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Observation of chiral-mode domains in a frustrated XY model on optical triangular lattices
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We investigated the relaxation and excitation in a frustrated XY model realized by a Bose gas in Floquet-
engineered optical triangular lattices. Periodically driving the position of the entire lattice structure enables the
sign inversion of tunneling amplitudes, which, in the case of a triangular lattice, results in geometrical frustration
of the local phase of wave packets. We revealed that the two spiral phases with chiral modes show significant
differences in relaxation time from the initial ferromagnetic phase. While spontaneous symmetry breaking is
clearly observed at a slow ramp of the Floquet drive, simultaneous occupation of two ground states often occurs
at a fast ramp, which can be attributed to the domain formation of the chiral modes. The interference of the
spatially separated chiral modes was observed, using a quantum gas microscope. This work leads to exploring
the domain formation mechanism in a system with U(1) × Z2 symmetry.

DOI: 10.1103/PhysRevResearch.5.L042026

Magnetic frustration is an intriguing issue in condensed-
matter physics [1,2]. The simplest example is spins with
antiferromagnetic interactions in a triangular lattice, in which
all adjacent spins cannot align in antiparallel configurations
that minimize the interaction energy. Owing to geometrical
frustration, conventional magnetic orders are suppressed, giv-
ing rise to nontrivial phenomena and phases such as quantum
spin liquids [3]. However, theoretical challenges remain, es-
pecially for quantum spin systems. In the experimental side,
conventional condensed-matter systems are too complex to
realize ideal models of frustrated spin systems [4]. Quantum
simulators, controllable physical systems that realize target
models, including frustrated spin models, are expected to
play a significant role in understanding frustration physics.
Such studies have been conducted using various platforms
including trapped ions [5,6], neutral atoms in optical lattices
[7–11] and in optical tweezer arrays [12,13], superconducting
annealers [14], and Josephson junction arrays [15].

Two-dimensional fully frustrated XY models, such as the
antiferromagnetic XY model on a triangular lattice, have at-
tracted attention in the past decades [16–19]. The main feature
of the models is the discrete Z2 symmetry stemming from
twofold degenerate ground states corresponding to the two
chiral modes. There have been many controversial discus-
sions on classical spin models because the phase transition
associated with the chiral Z2 symmetry breaking occurs at
a temperature very close to the transition temperature corre-
sponding to the breaking of the continuous U(1) symmetry for
global spin rotation. Although the transition temperature of
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the chiral symmetry breaking is slightly higher than the other
transition temperature, there is still no clear consensus on
the critical behaviors of transitions [20,21]. For quantum spin
models, this combined U(1) × Z2 degeneracy might bring
about exotic quantum critical phenomena; however, such crit-
ical behaviors have not been elucidated.

Quantum simulation of the classical XY spin model has
been demonstrated by using ultracold bosonic atoms in an
optical triangular lattice [7]. To realize each ground state in
the model, the tunneling amplitudes were manipulated by the
lattice-shaking technique [22]. While the interference patterns
of the ground states have been observed, relaxation and ex-
citation from the initial ferromagnetic state have rarely been
studied.

In this study, we focused on this aspect. The tunneling
amplitudes J and J ′ in the optical triangular lattice are in-
dependently controlled by modulating two phases φ1 and
φ2 of the three lattice beams [Fig. 1(a)]. By varying the
time to ramp up the phase modulation amplitudes, we in-
vestigated and compared the relaxation times from the initial
ferromagnetic phase (F) to two frustrated phases (Sp1 and
Sp2). We combined the lattice-shaking technique with a quan-
tum gas microscope, which has a single-site resolution and
single-atom sensitivity [Fig. 1(b)]. This experimental sys-
tem is capable of investigating phase separation and density
waves arising from exotic phases such as lattice supersolidity
[23–25].

First, we describe our experimental setup. A sample was
prepared by loading a Bose-Einstein condenstate (BEC) of
87Rb atoms into a lattice system consisting of an optical tri-
angular lattice and crossed far-off resonance traps (FORTs).
The optical triangular lattice potential is given by

V (r) = −V0

2
[cos(b1 · r + φ23) + cos(b2 · r + φ31)

+cos(b3 · r + φ12)] + 1

2
mω2

z z2, (1)
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FIG. 1. Schematic of shaken optical triangular lattice and realization of the XY spin model. (a) The tunneling parameters J and J ′ can be
tuned independently by modulating the phase of two lattice beams. (b) Observation with the quantum gas microscope. The samples are loaded
into a vertical lattice, and the single layer located at the microscope’s focus is selectively detected by removing atoms in the other layers before
the measurement. (c) Observation of a ferromagnetic phase (F). Color bars indicate fluorescent (FL) counts. Arrows on the rightmost sketch
mean the spin state. (d) Observation of spontaneous symmetry breaking in two phases with frustration: Spiral 1 (Sp1) and Spiral 2 (Sp2).
The two columns on the left show the single-shot symmetry-broken images with different chiral modes. For the averaged images in panels
(c) and (d), 20 and 100 independent experimental realizations were used, respectively. The solid (dashed) lines in the rightmost column mean
tunnelings with positive (negative) signs. (e) Definition of chiral contrast χ , which indicates chiral order. (f) Statistical distributions (left) and
histograms (right) of χ for Sp1 and Sp2.

where V0 is the lattice depth, bi is the reciprocal lattice vectors,
ωz/2π is the harmonic trap frequency along the direction
perpendicular to the lattice plane, and φi j = φi − φ j is the
relative phase between two of the three lattice beams, for
which we choose the wavelength λ = 1064 nm. In Eq. (1),
we omit the offset term and the influence of the external trap
frequencies in the xy plane for simplicity. Unless otherwise
mentioned, the atoms were initially loaded to a lattice depth of
V0 = 3.0ER, where ER = h̄2k2

L/2m is the recoil energy, kL =
2π/λ is the wave number, h̄ is the Planck constant divided
by 2π , and m is the mass of the 87Rb atom. The Hubbard
parameters are U/h = 30.7 Hz and Jbare/h = 26.9 Hz, where
U and Jbare are the on-site interaction and the nearest-neighbor
tunneling, respectively. The external trap frequencies are
(ωx, ωy, ωz )/2π = (88, 150, 184) Hz.

After lattice loading, we increased phase modulation
signals to shake the optical triangular lattice elliptically
[Fig. 1(a)]. According to the Floquet theory, the effective
tunnelings J and J ′ in the rotating frame obey the zeroth-order
Bessel function of the first kind (see Supplemental Material
for the details of lattice-shaking parameters and experimental
sequence [26]). The effective tunnelings are (J, J ′)/Jbare =
(−0.35,−0.35) for Sp1 and (−0.35, 0.35) for Sp2 throughout
this Letter. The modulation frequency �/2π = 1.2 kHz was
carefully chosen to avoid multiphoton interband excitations
[26,27]. We also note that the crossed FORT depth after lattice
loading had to be lowered as much as possible so that the evap-
oration of atoms heated by lattice shaking could work well

[26,28]. We observed the interference patterns of atoms using
in-plane time-of-flight (TOF) [29], where the triangular lat-
tice potential was suddenly switched off, whereas the vertical
lattice potential was ramped up so that the atomic cloud could
expand within the layers. Atoms were typically split into three
layers in the vertical lattice, and more than 60% of the atoms
were populated in a target layer of imaging. The in-plane
TOF was followed by (i) a sudden ramp-up of all the optical
lattices to freeze-out atoms, (ii) selection of the target layer by
the combination of microwave and B-field gradient, and (iii)
fluorescence imaging using the Raman sideband cooling [30].
Figures 1(c) and 1(d) show single-shot and averaged images
of atom distributions after 5 ms in-plane TOF. In the case
of Sp1 and Sp2, where twofold chiral degeneracy exists, the
symmetry-broken images are observed [7]. We also checked
the statistical distribution of the chiral contrast χ , which is
defined in Fig. 1(e). The histograms appear binary, indicating
that symmetry breaking often happens. We took the data at
a ramp-up time of 200 ms for Sp1 and 300 ms for Sp2 with
the crossed FORT depth optimized for each frustrated phase
[26]. The atom number n per tube in the shaken lattice differed
in each phase because the loss rate during lattice shaking
depends on the phase-modulation amplitudes. For example,
in Sp2, the filling was n ∼ 6. Since U/n|J (′)| ∼ 0.5, this ex-
periment is conducted in the weak-interaction regime, where
the system is mapped to the classical XY model [31].

In the following, we focus on the relaxation from F to Sp1
and Sp2 [see Fig. 2(a)]. To quantify the relaxation times, we
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FIG. 2. Relaxation from F to Sp1 or Sp2. (a) Phase diagram of
the classical XY model. The white dashed (dot-dashed) line means
the phase transition of the 2nd (1st) order. The black solid lines
represent the paths from F to Sp1 or Sp2. (b) Definition of contrast C.
(c) C and |χ | with various ramp-up times of lattice shaking τU. Blue
(red) points represent Sp1 (Sp2) data. Error bars denote standard
deviations. The solid lines are fitting results to the data. The fitting
function for C is defined in Eq. (2), while that for |χ | is a linear
function with offset. The inset shows C from 0 to 200 ms ramp-up
time together with the extracted rise times tSp1(2)

rise .

introduce contrast C defined in Fig. 2(b). When C < 0, the
system is in an F state. C > 0 indicates a phase transition to
Sp1 or Sp2. Figure 2(c) shows C and |χ | with various ramp-up
times of the phase-modulation signals. The relaxation time of
Sp1 is much shorter than that of Sp2. We made a fit to the data
of C with our empirical exponential functions:

f (t ) =
{

A
2 (e−t/τfast + e−t/τslow ) + B for Sp1,

Ae−t/τ + B for Sp2,
(2)

where A, B, τ , τslow, and τfast are fitting parameters. We define
the rise time tSp1(2)

rise such that f (tSp1(2)
rise ) = 0.1A + B is satis-

fied. The extracted rise times are tSp1
rise = 32.9 ms and tSp2

rise =
120 ms. We attribute this difference to two factors; one is the
path length ratio after the phase transition over the total length
[see black solid lines in Fig. 2(a)]. The ratio for Sp1 is 2.6
times larger than that for Sp2. The other is the effective band
structures. In the tight-binding approximation, the energy dif-
ference between the ground states of Sp1 and the 	 point, at
which a BEC is populated before lattice shaking, amounts to

ESp1

	 = 3.6Jbare; on the other hand, the counterpart of Sp2

is 
ESp2
	 = 0.38Jbare, 9.5 times smaller [26]. A BEC at the 	

point becomes so unstable in Sp1 that it relaxes quickly into
the true ground states. As for |χ |, it strongly depends on the
crossed FORT depths [26]. We note that the offset of |χ | in
Sp2 data shifts upward since the regions of interest [blue and
green circles in Fig. 1(e)] are close to the 	 points.

At a short ramp-up time of around 100 ms in Fig. 2(c), C
is positive, which means that the phase transition has already
happened. At the same time, |χ | is still small, which indi-
cates that the simultaneous occupation of both chiral modes
is observed more often than symmetry-broken images are. In
a previous study [7], the possibility of domain formation was
mentioned; however, this has yet to be confirmed. Therefore,
we conducted an investigation to clarify this issue. The direct
observation of chiral-mode domains in optical lattices was
proposed in Ref. [32] assuming the far-field regime, which is
difficult to reach in our system since the trap frequency limits
in-plane TOF. Instead, we attempt to detect the formation of
the chiral domains by observing the interference of spatially
separated chiral modes.

Figures 3(a)–3(c) explain the processes from the domain
formation to the observation of interference by the in-plane
TOF. As shown in Fig. 3(a), the atoms in the optical triangular
lattice and crossed FORTs have a shape elongated along the
y axis. We assumed that during the ramp-up time a linear
domain wall as shown in Fig. 3(b), which is the simplest
of its kind, is formed most likely along the x axis because
the domain wall energy is proportional to its length. Dur-
ing in-plane TOF, wave packets with different chiral modes
interfere with each other. Consequently, interference fringes
are observed. Figure 3(c) shows single-shot images of Sp1
and Sp2 with fringes and simulated images. To visualize the
effect of fringes, we applied a fast Fourier transform (FFT) to
the TOF images. Figure 3(d) shows the amplitude spectrum
of the FFT images averaged over more than 100 runs. The
spectrum spreads over along the y axis, which results from
fringes. For comparison, the amplitude spectrum of F without
lattice shaking is also shown. It appears symmetric, with no
signs of fringes. We made a fit to the FFT signals to extract the
widths along the long and short axes [26]. Figure 3(e) shows
the histograms together with numerical simulation assuming
various numbers of domain walls. While a single domain wall
is dominant, multiple domain walls are sometimes formed
in Sp2. Figure 3(f) shows the experimentally observed TOF
image with multiple domain walls and the simulated image
with nwall = 2. In the FFT signals, we can see side peaks that
result from interference of the same chiral modes.

Finally, the orientation of the domain wall was controlled
using crossed FORTs. The trap frequencies in the xy plane
are dominated by FORT 1 and FORT 2 [Fig. 3(a)], which
have much tighter beam waists of 23 μm than the horizontal
beam waists of the three beams that comprise the triangular
lattice, ∼120 μm [30]. Therefore, the direction along which
the atomic cloud is elongated depends on the intensity balance
between FORT 1 and FORT 2. Figure 4(a) shows the atom dis-
tribution when the intensity of FORT 1, I1, was much stronger
than that of FORT2, I2. The amplitude spectrum of the FFT in
Sp2 is oriented in line with the atom distribution [Fig. 4(b)].
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FIG. 3. Chiral-mode domains. (a) In situ image of atoms in
the trap. The black arrows depict the directions along which the
crossed FORTs are applied. The image is averaged over ten runs.
(b) Schematic of domain formation. The dotted line at the center is a
linear domain wall. (c) Experimentally observed (left) and simulated
(right) TOF images. The ramp-up time of 70 and 80 ms was used
for Sp1 and Sp2, respectively. In the right figure, the white arrows
point to the region where the fringes appear, and the color scale is
saturated at 0.3 times the maximum probability to emphasize the
fringes. (d) Amplitude spectra of FFT for Sp1, Sp2, and F. The color
scale is saturated at 0.2 times the maximum amplitude. d = 2

3 λ in
the axis labels means the lattice constant. FFT images are averaged
for more than 100 runs. The inset shows the averaged TOF image
of F as an icon. The distance of the inherent interference peaks
is 1.18 d−1 in FFT space. (e) Histograms of the widths in FFT
space. The red (blue) bars mean the widths along the long (short)
axis. The dashed gray lines are the long-axis width estimated by the
numerical simulation assuming the different number of walls nwall. (f)
TOF images that have multiple domain walls and their FFT signals.
For better visibility, a Gaussian filter with σ = 0.53 d is applied to
the experimentally observed TOF images in panels (c) and (f). The
maximum and offset of the color scale of the experimental data in
panels (c) and (f) are 0.4 times and 0.04 times the maximum FL
count, respectively.

Figures 4(c) and 4(d) are the opposite case. Figure 4(e) com-
pares the angles and widths in FFT space at different balances

(a)

x

y

z

(e)

(b) (d)(c)

fx

fy

FIG. 4. Control of domain wall orientation. (a) Averaged in situ
image of the atoms and (b) amplitude spectrum of FFT for TOF
images in Sp2 under the condition I1 > I2. (c) and (d) Counterparts
under the opposite condition I1 < I2. (e) Angles in in situ images
and FFT space (upper row), and widths in FFT space (lower row)
at different balances of FORTs. Error bars denoting fitting errors are
covered with markers.

of FORTs. We can see good agreement between experiment
and numerical simulation assuming nwall = 1.

In conclusion, we studied the relaxation from the ferro-
magnetic phase to two frustrated phases (Sp1 and Sp2) in the
XY model on shaken optical triangular lattices. We revealed
that domain walls [33–35] are formed in Sp1 and Sp2, which
accounts for the simultaneous occupation of the two chiral
modes. In this study, the system does not reach a strongly
correlated regime. When the interaction is increased to
U/n|J| � 1, one can access frustrated quantum magnetism,
where the appearance of gapped spin-liquid phases is pre-
dicted [31]. The system can be mapped onto the spin-1
quantum XY model [36,37] near the Mott-insulating state
with unit filling. In this situation, the quantum phase transi-
tion between the chiral superfluid and Mott insulator, where
the symmetry of U(1) × Z2 is broken, can be investigated.
Nonequilibrium dynamics after quenching across the phase
transition and formation of domain structures can reveal the
quantum Kibble-Zurek mechanism in this model [38].
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