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Quantum bistability in the hyperfine ground state of atoms
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First-order phase transitions are ubiquitous in nature; however, this notion is ambiguous and highly debated
in the case of open quantum systems. We construct a paradigmatic example which allows for elucidating the
key concepts. We show that atoms in an optical cavity can manifest a first-order dissipative phase transition
where the stable coexisting phases are quantum states with high quantum purity. These states include atomic
hyperfine ground states and coherent states of electromagnetic field modes. The scheme benefits from the
collective enhancement of the coupling between the atoms and the cavity field. Thereby we propose a readily
feasible experimental scheme to study the dissipative phase transition phenomenology in the quantum limit,
allowing for, in particular, performing a finite-size scaling to the thermodynamic limit.
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First-order dissipative quantum phase transitions (DQPTs)
[1,2] feature the following defining properties: (i) in a finite
range of a given control parameter, the quantum system has
multiple stable steady states, (ii) which are macroscopically
discernible by an order parameter, and (iii) are approximately
pure quantum states. When sweeping the control parameter
across the critical domain, the steady state depends on the
history, and the order parameter exhibits a hysteresis. It is con-
dition (iii) which is exotic, and while many classical systems
exhibit the multistability conditions (i) and (ii), it is only re-
cently that examples for the quantum version have been found
in various systems. A first-order DQPT was predicted theo-
retically for the clustering of Rydberg atoms [3–5], although
the experimental feasibility has been contested [6–9]. Optical
lattices with engineered losses [10,11], ultracold-atom cavity
QED systems [12], nonlinear photonic or polaritonic modes
[13,14], exciton-polariton condensates [15], and circuit QED
systems [16–18] have also been shown to feature first-order
dissipative phase transitions.

Optical bistability [19–23] is a paradigmatic example of
a first-order phase transition in cavity QED. In its common
form [20] it satisfies conditions (i) and (ii), but not (iii). The
transmission of a laser-driven optical resonator mode can be
suppressed or allowed at the same drive intensity, depending
on the state of the atoms in the cavity mode. The nonlinearity
originates from the saturation effect of two-level atoms. How-
ever, in the bright phase the saturated atoms correspond to a
high-entropy mixed state, breaking condition (iii).
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All three conditions are met in the case of the recently
revealed photon-blockade breakdown (PBB) phase transition
[24–26]. The experimental configuration is very similar, but
the atomic medium comprises only a single two-level atom,
and its electric dipole coupling with the mode has to be very
large. This can be achieved in superconducting circuit QED
systems in the microwave frequency regime where the signa-
tures of a closely related bistability effect have been observed
with three-level atoms [16].

In this paper we present an optical cavity QED scheme
which manifests a first-order dissipative quantum phase tran-
sition in a transparent way and makes use of the collective
enhancement of the coupling between the mode and an
ensemble of atoms. Similarly to PBB, the thermodynamic
limit where a bimodal phase-space distribution composed
of two metastable states becomes true bistability between
macroscopically distinct phases is reached by increasing
the cooperativity. However, in contrast to PBB, this can
be achieved by increasing not only the (single-atom) cou-
pling constant—a feat that appears impossible in the optical
domain—but also the atom number. This atom-number in-
crease is not accompanied by an increase of the volume of
the ensemble; spatial extension does not play an inherent role
in the present scheme.

The proposed scheme is the extension of a recent exper-
iment where we observed transmission blockade breakdown
[27,28]; cf. also [29] for a related scenario: here we use two
cavity modes instead of just one. The modes interact with an
ensemble of atoms modeled by a four-level scheme. Besides
the nonextensive character, the striking feature of the present
scheme within the above listed zoo of first-order DPQTs is the
high quantum purity of the metastable steady states, whereas
in the thermodynamic limit, the bistable phases become per-
fectly pure. The two modes are either in vacuum or in a
high-intensity coherent state; meanwhile the atoms are in one
of their hyperfine ground states. The essential features and the
phase diagram can be captured by a mean-field theory.
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FIG. 1. (a) Parameters of the cavity QED scheme with two laser-
driven modes interacting with an ensemble of atoms. The modes are
spatially separated only for illustrative purposes; in practice, two fun-
damental modes of the cavity can be used. (b) Relevant level scheme
of the atoms with two dipole-allowed transitions cross-coupled by
relaxation processes. Schematic panels at the bottom represent that
the atomic ground states switch the transmission or reflection of the
cavity drives.

Consider a cold ensemble of N atoms interacting with two
modes of a cavity with frequencies ωCi and linewidths κi

(i = 1, 2 for the two modes, respectively; cf. Fig. 1). The
modes are externally driven by coherent laser lights at fre-
quencies ωi, with drive amplitudes

√
N ηi, respectively. The

scaling factor
√

N is introduced for later convenience. The
cavity modes couple to the electric dipole transitions |g1〉 ↔
|e1〉 and |g2〉 ↔ |e2〉, respectively. These transitions have res-
onance frequencies ωAi and linewidths γi, and the electric
dipole interaction strength is expressed in terms of the single-

photon Rabi frequency, gi =
√

N ωCi
2ε0 h̄V di, with di being the

atomic dipole moment, and the mode volume is V . Note that
by introducing N into the definition of the gi, these parameters
describe the collective coupling between the modes and the
cold atomic ensemble.

Importantly for the scheme, atoms from the excited lev-
els may decay not only to the cavity-coupled ground state,
i.e., |ei〉 ↔ |gi〉, but cross decays |e1〉 → |g2〉, |e2〉 → |g1〉
are also possible with rates �1 and �2, respectively. This
mechanism couples the subspaces 1 and 2. The drive 1(2)
is very far detuned from the transition e2(1) → g2(1), thus no
cross-coherence is created between the states 1 and 2.

The time evolution of the dynamical variables can be
described by a mean-field model using Maxwell-Bloch equa-
tions [30]. The atoms collectively couple to the cavity modes,
which mediate an infinite-range interaction. As a result the
mean-field theory provides an accurate description of our
system. While in the case of short-range interactions the fluc-
tuations can wash out the mean-field bistability [31], in the

case of collective coupling the mean-field equations become
exact in the thermodynamic limit [32].

Let αi = Tr(ai )/
√

N denote the complex amplitude of the
cavity field modes, where ai is the annihilation operator of the
respective cavity mode. The atomic polarization of the corre-
sponding transition is the quantum average mi = 〈|gi〉〈ei|〉. In
the spirit of the mean-field approximation, the atoms are not
distinguished according to their coordinates or velocities in
the cavity mode, so we do not need to add ensemble averaging
to the collective variables. The filling ratios of the states |gi〉
are denoted by ngi = 〈|gi〉〈gi|〉—they are numbers between 0
and 1—and nei for the states |ei〉 are defined analogously. The
mean-field equations of motion read

α̇1 = (i	C1 − κ1)α1 + g1 m1 + η1,

ṁ1 = (i	A1 − γ1 − �1) m1 + g1[ne1 − ng1]α1,

ṅe1 = −g1[α∗
1m1 + m∗

1α1] − 2(γ1 + �1)ne1,

ṅg1 = g1[α∗
1m1 + m∗

1α1] + 2γ1 ne1 + 2�2 ne2, (1a)

α̇2 = (i	C2 − κ2)α2 + g2m2 + η2,

ṁ2 = (i	A2 − γ2 − �2) m2 + g2[ne2 − ng2]α2,

ṅe2 = −g2[α∗
2m2 + m∗

2α2] − 2(γ2 + �2)ne2,

ṅg2 = g2[α∗
2m2 + m∗

2α2] + 2γ2 ne2 + 2�1 ne1. (1b)

The equations of the field mode αi and the polarization mi are
written in a frame rotating at ωi (i = 1, 2). Without loss of
generality, for simplicity, we will consider a symmetric case
that the parameters with index i = 1 and 2 are equal pairwise,
γi = γ , �i = �, κi = κ , and gi = g for i = 1, 2. We consider
resonant driving of the cavity modes, 	C1 = 	C2 = 0. The
cavity linewidth κ = 1.32γ and the atom-cavity coupling are
taken from the experiment [28]; for this latter the single atom
coupling g(N = 1) = 0.1γ . Without loss of generality we
chose � = γ . The effect of the coherent drive η1 on the atomic
variables involving state 2 scales with (ω1 − ω2)−1, which is
the inverse of the hyperfine splitting, 1/(103γ ), and is thus
negligibly small compared to the other variables. The drive
amplitudes η1 and η2 are left to be the control parameters of
the system, which can be tuned to explore different phases and
transitions between them.

What we achieved with the scaling with N of the dynamical
variables and parameters introduced above is that N does not
appear in the system (1), not even as the upper limit of the
range of the population variables. Moreover, g with the above
definition (incorporating a factor of

√
N) makes g2 propor-

tional to the ensemble cooperativity C ≡ g2/
√

(	2
C+κ2 )(	2

A+γ 2 ).
This latter quantity is a measure of nonlinearity as attested by
that optical bistability in a system of two-level atoms coupled
to a cavity mode becomes possible in the C ∼ 1 regime. Note
that for �i = 0 the system (1) separates to two uncoupled
two-level systems, where bistability would originate from
the saturation of the atoms. Although we will consider large
atomic detuning 	A with respect to the linewidth γ (for
numerical calculations 	A = −12γ was chosen, where the
negative sign stands for red detuning), significant excited state
population nei can occur for large intensities. This possibility
is taken into account in these equations. Nevertheless, in the
following we will study another solution of the mean-field
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FIG. 2. Phase diagram with domains with a different number of
stable solutions of the system (1) on the plane of the drive amplitudes
η1, η2. The cooperativity increases from (a) to (d), corresponding to
atom numbers N = 5 × 103, 104, 105, and 106, respectively, with the
single atom coupling g(N = 1) = 0.1γ . Relevant quantities along
the coloured quarter circular arcs plotted on the phase diagrams
are shown in Figs. 3 and 4. Radii of the colored circular arcs are
η/γ = 0.29, 1.13, 2.25, 3.38, 4.5. The white arcs in the low drive
limit are of particular interest with respect to DQPT. The symmetry
to the diagonal is a consequence of the artificial choice of equal
parameters for the 1 and 2 transitions.

equations which is bound to the cross-coupling decay terms
and takes place in the low-excitation limit of the atoms.

The steady-state solution of Eqs. (1) can be obtained by set-
ting the temporal derivatives on the left-hand side to zero. The
remaining system of algebraic equations can be transformed
into a single, seventh-order polynomial equation with real
coefficients for the variable ne1 − ng1. Such an equation can
have 1, 3, 5, or 7 real solutions out of which, respectively,
1, 2, 3, or 4 are stable, the rest are unstable. The number of
stable solutions depends on the control parameters η1 and η2,
and domains with different numbers are depicted as a phase
diagram in Fig. 2.

The phase diagram depends on the cooperativity that in the
present setup can be changed by the atom number N . Whereas
N = 5 × 103 [Fig. 2(a)] allows for one or three solutions
only, the large atom numbers N = 105 and 106 [Figs. 2(c)
and 2(d)] give rise to domains with five (orange edge of
the bright yellow domain) or even seven solutions (bright
yellow domain). An intermediate phase diagram is obtained
for N = 104 [Fig. 2(b)] where a domain with five solutions
exists, but one with seven solutions does not. A closer look
at the concrete solutions in the domains with five and seven
solutions (not shown here) reveals that the excited states nei

are significantly populated, while the polarizations mi have
low values. This means that the steady states correspond to
statistical mixtures, i.e., the quantum purity of the state is low.
In the following we will focus on the bottom left corner of the
phase diagrams where only one or two stable solutions exist.

The different solutions in a given domain of the phase
diagram are distinct in a macroscopic observable, which is
the transmitted power κ|αi|2 in our case (i = 1, 2). This is
a suitable order parameter of phases and is readily obtained
from the mean-field model. The solution (valid for our case of
	C = 0 and |	A| 
 γ + �) reads

|αi|2 = η2
i

κ2

1

1 + C2(nei − ngi )2
, (2)

highlighting the role of the cooperativity as a measure of
nonlinearity [33]. The factor η2

i /κ
2 is simply the number of

photons in the resonantly driven empty cavity and will be
used as a normalization factor. The second factor above can
be identified as transmittance. Equation (2) is not an explicit
solution as the population difference nei − ngi depends on
the intracavity intensity |αi|2. However, this form allows for
getting insight into the phases.

If the population ng1 � 1 and ne1 � ng1, the transmittance
through the mode 1 is suppressed for large cooperativity
C 
 1. As there is no field in the cavity mode 1, all the atoms
being in state |g1〉 is a stable solution. On the other hand,
according to the solution above with ne2 ≈ 0 and ng2 ≈ 0,
mode 2 is closely resonantly excited, which leads to trans-
mittance 1. Reversely, there is also a stable solution in which
all the atoms are in |g2〉, ng2 � 1, and the transmittance of
mode 1 is close to unity. The domain with three solutions
in Fig. 2 corresponds to the case when these stable steady

FIG. 3. Crossing domains with multiple stable solutions along the circular arcs in Fig. 2(a) (N = 5 × 103). The transmittance of cavity for
mode 1 (a) and relative atomic population (b), (c) are shown in corresponding color as a function of the arc angle ϕ measured from the vertical
axis. Solid (dashed) lines correspond to stable (unstable) solutions.
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FIG. 4. Finite-size scaling to the thermodynamic limit. The order parameter represented by the transmittance of cavity for mode 1 is
plotted in (a), and the relative atomic population is shown in (b) and (c) along the circular arcs on the phase space in Fig. 2(a) with a radius of
η/γ = 0.29 for different atom numbers N . ϕ is measured from the vertical axis. Solid (dashed) lines correspond to stable (unstable) solutions.

states coexist. This will be further investigated along circular
sections of the phase diagram, where η2

1 + η2
2 ≡ η2 is con-

stant. As the total input power per atom is proportional to
η2

1 + η2
2, this section represents a fixed total drive intensity

per atom, and increasing the angle ϕ = arctan η2/η1 from 0
to π/2 corresponds to a continuous switching from driving
mode 1 to 2.

Figure 3 shows cavity transmittance [Fig. 3(a)], ground
state [Fig. 3(b)], and total excited state populations [Fig. 3(c)]
as a function of the angle measured from axis η1 for case
N = 5000 along circular arcs of various radii plotted in
Fig. 2(a) with the same colors. Because of the 1 ↔ 2 sym-
metry of the scheme, the plot of the same quantities with
index 2 gives just the mirror images of the ones with index
1; therefore only the latter is shown. The red and the green
arcs do not cross the bistable region, hence there is only
one real solution along those, which is, of course, stable.
The rest of the curves, for both the transmittance and the
ground-state population, show a characteristic S-shaped form
of a bistability with overlapping stable solutions (solid line)
connected by an unstable one (dashed line). The stability has
been checked by means of linear perturbation analysis on
Eqs. (1). High (low) transmittance corresponds to low (high)
relative ground-state population. For decreasing the total input
power, the S-shaped curves show convergence in Figs. 3(a)
and 3(b), whereas a gradual decrease of the population in
the excited states is shown in Fig. 3(c). In this limit the
bistability is formed between the two hyperfine ground states,
the excited states being virtually populated only underway
on the two-photon transition between the ground states. One
can identify thus a dissipative quantum phase transition in the
spirit of the three conditions given in the introduction, where
in particular, the phases correspond to quantum states of high
purity.

The thermodynamic limit, where the duality of metastable
phases becomes a phase transition, can be defined as C → ∞
while η is kept constant. In a practical case, the cooperativity
can be increased by the atom number, hence the N → ∞
implies that the actual drive power N η2 has to go to infinity.
The axes of the phase diagrams in Fig. 2 already used this

scaling. Therefore the circular arcs of a radius η/γ = 0.29,
plotted in each phase diagram (white), are fixed in the finite-
size scaling. While the boundaries of the multivalued domain
vary slightly, the phase diagram is qualitatively the same. For
increasing cooperativity (via atom number), Figs. 4(a) and
4(b) show that the S-shaped curve tends to a sharper Z-shaped
one (mirrored). Interestingly, when going towards the thermo-
dynamic limit, both solutions become stable in almost the total
range of the control parameter η2/η1. The initial condition
determines which phase the system takes in the bistability
domain. Even a very strong drive η1(2) cannot kick off the
atoms from the state g1(2) because the light cannot penetrate
into the cavity. Simultaneously, as shown in Fig. 4(c), the
population in the excited states tends to completely vanish
in this limit. Thus, in the thermodynamic limit, the proposed
system has two stable solutions with the atoms being in one
of the ground states |g1(2)〉 and the other mode 2 (1) being
populated by a coherent state, meaning that in this limit
the perfect quantum purity of the phases of the system is
achieved.

To summarize, we have proposed an experimentally ac-
cessible scheme of a metastability of steady states turning
into true bistability, that is, a first-order dissipative quan-
tum phase transition in a nonextensive thermodynamic limit,
where moreover the phases become pure states. The four-level
atomic scheme can be realized to a good approximation within
the hyperfine structure of, e.g., the D2 line of rubidium 87, as
discussed in [28]. The atom number can be varied in a con-
trolled way over many orders of magnitude in an experiment,
allowing thus for a finite-size scaling to the thermodynamic
limit. Besides the investigation of fundamental concepts of
phase transitions in mesoscopic quantum systems, the bista-
bility between long-lived ground states holds prospects for
new atomic memory architectures.
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and Innovation and the National Research, Development and
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00004).
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