
PHYSICAL REVIEW RESEARCH 6, 013001 (2024)

Persisting quantum effects in the anisotropic Rabi model at thermal equilibrium
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Quantum correlations and nonclassical states are at the heart of emerging quantum technologies. Efforts to
produce long-lived states of such quantum resources are a subject of tireless pursuit. Among several platforms
useful for quantum technology, the mature quantum system of light-matter interactions offers unprecedented
advantages due to current on-chip nanofabrication, efficient quantum control of its constituents, and its wide
range of operational regimes. Recently, a continuous transition between the Jaynes-Cummings model and
the Rabi model has been proposed by exploiting anisotropies in their light-matter interactions, known as the
anisotropic quantum Rabi model. In this paper, we study the long-lived quantum correlations and nonclassical
states generated in the anisotropic Rabi model and how these indeed persist even at thermal equilibrium. To
achieve this, we thoroughly analyze several quantumness quantifiers, where the long-lived quantum state is
obtained from a dressed master equation that is valid for all coupling regimes and with the steady state ensured
to be the canonical Gibbs state. Furthermore, we demonstrate a stark distinction between virtual excitations
produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction
has been switched off. This raises the key question about the nature of the equilibrium quantum features
generated in the anisotropic quantum Rabi model and paves the way for future experimental investigations,
without the need for challenging ground-state cooling.
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I. INTRODUCTION

The resource theory of quantum information [1,2] demon-
strates that quantum correlations found in nonclassical states
are of utmost importance for performing quantum processing
tasks [3,4]. From a theoretical perspective, nonclassical states
have proven highly valuable in investigating decoherence
[5], witnessing the potential quantum nature of gravity [6,7],
studying the quantum-to-classical transition [8], enabling re-
mote quantum control of the weak value amplification [9],
and serving as a powerful tool for witnessing quantum phase
transitions in critical systems [10]. From a practical stand-
point, quantum correlations have demonstrated their pivotal
role as a fundamental element in emerging quantum tech-
nologies [11,12], including secure quantum communication

*vmontenegro@uestc.edu.cn
†gaoxl@zjnu.edu.cn
‡jsjin@dlut.edu.cn
§gdmneto@zjnu.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[13,14], quantum sensing [15–21], and quantum simulation
[22]. Nonetheless, the intrinsic sources of noise and decoher-
ence inherent in quantum dynamics render the production of
long-lived quantum states necessary for quantum technologies
[23,24]. Efforts to advance efficient techniques for generating
and protecting nonclassical states against quantum noise [25]
encompass approaches such as decoherence-free subspaces
[26–28], dynamical decoupling [29,30], and reservoir engi-
neering schemes [31–33]. Therefore, proposing schemes that
facilitate the generation of long-lived highly correlated non-
classical states is one of the primary tasks within the quantum
information field.

Quantum systems undergoing light-matter interactions
stand as diverse platforms for generating nonclassical states
and executing quantum information tasks [34,35]. The re-
cently achieved ultrastrong coupling (USC) regime [36–38]
and deep strong coupling (DSC) regime [39,40] of light-
matter interactions have advanced quantum correlation gen-
eration beyond the strong coupling (SC) regime [41–45], i.e.,
when the light-matter coupling strength exceeds both the de-
cay rates and the natural frequencies of the systems. Notably,
a clear distinction between the USC and DSC regimes and
the SC regime is the emergence of nonclassicality in the
ground state of the system, manifested through squeezing
and entanglement [46,47]. Moreover, within the USC regime,
thermal photons can exhibit antibunching behavior [48], and
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emissions from the matter subsystem (e.g., a two-level atom)
can display photon bunching [49], whereas the behavior is
reversed in the SC regime.

The cornerstone model describing light-matter interac-
tion is composed of a two-level atom (qubit) coupled to a
quantized single-mode cavity field through dipole interac-
tion, known as the quantum Rabi model (QRM) [50–52].
The QRM has been the subject of extensive theoretical
work in quantum optics [53], for the generation of quantum
entanglement [54], as an Otto quantum engine in quan-
tum thermodynamics [55], and to exhibit the emergence of
quantum phase transitions [56–58], and it motivated the de-
velopment of a novel operational criterion for integrability
[59,60]. Interestingly, the QRM transforms into the Jaynes-
Cummings model (JCM) [61] in situations where the natural
frequencies of the system significantly surpass the bare light-
matter coupling strength. In this scenario, one can invoke the
rotating-wave approximation (RWA), permitting the retention
of the rotating-wave (RW) terms while omitting the counter-
rotating-wave (CRW) terms. However, this approximation be-
comes invalid once the system transit towards the USC regime
[60,62–65].

This motivates the introduction of a continuous transition
between the JCM and the QRM by varying the RW and
CRW coupling strengths, known as the anisotropic quantum
Rabi model (AQRM). The AQRM has been explored in both
closed systems [66,67] and open systems [68,69], with novel
quantum technological schemes such as criticality-enhanced
quantum sensing [70] and a squeezed vacuum state laser [71].
Notably, an exact solution for the AQRM with a biased term
has been recently derived [72], and certain analytical solutions
have been found via transcendental function extension [72,73]
and transformation techniques [74,75]. Experimental realiza-
tions of the AQRM have been achieved in two-dimensional
quantum wells [76], cavity quantum electrodynamics [77],
and superconducting circuits [72]. The flexibility to adjust the
RW and CRW coupling strengths renders the AQRM highly
versatile. Indeed, this grants the ability to explore a plethora
of coupling regimes, thereby enabling the creation of highly
correlated nonclassical states. A pivotal question arises: Can
we generate long-lived highly correlated nonclassical states
that persist even in the presence of a reservoir at finite temper-
ature? This question is of paramount importance for current
experimental platforms.

In this paper, we demonstrate that long-lived highly cor-
related nonclassical states of the AQRM can indeed persist
even in the presence of a reservoir at finite temperature. To
support our theoretical findings, we use a quantum Marko-
vian master equation to describe the evolution of the AQRM.
This approach remains applicable across all coupling regimes,
including degenerate points in the energy spectrum, i.e., with-
out resorting to secular approximation. Consequently, such a
quantum open system genuinely approaches a thermal Gibbs
state as its steady state. Furthermore, through a series of com-
plementary analyses, we characterize the quantumness of the
steady state in the finite-temperature–coupling-strength phase
diagram, showing that highly correlated nonclassical states
can be achieved across a wide parameter region.

The rest of the paper is structured as follows: In Sec. II
we present the open-system description of our model. In

Sec. III we briefly define the measures and witnesses of
nonclassicality used throughout this paper. In Sec. IV, we
outline our results, including the effects of temperature in
the system. Finally, we present our concluding remarks in
Sec. VI.

II. THE MODEL AND METHODS

The Hamiltonian of the AQRM [72] is (h̄ = 1)

Ĥ = ωâ†â + �

2
σ̂z + λ1(âσ̂+ + â†σ̂−) + λ2(â†σ̂+ + âσ̂−).

(1)

This quantum system couples a two-level system (qubit) with
a single-mode bosonic field undergoing both the RW and the
CRW interaction terms unevenly. Here, the qubit is described
by Pauli matrices σ̂x,y,z, σ̂

± = (σ̂x ± iσ̂y)/2 and transition fre-
quency �, whereas the boson field is described with frequency
ω and annihilation (creation) operator â (â†). Finally, λ1 (λ2)
accounts for the light-matter coupling strength for the RW
(CRW) interaction, where λ2 = 0 is the JCM limit, λ1 = 0 is
the anti-Jaynes-Cummings model (AJCM), and λ1 = λ2 is the
isotropic QRM.

One key aspect of the AQRM in Eq. (1) is that it preserves
the parity symmetry Z2 as in the isotropic model [38]. This
fact can be evidenced by considering the total-number-of-
excitations operator n̂ = â†â + σ̂+σ̂− and the parity operator
π̂ = exp(iπ n̂). One can readily notice that, as opposed to
the JCM, for the AQRM case [Ĥ, n̂] �= 0 and [Ĥ , π̂ ] = 0.
The above has two immediate consequences: (i) Even in the
ground state, the expected mean number of qubit and boson
excitations is nonzero, and (ii) it implies that π̂ possesses
two eigenvalues, 〈π̂〉 = ±1, depending on whether the total
number of excitations is even or odd. This in turn enables us
to solve the AQRM analytically using similar techniques to
those used for the isotropic case, for instance, the Bargmann-
Fock space of analytic functions and the Bogoliubov operator
approach.

To gain a clearer understanding of the energy levels of the
AQRM, in Fig. 1, we plot the energy spectrum in relation
to the ground-state energy as a function of the light-matter
coupling λ1 (λ2) for several coupling ratios λ2/λ1 (λ1/λ2).
As seen from the figure, the spectrum exhibits level cross-
ings where the ground-state parity changes sign (see green
circles), leading the system to undergo infinite first-order
quantum phase transitions as the coupling strength increases.
In addition to the above degenerate crossing, several other
nondegenerate and quasidegenerate points can be observed.
The analysis of the AQRM spectrum, as shown in Fig. 1, is
important for understanding the physics underlying the emer-
gence of thermal correlations, a study that we will address in
later sections.

As stated before, the central objective of this paper is to
study the quantum correlations and quantum nonclassical-
ity which remain present even at thermal equilibrium—the
so-called thermal correlations and thermal nonclassicality of
the AQRM, respectively. To see quantum thermalization and
thermal entanglement in the open JCM [78] and QRM [79]
as particular cases of the AQRM, we obtain the AQRM
steady state when such a system interacts unavoidably with
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FIG. 1. Energy level differences are plotted as functions of the light-matter coupling strengths λ1 (λ2) for different coupling ratios λ2/λ1

(λ1/λ2). In (c) and (h), the green circles represent the (degenerate) crossing of the energy levels, and the plus and minus signs denote the
change of parity of the energy levels. Other system parameters are specified as � = 1 and ω = 1.

a reservoir at temperature T . It is essential to point out that
even though the standard Born-Markov master equation accu-
rately describes the quantum state within the weak coupling
regime λi � {ω,�}, it breaks down for stronger coupling
regimes such as the USC and DSC regimes [37,38,80]. Conse-
quently, the steady state at thermal equilibrium cannot be fully
captured using the standard master equation in those regimes.
To ensure that the steady state is the actual quantum state at
thermal equilibrium for an arbitrary set of coupling strengths
λi, one needs to switch to a Born-Markov master equation in a
dressed picture [81]; see Refs. [82,83] for a similar approach
in the Jaynes-Cummings (JC) case. In this more suitable rep-
resentation, the quantum jumps occur between the dressed
eigenstates of the full Hamiltonian, as opposed to the standard
master equation, where the upward and downward jumps only
consider the free energy of the Hamiltonian.

We emphasize that the AQRM spectrum (see Fig. 1)
shows nondegenerate and degenerate eigenvalues which are
appropriately modeled by the secular approximation in the
derivation of the Markovian master equation, but it fails in
the quasidegenerate case. Following the steps of Ref. [84], we
can derive a valid master equation for the entire spectrum of
the Hamiltonian equation (1); as long as we consider weak
damping, a high bath cutoff frequency, and a flat spectral
density, these are sufficient conditions to ensure positivity and
Markovianity. Indeed, the dissipative dynamics undergoes the
following dressed master equation:

d

dt
ρ̂ = −i[Ĥ, ρ̂] +

∑
u=a,σ−

k< j

{
� jk

u nu(� jk )D[|φ j〉〈φk|, ρ̂]

+� jk
u [1 + nu(� jk )]D[|φk〉〈φ j |, ρ̂]

} = L(t )ρ, (2)

with the Liouvillian superoperator L(t ) and Lindbladian terms
defined as

D[Ô, ρ̂] = 1
2 [2Ôρ̂Ô† − ρ̂Ô†Ô − Ô†Ôρ̂]. (3)

In Eq. (2), |φk〉 is the eigenvector of the AQRM, namely

Ĥ |φk〉 = Ek|φk〉, (4)

where Ek is the kth eigenenergy associated with the eigenstate
|φk〉. We also define the dissipation rates

� jk
u = γu(� jk )

∣∣S jk
u

∣∣2
, (5)

with two explicit contributions.
(i) The first contribution is the spectral function

γu(� jk ) = 2π
∑

k

|λk,u|2δ(� jk − ωk ), (6)

where λk,u accounts for the uth thermal bath coupled to a
single-mode boson field with the frequency ωk and energy gap

� jk = Ej − Ek . (7)

(ii) The second contribution consists of the transition coef-
ficients

S jk
q = 〈φ j |(σ̂+ + σ̂−)|φk〉, (8)

S jk
c = 〈φ j |(â† + â)|φk〉. (9)

To satisfy the necessary conditions for the validity of the
above master equation, we consider the Ohmic case:

γu(� jk ) = πα� jke−|� jk |/ωc , (10)

where α is the coupling strength between the system and the
environment and ωc is the cutoff frequency of thermal baths.
Throughout all numerical simulations performed, we consider
α = 0.001ω and ωc = 10ω. We note that for Gibbs states of
the reservoir at temperature T , the correlation functions also
obey the Kubo-Martin-Schwinger (KMS) relations [81], i.e.,
γu(−� jk ) = γu(� jk )e−� jk/kBT , where kB is the Boltzmann
constant.
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Finally, the temperature of the bath is encoded in the Bose-
Einstein distribution (kB = 1)

nu(� jk, Tu) = 1

e� jk/Tu − 1
. (11)

It is important to emphasize that when both reservoirs have
the same temperature Ta = Tσ− (or only one of the sub-
systems is coupled to the reservoir), the system reaches a
thermal equilibrium. Consequently, the dressed master equa-
tion steady-state solution of Eq. (2) results in the density
matrix of the canonical ensemble [a straightforward numerical
simulation proves that the Gibbs state is indeed the steady-
state solution of Eq. (2)]

ρ̂ss =
∑

k

e−Ek/T

Z |φk〉〈φk|, (12)

where Z = ∑
k e−Ek/T is the partition function and the steady-

state population is

Pk = e−Ek/T

Z . (13)

Notice that for unequal reservoir temperatures Ta �= Tσ− , the
steady-state solution of the dressed master equation cannot be
written in terms of the canonical ensemble as in Eq. (12). In
what follows, we assume equal-temperature reservoirs such
that we can always extract the statistical properties of the
quantum state at thermal equilibrium from Eq. (12).

To shed light on the nature of the first-order phase tran-
sition in the AQRM shown in Fig. 1, we briefly investigate
the Liouvillian L spectrum [85]. This analysis not only de-
termines the uniqueness of the equilibrium state described in
Eq. (12), ruling out the possibility of a dissipative quantum
phase transition, but also provides sufficient information to es-
timate the time scale required for relaxation. Let {μα}α=0,1,2,...

denote the complex eigenvalues of L defined in Eq. (2) and
presented in Figs. 2(a) and 2(b), for which we plot α up to ten
eigenvalues for the representative temperatures of T = 0.5ω

in Fig. 2(a) and T = 0.1ω in Fig. 2(b) for different coupling
ratios λ1/λ2 and λ2/λ1. In the current case of thermal AQRM,
numerical evaluation indicates that μ0 = 0 is nondegenerate,
thereby establishing a unique steady state as a consequence.

To assess the relaxation time scale, let us first examine the
case of the decoupled system, where the cavity field mode
at frequency ω interacts with a reservoir at temperature T .
In this scenario, the average number of photons is given by
〈â†â〉(t ) = 〈â†â〉(0)e−γ (ω)t + n(ω, T )(1 − e−γ (ω)t ). Thus one
can define the thermalization time as tth = γ (ω)−1. While
the above time-scale analysis holds for the decoupled sys-
tem, its thermalization time becomes highly nontrivial once
nonzero coupling is taking into consideration. To explore
the nontrivial effect of light-matter coupling on the thermal-
ization time, we turn to the Liouvillian gap [86], which is
defined as the difference between the zeroth (here μ0 = 0) and
the first Liouvillian eigenvalues, i.e., μ1 = − maxα �=0 Re[μα].
The Liouvillian gap determines the asymptotic decay rate and
bounds the relaxation time in an equilibrium scenario as tth ≈
|μ1|−1. To compare the relaxation time to achieve the equilib-
rium state of the AQRM, we plot in Figs. 2(c) and 2(d) the
ratio between the Liouvillian gap [μ1(λ1)] normalized by the
Liouvillian gap of the decoupled system μ1(λ1 = 0) = γ (ω)

FIG. 2. (a) and (b) The imaginary and real parts of the first ten
Liouvillian eigenvalues μα for different coupling ratios λ1/λ2 and
λ2/λ1 and two different temperatures. For the representative parame-
ters, the Liouvillian exhibits only one zero eigenvalue, indicating the
uniqueness of the equilibrium state of the AQRM. (c) and (d) The
ratio between the first eigenvalue of the Liouvillian (Liouvillian
gap) normalized by the thermalization rate of the decoupled system
μ1(λ1 = 0) = γ (ω) as a function of λ1 for several coupling ratios
λ2/λ1 and two different temperatures.

for several coupling ratios λ2/λ1 and two different tempera-
tures. As shown in the figure, the QRM (i.e., λ1 = λ2) requires
a longer thermalization time over all coupling regimes λ1/ω,
and intriguingly, with the increasing coupling strength ap-
proaching the DSC regime, the relaxation time tends to be
the same as that of the uncoupled system. Furthermore, the
increase in anisotropy [e.g., λ2/λ1 = 0.5 in Figs. 2(c) and
2(d)] decreases the thermalization time, the JCM being the
fastest to thermalize. Note that a faster thermalization time
is crucial for some quantum processing tasks in quantum
thermodynamics, where a shorter thermalization time, in prin-
ciple, can increase the power of a quantum heat engine. The
Liouvillian gap closure represents a distinctive feature of a
dissipative quantum phase transition. In the case of the AQRM
weakly coupled to a Markovian thermal reservoir, this closure
is notably absent. This absence is clearly demonstrated in
Figs. 2(c) and 2(d), where the gap remains nonzero for all
temperatures and couplings considered.

III. QUANTUM CORRELATION AND
NONCLASSICALITY MEASURES

The concept of quantumness (nonclassicality) is related
to the impossibility of describing physical phenomena by
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a deterministic or probabilistic classical theory. To under-
stand the impact of the system’s light-matter anisotropy on
the thermal quantum correlations and thermal nonclassicality,
i.e., quantum correlations and nonclassicality that are present
at thermal equilibrium, we thoroughly study the following
quantities: (i) the zero-delay second-order correlation function
g(2)(0), (ii) the bosonic field quadrature squeezing ζ 2, (iii) a
phase-space interference macroscopicity measure I (ρ) for the
quantum state ρ, (iv) the negativity N (ρ), and (v) the quantum
discord D(ρ). In the subsequent sections, we briefly explain
the above quantities.

A. Zero-delay second-order correlation function

While the Poissonian and the super-Poissonian photon
statistics of a light beam can be entirely explained in terms of
a classical theory of light, the occurrence of sub-Poissonian
photon statistics characterizes the quantumness of photonic
states without a classical counterpart. It is also relevant to
point out that although this property does not consistently
manifest in all quantum states of a field mode, a state can be
classified as nonclassical when it is present. In this context,
sub-Poissonian photon statistics serve as an authentic signa-
ture of the quantum nature of light.

Alternatively, one can classify the quantumness of a light
beam by the study of the probabilities in measuring pho-
tons at a detector in a defined time interval t2 − t1 ≡ τ ,
the so-called second-order correlation function g(2)(τ ). This
definition classifies the light beam in a threefold fashion,
namely: (i) g(2)(0) > 1 [bunched light where photons popu-
late themselves together (classically a chaotic description)],
(ii) g(2)(0) = 1 [random photon stream (classically a coherent
description)], and (iii) g(2)(τ ) < 1 [antibunched light where
photons distribute separately (with no classical analogy)]
[87,88], where we have considered an infinitesimal zero-
delay time window τ → 0. Indeed, thermal photons emitted
from noninteracting quantum modes or in the strong coupling
regime are bunched (g(2)(0) = 2), being the standard example
of an incoherent source of light [87–89].

The conventional definition of the normalized zero-delay
second-order correlation function is [90]

g(2)(0) = 〈(â†)2(â)2〉
〈â†â〉2

. (14)

This quantity describes the probability of detecting two pho-
tons simultaneously (τ → 0), which is normalized by the
probability of detecting two photons at once within a ran-
dom photon source. Nonetheless, this definition holds for
weak light-matter couplings, where the intracavity photons,
described by â, suffice to explain the observed photon corre-
lation. On the other hand, in the USC regime, where the qubit
system strongly dresses the bosonic field, the second-order
correlation function g(2)(0) is derived from the input-output
formalism as [91,92]

G(2)(0) = 〈(X̂ −)2(X̂ +)2〉
〈X̂ −X̂ +〉2 , (15)

where

X̂ + = −i
∑
k> j

�k jXjk|φ j〉〈φk|, (16)

with X̂ − = (X̂ +)†, �k j = Ek − Ej being the energy gap, and
Xjk = 〈φ j |(â† + â)|φk〉. Here, X +

jk describes the transition
from the higher eigenstate |φk〉 to the lower one |φ j〉. Notice
that in the weak light-matter interaction limit (i.e., λi � 1),
the operator X̂ + is reduced to X̂ + = −iωâ. Thus the correla-
tion function in Eq. (15) simplifies to the conventional case.

One fundamental observation regarding the second-order
correlation function in Eq. (15) is that in the eigenbasis
of the AQRM Hamiltonian shown in Eq. (1), the dressed
light-matter jump operator X̂ provides an accurate expres-
sion for the average number of excitations in the ground
state: 〈φ0|X̂ −X̂ +|φ0〉 = 0. This is in contrast to the seemingly
incorrect result 〈φ0|â†â|φ0〉 �= 0. Note that as the dressed
ground state can be spanned in the bare light-matter basis
{|g〉, |e〉, |n〉}, the dressed ground state will be composed of
a certain number of virtual excitations [93]. To convert the
virtual excitations from the dressed picture into measurable
photonic excitations, one can switch the interaction coupling
strength on and off [93].

Indeed, consider a quantum state in the dressed basis |φk〉.
Once the interaction is switched off, the state will still contain
the excitations that can now be detected using the intracavity
photon operator â. Hence 〈φk|â†â|φk〉 �= 0 will accurately de-
scribe the number of photonic excitations. It is worth noting
that the nonadiabatic switch on or off needs to be of the order
of the inverse of the relevant frequencies in the system, here
ω,� [93].

The conversion between virtual excitations and real pho-
tons via switching the interaction on and off is a consistent
way to reconcile the correlation functions and other quantities
that describe the thermal quantum correlations and nonclassi-
cality in this paper. Let us point out that the photons in the
ground state of the USC models are virtual and cannot be
detected [33], unless the coupling is suddenly switched off.

Throughout this paper, whenever a quantifier is defined
using standard bosonic and spin operators, we refer to a sce-
nario in which the coupling has been turned off after reaching
thermal equilibrium.

B. Quadrature squeezing

The second-order correlation function fails as a nonclas-
sical quantifier in the super-Poissonian regime. For instance,
nonclassical Gaussian states, such as squeezed states, may
show either photon bunching or photon antibunching depend-
ing on whether the amplitude fluctuations are increased or
reduced. To reveal the nonclassicality present in the steady
state of the AQRM field mode, we compute the degree of
squeezing. To do so, we introduce the generalized rotated field
quadrature

√
2x̂θ = âe−iθ + â†eiθ , where any two operators

that differ by θ = π/2 form a conjugate pair which satisfies
the position (θ = 0) momentum (θ = π/2) commutator rela-
tion. We consider the following squeezing parameter [94]:

ζ 2 = min
θ∈(0,2π )

(�x̂θ )2. (17)

Only a value of ζ 2 < 1 indicates bosonic squeezing, whereas
ζ 2 = 1 corresponds to the photonic coherent state of radiation
field. The minimization in the above definition can be easily
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obtained:

ζ 2 = 1 + 2〈â†â〉 − 2|〈â2〉|, (18)

where we have assumed that once the steady state is
reached, the light-matter interaction is switched off. Note that
Refs. [95,96] studied the squeezing of output quadratures in
the USC-DSC regime through the dressed light-matter jump
operators for a vacuum input field, which is the thermal equi-
librium case considered here. Interestingly, the authors found
that no open system in its ground state can produce output
squeezing, even if its ground state is a squeezed state. Since
most of the squeezing in the AQRM is present in the ground
state, these generalized measures leads to zero degrees of
squeezing in the thermal state if the coupling is on. For this
reason, we only focus on evaluating the degree of squeezing
once the light-matter interaction is switched off, i.e., ζ 2.

C. Phase-space interference measure

To further study the nonclassicality of the AQRM steady
state, we consider a phase-space interference measure that
quantifies the degree of macroscopicity of the state [97], de-
fined as

I = −π

2

∫
dpdqW (q, p)

(
∂2

∂q2
+ ∂2

∂ p2
+ 1

)
, (19)

where W (q, p) is the Wigner function [53]. The macroscop-
icity I takes a value of 0 for classical states, while for pure
quantum states such as superpositions of coherent states,
NOON states, and Fock states it corresponds to the average
number of photons 〈n〉. In the case of the mixed state obtained
by Eq. (12), the quantifier is constrained by the inequality
I (ρ̂ss) < Tr(ρ̂ssâ†â).

D. Negativity

To explore the quantum correlations between the light-
matter constituents, we commence by calculating the quantum
entanglement within bipartite systems. Among the various en-
tanglement quantifiers available, we opt to use the negativity
N (ρ) [98–102]

N (ρ) = ‖ρTA‖1 − 1

2
, (20)

where ρTA is the partial transpose of the quantum state ρ

with respect to subsystem A and ‖Y ‖1 = Tr|Y | = Tr
√

Y †Y is
the trace norm or the sum of the singular value the operator
Y . Equivalently, the negativity can be computed as N (ρ) =
1/2

∑
i(|εi| − εi ), where εi are the eigenvalues of the partially

transposed light-matter density matrix ρ. Note that N (ρ) = 0
corresponds to separable (not entangled) quantum states.

E. Quantum discord

Quantum entanglement is not the sole manifestation of
quantum correlations. In fact, quantum discord (QD) rep-
resents another measure of potential quantum correlations
within a quantum system. This measure of correlation
emerges from the observation that two classically equivalent
methods of defining mutual information yield different out-
comes within the quantum domain [103]. The QD of two

FIG. 3. Second-order correlation functions: (a) and (c) G(2)(0) as
a function of the coupling strength λ1 (λ2) for several choices of cou-
pling ratios λ2/λ1 (λ1/λ2). The black dotted horizontal line indicates
G(2)(0) = 2. (b) and (d) g(2)(0) as a function of λ1 (λ2) for different
coupling ratios λ2/λ1 (λ1/λ2). The black dash-dotted horizontal line
corresponds to g(2)(0) = 1. The other system parameters are the same
as in Fig. 1.

subsystems A and B can be expressed as [103]

D(ρ̂AB ) = S(ρ̂A) − S(ρ̂AB ) + min{�A
j }S

(
ρ̂B|{�A

j }
)
, (21)

where S(ρ̂i ) = −Trρ̂ilogρ̂i is the von Neumann entropy for
the reduced density matrix and S(ρ̂B|{�A

j }) is the entropy con-
ditioned through performing measurements on the A system,
defined as

S
(
ρ̂B|{�A

j }
) =

∑
j

p jS
(({

�A
j

} ⊗ IB
)
ρ̂AB

({
�

†A
j

} ⊗ IB
)
/p j

)
.

(22)

In the above, �A
j is a von Neumann projection operator on

subsystems A, and pj = Tr({�A
j } ⊗ IBρ̂AB ) is the probabil-

ity with measurement outcome j. Note that one of the most
distinct differences between QD and entanglement is that QD
can be nonzero for certain separable states [9,104,105].

IV. QUANTUMNESS AT THERMAL EQUILIBRIUM

We commence by examining the impact of the light-matter
coupling strengths, λ1 and λ2, on the generation of long-lived
quantum correlations in the AQRM. In Figs. 3(a) and 3(c), we
plot the second-order correlation function using the dressed
jump operator G(2)(0) as a function of the light-matter cou-
pling strength λi (i = 1, 2) for several coupling ratios λi/λ j

(i �= j) and a given temperature T = 0.1ω. As Figs. 3(a) and
3(c) show, G(2)(0) generally transitions from photon anti-
bunching [G(2)(0) < 1] to photon bunching [G(2)(0) > 1] as
the light-matter coupling strength increases. In the limit of the
DSC regime, i.e., λ  {ω,�}, the correlation function takes
the value G(2)(0) = 2, which corresponds to thermal photon
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FIG. 4. Relationship between energy level crossing and the be-
havior of the second-order correlation function G(2)(0). (a) and
(b) The energy gap En − E0 of the AQRM as a function of λ1 (λ2)
for λ2/λ1 = 0.5 (λ1/λ2 = 0.5); see more cases of coupling ratios in
Fig. 1. (c) and (d) The particular case of G(2)(0) as a function of λ1

(λ2) for λ2/λ1 = 0.5 (λ1/λ2 = 0.5). The vertical gray lines evidence
the correspondence between sharp peaks of G(2)(0) and the closing
of energy gaps. Other system parameters are chosen as in Fig. 1.

emission (regardless of the coupling ratios). In Figs. 3(b) and
3(d), we depict the second-order correlation function using
the bare jump operator g(2)(0) as a function of λi (i = 1, 2) for
several coupling ratios λi/λ j (i �= j) and the same temperature
T = 0.1ω. As Figs. 3(b) and 3(d) show, the second-order
correlation function g(2)(0) exhibits nonclassical features only
for a strong degree of anisotropy (when the coupling strength
ratio is small), i.e., λ2/λ1 � 0.3 and λ1/λ2 � 0.3, respec-
tively. Interestingly, as the coupling ratios λi/λ j increase,
the nonclassical features (photonic antibunching effect) are
completely suppressed [g(2)(0) > 1]. Furthermore, with an
increase in the light-matter coupling, g(2)(0) approaches unity
regardless of the choice of coupling ratios. In other words, the
thermal emission now displays the same statistical behavior
as a coherent state. Note that in computing g(2)(0) using the
bare bosonic field, we make the assumption that the coupling
strength has been switched off [93] once the system has
reached its thermal equilibrium. Notably, there is a significant
distinction between the scenario in which the correlation func-
tion is computed from G(2)(0) and the one obtained when the
light-matter coupling is switched off, resulting in g(2)(0). This
subtlety demonstrates the intricate impact of virtual photonic
excitations on the thermal state properties of the AQRM.

We can gain a clearer understanding of the second-order
correlation function G(2)(0) by considering the energy level
crossing and its associated change in parity, as similarly dis-
cussed in Ref. [106].

Consider the particular case of G(2)(0) as a function of λ1

for a fixed coupling ratio λ2/λ1 = 0.5, as redrawn in Fig. 4(c)
for clarity. The nonanalytical (sharp) peaks result from the
energy level crossing depicted in Fig. 4(a) (see Fig. 1 for
other choices of parameters). Indeed, the closing of the en-
ergy gap between higher excited states, namely the parity

FIG. 5. (a) [(c)] The squeezing parameter ζ 2 as a function of λ1

(λ2) for different coupling ratios λ2/λ1 (λ1/λ2). The black dashed
horizontal line corresponds to ζ 2 = 1. (b) [(d)] The macroscopicity
interference-based measure I(ρ ) as a function of λ1 (λ2) for several
coupling ratios λ2/λ1 (λ1/λ2). We consider a given temperature T =
0.1ω, and other system parameters are the same as in Fig. 1.

change between the second (E2) and the third (E3) energy
levels, is responsible for the antibunching peaks shown in
Fig. 4(c). Furthermore, the closing of the energy gap between
the ground state (E0) and its first energy level (E1) gives
rise to the pronounced photonic bunched peak in Fig. 4(c)
(around the value of λ1 ∼ ω). Remarkably, the closing of the
energy gap between E1 and its ground state E0 reopens as the
coupling strength increases. This cycle of opening, closing,
and reopening dynamics is responsible for the antibunched-
bunched-antibunched behavior transition of G(2)(0) shown in
Fig. 4(c). A similar analysis can be conducted for Fig. 4(d),
in which we present G(2)(0) as a function of λ2 for a fixed
coupling ratio λ1/λ2 = 0.5. In contrast to the previous sce-
nario, no nonanalytic behavior is observed. This is because
although a crossing of energy levels between the second and
third eigenenergies occurs, the energy gap between the ground
state and the first excited state monotonically vanishes as the
coupling strength increases. As a result, a smooth transition
towards a photonic bunching effect takes place.

To investigate the degree of photonic squeezing, in
Fig. 5(a) [Fig. 5(c)] we plot the squeezing parameter ζ 2 as
a function of λ1 (λ2) for several coupling ratios λ2/λ1 (λ1/λ2)
for a given temperature T = 0.1ω. As the figures show, there
is a clear degree of squeezing, ζ 2 < 1, of the AQRM steady
state (after the interaction has been switched off) for certain
coupling ratios and a specific window of light-matter cou-
pling. Note that for the JCM (λ2/λ1 = 0), no squeezing is
achieved, i.e., ζ 2 � 1, for all values of λ1. Conversely, for the
QRM (λ2 = λ1), the degree of squeezing tends to a photonic
coherent field as the light-matter coupling strength goes to-
wards the USC-DSC regime. Notably, no photonic squeezing
occurs for the high-anisotropy regime (λi/λ j � 1, i �= j). For
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FIG. 6. (a) [(c)] The steady-state negativity N (ρ ) as a function
of λ1 (λ2) for different coupling ratios λ2/λ1 (λ1/λ2). (b) [(d)] The
steady-state quantum discord D(ρ ) as a function of λ1 (λ2) for sev-
eral coupling ratios λ2/λ1 (λ1/λ2). We consider a given temperature
T = 0.1ω, and the other system parameters are the same as in Fig. 1.

instance, consider λ2/λ1 = 0.1 and λ1/λ2 = 0.1 in Figs. 5(a)
and 5(c), respectively. As seen from the figures, no relevant
photonic squeezing is achieved with the increasing of the
light-matter coupling. This nonclassicality measure is in stark
contrast with the second-order correlation function g(2)(0) (we
recall that both cases are evaluated by turning the coupling
off), for which it presents a high degree of nonclassicality in
the region of high anisotropy.

To further evidence quantum features of the steady-state
AQRM field that may have not been captured by previous
quantifiers, in Fig. 5(b) [Fig. 5(d)] we show the macroscop-
icity interference-based measure I (ρ) as a function of λ1 (λ2)
for different coupling ratios λ2/λ1 (λ1/λ2) and T = 0.1ω. As
the figures show, the higher degree of the interference-based
measure generally occurs in the coupling region 1 < λi/ω <

2 (i = 1, 2) for most of the coupling ratios of anisotropies,
where quantum squeezing did not capture such a nonclas-
sical behavior but it appears to be closer to capturing the
second-order correlation quantifier. Interestingly, as shown
in Fig. 5(b), I (ρ) increases with increasing anisotropy, thus
exhibiting clear quantum signatures in the DSC regime. In
contrast, in Fig. 5(d), I (ρ) is maximum for λ1/λ2 = 0.5,
which is a maximum of nonclassicality that is hidden in the
previous measures.

Now, we study the thermal quantum correlations between
the photons and the qubit through the quantifiers of negativity
N (ρ) and quantum discord D(ρ). In Fig. 6(a), we plot the
steady-state negativity N (ρ) as a function of λ1 for several
coupling ratios λ2/λ1 for T = 0.1ω. As the figure shows, at
some coupling ratios such as λ2/λ1 = 0.1, 0.3, 0.5, 0.7, the
negativity shows a clear dip, nearly to zero, between two
maxima. This minimum of near zero corresponds to the en-

ergy level crossing of the ground state and the first excited
state; see Figs. 1(b)–1(d). In the case of the JCM (λ2/λ1 = 0),
the steady-state negativity N (ρ) is nearly zero for coupling
strengths λ1 � 0.7ω. However, as the coupling strength λ1

increases, the negativity gradually rises until it reaches the
highest degree of entanglement compared with any other cou-
pling rate. In the case of the QRM (λ2/λ1 = 1), N (ρ) exhibits
a single maximum with the highest degree of entanglement
for coupling strength λ1 < ω. In Fig. 6(c), we depict the
steady-state negativity N (ρ) as a function of λ2 for different
coupling ratios λ1/λ2 at a fixed temperature of T = 0.1ω.
As observed in the figure, the N (ρ) exhibits a smooth be-
havior without a sudden drop to near zero. This is because,
in contrast to the previous scenario, there is no energy level
crossing between the ground state and the first excited state,
as shown in Figs. 1(g)–1(i). While the steady-state negativity
of Fig. 6(c) is qualitatively similar to the steady-state quantum
discord D(ρ) of Fig. 6(d), the situation differs for Figs. 6(a)
and 6(b). Indeed, in Fig. 6(b), we plot the quantum discord
D(ρ) as a function of λ1 for several coupling ratios λ2/λ1 for
T = 0.1ω. As the figure shows, its overall profile is similar to
that of Fig. 6(a); this means that almost all nonlocal quantum
correlations are due to entanglement. However, unlike the
negativity shown in Fig. 6(a), at the crossing of the ground
state and the first excited state the quantum discord D(ρ)
does not decrease to near zero for some coupling strengths
(e.g., λ2/λ1 = 0.1, 0.3, 0.5, 0.7). Thus we can infer the fol-
lowing: (i) All nonlocal quantum correlations are in the form
of entanglement, (ii) the quantum correlations increase with
anisotropy, and (iii) for high anisotropy they increase with
the coupling strength presenting its maximum in the DSC
regime.

It is worth noting that the system’s behavior for increasing
light-matter coupling, e.g., λi � 3ω (i = 1, 2), qualitatively
resembles the system’s behavior for the decoupled light-
matter case, i.e., λi = 0. Such a qualitative correspondence
implies a trivial behavior of the quantifiers for very large
light-matter interaction strengths, λi � 3ω (i = 1, 2), and for
anisotropies with values exceeding λi/λ j � 0.3, where i �= j;
see Fig. 1. This behavior can be understood as, in the depths
of the DSC regime, the spectrum becomes harmonic again
(see Fig. 1 for λi > 3ω), with the dressed states forming
product states between displaced Fock photonic states and
atomic states that are x polarized, leading to G(2)(0) = 2. The
nearly equal energy gaps (quasiharmonic spectrum) and the
eigenstates being product states in the DSC regime suggest
that (i) there is no degree of squeezing and macroscopicity
and (ii) the vanishing of quantum entanglement and quantum
discord at all temperatures should be expected (as shown in
Figs. 3–6).

V. ROBUSTNESS OF THERMAL QUANTUMNESS
AT HIGHER TEMPERATURES

As temperatures rise, thermal fluctuations increase, thereby
modifying the AQRM steady state as described in Eq. (12).
On one hand, higher temperatures result in an increased ex-
pansion of states in the polariton basis, which may potentially
lead to more frequent energy level crossings among higher
AQRM eigenstates. On the other hand, these thermal fluctua-
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FIG. 7. (a)–(h) Second-order correlation function G(2)(0) as a function of the light-matter coupling λi (i = 1, 2) for several choices
of coupling ratios λi/λ j (i �= j) and different temperatures T . The black dashed horizontal line corresponds to G(2)(0) = 2. Other system
parameters are as in Fig. 1.

tions may cause the system to lose its coherence, potentially
having a detrimental impact on the AQRM steady state. To
explore this nontrivial scenario, which involves a trade-off
between increased energy level interplay and the influence of
thermal fluctuations, we investigate how higher finite thermal
bath temperatures affect the generation of nonclassical and
quantum correlations in the AQRM, while considering all the
above quantifiers.

In Fig. 7, we illustrate the second-order correlation func-
tion G(2)(0) as a function of the light-matter coupling λi

(i = 1, 2) for several choices of coupling ratios λi/λ j (i �=
j) and different temperatures T . As evident from the fig-
ure, the higher the anisotropy, the more robust the quantum
correlations are in the presence of temperature fluctuations.
Moreover, it exhibits a larger quantum region as a function
of the coupling strengths. Notably, the correlation function
G(2)(0) is prone to thermal decoherence, as signatures of
nonclassicality (antibunching) survive only at temperatures as
high as T ∼ 0.15ω, as depicted in all panels of Fig. 7. For
higher temperatures, the antibunching effect is largely sup-
pressed with increasing temperature for the same values of the
coupling ratio, suggesting that thermodynamic fluctuations
consistently destroy nonclassical features in high-temperature
regions.

In Fig. 8, we show the temperature effects on the four
quantifiers, namely ζ 2, I (ρ), N (ρ), and D(ρ), as functions
of the light-matter coupling λi (i = 1, 2) and the temperature
T for different coupling ratios λi/λ j (i �= j).

In the first row of Fig. 8, we plot the squeezing parameter
ζ 2 as functions of λi (i = 1, 2) and T for different λi/λ j

(i �= j) values. Specifically, as observed in Figs. 8(a) and 8(d),
no squeezing effect is achieved in the specific cases of the
JCM (λ2 = 0) and the AJCM (λ1 = 0). However, for other
coupling ratios, significant squeezing effects are observed at
temperatures around T ≈ 0.3ω. Such a high degree of squeez-
ing is attained by decreasing the anisotropy, making the Rabi
model the ideal scenario for obtaining this resource.

In the second row of Fig. 8, we depict the macroscopicity
interference-based measure I (ρ) as functions of λi (i = 1, 2)
and T for different λi/λ j (i �= j) values. Unlike in the case
of the squeezing parameter, the macroscopicity interference-
based measure for the JCM and AJCM cases is nonzero,
as shown in Figs. 8(h) and 8(k). It is worth noting that the
macroscopicity takes nonzero values over a broader range of
coupling strengths compared with other ratios at low tempera-
tures T < 0.1ω. However, as the figure shows, this quantifier
is more susceptible to thermal fluctuations originating from
the thermal reservoir and practically disappears for tempera-
tures T > 0.1ω.

Lastly, in the third and fourth rows of Fig. 8, we de-
pict steady-state quantum entanglement N (ρ) and quantum
discord D(ρ). Both quantifiers exhibit qualitatively similar
behaviors. Similar to the macroscopicity interference-based
measure, both quantifiers are more pronounced over a broader
range of coupling strengths and temperatures. As the ratio
λ2/λ1 (λ1/λ2) increases, the range in which both quantifiers
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FIG. 8. The phase diagram of the (a)–(g) squeezing parameter ζ 2, (h)–(n) macroscopicity I(ρ ), (o)–(u) negativity N (ρ ), and (v)–(bb)
quantum discord D(ρ ), as functions of the light-matter coupling λi (i = 1, 2) and the temperature T for different coupling ratios λi/λ j (i �= j).
Other system parameters are as in Fig. 1.

appear gradually narrows. In the case of 0 < λ2/λ1 < 1, as λ1

changes, quantum entanglement N (ρ) appears in two regions,
with a value of zero between these two regions. This result is
due to the energy level crossing between the ground state and
the first excited state. However, for quantum discord D(ρ),
only one region appears. Interestingly, in the case of high
anisotropy, entanglement persists up to temperatures T ≈
0.3ω, while quantum discord demonstrates greater robustness
in the presence of thermal fluctuations up to temperatures
T � 0.4ω.

Our theoretical proposal to reach nonclassical equilib-
rium states not only is of academic interest but also meets
the present-day nontrivial experimental challenges, mainly
involving the coupling strength and low-temperature envi-
ronments. On the one hand, the physical model considered
is general and has been implemented in a large number
of systems, such as cavity quantum electrodynamics [77]
and superconducting circuits [72]. Among them, the USC
regime has been experimentally demonstrated for more than
a decade [36] (λ/ω > 0.1). Since then, the USC regime has
been achieved in several other systems [38]. On the other
hand, the DSC regime is within the reach of experimental
techniques, notably in Ref. [39] in a circuit quantum elec-
trodynamics setup implementing the QRM, for the highest
reported strength of light-matter interaction of λ/ω ≈ 1.34
with temperature of approximately 45 mK (kBT/h̄ω ≈ 0.16),
where thermal entanglement was also confirmed.

VI. CONCLUSION

In this paper, we consider the steady state of the AQRM
by solving a dressed master equation at thermal equilibrium.
Such a master equation in the dressed basis is valid for any
light-matter coupling strength, and where the resulting steady

state is indeed a Gibbs state. Our findings are twofold: (i) We
investigated the generation of quantum correlations and non-
classicality in the AQRM steady state at thermal equilibrium.
Through a comprehensive analysis of various measures of
quantum correlation and nonclassicality, we demonstrate that
quantum effects persist across a broad range of anisotropies
and coupling strengths, even at moderate thermal equilibrium
temperatures. (ii) Such quantum features significantly emerge
in the USC regime and at the onset of the DSC regime,
while practically vanishing in the deeper DSC regime. In
the dressed picture, this results in virtual field excitations
within the system. Notably, we show a significant difference
in the second-order correlation function when computed us-
ing dressed jump operators compared with using bare field
operators (i.e., when the light-matter coupling is assumed
to be switched off after the system reaches thermal equi-
librium). Both the difference between these quantifiers and
the persisting quantum features of the AQRM steady state at
high temperatures could allow for experimental approaches
to study the impact of virtual excitations in the USC regime.
In particular, the quantum features emerging from the system
avoid the need for demanding ground-state cooling.
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