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The evolution of a quantum system subject to measurements can be described by stochastic quantum trajecto-
ries of pure states. Instead, the ensemble average over trajectories is a mixed state evolving via a master equation.
Both descriptions lead to the same expectation values for linear observables. Recently, there is growing interest in
the average entanglement appearing during quantum trajectories. The entanglement is a nonlinear observable that
is sensitive to so-called measurement-induced phase transitions, namely transitions from a system-size dependent
phase to a quantum Zeno phase with area-law entanglement. Intriguingly, the mixed steady-state description of
these systems is insensitive to this phase transition. Together with the difficulty of quantifying the mixed state
entanglement, this favors quantum trajectories for the description of the quantum measurement process. Here,
we study the entanglement of a single particle under continuous measurements (using the newly developed
configuration coherence) in both the mixed state and the quantum trajectories descriptions. In both descriptions,
we find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of
the measurement strength. The entanglement engenders a notion of coherence length, whose dependence on the
measurement strength is explained by a cascade of underdamped-to-overdamped transitions. This demonstrates
that measurement-induced entanglement dynamics can be captured by mixed states.
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A quantum system is described by a wave function and,
unlike its classical counterpart, can assume several states at
once (superposition), where each state is associated with a
certain (probability) amplitude. The time evolution of these
amplitudes is governed by the famous Schrödinger wave
equation [1]. However, when we measure the particle in a
specific classical state, the wave function’s superposition must
abruptly collapse with a state-dependent probability [2–4].
This stochastic process is incompatible with the deterministic
Schrödinger equation. Over the years, various attempts have
been made to integrate the measurement postulate into the
framework of continuous wave function evolution by coupling
the system to a detector [3–7]. In this case too, however, the
quantum system effectively becomes open in the presence of
the out-of-equilibrium detectors, and measurement backaction
on the system requires a statistical average over the quantum
detector states. As a result, the wave function’s time evolution
under a sequence of measurements can be described by a
quantum trajectory [4,8]: the continuous evolution governed
by the Schrödinger equation is interrupted by stochastic jumps
whenever a measurement occurs.

Due to this emergent stochasticity, we can also consider
the evolution of the average probability density distribution
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of the measurement outcomes. This engenders a continuous
evolution of the system’s density matrix using Lindblad’s
master equation [9,10]. Alternatively, the Lindblad master
equation can be derived from the Schrödinger equation of the
combined system and detector by tracing out the detector’s de-
gree of freedom in the limit of weak system-detector coupling
and Markovian detector’s dynamics [4,5,8,11,12]. Note that
different assumptions on the detector and its coupling to the
system lead to different types of master equations, including
Nakajima-Zwanzig [13,14], Bloch-Redfield [15–17], or the
time-convolutionless master equations [18–21], can incorpo-
rate higher orders of system-detector coupling [22–24], and
lead to exotic measurement protocols [25–28]. For the pur-
pose of this work, we will remain within the Lindblad master
equation framework.

Recently, the equivalence between the quantum trajec-
tory and Lindblad master equation descriptions has been
challenged in the context of measurement-induced phase tran-
sitions. Here, the competition between the coherent evolution
and the measurement collapse leads to a phase transition that
is commonly quantified using an entanglement measure as an
order parameter. Specifically, one observes a transition from
a critical phase with system-size dependent entanglement for
weak measurements to an area-law quantum Zeno phase for
strong measurements [30–34], which has been reported in
early experiments [35,36].

Crucially, the order parameters used to quantify
measurement-induced phase transitions are nonlinear
functions of the density matrix, leading to a different outcome
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FIG. 1. (a) Setup: spinless particles hopping with amplitude J/2 on a chain of length L [cf. Eq. (1)]. The particles are monitored with
strength γ [cf. Eqs. (2) and (3)]. (b)–(d) Evolution of local densities 〈ni〉. (e)–(g) Evolution of the configuration coherence CN . (b) and (e):
Without monitoring (γ = 0), the evolution is ballistic and supported by extensive entanglement. (c) and (f): Quantum random walk of a single
quantum trajectory for measurement strength γ = 0.1 [cf. Eq. (2)]. The ballistic evolution becomes interrupted by stochastic collapses. (d) and
(g): Quantum-to-classical crossover of the mixed state evolution for measurement strength γ = 0.04 (cf. Eq. (3); throughout this work using
QUTIP [29]). The evolution changes from ballistic at short times to diffusive at long times.

when averaging over sample paths or over the (density
matrix) ensemble. Curiously, the mixed state described by
the Lindblad master equation shows no such phase transition
because at long times, the disentangling measurements
will always defeat the entangling effects [30,32,37,38].
Moreover, while the entanglement of quantum trajectories
can be efficiently measured by means of the entanglement
entropy [39], it is still notoriously difficult to extract the
entanglement of the mixed state [40,41]. This striking
difference has sparked a discussion about which of the
quantum measurement descriptions is more revealing, with
significant implications for a wide range of research fields,
including quantum devices in the NISQ era [42,43] and
quantum metrology [44–46].

Here, we resolve the discrepancy between the two descrip-
tions in capturing the measurement-induced entanglement
dynamics. To quantify entanglement in both the Lindblad and
the quantum trajectory descriptions, we employ the recently
developed configuration coherence [47,48]. For simplicity, we
study a single particle in the presence of local density mea-
surements. The corresponding dynamics of monitored free
fermions has been studied at trajectory levels [49–60] showing
the presence of a measurement-induced area-law phase. In
the Lindblad description the detector resembles a dephas-
ing environment. As the density matrix thermalizes in the
long-time limit, we study instead the short- and intermediate-
time behavior of the system. Here, we find that the quantum
trajectories and the mixed state show a qualitatively similar
entanglement evolution, and are able to extract a notion of
coherence length using both approaches. We further show that
this coherence length saturates for large values of the mea-
surement strength. The saturation of the coherence length can
be understood as a cascade of underdamped-to-overdamped
transitions in the Liouvillian eigenmodes [61]. Our results
enable the investigation of the measurement-induced entan-
glement phase transition in the context of mixed states.

We consider a spinless particle hopping on a 1D chain in
the presence of local density measurements, see Fig. 1(a). The

particle’s free evolution is described by the Hamiltonian

H = J

2

L−1∑
i=1

[a†
i ai+1 + a†

i+1ai ], (1)

with J the hopping amplitude, a†
i (ai) the creation (annihila-

tion) operator, and L the chain’s length. For convenience, we
set J = 1. The spectrum ε(k) of the closed system (1) is as-
sociated with standing waves |k̃m〉 with group velocities vm ≡
(∂ε/∂k)k=k̃m

= sin(πm/(L + 1)), m = 1, . . . , L. In the fol-
lowing, we inject the particle into the center of the chain,
|ψ (t = 0)〉 = |L/2〉 := a†

L/2|0〉, where |0〉 is the vacuum state.
Such a localized particle overlaps with all the eigenmodes
simultaneously, resulting in a ballistic quantum random walk
[62]. Its characteristic density envelope evolves linearly with
velocity vL/2 ≈ 1 of the fastest eigenmode [63], see Fig. 1(b).

In general, measurements of the particle will modify the
coherent ballistic evolution [64–67]. As a simple model of
quantum measurement, we consider that the chain’s sites
are capacitively coupled to independent detectors, with cou-
pling strength γ � 0, see Fig. 1(a). Specifically, the detectors
monitor the state’s local densities 〈ni〉 ≡ 〈ψ |a†

i ai |ψ〉. The
evolution of the system using a quantum trajectory description
follows the stochastic Schrödinger equation (SSE) [4,37,51]

d|ψ〉 = − iHdt |ψ〉

+
L∑

i=1

(√
γ [ni − 〈ni〉]dW i

t − γ

2
[ni − 〈ni〉]2dt

)
|ψ〉,

(2)

where γ is the coupling rate to the detectors (the measurement
strength), and dW i

t are Wiener increments with 〈dW i
t dW j

t ′ 〉 =
δi, jδt,t ′dt . The particle’s time evolution follows a stochastic
sample path in space, a.k.a. quantum trajectory, see Fig. 1(c).
Whenever a measurement occurs, the ballistic evolution of the
trajectory is interrupted by a collapse (quantum jump). The
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trajectory describes one possible sequence of measurement
events and outcomes.

To account for all possible measurement sequences, one
commonly samples the SSE for a large number M � 1
of quantum trajectories with equal initial conditions, i.e.,
|ψi(t = 0)〉 = |L/2〉, i = 1, . . . , M. The average probabil-
ity distribution of possible outcomes leads to a mixed state
that is described by the density matrix ρ = |ψi〉〈ψi| =

1
M

∑M
i=1 |ψi〉〈ψi|. Alternatively, instead of an average over

quantum trajectories, the evolution of the density matrix ρ

itself can be described by the Lindblad equation [4,37]

∂tρ = −i[H, ρ] + γ

L∑
i=1

(
niρni − 1

2
{ni, ρ}

)
. (3)

For a finite measurement strength γ > 0, the dynamics of
the density matrix of the initially localized particle changes
from ballistic at times t � 1/γ to diffusive at t � 1/γ [66],
see Fig. 1(d). This transition is akin to a quantum-to-classical
crossover. Interestingly, this crossover is not visible on the
single trajectory level. In the following, we will characterize
the crossover by comparing the entanglement in the system in
both the quantum trajectory and the density matrix descrip-
tions. Because entanglement is a nonlinear quantity (order
parameter), we expect different results for the mixed state
and the trajectory-averaged entanglement [32,37]. This has fa-
vored the use of trajectories rather than the Lindblad evolution
to characterize measurement-induced entanglement dynamics
[32,37,38].

For a 1D chain, entanglement describes the quantum cor-
relations with respect to a cut at a bond b. To quantify
entanglement, we employ the configuration coherence [47,48]

CN (ρ, b) = 2
∑

i=1,...,b
j=b+1,...,L

|〈i|ρ| j〉|2, (4)

where | j〉 = a†
j |0〉. For pure states, the configuration co-

herence is CN (|ψ〉, b) := CN (|ψ〉〈ψ |, b). The configuration
coherence is a convex entanglement measure for mixed states
under certain conditions, e.g., with a fixed number of particles
subject to Lindblad evolution with Hermitian jump operators.
For our case study, both the SSE (2) as well as the Linbdlad
equation (3) fall under this category. For a single particle, the
configuration coherence is related to the negativity N (ρ) [68].
In fact,

√
CN (ρ)/2 = N (ρ) ≡ (||ρTB ||1 − 1)/2, where ρTB is

the partial transpose and || · ||1 denotes the trace norm. In
Figs. 1(e)–1(g), we plot the configuration coherence at each
bond for the single particle evolutions discussed so far, cf.
Figs. 1(b)–1(d). Without measurements (γ = 0), the particle
ballistically evolves into a superposition over all sites, leading
to the expansion of orbital entanglement across the chain, see
Fig. 1(e). For finite γ , the quantum trajectory exhibits entan-
glement expansion with intermittent collapses, see Fig. 1(f).
Crucially, we observe finite entanglement at long times t �
1/γ for γ > 0. Conversely, the mixed state’s entanglement
vanishes around t ≈ 1/γ , justifying the quantum-to-classical
crossover labeling, see Fig. 1(g). As expected from Lindblad
evolution, the density matrix ρ evolves into a nonentangled in-
finite temperature state, ρ(t → ∞) = 1/L. The time t ≈ 1/γ

can be understood as the system’s dephasing or Thouless’ time

FIG. 2. (a) The configuration coherence at the middle bond as a
function of time for quantum trajectories (solid lines) and the mixed
state (dashed lines). Chain length is L = 50, trajectory values are av-
eraged over 103 runs, and measurement strengths are γ = 0, 0.1, 1
(blue, purple, pink). For γ = 0, the descriptions are equivalent. For
finite γ , both descriptions show a maximum at an intermediate time
[markers 1©, 2©] followed by a decay to a finite [marker 3©] (zero)
saturation value at long times for the trajectory (mixed state) descrip-
tion. (b) The maximal configuration coherence CN,max as a function of
the distance d from the injection point of the single particle for mea-
surement strength γ = 0.1 [cf. Eq. (5)]. An exponential fit (dashed
lines) determines the coherence length lφ for the mixed state (green)
and λφ for trajectories (brown) marked by horizontal bars. (c) Phase
diagram of the normalized single particle coherence length lφ/L of
the mixed state. We find three phases: (1) for small measurement
strengths γ � 1/L, the particle coherently explores the full chain; (2)
for intermediate measurement strengths 1/L � γ � 2, the coherence
length is finite and depends on the measurement strength, lφ = lφ (γ );
(3) for large measurement strengths γ � 2, the coherence length
saturates to lφ,∞ ≈ 0.3.

[69,70]. Note that the vanishing entanglement at long times
is the second motivation to favor quantum trajectories when
studying measurement-induced phase transitions [30,37,38].

Now, we consider the time evolution of the configuration
coherence and arrive at a definition for a γ -dependent coher-
ence length. The coherence (Thouless) length describes the
length scale over which the particle can evolve ballistically
before the quantum-to-classical crossover turns its motion dif-
fusive. This is reminiscent to defining an entanglement-based
order parameter for describing the physics of our system, cf.
Refs. [71–73]. Again, we inject the single particle at the center
of the chain. First, we consider the average configuration co-
herence CN (|ψi〉, b) over the quantum trajectories at any bond,
b = 1, . . . , L − 1 [see Fig. 2(a)]: after it assumes a maximal
value CN (|ψi〉, b)max at intermediate times, it saturates to a
γ -dependent finite value, CN (|ψi〉, b)∞ , for t → ∞. For each
bond b that satisfies CN (|ψi〉, b)max > CN (|ψi〉, b)∞, we plot
the maximal configuration coherence as a function of the
distance d = |b − L/2| from the injection point, see Fig. 2(b).
We find an exponential decay dependence:

CN (|ψi〉, b)max ∝ exp(−d/λφ ). (5)

We use this decay to define the particle’s coherence length
λφ = λφ (γ ). Second, we consider the configuration coherence
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evolution of the mixed state. The mixed state exhibits a max-
imal value at a similar intermediate time before it decays and
vanishes, see Fig. 2(a). Again, we can extract the coherence
length lφ of the single particle as the length scale of the con-
figuration coherence’s exponential decay as a function of the
distance from the injection point, CN (ρ, b)max ∝ exp(−d/lφ ),
see Fig. 2(b). Next, we analyze in more detail how the
mixed state’s coherence length depends on the measurement
strength γ .

We use the mixed state entanglement analysis approach.
The coherence length lφ shows three distinct regimes as a
function of the measurement strength γ , see Fig. 2(c): (1) For
weak measurements γ � 1/L, the whole chain is explored
coherently, and lφ � L is independent of the measurement
strength. This is the regime of mesoscopic physics [70,74].
(2) For intermediate measurement strengths 2 � γ � 1/L, the
particle coherently explores a region of width lφ � L, beyond
which it evolves diffusively. (3) For strong measurements
γ � 2, the coherence length saturates to lφ,∞ ≈ 0.3. As such,
scaling the system’s size leads to three qualitatively different
regions/phases. We employ the same analysis for the quan-
tum trajectories and find a qualitatively similar behavior of
the coherence length λφ , see [61]: the crossover from (2) to
(3) happens for γ ≈ 1.3 and the saturating value is λφ,∞ ≈
1.7. The observation of these regimes in the coherence
length of the single-particle mixed state is the main result of
our work.

The metallic-to-diffusive transition in the dynamics of
our system has been studied in various setups [64–67]. The
crossover from (1) to (3) can be understood as a sequence
of underdamped-to-overdamped transitions of the Hamilto-
nian’s plane wave eigenmodes (1). Specifically, each mode
is damped by the measurement strength γ . With increas-
ing γ , the modes become overdamped, starting with the
slowest of the modes. At γ ≈ 2, the fastest mode becomes
overdamped, and the particle enters a regime where its co-
herent evolution is exponentially suppressed. As such, this
transition does not depend on the choice of the initial state
and can also be seen in the Liouvillian spectrum of the
system, and obtained analytically in the two-sites case [61].
Note that such underdamped-to-overdamped transitions can
also be observed in the spin-boson model [76] or in dou-
ble quantum dots under dephasing [5]. It appears that such
physics underpins the measurement-induced phase transition
so that the latter lends an entanglement-based order parame-
ter for the characterization of these effects [30,32,33,77]. As
we find here, such characterization can be accomplished not
only in quantum trajectories but also from the mixed state
evolution.

The question remains of how our single-particle toy model
(3) generalizes to many-body systems. For dilute systems, we
postulate that the average interparticle distance δ will replace
the system size L as the relevant length scale, see Fig. 3(a). In
the presence of strong measurements (lφ < δ/2), the particles
will not coherently experience each other. The many-body
entanglement will then separate into a sum of single-particle
contributions. The onset of many-body entanglement happens
when the coherence length becomes of the order of half the
inter-particle distance, lφ ≈ δ/2. In Fig. 3(b), we show such
two-particle entanglement as a local maximum between the

FIG. 3. (a) Chain with many particles homogeneously distributed
with interparticle distance δ. (b) Maximal configuration coherence
for two particles on L = 20 sites, injected at sites 5 and 15, for
measurement strengths γ = 0.1, 1, 2 (orange, purple, black). For
γ = 0.1, two-particle entanglement between the two injection points
builds up, because the particles coherently interact with each other.
For large measurement strengths γ = [1, 2], the maximal config-
uration coherence is the sum over the single-particle contributions.
Our numerical implementation harnesses a matrix product density
operator [75] representation of the mixed state.

two particles that cannot be described as a sum of single par-
ticle contributions [78–80]. For lφ  δ/2, the entanglement
will not depend on the chain length L or the interparticle
distance δ. For lφ � δ/2, multiple particles can contribute
to the configuration coherence and we, therefore, expect the
entanglement to depend on the interparticle distance δ. In light
of the quantitative difference in the coherence lengths of the
trajectories and the mixed state, we expect the onset of many-
body entanglement at different values of the measurement
strength γ .

We have analyzed the quantum measurement of a single
particle using both quantum trajectories and a mixed-state
Lindblad description. For both descriptions, we employed
the recently developed configuration coherence as an entan-
glement measure [47,48]. At first sight, the entanglement
behavior of the trajectories is opposite to that of the mixed
state because the former remains finite at long times. At in-
termediate times, however, we extracted a coherence length
from the entanglement and showed that it behaves qualita-
tively the same for both descriptions. Moreover, we found
that the coherence length saturates at a finite value for large
measurement strengths, namely when the fastest Liouvillian
eigenmode becomes overdamped. Besides new insights into
the quantum-to-classical crossover in terms of entanglement,
our results provide evidence that the master equation can
capture the measurement-induced entanglement dynamics of
monitored systems. This observation unveils the underlying
stochastic physics that measurements impart on the system,
and their commonly observed manifestation in diffusive dy-
namics. In future work, we will extend the discussion to the
many-body case.
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code, and M. H. Fischer and J. del Pino for fruitful discus-
sions. The authors acknowledge financial support by ETH
Research Grant ETH-51 201-1 and the Deutsche Forschungs-
gemeinschaft (DFG) - Project No. 449653034.
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