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Exploring new states of matter with a photonic emulator
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We implement the equation of motion of the large-N Gross-Neveu model from strong-interaction physics in
photonic waveguide arrays and study one of its paradigmatic multifermion bound-state solutions in an optical
experiment. The present study constitutes an important step towards waveguide-based simulations of phenomena
relevant for high-energy physics.
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In recent years, earlier speculations about the existence
of new states of fermionic matter in the form of inhomoge-
neous phases where translational invariance is spontaneously
broken have turned into a firm theoretical prediction for
certain low-dimensional, exactly solvable field theories such
as the Gross-Neveu model [1–3]. Similar phenomena have
been predicted and extensively studied in a wide variety of
research fields, ranging from condensed-matter systems [so-
called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases in
superconductors in large magnetic fields] [4,5], via ultracold
atomic gases, nuclear physics, and the interior of neutron
stars, to quark matter at the highest densities; see Refs. [6–8]
for reviews. While exact theoretical solutions are now avail-
able for one-dimensional (1D) models, much less is known
for the relevant cases of 2D layered structures or in full 3D.
This is not merely due to technicalities, but also due to the
fact that a deeper understanding of the Dirac equation in
inhomogeneous phases is conceptually lacking; for example,
higher-dimensional analogs of the 1D Peierls instability are
still searched for [9]. Moreover, to date, fermionic matter char-
acterized by a spontaneously broken translational symmetry
is extremely difficult to realize in an experiment. However,
testing such phenomena experimentally would provide un-
precedented insights into the very foundations of theory and
trigger conceptually new theoretical approaches for the de-
scription of these systems.

Modern optics and photonics are driven by the fact that
photons can be coherently controlled in space and time at the
highest precision level. This goes hand in hand with recent
developments in precision fabrication and design of optical
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systems. A prominent example is given by waveguide arrays
[10] that can be designed as photonic analogs of systems gov-
erned by complex wave equations, including even quantum
mechanical equations such as the relativistic Dirac equation.
Appropriately designed photonic waveguide arrays with alter-
nating refractive indices of adjacent lattice sites have already
proved their capability to emulate a variety of relativistic
phenomena in a wide range of parameter regimes, including
Zitterbewegung [11], pair creation [12], particles with random
mass [13], ultrastrong magnetic fields [14] and even tachyons
[15]. Since the Dirac equation governs the dynamics of almost
all known matter particles in the universe at the microscopic
level, photonics has the potential to explore states of fermionic
matter in an unprecedented way.

In this Research Letter, we present a photonic emulator
for the physics of relativistic fermion systems and apply it
to the massless Gross-Neveu model in the large-N limit [1].
Remarkably, at low temperatures T the latter favors a ground
state where translational symmetry is spontaneously broken.
This manifests itself in a spatially inhomogeneous scalar
condensate, or equivalently a coordinate-dependent fermion
mass. As exact solutions are available for both the conden-
sate shape and the full Dirac spectrum [2,3], one of those
can be used as a paradigmatic example for mapping the
Dirac equation in an inhomogeneous condensate onto pho-
tonic waveguide arrays.

The Gross-Neveu (GN) model was originally introduced
in 1974 [1] as a toy model for quantum chromodynamics, that
is, the theory of strong interaction. It is a fermionic relativistic
quantum field theory in 1+1 space-time dimensions and de-
scribes N species of massless Dirac fermions ψ (n) = ψ (n)(x),
with n ∈ {1, . . . , N}, interacting with each other via a four-
fermion interaction; xμ = (t, x). The (massless) GN model is
defined by the Lagrangian

L =
N∑

n=1

ψ̄ (n)i/∂ψ (n) + 1

2
g2

(
N∑

n=1

ψ̄ (n)ψ (n)

)2

, (1)
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with two-component spinor fields ψ (n) = (ψ (n)
1 , ψ

(n)
2 )T and

ψ̄ (n) = (ψ (n) )†γ 0. Here, we use natural units c = h̄ = 1
and employ the shorthand notation /∂ = γ μ∂μ = γ 0∂t + γ 1∂x,
with γ 0 = β and γ 1 = βα denoting the Dirac matrices in 1+1
dimensions, where μ runs from zero to 1. The coupling g is
dimensionless in 1+1 dimensions.

The equation of motion of the fermion field ψ (i) follows
from the Euler-Lagrange equation, yielding(

i/∂ + g2
N∑

n=1

ψ̄ (n)ψ (n)

)
ψ (i) = 0. (2)

As the GN model is a relativistic quantum field theory (QFT),
and thus genuinely a multiparticle theory, the fermion fields
are not single-particle wave functions, but second quantized
field operators featuring infinitely many positive and negative
energy states. This implies that also the bilinear combination
of the fermion fields inside the parentheses in Eq. (2) is oper-
ator valued.

In the ’t Hooft limit, defined by sending N → ∞ while
keeping Ng2 = const, this bilinear combination can be re-
placed by its expectation value in the considered multifermion
state [16]. Corrections are parametrically suppressed by in-
verse powers of N , rendering this replacement exact. In this
large-N limit, the equation of motion (2) reduces to

(i/∂ − S(x))ψ (i) = 0, (3)

with scalar potential S(x) given by

S(x) = −g2
N∑

n=1

〈ψ̄ (n)ψ (n)〉. (4)

Here, we focus on static configurations for which the ex-
pectation value 〈ψ̄ (n)ψ (n)〉 is time independent. Equation (3)
corresponds to the Dirac equation describing fermions with a
prescribed coordinate-dependent mass S(x). The difficulty in
solving it arises from the self-consistency condition (4), that
is, S(x) itself is defined in terms of solutions of the Dirac equa-
tion (3). Aiming at the ground state of the system for given
fermion density and temperature, one has to solve Eqs. (3) and
(4) with infinitely many single-particle states occupied: Apart
from all negative energy states, additional energy levels are to
be populated until the prescribed value for the fermion density
is reached. The infinite sum over the negative energy states is
divergent and requires regularization. However, it turns out
that all dependences on the regularization, as well as the bare
coupling constant g, can be traded for the physical fermion
mass m. The latter is the only parameter of the translationally
invariant vacuum characterized by the Dirac sea being filled
and all positive energy levels being empty [16]. The physical
fermion density in the system is also measured relative to the
vacuum state. Multifermion bound states of Nf � N fermions
in excess of the vacuum are often referred to as baryons [17]
due to their analogy to baryons in hadron physics. Baryon
number 1 is assigned to a state with Nf = N , and the fermion
density in the system is conventionally parametrized by the
baryon density ρ. The similarity of the model to the strong
interactions has triggered a substantial amount of analytical
and numerical studies in recent years [18–27].

FIG. 1. Phase diagram of the theory. New states of matter char-
acterized by S(x) �= const arise for small temperatures [28].

In Fig. 1, the phase diagram of the GN model in the
(ρ, T ) plane is shown [28]. In the regions where S(x) = const
and S(x) = 0 the ground state of the system is translation-
ally invariant. In the gapped phase, an effective mass for
the fermions is spontaneously generated by chiral symmetry
breaking, while they remain massless in the gapless phase.
Finally, in the phase where the scalar condensate S(x) ex-
hibits an explicit dependence on x the ground state breaks
translational symmetry and is characterized by a coordinate-
dependent fermion mass. This is the regime of new states
of matter [2,3,28]; cf. also Refs. [29,30] for applications in
condensed-matter physics.

It can be shown that the single-kink scalar potential

S(x) = m tanh(mx) (5)

corresponds to one of the cases for which Eqs. (3) and (4)
can be solved analytically [31]. Equation (5) is fully deter-
mined by the physical fermion mass m. It is characterized
by a filled negative energy continuum and a valence level
populated with n � N fermions lying right in the middle of
the energy gap separating the negative and positive energy
continua; see Fig. 2(a) for an illustration. The total fermion
number associated with this object is Nf = n − N/2 [32]. As
it interpolates between asymptotic states with positive and
negative physical fermion mass m for x → ±∞, respectively,
it amounts to a manifestly relativistic object which has no
nonrelativistic limit [16].

Now, the idea of our work is to emulate the Dirac
equation by a waveguide array implementing a spatially inho-
mogeneous potential S(x), which is a self-consistent solution
of Eqs. (3) and (4). In this manner, multifermion bound-state
formation, which is closely related to the phenomenon of
translational symmetry breaking [7], can be directly probed.
Such an experiment illustrates that photonic platforms have
the potential to serve as a viable laboratory for the physics
of relativistic self-interacting fermion systems; in this way, an
alternative and flexible tool to search for new states of matter
in photonic experiments becomes available.

Equation (3) can be rewritten as

i∂tψ
(i) = −iα∂xψ

(i) + βS(x)ψ (i). (6)

We choose α = σ1 and β = σ3, with Pauli matrices σi, and
discretize the spatial coordinate x on a lattice. Obviously, the
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FIG. 2. (a) Scalar potential (red) and associated valence number
density (green) in units where m = 1 as a function of x. (b) Photonic
emulation in an array of 60 waveguides with alternating high and low
refractive indices (blue) as a function of the waveguide number N .
The emulated scalar potential (red) gives rise to a localized mode in
the center of the structure.

off-diagonal matrix α couples the equations for the upper and
lower spinor components. Following Ref. [33], we decompose
a one-dimensional lattice with lattice spacing d into two inde-
pendent sublattices of lattice spacing 2d to accommodate the
two independent components of the spinor field: The upper
component resides on the even sites, and the lower component
resides on the odd sites. In turn, the pair of lattice sites 2n and
2n − 1, with n ∈ Z, is associated with the same spatial coor-
dinate x. When expressing the components of the spinor field
as ψ

(i)
1 (x, t ) → (−1)na(i)

2n (t ) and ψ
(i)
2 (x) → i(−1)na(i)

2n−1(t ) in
terms of complex amplitudes a(i)

N (t ), one can discretize the
scalar potential S(x) → S(Nd ) with N = 2n for the upper
spinor component and N = 2n − 1 for the lower spinor com-
ponent. This results in the equation [33,34]

i
d

dz
a(i)
N = −(

a(i)
N+1 + a(i)

N−1

) + SN (−1)N a(i)
N , (7)

where we introduced the dimensionless time z = t/(2d ) and
the dimensionless potential SN = 2d S(Nd ). The evolution
of the amplitude a(i)

N with z is coupled to the neighboring
amplitudes a(i)

N±1. Equation (7) is amenable to a waveguide

FIG. 3. (a) Experimental light dynamics in the photonic struc-
ture. Clearly, the beam is localized, which emulates the valence state
in the GN model. (b) Numerical confirmation of the experimental
results, obtained by integrating Eq. (7). (c) Normalized (norm.) re-
fractive index of the individual waveguides (blue) and corresponding
scalar potential (red). (d) Eigenvalue diagram of the implemented
photonic structure. Clearly, the GN valence state at the kink is visible
in the middle of the gap (in red). Besides, the photonic structure
supports two additional localized states at the edge of the band gap
(also in red).

implementation [11]. As each of the distinct fermion species
i ∈ {1, . . . , N} fulfills the same equation, it suffices to sim-
ulate it for a single fermion species. The coordinate z can
be mapped onto the longitudinal coordinate of the waveg-
uide array, and a(i)

N can be mapped onto the amplitude of the
light coupled into the N th waveguide. Here, it experiences
the waveguide-specific index of refraction SN , as shown in
Fig. 2(b). Using our conventions for the Dirac matrices, the
analytical solution for the valence spinor associated with the
single kink potential (5) is given by [16,31]

ψ0(x) =
√

m e−iϕ

2 cosh(mx)

(
1
i

)
, (8)

where ϕ is an arbitrary global phase, which drops out in
observables such as ψ

†
0 ψ0.

For our experiments, we fabricate various waveguide lat-
tices consisting of 60 waveguides using the direct-laser
writing technology [35]. The length of the waveguides is l =
100 mm, the lattice constant is d = 16 µm, and the average
refractive index of each full lattice is δn = 6 × 10−4. In order
to implement the last term in Eq. (7), the two sublattices are
realized by fabricating an alternating sequence of waveguides
with high and low refractive index change [11]. This tuning
is accomplished by varying the ratio between the writing
velocities of adjacent waveguides in the sublattices; the mag-
nitude of the writing velocity difference is proportional to the
scalar potential SN . Importantly, changing the writing speed
leaves the intersite hopping of κ = 0.14 mm−1 essentially
unchanged [36]. A fluorescence microscopy technique [37]
enables us to map the flow of light from the top of the sample
and, thus, to visualize the spinor wave packet evolution. The
array is excited by a broad Gaussian beam at a wavelength
of λ = 633 nm with a spot size of ∼80 µm in the transverse
direction, covering approximately five waveguides. A repre-
sentative example of dynamics in such a fabricated waveguide
structure is shown in Fig. 3. The refractive index detuning
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FIG. 4. Experimentally obtained approximate width of the band
gap as a function of the refractive index detuning. The insets show
examples of the associated eigenmodes characterizing the valence
spinor (8) discretized in the waveguide array as a function of the
waveguide number; cf. also Fig. 2(b).

between the sublattices far away from the kink at the center
of the structure—that is, at SN (±∞)—is n ≈ 2 × 10−4.
Upon excitation in the center of the array, i.e., directly at the
kink, clearly a bound dynamics is observed in the form of an
oscillatory motion of the light beam [see Fig. 3(a)] matching
the analytical predictions for the valence level of the kink
potential (5). The light diffracted to the left in Fig. 3(a) can be
attributed to an inevitably imperfect excitation in experiment.
Our observation is supported by a numerical integration of
Eq. (7), which yields dynamics that resembles our experi-
mental data [see Fig. 3(b)]. The implemented (normalized)
refractive index distribution of the waveguide lattice is shown
in Fig. 3(c), emulating the scalar potential (5) in the center of
the structure. A plot of the respective eigenvalues is shown in
Fig. 3(d), showing the midgap state (8) that is localized at the
kink.

Moreover, the eigenvalue diagram in Fig. 3(d) shows not
only that the midgap bound state as predicted for the GN
valence state is emerging, but also that the two states at the
inner edges of the bands slightly penetrate into the gap and,
hence, become localized bound states as well. This behavior
is a result of the intrinsic lattice discretization and, hence, a
characteristic feature of our photonic emulator. When launch-
ing light into the center of the lattice, all three states are
excited; as a result, one observes a beating between the states.
However, this beating is spatially confined in the very vicinity
of the kink. Interestingly, the beating length lB can be used
to estimate the width of the band gap in the experimental
system, as it is connected to the energy difference E of
the states by lB = 2π/E [38]. As the other localized states
reside close to the edge of the band gap, E is a measure
for the band gap width. To explore this feature, we conducted
several experiments similar to that in Fig. 3 with different
normalized refractive index detuning n at the edges of the

waveguide lattices [i.e., at SN (±∞)]. In Fig. 4, we plot the
experimentally determined gap widths as a function of n.
Evidently, the band gap width increases almost linearly for
increasing detuning. Equation (5) implies that the width of
the band gap is directly related to the fermion mass m, which
also determines the spatial localization of the valence spinor
(8). Hence our emulator allows for an indirect determination
of both the fermion mass and the spatial localization of the
valence spinor (see the insets in Fig. 4), via observing the
oscillation period of the light wave.

In conclusion, we reported an implementation of a
photonic emulator for phenomena related to bound-state for-
mation and translational symmetry breaking in the ground
state of the large-N Gross-Neveu model. Our results sug-
gest that waveguide optics could provide an experimentally
accessible classical emulator to test complex predictions con-
cerning the spontaneous breaking of translational invariance
and the formation of spatially inhomogeneous phases in the
phase diagram of the theory. A particularly interesting future
application of our photonic emulator will be the study of
multifermion bound-state formation in quantum field theories
in the nonrelativistic limit. Here, the Dirac sea involving in-
finitely many filled negative energy states can be integrated
out. This results in a no-sea effective field theory featuring
fermion fields of manifestly positive energy only [39], for
the study of which our photonic emulator should be ideally
suited. The no-sea analog of the Gross-Neveu model as well as
many other 1+1-dimensional field theories with four-fermion
interactions can even be solved analytically, which provides
various benchmark solutions for such studies [40]. In partic-
ular for phenomena in 2D and 3D settings, where the search
for new states of matter is extremely challenging, photonics
may provide a promising route for exploring these phenomena
experimentally.
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