 a for details).

From the point of view of the circuit depth, the fourth-order
product formula results in the shortest circuit depth Hamilto-
nian simulation for NISQ devices. However, thanks to the long
lifetime of the logical hypefine states, the QSP-based Hamilto-
nian simulation algorithm can be implemented with low error
probability for intermediate-size systems. If we estimate the
unit of depth as tstep = 1 μs and the lifetime of the hyper-
fine states as 10 s, the Hamiltonian simulation up to nsite =
200 may be implemented without the finite lifetime of the
hyperfine states becoming detrimental. The block-decimated
algorithm of Ref. [50] has a large overhead because of the
block decimation (see Appendix F 1 a).

All system sizes considered in Fig. 8 require a total num-
ber of qubits that are accessible for current Rydberg atom
array experiments. For instance, for the simulation of a sys-
tem with nsite = 200, the number of address states needed
is N = 4 × nsite = 800, which can be encoded by 2HE ad-
dress states with na1 = 27 and na2 = 30 (see Sec. VI A). The
sizes of each ancillary register are small enough such that all
atoms can be placed in a blockade radius of Rb = 9 µm, in
a two-dimensional array, if the distance between the atoms
is 3 µm. However, we note that increasing na1 also results in
the depth of the implementation (see Table II). For simplic-
ity, we used 2HE address states with na1 = 8 for all system
sizes, which requires na2 = nsite/2 atoms to be enclosed within
the Rydberg blockade radius. The controlled Pauli operations
required to implement ŪkHE can be implemented in a paral-
lelized way for all atoms in the second ancillary register, using
the coherent transport techniques demonstrated in Ref. [29],
when needed.

Our results show two main obstacles facing the imple-
mentation of the QSP-based Hamiltonian simulation of the

FIG. 8. (a) The EBGCs and (b) the circuit depth of Hamiltonian simulation algorithms (i) based on the fourth-order product formula (blue,
Ref. [49]), (ii) QSP-based local Hamiltonian simulation (orange, Ref. [50]) which uses block decimation, and (iii) QSP-based Hamiltonian
simulation (green, Ref. [58]). Although from the point of view of depth complexity, the fourth-order product formula is superior in all
system sizes considered, the QSP-based Hamiltonian simulation of Ref. [58] exhibits the lowest implementation overhead in terms of EBGCs,
achieving more than an order of magnitude reduction compared to the fourth-order product formula. All scalings exhibited in (a) and (b) are
in agreement with those tabulated in Table III given t = nsite.
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disordered Heisenberg model with low total error probabil-
ity. First is the requirement of an the error-bias parameter
ηε that is smaller than numerically calculated in Sec. V C.
Even if ηε = 1

200 is achieved, the resulting input-conditional
error probability per QSP iterate will be constant only if
nsite � 50 (i.e., N � 200). For all larger systems, the total
error probability will scale suboptimally [nQSP = O(n2

site )].
The second challenge is to further reduce the error probability
εs when the control condition is satisfied (see Sec. V C). In
particular, εs � k∗ = O(nsitet ) is required for the Hamiltonian
simulation to be implemented with low error probability, not-
ing that εs sets the unit of EBGC. Hence, for all results in
Fig. 8, an εs = 1 % will not be sufficient, even if we instead
reduce the simulation time by an order of magnitude. That
said, we emphasize that even when the input-conditional er-
ror probability exceeds 1, error mitigation techniques can be
used to further reduce the effect of errors on the expectation
values [64].

Although the challenges discussed in the previous para-
graph are daunting, it is important to emphasize that the
advantage of using error-robust implementations of QSP-
based protocol instead of the other methods such as the
fourth-order product formula is clear. Generally, the choice of
using product formula vs QSP-based Hamiltonian simulation
on the Rydberg atom platform depends on the errors relevant
to the implementation. If the lifetime of the logical states
is the main contributor to the decoherence, then using the
product-formula-based Hamiltonian simulation is the most
advantageous. On the other hand, if the logical states are
long lived and the majority of errors are introduced during
gate operations, and it is possible to implement controlled
unitaries with biased errors, then QSP-based Hamiltonian
simulation has a clear advantage. As we discuss in the
next section, the advantage of using error-robust implemen-
tations of QSP protocols could be increased by employing
them together with other error mitigation and correction
techniques.

VIII. CONCLUSIONS AND OUTLOOK

Conclusions. Our work has two main messages. First, it is
possible to design implementations of a wide range of quan-
tum protocols where the error probability scales slower than
the gate complexity by cotailoring the relevant error model
and the circuit that implements the algorithm. Second, the
Rydberg atom platform is exceptionally well suited for realiz-
ing such error-robust implementations in a hardware-efficient
manner.

To design error-robust implementations, we took the
structure of two general compilation methods, LCU-based
block-encoding unitaries and QSP, as a guide to determining
a structured error model, as formalized in the EBGC we intro-
duce in Sec. V E. Aside from being very general and having
near-optimal query complexity, the iterative QSP protocols
also allowed us to focus solely on an error-robust imple-
mentation of a walk operator. On the other hand, the LCU
method has two decisive properties that allow for error-robust
implementations. The first property is that the occupations of
the ancillary address states do not change during the imple-
mentation of Ū . As a consequence, single-qubit controlled

unitary gates which do not accumulate any errors when the
control condition is not satisfied can be used to drastically
reduce the error probability. Second, LCU allows the address
states (see Sec. IV) to be chosen from k-hot encoding bit
strings, which drastically reduce the ancillae requirements and
allow the use of single-qubit controlled unitaries to distinguish
between many control conditions.

Similarly, two observations on the Rydberg atom platform
were crucial in achieving an error-robust implementation. The
first observation is the availability of error-biased single-qubit
controlled Pauli operations using Rydberg atoms. Physically,
the protocol for these gates minimizes the laser power that is
absorbed by the Rydberg atoms during the implementation,
conditionally their input state of the control atom. As a result,
the gate-induced errors are only relevant when the control con-
dition is satisfied. The second observation is the availability
of a one-hot encoding state preparation using Rydberg atoms.
Concatenation of one-hot encoding state-preparation unitaries
for k-hot encoding state preparation provides a way to encode
many address states for the LCU method without drastically
increasing the size of the control register.

We also highlighted the efficacy of the proposed error-
robust implementation of QSP-based Hamiltonian simulation
in terms of the error-bounded gate complexity, by comparing
it to a state-of-the-art implementation of product-formula-
based Hamiltonian simulation algorithm. Our results show
that the error-robust implementations are advantageous with
respect to other state-of-the-art implementations of the Hamil-
tonian simulation, as the EBGC count is reduced by more than
an order of magnitude. On the other hand, the implementation
of Hamiltonian simulations for a space-time volume of more
than 200 (where the unit of time is given by the time required
for a π -phase shift) is difficult for near-term implementa-
tion without using additional methods for error mitigation.
However, it is likely that this shortcoming will not be over-
come before the advent of fault-tolerant quantum processors
because the scaling of the EBGC matches the optimal gate
complexity for Hamiltonian simulation.

Outlook. Given the generality of QSP and LCU frame-
works, and the recent successes of the Rydberg atom platform
[15,29], we foresee many promising avenues of research
that originate from our work. In this work, we used the
EBGC counts of error-robust implementations of the Hamil-
tonian simulation algorithm as a benchmark. However, using
error-robust implementations of QSP protocols for other less
demanding quantum information processing tasks, such as
state preparation or calculation of Hamiltonian moments for
quantum chemistry applications [105], may result in imple-
mentations of useful quantum algorithms with low total error
probability. Moreover, considering the use of error mitigation
techniques [64,106] in the context of error-robust implementa-
tions of QSP protocols may also lead to near-term realization
of useful quantum algorithms. Overall, we believe that the
concept of error-robust implementations will result in fruitful
developments in quantum algorithm design.

Our work also provides opportunities to explore impor-
tant questions for the realization of fault-tolerant quantum
computation using Rydberg atoms. In particular, a demonstra-
tion of the compatibility of the error-robust implementations
presented and the fault-tolerant architecture proposed by
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Ref. [32] would greatly ease the resource requirements for
realizing FTQC on the Rydberg atom platform. In this respect,
it would be interesting to investigate error-correcting codes
which allow for transversal CNOT operations, such as the rep-
etition code. While repetition codes cannot correct all possible
errors, Ref. [32] has demonstrated the usefulness of repetition
codes on the Rydberg atom platform, where many differ-
ent error channels can be converted to Z errors. Moreover,
our results motivate the search for new and more versatile
error-biased gate protocols which can further improve er-
ror robustness with reduced classical resource requirements.
Lastly, the question of whether sparse encodings (e.g., the k-
hot encoding address states) are useful in the context of other
quantum algorithms, such as variational quantum algorithms,
seems to be widely open.

Finally, we emphasize that while our work has focused
on the Rydberg atom implementations of QSP protocols, it
is possible to use a tool set we introduced to analyze and
design error-robust implementations of a broader range of
protocols on other platforms. Intuitively, the input-conditional
error probability is relevant to virtually all physical platforms
simply because the response of the controlled system to ex-
ternal control fields will inevitably depend on the system’s
state. In this wider context, our work highlights the impor-
tance of implementing multiqubit gates in a way that results
in minimal interaction between the external control fields
and the system if the system is in a state that transforms
trivially by the desired gate. From a more practical point
of view, the input-conditional error probability enables the
analysis of the biases in the gate-induced error probabilities
for any given gate implementation, independent of the phys-
ical platform in question. Then, by leveraging the biases in
implementations of multiqubit gates, we can design circuits
that are more robust to gate-induced errors. We expect the
study of the input-conditional biases in the gate-induced error
processes to be at the heart of the development of useful NISQ
devices.
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APPENDIX A: PROPERTIES OF THE STATE-
DEPENDENT ERROR PROBABILITY

1. Relation to trace distance

Consider two pure-state density matrices ρid ≡
W |ψ0〉〈ψ0|W † and ρimp ≡ W̃ |ψ0〉〈ψ0|W̃ † resulting from
an ideal and imperfect implementation of the desired unitary,
respectively. Using the definition of W̃ in Eq. (5), and
tracing out the environment, we can write the trace distance
εtr ≡ 1

2 tr|ρ̄id − ρ̄imp| between the associated reduced density

matrices ρ̄id = trEnv(ρid ) and ρ̄imp = trEnv(ρimp) as

εtr = 1

2
tr|(1 − α2)|ψ sys〉〈ψ sys| − (1 − α2)

×
∑

λ

λ2
∣∣ψ̄ sys

λ

〉〈
ψ̄

sys
λ

∣∣∣∣
� 1 − α2 = εψ0 ,

where, to obtain the inequality, we used the fact that the trace
distance is the largest if the space spanned by |ψ sys〉 is orthog-
onal to that spanned by {|ψ̄ sys〉}, as well as the normalization
of the Schmidt coefficients (i.e.,

∑
λ λ2 = 1).

2. Calculating the overall error probability of a quantum circuit

The error probability defined in Eq. (3) can be used to
calculate the overall error probability of a quantum protocol
given the error probability of each gate acting on an error-free
state with no entanglement with the environment. Formally,

εC,φ0 �
n∑
j

ε j,φ j−1 , (A1)

where φ j−1 = ∏ j−1
l=1 Wl |φ0〉 is a perfect state.

To prove the inequality in the equation above, we simply
apply two imperfect unitaries W1 and W2 to an initial error-free
state |φ0〉. We obtain

|φ0〉 W̃1−→ α1,φ0 |φ1〉 +
√

1 − α2
1,φ0

|E1〉
W̃2−→ α1,φ0 (α2,φ1 |φ2〉 +

√
1 − α2

2,φ1
|E2〉)

+
√

1 − |α1,φ0 |2|Ẽ1〉, (A2)

where |Ẽ1〉 = W̃2|E1〉 and 〈E2|Ẽ1〉 = 〈φ2|Ẽ1〉 = 0 by the as-
sumption that the error processes are incoherent. As a result,
the error probability of the circuit C̃ ≡ W̃2W̃1 is

εC,φ0 = 1 − |〈φ2|W̃2W̃1|φ0〉|2

= 1 − (
α1,φ0α2,φ1

)2

= 1 − (
1 − ε1,φ0 − ε2,φ1 + ε1,φ0ε2,φ1

)
� ε1,φ0 + ε2,φ1 . (A3)

By applying this inequality to each gate in the implementa-
tion, we find

εC,φ0 �
ngates∑
j=1

(1 − |〈φ j−1|W †
j W̃j |φ j−1〉|2) ≡

ngates∑
j=1

ε j,φ j−1 . (A4)

3. Dependence of error probability on the initial state

The most important property of the error probability de-
fined in Eq. (3) is that it takes into account the initial state
of the quantum protocol. That is, given the error probabilities
εW,ψ j associated with a basis of states {|ψ j〉}, we can upper
bound the error probability εW,ψ associated with an initial
state |ψ〉 = ∑

j a j |ψ j〉 as [see Eq. (7)]

εW,ψ �
∑

j

|a j |2εW,ψ j . (A5)
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To prove the relation in Eq. (7), consider states |φa〉 and |φb〉, with the associated error probabilities defined as

εW,φa ≡ 1 − |〈φa|WW̃ |φa〉|2 ≡ 1 − α2
W,φb

,

εW,φb ≡ 1 − |〈φb|WW̃ |φb〉|2 ≡ 1 − α2
W,φb

.

Now, consider the superposition state |ψ〉 = a|φa〉 +
√

1 − |a|2|φb〉. The associated error probability is

εW,ψ = 1 − |〈ψ |W †W̃ |ψ〉|2

= 1 − |(〈φ̃a|a + 〈φ̃b|
√

1 − |a|2)W̃ (〈φa|a + 〈φb|
√

1 − |a|2)|2

= 1 − ∣∣(〈φ̃a|a + 〈φ̃b|
√

1 − |a|2)
(
aαW,a|φ̃a〉 +

√
1 − |a|2αW,b|φ̃b〉 + a

√
1 − α2

W,a|Ea〉 +
√

1 − |a|2
√

1 − α2
W,b|Eb〉

)∣∣2
= 1 − ||a|2αW,a + (1 − |a|2)αW,b|2, (A6)

where we denote |φ̃a/b〉 ≡ W |φa/b〉, and we grouped together
the states describing the coherent and incoherent errors as
|Ea/b〉. To obtain the final equality we used the following
orthogonality relations:

〈Ea/b|φ̃a/b〉 = 0 and 〈φ̃b|φ̃a〉 = 0.

Using the definitions for in Eq. (A6), we can express εW,ψ in
terms of εW,a/b:

εW,ψ = 2|a|2(1 − |a|2)(1 −√
(1 − εW,φa )(1 − εW,φb ))

+ |a|4εW,φa + (1 − |a|2)2εW,φb . (A7)

In order to show the desired inequality, notice that(
1 −

√(
1 − εW,φa

)(
1 − εW,φb

))
= εW,φa + εW,φb

2
+ O

(
maxk=a,bε

2
W,φk

)
. (A8)

Hence,

εW,ψ ≈ |a|2(1 − |a|2)
(
εW,φa + εW,φb

)
+ |a|4εW,φa + (1 − |a|2)2εW,φb

= |a|2εW,φa + (1 − |a|2)εW,φb . (A9)

By iteratively applying this inequality to a given superposition
state |ψ〉 = ∑

j a j |φ j〉, we obtain Eq. (7).

4. Calculating the upper bound for εW,ψ

for time-independent and adiabatic control protocols

Here, we show that for time-independent or adiabatic con-
trol protocols, the error probability εW,ψ can be estimated by

ε j,φ0 � τg

∑
ψ

pmax
ψ, j γψ. (A10)

Let us first derive the upper bound for the incoherent errors
that result from the interactions between the controlled system
and the Markovian environment. To calculate the incoherent
error probability, we can use the insights first developed in
the field of quantum optics, in particular in the context of the
Monte Carlo wave-function simulations [77]. In this setting,
the interaction between the system and the environment is
described in terms of quantum jumps, which are described by
the action of the so-called jump operators {Cm} on the reduced

density matrix of the controlled system. In the absence of any
quantum jumps, the state describing the system evolves under
an effective non-Hermitian Hamiltonian

H (t ) = HS (t ) − i

2

∑
m

C†
mCm, (A11)

where HS ≡ 1
2 (H + H†) is the Hermitian part of the effec-

tive Hamiltonian. Using HS , the desired error-free unitary
evolution is given by W ≡ T [e−i

∫ τg
0 HS (t )dt ], where T is the

time-ordering operator, and τg is the time required to imple-
ment the desired unitary [78]. Starting from an initial pure
state |φ0,sys〉 of the system, the total probability of making
no quantum jumps during an evolution time τ is given by
|T [e−i

∫ τ

0 H (t )dt ]|φ0〉|2. As a result, the probability that any
number of quantum jumps happen is

εW,φ0 = 1 − ∣∣T [e−i
∫ τ

0 H (t )dt
]|φ0〉

∣∣2. (A12)

That is, in order to calculate the error probability defined in
Eq. (3), we need to propagate the initial state |φ0〉 of the
system with the evolution generated by the non-Hermitian
effective Hamiltonian.

The normalization constant of the initial state evolved by
T [e−i

∫ τ

0 H (t )dt ] can be easily lower bounded when HS (t ) is
time independent or adiabatically varying, the situations that
are relevant for the proposed implementation. Our starting
point is the Schrödinger equation

dt |φ0(t )〉 = −i

(
HS (t ) − i

2

∑
m

C†
mCm

)
|φ0(t )〉, (A13)

to which the time-ordered integral is the formal solution.
Time-independent case. Consider the case that HS is time

independent during the gate implementation. This is the sit-
uation as we are implementing the single-qubit unitaries as
well as the three unitaries that make up V1HE in Sec. V D. In
order to lower bound the normalization constant, we go to the
interaction picture with respect to the system Hamiltonian HS

[75]. The Schrödinger equation that governs the evolution of
|φI

0〉 ≡ eiHSt |φ0(t )〉 is

dt
∣∣φI

0(t )
〉 = −1

2

∑
m

eiHStC†
mCme−iHSt

∣∣φI
0(t )

〉 ≡ −iHdiss(t )
∣∣φI

0

〉
.

(A14)
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The solution to the Schrödinger equation in the interaction
picture can again be expressed as a time-ordered integral∣∣φI

0(t )
〉 = T

(
e−i

∫ t
0 Hdiss (t )

)∣∣φI
0(0)

〉
. (A15)

Because we are considering the situation where the time evo-
lution due to the Hdiss(t ) for time τ only results in a small
perturbation to the initial state, we can use the Dyson expan-
sion of the time-ordered integral [75]. Hence, the state at the
end of the implemented unitary can be approximated by

∣∣φI
0(τ )

〉 = ∣∣φI
0(0)

〉− i
∫ τ

0
dt Hdiss(t )

∣∣φI
0(0)

〉+ O[(−iHdiss)2].

(A16)

Therefore, the square of the desired normalization constant is
approximated up to second order in Hdiss as∣∣〈φI

0(0)
∣∣φI

0(τ )
〉∣∣2

≈
∣∣∣∣∣1 − 1

2

∫ τ

0
dt
∑

m

〈
φI

0(0)
∣∣eiHStC†

mCme−iHSt
∣∣φI

0(0)
〉∣∣∣∣∣

2

� 1 −
∫ τ

0
dt
∑

m

〈
φI

0(t )
∣∣C†

mCm

∣∣φI
0(t )

〉
, (A17)

where to obtain the last inequality, we used the fact that
the eigenvalues of H2

diss are positive semidefinite, assum-
ing that the controlled system is stable [107]. The term∫ τ

0 dt
∑

m〈φI
0(t )|C†

mCm|φI
0(t )〉 can be further upper bounded

by realizing that the integrand is simply the decay rate of the
instantaneous state |φI

0(t )〉. Hence, expanding this state in the
eigenbases {|ψ〉} of

∑
m C†

mCm, we obtain

∫ τ

0
dt
∑

m

〈
φI

0(t )
∣∣C†

mCm

∣∣φI
0(t )

〉
� τ

⎛
⎝∑

ψ

pmax
ψ γψ

⎞
⎠, (A18)

where pmax
ψ = maxt∈(0,τ ] |〈ψ |φI

0(t )〉|2 and
∑

m C†
mCm|ψ〉 =

γψ |ψ〉. Inserting the inequality in (A18) into Eq. (A17), we
find

εW,φ0 � τ

⎛
⎝∑

ψ

pmax
ψ γψ

⎞
⎠, (A19)

with W = e−iHSt .
Adiabatic case. The proof of the inequality in Eq. (9)

is similar to the one for the time-independent Hamiltonian,
but instead of considering the interaction picture with re-
spect to the time-evolution operator e−iHS (t ), we consider the
Schrödinger equation describing the evolution of the initial
state propagated with the unitary describing the adiabatic evo-
lution Uad(t ). By the adiabatic theorem, the action of Uad(t )
on an initial state |φ0〉, which is an eigenstate of the time-
dependent Hamiltonian at t = 0, is given by

Uad(t )|φ0〉 = e−iφ(t )|φ̃0(t )〉, (A20)

where |φ̃0(t )〉 is the instantaneous eigenstate of the time-
dependent Hamiltonian HS (t ) and φ(t ) is the accumulated
phase which is the sum of the dynamical phase and the
Berry phase associated with the adiabatic evolution [108].
The Schrödinger equation which describes the evolution of

|φad
0 (t )〉 ≡ U †

ad(t )|φ0(t )〉 is simply

dt
∣∣φad

0 (t )
〉 = −

∑
m

Uad(t )†C†
mCmUad(t )

∣∣φad
0 (t )

〉
. (A21)

Evoking the Dyson series as before, the desired overlap is

∣∣〈φad
0 (t )

∣∣φad
0 (t )

〉∣∣2 � 1 −
∫ τ

0

∑
m

〈
φad

0 (t )
∣∣C†

mCm

∣∣φad
0 (t )

〉
� 1 − τ

∑
ψ

pad,max
ψ γψ, (A22)

where {|ψ〉} are the eigenvectors of
∑

m C†
mCm with eigenval-

ues γψ and

pad,max
ψ ≡ max

t∈(0,τ ]

∣∣〈ψ∣∣φad
0 (t )

〉∣∣2.
APPENDIX B: MODEL AND ANALYSIS OF THE

EIT-BASED SINGLE-QUBIT CONTROLLED
PAULI OPERATION

1. Energy-level diagram

In order to analyze the controlled Pauli operation a model
of the target atom is sufficient. The conditional dynamics of
the target atom can be studied by turning dipolar interactions
on and off.

The Hamiltonian of the target atom during the implemen-
tation of the Pauli is (h̄ = 1)

H (t ) = ω1|1〉〈1| + (ωR + J )|R〉〈R| + ωP|P〉〈P|

+
[(

�c

2
e−iωct |R〉〈P| + H.c.

)

×
(

�p

2
(e−iωP1t |P〉〈1| + e−iωP0t |P〉〈0|) + H.c.

)]
,

(B1)

where ω j > 0 with j = {1, R, P} is the energy of the atomic
state | j〉, and the energy ω0 is taken to be zero. The frequen-
cies ωP0 and ωP1 are the frequencies of the probe laser that
couples the logical subspace to |P〉. Lastly, ωc is the frequency
of the control laser coupling |P〉 and |R〉.

Next, we go to the rotating frame generated using the
unitary transformation U1(t ) ≡ e−iH1t :

H1 ≡ ω1|1〉〈1| + ωR|R〉〈R| + ωP|P〉〈P|. (B2)

The effective Hamiltonian in the rotating frame is

H̃ = U †
1 HU1 + i[∂tU

†
1 ]U1

= J|R〉〈R| +
{(

�c

2
e−i(ωc−ωR+ωP )t |R〉〈P| + H.c.

)

+
[
�p

2
(e−i(ωP1−ωP+ω1 )|P〉〈1|

+ e−i(ωP0−ωP )|P〉〈0|) + H.c.

]}
.
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Notice that if we go to another rotating frame generated by
H2 ≡ �|P〉〈P|, where we chose �,ωP1, and �P0 such that

� = ωP0 − ωP = (ωP1 + ω1) − ωP = ωR − ωP − ωc > 0.

(B3)

Then, we obtain the Hamiltonian

H̄ = U †
2 H̃U2 + i[∂tU

†
2 ]U2

= J|R〉〈R| − �|P〉〈P| + 1
2 [�c|R〉 +

√
2�p|+L〉]〈P|,

where |−L〉 ≡ 1√
2
(|0〉 + |1〉). Physically this choice

�,ωP1, ωP0 corresponds to a blue-detuned probe laser
drive between the logical qubit states and |P〉, and a control
laser frequency ωc which ensures two-photon resonance
between |R〉 and the logical subspace when J = 0.

2. Electromagnetically induced transparency

Indeed, when J = 0, it is convenient to express the Hamil-
tonian as a simple two level-system

H̄0 ≡ −�|P〉〈P| +
(

�̃

2
|ψbr〉〈P| + H.c.

)
, (B4)

where �̃ ≡
√

�2
c + 2�2

p ∈ R0+ , and |ψbr〉 ≡ 1
�̃

(�c|R〉 +√
2�p|+L〉) refers to a zero-energy bright state which couples

only to |P〉. This is in contrast to the so-called dark state
|ψd〉 ≡ 1

�̃
(�c|+L〉 − √

2�p|R〉), which has trivial dynamics
under H̄0. Moreover, |ψd〉 → |ψ+L 〉 as �p → 0. As a result,
when J = 0, any initial state |ψL〉 ≡ α|0〉 +

√
1 − |α|2|1〉 re-

turns back to itself as long as �p(t ) is varied adiabatically. As
discussed in Sec. II E, the error probability can be bounded by
considering the largest occupation of the Rydberg state, given
by x2. Hence, the error probability due to the decay rate of the
Rydberg state is

εv � τgγ̄R|x|2. (B5)

In the above contribution to the error probability, the decoher-
ence rate γ̄ includes all decoherence processes that affect the
Rydberg state.

Coherent diabatic errors. One may be worried that because
�̃ is a time-dependent control field, the diabatic processes
during the gate implementation will result in transitions from
|ψd〉 to |ψbr〉. Such processes are strongly suppressed thanks
to the AC Stark shift due to the laser amplitude �c. To see
this, we diagonalize H̄0. The eigenvalues are

E0
± = 1

2
(−� ±

√
�2 + �̃2), (B6)

while the energy of |ψd〉 remains zero during the gate dura-
tion. In the absence of resonances, diabatic error probability
εd to lowest order can be estimated by [109]

εd = O

⎛
⎜⎝
∣∣∣∣∣∣
〈P|∂t H̄0|ψd〉(

E0
+,min

)2

∣∣∣∣∣∣
2
⎞
⎟⎠, (B7)

where E0
+,min ≈ �2

c
4�

for � � �c, and we take |P〉 as an

approximate eigenstate when �c 
 �. Intuitively, �2
c

4�
is ex-

actly the value of the AC Stark shift induced by the strong

off-resonant control field �c [39]. On the other hand, the
maximum derivative of the effective drive strength �̃ can be
approximated by assuming that the pulse shape for the probe
laser field is a Gaussian of width σ

�p(t ) ≡ �p,maxe− (t−t0 )2

2σ2 → ∂t�p(t ) = �p,max
|t − t0|

σ 2
e− (t−t0 )2

2σ2 .

(B8)

The maximum of the derivative occurs at |t − t0| = σ . Hence,
the diabatic errors scale as

εd = O

⎛
⎝[�3

p,max�

�3
c�̃

]2
⎞
⎠, (B9)

where we used the fact that σ = O(�/�2
p,max) in our

gate implementation. Finally, using the bias factor x ≡√
2�p,max/�c, we obtain

εd = O(x6). (B10)

Another consequence of this scaling is that the probability of
incoherent errors due to the finite lifetime of the |P〉 state also
scales as O(x6).

3. Errors due to small frequency shifts

The EIT scheme discussed above relies on the probe and
control lasers to satisfy the two-photon resonance condition
in Eq. (B3). Hence, it is important to understand the effect of
fluctuations that result in a configuration that does not satisfy
Eq. (B3). The most important source of such fluctuations is
energy shifts of the Rydberg state |R〉 which are especially
susceptible to the stray electric fields as well as the Rydberg
state occupation of the surrounding atoms. This should be
compared to the relative robustness of the transitions to the
intermediate state |P〉 which has a much shorter lifetime.

Let us then consider a small perturbation Hpert ≡ δJ|R〉〈R|.
There are two effects to consider. First, using zeroth-order
perturbation theory, we find that the energy of the dark state
|ψd〉 is nonzero:

Edr ≈ δJ〈ψd|R〉〈R|ψd〉 = δJ
2�2

p

�2
c + 2�2

p

� δJ
x2

1 − x2
. (B11)

This energy shift results in an unwanted phase accumula-
tion of |ψd〉 compared to the other dark state |−L〉. Notice
that because the timescale of the gate implementation is
O(�/�2

p,max) = O[�/(�cx)2], for small bias parameters x,
the undesired phase is φdr = O( δJ�

�2
c

). Starting from the |1〉 =
1√
2
(|+〉 − |−〉) state, this small phase accumulation would

cause an error of 1 − 1
4 |1 + eiφdr |2 ∼ (δJ/E0

+)2. As a result,
the EIT scheme can be made more robust against fluctuations
in the energy of the Rydberg state by increasing the AC Stark
shift E+,min.

Second, when δJ is nonzero, the dark state |ψd〉 acquires
a contribution from the intermediate state |P〉 and hence be-
comes bright. In particular, given the short lifetime of the |P〉,
we may worry that the evolution for a small δJ may be error
prone. Again, we can calculate the contribution from the |P〉
state up to the lowest order in δJ using perturbation theory.
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The eigenvectors of H̄0 are (|−L〉, |ψd〉, |+RP〉, |−RP〉), where
we define

|+RP〉 ≡ cos (θ/2)|ψbr〉 + sin (θ/2)|P〉, (B12)

|−RP〉 ≡ − sin (θ/2)|ψbr〉 + cos (θ/2)|P〉, (B13)

whose eigenvalues are given by E0
± in Eq. (B6), respectively.

The coefficients in Eq. (B13) are parametrized using the mix-
ing angle defined as θ = arctan(−�̃/�). The nonzero matrix
elements of J|R〉〈R| in this basis are

δJ〈+RP|R〉〈R|ψd〉 = −δJ

√
2�p√

�2
c + 2�p

cos (θ/2) ≡ δJ̃+,

(B14)

δJ〈−RP|R〉〈R|ψd〉 = δJ

√
2�2

p√
�2

c + 2�2
p

sin (θ/2) ≡ δJ̃−.

(B15)

Therefore, the eigenstate of the system with δJ �= 0 up to the
first order of perturbation theory is

∣∣ψ̃d
〉 = |ψd〉 −

(
δJ̃−
E0−

|−RP〉 + δJ̃+
E0+

|+RP〉
)

+ O(δJ2), (B16)

which is a good approximation when δJ/E0
+,min 
 1. As a

result, contribution to |ψ̃d〉 from the |P〉 state is given to lowest
order by

〈P∣∣ψ̃d
〉 = −

(
δJ̃−
E0−

〈P|−RP〉 + δJ̃+
E0+

〈P|+RP〉
)

+ O(δJ2)

= −
(

δJ̃− cos (θ/2)

E0−
+ δJ̃+ sin (θ/2)

E0+

)
+ O(δJ2)

= −δJ

√
2�p√

�2
c + 2�2

p

sin (θ )

2

(
1

E0−
+ 1

E0+

)
+ O(δJ2)

= δJ

√
2�p√

�2
c + 2�2

p

sin (θ )

2

(
4�

�2
c

)
+ O(δJ2)

≈ 2δJ

�c
x. (B17)

Hence, the error probability due to the dissipative dynamics
of the |P〉 state also scales as ( δJ

�c
)2x2.

4. Dynamics when the control condition is satisfied

We analyze the dynamics of the target atom when the
control condition is satisfied and the Rydberg state of the

target atom is shifted by J 
 �2
c

4�
. To this end, we first di-

agonalize the Hamiltonian H̄ with respect to J|R〉〈R|, and
then use perturbation theory in �p to determine the effective
dynamics.

We can diagonalize H̄ with respect to terms proportional
to J and �c since both terms only act on the two-dimensional

subspace spanned by |R〉 and |P〉. We obtain

H̄ = EJ
+
∣∣+J

RP

〉〈+J
RP

∣∣+ EJ
−
∣∣−J

RP

〉〈+J
RP

∣∣
+
[

�p√
2
|+L〉

(〈+J
RP

∣∣ sin (θ J/2) + 〈−J
RP

∣∣ cos (θ J/2)

)

+ H.c.

]
, (B18)

where

EJ
± ≡ 1

2

[
(−� + J ) ±

√
(� + J )2 + �2

c

]
,

∣∣+J
RP

〉 ≡ cos (θ J/2)|R〉 + sin (θ J/2)|P〉,∣∣−J
RP

〉 ≡ − sin (θ J/2)|R〉 + cos (θ J/2)|P〉,

θ J ≡ arctan

(
�c

−� + J

)
(B19)

and we expressed |P〉 = |+J
RP〉 sin (θ J/2) + |−J

RP〉 cos (θ J/2).
The first-order perturbation theory on |+L〉 results in the fol-
lowing approximation to the eigenstate of H̄ :

|+̃L〉 = |+L〉 −
√

2�p sin (θ J/2)

2E+
|+RP〉

−
√

2�p cos (θ J/2)

2E−
|−RP〉 + O

(
�2

p

)
. (B20)

In the limit that � � �c, J , the following approximations are
useful:

EJ
+ ≈ J EJ

− ≈ −�, (B21)

cos (θ J ) ≈ 1 − �2
c

2�2
; sin (θ J ) ≈ −�c

�
. (B22)

The perturbed state is not a dark state because it has a contri-
bution from |P〉:

〈P|+̃L〉 = −
√

2�p

2

(
sin (θ J/2)2

EJ+
+ cos (θ J/2)2

EJ−

)

= −
√

2�p

4

[(
1

EJ+
+ 1

EJ−

)
+
(

1

EJ−
− 1

EJ+

)
cos (θ J )

]

≈
√

2�p

2�

(
1 − �2

c

4�J

)
. (B23)

On the other hand, the occupation probability of the
target Rydberg state gives us the probability of double
occupation

〈R|+̃L〉 =
√

2�p

2

(
sin (θ J/2) cos (θ J/2)

EJ+

−cos (θ J/2) sin (θ J/2)

EJ−

)

=
√

2�p

4
sin

(
θ J
)( 1

EJ+
− 1

EJ−

)

≈ −
√

2�p�c

4J�
, (B24)

where in the final approximation, we used J 
 �.
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The eigenenergy of |+̃L〉 is approximated up to first order
in perturbation theory by

Ẽ J
+L

= �2
p

2

(
sin (θ J/2)2

EJ+
+ cos (θ J/2)2

EJ−

)

≈ �2
p

2�

(
1 − �2

c

4�J

)
, (B25)

where the approximation in the second line is obtained by as-

suming �c
4�

2 
 1. Then, a π pulse between the |+L〉 and |−L〉
can be implemented provided that the drive pulse satisfies∫ τg

0
dt

�p(t )2

2�
= π. (B26)

Notice that, intuitively, the approximation above in Eq. (B25)
means that when the AC Stark shift is comparable to the
dipolar interaction strength J , then the length of the probe
pulse to implement the conditional Pauli gate depends on the
strength of the dipolar interaction.

APPENDIX C: QUANTUM SIGNAL PROCESSING

We begin our discussion with the quantum control theory
of a single qubit. The pioneering work of Ref. [45] asked the
following question. Given two unitary operations on a single
qubit G(φ) = eiφσz , and R(θ ) = −ieiπ/4σz eiθσx e−iπ/4σz , with
Pauli operators σi=x,y,z, what single-qubit transformations can
we design by the following sequence of gates

G(φk )R(θ )G(φk−1)R(θ ) . . . G(φ1)R(θ )G(φ0) (C1)

alternating between G(φ) and R(θ ) while keeping θ constant
and varying φi between each iteration.

The concept of signal processing is established by consid-
ering cos(θ ) = x as the signal encoded in the signal unitary

R(θ ) =
(

x
√

1 − x2

√
1 − x2 −x

)
, (C2)

which is to be processed by the control angles {φi}. We em-
phasize that the single-qubit rotation R(θ ) can be interpreted
as a block encoding of the signal x since 〈0|R(θ )|0〉 = x.
Reference [58] showed that the first diagonal matrix element
of the unitary resulting from a k-fold iteration of G(φi )R(θ )
can be designed to be any degree-k complex-valued fixed-
parity polynomial P(x) via a judicious choice of the angles
φi. Formally,

Us ≡
[

k∏
i=1

G(φi )R(θ )

]
G(φ0)

=
(

P(x) iQ(x)
√

1 − x2

iQ∗(x)
√

1 − x2 P(x)∗

)
, (C3)

where Q(x) ∈ C is a degree-(k − 1) polynomial whose parity
is opposite to that of P(x). Unitarity introduces the constraint
|P(x)|2 + (1 − x2)|Q(x)|2 = 1 for x ∈ [0, 1].

While the above scheme seems to block encode only fixed-
parity polynomial P(x), it is straightforward to block encode

an arbitrary-parity polynomial if we notice(
P(x) iQ(x)

√
1 − x2

iQ∗(x)
√

1 − x2 P(x)∗

)

= A(x)1 + iB(x)σz + iC(x)σx + iD(x)σy, (C4)

where all coefficients are polynomials of fixed parity, with
A(x) and B(x) having degree k, while C(x) and D(x) hav-
ing degree k − 1 (see Ref. [110] for a full characterization).
Hence, we can obtain block encodings of arbitrary parity
polynomials by a simple rotation of the qubit. To summarize,
interweaving single-qubit rotations G(φi) and R(θ ) allows one
to construct a block-encoding of an arbitrary-parity polyno-
mial of a block-encoded signal x given a suitable set of phases
{φi}. We note that determining the desired set of phases {φi}
is not a trivial task. For instance, see Ref. [47] for concrete
procedures for various examples and its Appendix for numer-
ically optimized phase angles.

Reference [45] further showed that the signal processing
of scalar x can be extended to processing of multidimensional
operators using only a single additional ancilla qubit, which
we will call the “exit” ancilla in the following. Intuitively, by
applying a conditional block encoding of the block-encoded
operator H , we can elevate the eigenvalues λi of A (e.g.,
A|λ〉 = λ|λ〉) to rotation angles θi for the exit ancilla.

Formally, given that the block-encoding unitary is Hermi-
tian U 2 = 1, we can introduce an iterate W ≡ [2(|0〉〈0|)⊗na −
1]U , which can be written as a direct sum over SU(2)-
invariant subspaces associated with each eigenvalue of H :

W =
⊕

λ

(
λ −√

1 − λ2

√
1 − λ2 λ

)
λ

, (C5)

where the subscript λ means that the matrix representation is
written in the basis

|Gλ〉 = |0〉⊗na |λ〉, ∣∣G⊥
λ

〉 = λ|Gλ〉 − U |Gλ〉√
1 − λ2

. (C6)

Hence, the eigenvectors of W are given by∣∣Gλ±
〉 = 1√

2
(|Gλ〉 ± |G⊥

λ 〉), (C7)

with associated eigenvalues e±iθλ , where θλ ≡ arccos (λ).
Reference [45] showed that using a controlled version of W

with the exit ancilla as the control, it is possible to implement
the unitary,

Uφ =
∑

λ,η=±
Rφ (θλ) ⊗ |Gλη〉〈Gλη|, (C8)

which rotates the exit ancilla along a fixed axis on the x-y
plane as determined by φ and by an angle determined by the
phase of the eigenvalue eiθλ . The decomposition of Uφ in terms
of a controlled version of W and single-qubit rotations of the
exit ancilla is the following:

Uφ = (
e−iφσ (ex)

z /2 ⊗ 1
)
U0
(
e−iφσ (ex)

z /2 ⊗ 1
)
,

U0 ≡ |+〉ex〈+| ⊗ 1 + |−〉ex〈−| ⊗ W

=
∑

λ,η=±
eiηθλ/2Rex(ηθλ) ⊗ |Gλη〉〈Gλη|, (C9)
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and σ (ex)
z is a Pauli operator acting on the exit ancilla.

Noting that the eigenvectors of W satisfy

〈0⊗na | ⊗ 1sys)|Gλ±〉 =
√

1

2
|λ〉, (C10)

an arbitrary-parity polynomial of a Hermitian block-encoded
operator can be block encoded. That is,

〈+|ex〈0|⊗na

k/2∏
j=1

Uφ2 jU
†
φ2 j+1+π

|0〉⊗na |+〉ex (C11)

=
∑

λ

P̃(λ)|λ〉〈λ|, (C12)

where P̃(x) is an arbitrary parity polynomial of degree k. As
a result, QSP provides an indispensable tool for processing
block-encoded signal operators. Most importantly, for the fol-
lowing discussion on Hamiltonian simulation we would like
to implement P̃(λ) ≈ eiλt .

APPENDIX D: QSP-BASED OPTIMAL HAMILTONIAN
SIMULATION

The Hamiltonian simulation algorithm based on the QSP
framework uses the block encoding of the Hamiltonian H
to construct a polynomial approximation of P(H ) ≈ e−iHt .
Reference [58] proved that this method results in an optimal
query complexity, which is

k∗ = O

(
αt + log(1/ε)

log log (1/ε)

)
, (D1)

where we define α ≡ ||H || = O(N ) for a Hamiltonian com-
posed of N Pauli strings. The linear scaling of k∗ with respect
to the spectral norm of the Hamiltonian is due to the unitarity
block encoding utilized by QSP. We also emphasize that the
scaling of the query complexity with respect to error tolerance
ε is exponentially improved compared to the Trotterization-
based simulation algorithms [49]. Moreover, it is possible
to show that the number of queries k can be bound by the
following inequality [46]:

k∗ � eqαt + ln (1/ε)

q
∀ q ∈ R. (D2)

The query complexity of the QSP-based Hamiltonian sim-
ulation can be related to the time and error-bounded gate
complexities, given a specific implementation of the query.
We emphasize that even if the time required to implement
the query is constant, the time complexity of Hamiltonian
simulation of a system of size nsite for a time t = nsite results in
an implementation time of O(n2

site ), which is suboptimal. On
the other hand, implementing the query (i.e., the walk opera-
tor) with constant EBGC implies an implementation optimal
with respect to errors. In Appendix F, we demonstrate that
this optimal error complexity is achieved for our proposal for
k-local Hamiltonians.

APPENDIX E: OPTIMAL QUANTUM HAMILTONIAN
SIMULATION OF LOCAL HAMILTONIANS

Since Ref. [63] argued that the optimal gate complexity of
an algorithm simulating local Hamiltonian simulations should
scale roughly as the simulated space-time volume, there has
been a renewed interest in finding rigorous tight bounds for
optimal simulation of local Hamiltonians [50,104]. In 2018,
Haah et al. [50] constructed an algorithm with linear gate
complexity in the simulated (d + 1)-dimensional space-time
volume O[nt polylog(n1/dt/ε)], where ε is the total error
tolerance of the Hamiltonian simulation, and proved the opti-
mality of this bound. In this Appendix, we give a brief review
of this work to motivate the constructions in Appendix F.

From a bird’s eye view, the algorithm in Ref. [50] uses
a block decimation of the unitary time evolution e−iHt that
guarantees that the error due to the decomposition is bound
by the Lieb-Robinson (LR) theorems [111,112]. LR theo-
rems formalize the intuition that for local Hamiltonians, the
maximum speed that information can travel is a well-defined
constant, called the Lieb-Robinson velocity v. The overall
structure of the algorithm in Ref. [50] is depicted in Fig. 9 for
the case of a one-dimensional system, which we consider for
the sake of simplicity. Any block decimation of the evolution
operator introduces local errors at each boundary. These errors
can be described as the omission of Hamiltonian terms Hbd at
the boundaries of neighboring blocks. Upon time evolution by
a local Hamiltonian, it is possible to ensure that these errors
propagate only within the associated light cones (depicted as
yellow and blue triangles in Fig. 9) up to exponentially small
corrections. The knowledge of the local spread of such errors
allows one to design a spin-echo-like algorithm that reverses
the spread of the errors, leaving behind only the exponentially
small corrections. Formally, one can show that for a given
block decimation of the sites X = A

⋃
B
⋃

C, a constant μ =
O(1), Lieb-Robinson velocity v, and vt 
 l = dist(B)

|Ut − e−iHA
⋃

Bt eiHBt e−iHB
⋃

Ct | < O[|Hbd | exp (−μl )], (E1)

where HX denotes the sum of Hamiltonian terms that have
a support on a region X . Longer times can be simulated by
applying the same decimated evolution operator repeatedly t
times to obtain an error linearly increasing with t .

Given the above discussion, the choice of the smallest
dimensions of each block denoted l on the space axis and
t� in the time axis, is determined by (i) the tolerance εLR

for errors resulting from block determination, (ii) the tol-
erance ε� for errors due to the approximate Hamiltonian
simulation based on QSP of each block, and (iii) the number
of blocks m = O(nt/lt�). In particular, given a total error
tolerance ε, we would like the error associated with each
block to be ε� + εLR = O(ε/m) [39,74]. In the following, we
assume ε� = εLR. Given Eq. (E1), we have εLR =
O(e−μl ), and the spatial dimension of each block is l =
O[log (nt/t�ε))]. We are then left with the challenge of
realizing the Hamiltonian simulation of a system of size
O[log (nt/t�ε)], with error tolerance ε� = O(ε lt�

nT ) using
only O[polylog(nt/t�ε)] gates. Fortunately, the QSP-based
Hamiltonian simulation algorithm discussed in Appendix D
has a query complexity that scales logarithmically with ε−1

� ,
resulting in a gate complexity that scales almost linearly with
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FIG. 9. Overview of the algorithm in Ref. [50]. (a) The first approximation depicts the principal relation between the initial and decimated
circuits for Hamiltonian simulation. On the other hand, the equivalence relation depicts the spread and reversal of errors originating from the
left (yellow) and right (blue) edges of each block. In the first time step, the error due to the left edge of a block simulating e−iHBCt spreads
within the light cone depicted in yellow. In the second step, the evolution operator eiHBt fixes this error but it also introduces new errors due to
the right boundary of the block. The final evolution by e−iHABt reverses the error introduced by eiHBt , and the approximation error is bounded by
the exponentially small error outside of the light cone given the intermediate block is large enough to contain the light cone. (b) Demonstration
of how the block-decimation operator can be repeated in space and the pattern of errors induced.

the simulated space-time volume

O[nt polylog(nt/t�ε)]. (E2)

In summary, the optimal quantum Hamiltonian simulation
algorithm by Haah et al. uses the QSP-based query opti-
mal Hamiltonian simulation algorithm in combination with a
clever block decimation of the space-time evolution to obtain
a near-optimal gate count for the Hamiltonian simulation al-
gorithm for local Hamiltonians.

We emphasize that the aforementioned optimal gate count
is different from EBGC in Sec. V E, as it does not take
into account the specific error model of the implementa-
tion. Moreover, the near-optimal gate count of the algorithm
in Ref. [50] comes at a price of a high implementation
overhead [49], which makes it less efficient than the product-
formula algorithms for Hamiltonian simulation on near-term
intermediate-scale quantum (NISQ) processors. In the next
Appendix, we calculate the overhead associated with the
Rydberg platform implementations of both the product for-
mula and the QSP-based Hamiltonian simulation protocols.
While the overhead of the algorithm in Ref. [50] makes it
undesirable for NISQ devices, we find that the EBGC of
QSP-based Hamiltonian simulation of Ref. [58] has orders of
magnitude of smaller overhead for gate errors compared to its
competitors.

APPENDIX F: CONCRETE CIRCUITS AND GATE COUNTS

Here, we use the results of Sec. VI to analyze the re-
source requirements for the implementation of QSP-based
and Hamiltonian simulation algorithms on the Rydberg atom
platform and compare them to those needed to implement
Hamiltonian simulation based on product formula. To this
end, we briefly discuss the implementation of product-
formula-based Hamiltonian simulation algorithms on the
Rydberg platform and calculate the associated EBGCs.

1. Hamiltonian simulation

Here, we explicitly calculate the resources needed for
implementing algorithms in the framework of QSP, using
LCU-based block encoding. In particular, for a system of nsite

qubits, we consider the number of error-bounded gates, the
run time, and the number of ancillae required to implement
(i) QSP-based Hamiltonian simulation, (ii) optimal simulation
of local Hamiltonians in Ref. [50], and finally (iii) Hamilto-
nian simulation using fourth-order product formula. We note
that in all of the calculations in this section, we assume that
the blockade radius is as large as the required system size.

a. Implementing Haah’s optimal Hamiltonian
simulation (Ref. [50])

To facilitate the calculation of resources needed for Hamil-
tonian simulation, it is necessary to choose an explicit Hamil-
tonian to be simulated. Here, we chose a one-dimensional
disordered Heisenberg Hamiltonian HDH as our target system

HDH =
nsite−1∑

i

σiσi+1 +
nsite∑

i

hiσ
(z)
i . (F1)

The choice of the disordered Heisenberg Hamiltonian as our
target allows us to directly compare the cost of our implemen-
tation of QSP-based Hamiltonian simulation to that implied
by the previous empirical studies that use product formulas
[49,104].

Our first task is to find the dimensions of each block in
the decimation given the parameters nsite, t , and the error
tolerance ε.

In one dimension, the number of blocks is

m = 4

(
2tnsite

t�l

)
, (F2)

where l and t� are the shortest dimensions of each block along
space and time coordinates (see Fig. 10), respectively. Hence,
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FIG. 10. The overall schematic for the parallelized implementa-
tion of the optimal Hamiltonian simulation of [50] on the Rydberg
platform. (a) A depiction of the sources of cross-talk errors due to
the algebraic decay of the interaction potential, which makes the
definition of Rydberg blockade radius Rb fuzzy. The two system
atoms at the boundary between the two blockade volumes introduce
errors due to unwanted blockade interactions. (b) The experimental
configuration for the parallelized application of the algorithm in
Ref. [50]. We use twice as many overlapping simulation regions
(i.e., A, B,C, and D) as depicted in Fig. 9 to reduce the errors due
to the algebraic decay of the dipolar interactions. (c) The schedule
for applying the QSP-based Hamiltonian simulation algorithm on
four different simulation regions to reduce the cross-talk errors. The
cross-talk errors can be reduced arbitrarily at the expense of an
increase in the circuit depth.

we have m/2 blocks of length l and m/2 blocks of length 2l ,
and the overall factor of 4 in Eq. (F2) is due to the normal-
ization of the Hamiltonian for each site (i.e., Hi,i+1 � 1). For
a given spatial extent l of each block, the parameter t� can
be determined by studying the scaling of the errors due to the
decimation as a function of time for a single block. This was
done in Ref. [50] for the disordered Heisenberg model and the
following relation was found:

0.175

(
7.9t�

l + 0.95

)l+0.95

= ε

3m
≡ εLR. (F3)

For the data presented here, we set t = 4nsite and mε� =
mεLR = 10−3/2. For the calculations presented here we
choose l = 9.

Once the parameters l and t� are determined, we can also
calculate the order k� of the polynomial approximation to
the Hamiltonian evolution associated with each block using

Eq. (43). For the smaller blocks of spatial size l , we get

k�(l ) = min
q

[
eqt�l + ln (1/ε�)

q

]
, (F4)

while for blocks of spatial size 2l , we replace l → 2l .
The simultaneous implementation of Hamiltonian simula-

tion in each block may introduce unwanted cross-talk errors
due to the algebraic decay of the dipolar interactions, even
if the blockade radii of adjacent blocks do not overlap [see
Fig. 10(a)]. We circumvent this problem by doubling the im-
plementation time required to simulate evolution for a time
t�. The scheme is depicted in Fig. 10 for a one-dimensional
system. For each time step, we require that the blockade
radii associated with different spatial blocks have negligible
overlap. We also note that, in principle, the block encoding
and the QSP-based Hamiltonian simulation algorithms have
the flexibility to implement the simulation of Hamiltonians
with different boundary terms are omitted at each step (see
Fig. 9), as well as changing the overall sign of the Hamiltonian
H → −H .

The EBGC for an error-robust implementation of the local
Hamiltonian simulation algorithm of Ref. [50] is

dBQSP = 2
t

t�
[k�(l ) + 2k�(2l )](dCW + 1),

nBQSP = m

2
k�(2l )[nCW + 1/3]. (F5)

Notice that the overall factor of 2 in the depth of imple-
mentation comes from our method of reducing the cross talk
between the blocks (see Fig. 10). The number of ancillae is
increased by an additional O( nsite

l ) ancillae compared to the
requirements for QSP-based Hamiltonian simulation in order
to facilitate the parallelization by the block decimation.

b. Comparison to Hamiltonian simulation with product formulas

Here, we compare the resource requirements for our
implementation of the QSP-based Hamiltonian simulation al-
gorithm on the Rydberg platform to those of Hamiltonian
simulation using product formulas [49,104]. In order to have
a fair comparison for the disordered Heisenberg model, we
consider the ordering structure of the product formula pro-
posed by Ref. [104]. In particular, we focus on the types of
Hamiltonians that can be written in the form

H =
nsite−1∑

i

Hi,i+1, (F6)

where the terms Hi,i+1 can be decomposed into Pauli operators
which act nontrivially only on sites i and i + 1. Then the first-
order product formula has the form

e−iHδt ≈ ρ1(δt ) =
n/2−1∏
k=1

e−iδtH2k,2k+1

n/2∏
l=1

e−iδtH2k−1,2k

= e−iδtHeven e−iδtHodd . (F7)

Moreover, the higher-order product formulas can be con-
structed as the following [104]:

ρ2(δt ) = e−i δt
2 Heven e−iδtHodd e−i δt

2 Heven , (F8)

ρ2k (δt ) = ρ2k−2(pkδt )2ρ2k−2[(1 − 4pk )δt]ρ2k−2(pkδt )2,

(F9)
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where pk = 1/4 − 4
1

2k−1 . In the following, we will only focus
on the fourth-order product formula algorithm as it results
in the best conventional gate counts in Ref. [49]. The errors
induced by the fourth-order product formula approximation
to the evolution operator e−iHH1Dδt scale as O[n(δt )5] for small
δt [104]. In order to simulate larger times, one conducts the
simulation in r = t/δt segments. Reference [104] utilized a
numerical optimization algorithm which determined that the
number of segments r for an error threshold ε = 10−3 and
fourth-order product formula

r4 ≈ 4n1.555
site . (F10)

In order to calculate the resource costs of implementing
product formulas on the Rydberg atom platform, we consider
the specific protocols proposed in Ref. [30]. This proposal is
based on an implementation of the exponential of a Pauli term
in the Hamiltonian (i.e., e−iα j Pj ) using a single ancilla a. In
particular, the scheme uses the following gate sequence (with
the ancilla initialized in the |0a〉 state):

e−iα j Pj = G†eiα jσ
a
z G, (F11)

where

G = e−iπ/4σ (a)
x Uje

iπ/4σ (a)
x , (F12)

and Uj = |1〉a〈1| ⊗ Pj + (I − |0〉a〈0|) ⊗ I. Intuitively, the
transformation G maps the eigenstates of the Pauli operator
Pj with eigenvalues ±1 onto the | 1±1

2 〉anc states of the ancilla
qubit. The two eigenstates acquire phases with opposite signs
using the single-qubit phase rotation eiα jσ

a
z . The implementa-

tion of G has the following EBGC:

nG = 1

3

[
2 + supp(Pj )

2

]
, (F13)

dG = 4. (F14)

We remind the reader that the ancilla is initialized in the
|0a〉 state. The exponentiation requires 1 ancilla per two-qubit

Pauli operator and can be implemented in depth 8 + α j/π .
The EBGC of the exponentiation step is (see Table I)

1

3

[
2nG + 2α j

π

]
. (F15)

Thus, the exponentiation of each two-qubit Pauli takes 2 +
α j/(3π ) error-bounded gates.

The resources needed for the simulation of the 1D disor-
dered Heisenberg model using first-order product formula for
a single segment [49] that implements a time evolution for δt
can be calculated by assigning 3 two-qubit and 1 single-qubit
Pauli terms to each site:

d1PF = 2 ∗ 3 ∗ (8 + δt/π ) + δt/π = 48 + 7δt/π,

n1PF = nsite

[
3

(
2 + δt

3π

)
+ δt

3π

]
= nsite

(
6 + 4δt

3π

)
,

where we note the factors of 2 in the calculation of dPF arise
from the serial application of evolution by Heven and Hodd, and
we assume that the local random field can be implemented
using 1 single-qubit rotation without any need for ancillas.
Note that the number of two-qubit gates required to implement
one iteration of the first-order product formula is nsite(3 ∗ 2 ∗
2) = nsite ∗ 12 if we require 2 two-qubit gates to implement
Uj in Eq. (F12). Hence, using biased-error unitaries, the error
probability is half the number of two-qubit gates.

Here, we compare the QSP-based Hamiltonian simulation
to the fourth-order product formula according to Eq. (F9),
as it results in the lowest gate counts in Ref. [49]. In our
calculations, the EBGC of implementing the second-order
product formula is 1.5 times that of implementing the first-
order product formula. To calculate the resources for longer
time evolution, the above expressions should be multiplied by
r4 in Eq. (F10).
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