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Robust coherent control of two-body collisions beyond the ultracold regime
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Quantum coherent control of collisions beyond the ultracold regime can face a major challenge due to the
incoherent addition of different partial-wave contributions to the total scattering cross section. These contribu-
tions become increasingly numerous as the collision energy increases, leading to a loss of overall control. Here,
we overcome this limitation by leveraging the recently discovered partial-wave phase locking (PWPL) effect,
which synchronizes the oscillations of all partial-wave contributions. By using rigorous quantum scattering
calculations, we demonstrate that PWPL enables coherent control of spin exchange in ion-atom collisions, far
outside the ultracold regime. The predicted extent of control is sufficient to be measurable in cold atom-ion
hybrid experiments.
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Introduction. Two-body collisions and chemical reactions
of atoms and molecules are responsible for a wide range of
phenomena in physics and chemistry [1–3], such as energy
transfer, thermalization, relaxation, decoherence, and spectral
line broadening to name a few. As these phenomena determine
the properties of dilute gases, they play a central role in
atomic and molecular spectroscopy [4], atmospheric science
[5], astrochemistry [6], and ultracold chemistry [7,8]. For this
reason, controlling the quantum dynamics of two-body colli-
sions has long been a major thrust of physics and chemistry,
and led to the development of several vast fields of research,
including coherent control [9], laser control of chemical reac-
tions [10], mode-selective chemistry [1], and stereochemistry
[11,12].

A key challenge in controlling two-body collisions and
chemical reactions lies in the random nature of scattering
events. Specifically, under ambient conditions, the integral
collision cross section (or reaction rate) is determined by
many partial-wave contributions, which are essentially ran-
dom functions of �, the orbital angular momentum for the
collision [1,13]. Quantum control protocols target a given
partial-wave contribution and rely in the phase of the under-
lying scattering amplitude (or S matrix). Thus, the optimal
values of the control parameter (be it the value of an external
field in field-based control schemes, laser pulse parameters
in optimal control, or superposition parameters in coherent
control) are necessarily � dependent, and thus cannot be opti-
mized for all values of � contributing to the integral scattering
cross section. This fundamental issue, which we will refer to
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as “partial-wave scrambling,” has generally prevented the ap-
plication of quantum control techniques to collisions [14] and
the observation of scattering resonances [15] in the multiple
partial-wave regime.

A common way to combat partial-wave scrambling is to
cool the colliding species down to the ultracold regime, where
collisions are dominated by a single initial partial wave. This
eliminates the scrambling in the incident collision channel
and reduces its severity in the outgoing channels, allowing
for a high degree of control. The current state-of-the-art con-
trol techniques rely on cold molecules/atoms prepared in a
well-defined internal states interacting with electric [16–18],
microwave [19–23], optical [24], or magnetic fields [25,26].
However, the use of external fields may not be suitable for
some applications, especially when the collision partners lack
electric and/or magnetic dipole moments [27].

Coherent control is an attractive method that does not rely
on external fields. This technique involves preparing super-
positions of the internal states of colliding particles to create
interference effects that can be manipulated by changing the
relative phase between the states [9,28,29]. Complete co-
herent control is possible over ultracold resonant exchange
processes, such as spin, charge, or excitation exchange, where
only a single partial wave is involved in both the incident
and final collision channels [27]. These processes can be
completely suppressed (or activated), via destructive (con-
structive) interference. By contrast, coherent control in the
multiple partial-wave regime can face a major challenge due
to the partial-wave scrambling.

Here, we show that efficient coherent control in the
multiple partial-wave regime can be achieved using the
partial-wave phase locking (PWPL) effect [30–34], which
manifests in a coherent addition of different partial-wave
contributions. The physical origin of the PWPL effect, as
elucidated in Refs. [30,33], can be attributed to the short-
range nature of the spin-exchange interaction and the small
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magnitude of the centrifugal kinetic energy compared to the
well depth of the interaction potential [35], enhancing quan-
tum interference in the multiple partial-wave regime. Here,
we show this robust PWPL-assisted coherent control of spin
exchange in ion-atom collisions (Sr+-Rb). Cold atom-ion hy-
brid systems have been realized experimentally as a promising
platform for quantum science [32]. Hence our results can be
readily verified in the laboratory. This approach to control
collisions beyond the ultracold regime can be applied to a
wide range of quasiresonant processes [33].

Initial superposition and coherent control of cross section.
Consider a binary collision A + B, where A and B denote
atoms or molecules initially prepared in a coherent superposi-
tion of internal angular momentum states,

|ψA〉 = N
(√

cos η | jA, m1A〉 +
√

sin ηei β

2 | jA, m2A〉 )
, (1)

|ψB〉 = N
(√

sin ηei β

2 | jB, m1B〉 +
√

cos η | jB, m2B〉 )
, (2)

where N = 1√
sin η+cos η

is a normalization factor, η ∈ [0, π/2]
and β ∈ [0, 2π ] are the parameters that determine the rel-
ative population and phase of the superposition, jA and jB
are the internal angular momenta of the colliding partners A
and B, and m1A, m2A, m1B, and m2B are the corresponding
projections on the space-fixed quantization axis Z , subject to
the constraint m1A + m2B = m1B + m2A imposed by rotational
symmetry, which is required to obtain interference [36]. The
initial state for the collision is given by the product |ψA〉 |ψB〉,

|�sup〉 = N2[cos η |m1A; m2B〉 + sin ηeiβ |m2A; m1B〉
+

√
cos η sin ηei β

2 (|m1A; m1B〉 + |m2A; m2B〉)], (3)

where we have defined |m1A; m2B〉 ≡ | jA, m1A〉 | jB, m2A〉, etc.,
for brevity. Due to rotational symmetry, the states |m1A; m2B〉
and |m2A; m1B〉 interfere with each other, while the states
|m1A; m1B〉 and |m2A; m2B〉 instead give rise to satellite terms
[9,27]. For this reason, the superposition

|�ent〉 = cos η |m1A; m2B〉 + sin ηeiβ |m2A; m1B〉 (4)

provides better control, as previously demonstrated [37].
While this superposition is harder to prepare experimentally
than that in Eq. (3), it also provides a useful reference point
for comparing different control schemes, as shown below. The
creation of an entangled superposition, that given by Eq. (4),
has been demonstrated for two 85Rb atoms in optical tweezers
[38]. The same method could also be explored for Rb-Sr+

collisions.
The cross section from the nonentangled superposition (3)

to a final state | f 〉 can be split into two parts: one related to
the cross section from the entangled superposition (4), and
one from the satellite terms,

σsup→ f (η, β ) = N4(σent→ f + σsat→ f ), (5)

where

σent→ f (η, β ) = π

k2

∑

�,m�

∑

�′,m′
�

| cos η Tm1Am2B�m�→ f �′m′
�

+ sin η eiβTm2Am1B�m�→ f �′m′
�
|2, (6)

and

σsat→ f (η) = cos η sin η(σm1A;m1B→ f + σm2A;m2B→ f ). (7)

Here, � and �′ are the initial and final orbital angular momenta
for the collision, while m� and m′

� are the projections of � and
�′ on a space-fixed quantization axis Z , Tm1Am2B�m�→ f �′m′

�
and

Tm2Am1B�m�→ f �′m′
�

are the T -matrix elements associated with the
initial states |m1A; m2B〉 and |m2A; m1B〉, and k is the relative
wave vector.

To achieve good control of σsup→ f , it is necessary to ex-
ert efficient control over σent→ f . However, even with good
control over the latter, the inclusion of large satellite terms
can significantly reduce overall control. This illustrates two
important requirements for the efficient coherent control of
σsup→ f : (i) achieving the best possible control over σent→ f

and (ii) minimizing the value of σsat→ f . To quantify these
requirements, we define two control indices. First, the extent
of control over the cross section from the entangled initial
superposition σent→ f can be defined as

Rc,ent = |σint|√
σm1A;m2B→ f σm2A;m1B→ f

, (8)

where

σint = π

k2

∑

�,m�

∑

�′,m′
�

Tm1Am2B�m�→ f �′m′
�
T ∗

m2Am1B�m�→ f �′m′
�

(9)

is the interference contribution to the integral cross section,
and σm1A;m1B→ f and σm2A;m2B→ f are the cross sections from the
states |m1A; m1B〉 and |m2A; m2B〉, respectively, to the final state
| f 〉. The definition relies on the Schwartz inequality, so that
Rc,ent lies between zero and one. Second, the effect of the
satellite terms is quantified by

Rsat = min(σm1A;m2B→ f , σm2A;m1B→ f )

max(σm1A;m1B→ f , σm2A;m2B→ f )
. (10)

Here, min(σm1A;m2B→ f , σm2A;m1B→ f ) [max(σm1A;m1B→ f ,

σm2A;m2B→ f )] is the smallest (largest) of the two values.
Small satellite terms correspond to a small denominator in
Eq. (10) and then Rsat 	 1, a favorable condition for coherent
control.

Finally, we define a global control index as Rc,sup =
maxη(V ), where V represents the visibility that measures the
oscillation of σsup→ f (η, β ) when only the relative phase β is
varied,

V (η̃) = σsup→ f
(
η̃, β

η̃
max

) − σsup→ f
(
η̃, β

η̃

min

)

σsup→ f
(
η̃, β

η̃
max

) + σsup→ f
(
η̃, β

η̃

min

) , (11)

where β
η̃

min (βη̃
max) is the value of β for which the cross sec-

tion is minimal (maximal) when η = η̃. As Rc,ent, the values
of Rc,sup are bound between 0 and 1.

Partial-wave scrambling in coherent control. The control
of the entangled cross section σent→ f is limited by incoherent
addition of the initial and final partial waves (�m�, �

′m′
�) in

Eq. (6). For a given superposition determined by the parame-
ters (η and β), some partial-wave contributions (�m�, �

′m′
�)

may experience constructive interference while others may
exhibit destructive interference, suppressing the interference
term in Eq. (9) [39]. This partial-wave scrambling issue
becomes more significant as the collision energy increases,
along with the number of (�m�, �

′m′
�) contributions, and can

result in complete loss of control.
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To quantify partial-wave scrambling, we examine the
distribution of the superposition parameters (η, β) for
which each partial-wave contribution reaches a mini-

mum value, η
�m�,�

′m′
�

min = arctan(
|Tm1Am2B�m�→ f �′m′

�
|

|Tm2Am1B�m�→ f �′m′
�
| ) and β

�m�,�
′m′

�

min =
arg(Tm1Am2B�m�→ f �′,m′

�
) − arg(Tm2Am1B�m�→ f �′,m′

�
) depending on

the ratio of the magnitudes, and on the difference of phases
(arguments) of the T -matrix elements, respectively. Note that

the maximum parameters are simply obtained from η
�m�,�

′m′
�

min +
η

�,m�,�
′m′

�
max = π/2 and β

�m�,�
′m′

�
max − β

�m�,�
′m′

�

min = π . The distri-

bution of the optimal parameters η
�m�,�

′m′
�

min and β
�m�,�

′m′
�

min
determines the degree of partial-wave scrambling. A random
distribution leads to a rapid decrease in control as the number
N�m�,�′m′

�
of significant partial-wave contributions (�m�, �

′m′
�)

increases, because Rc,ent scales as 1/
√

N�m�,�′m′
�

[39]. It is
worth noting that the number of (�m�, �

′m′�) contributions is
equal to (

∑lmax
�=0 2� + 1) × (

∑lmax
�′=0 2�′ + 1), where �max is the

maximal partial wave involved in the process. While only a
fraction of these contributions usually will have an important
value due to symmetries, this number stays significantly larger
than �max, as illustrated below. The solution of the partial-
wave scrambling problem lies in the clustering of the optimal

parameters η
�m�,�

′m′
�

min and β
�m�,�

′m′
�

min . As shown below, the clus-

tering of β
�m�,�

′m′
�

min is manifest in the PWPL mechanism, which
dramatically reduces the partial-wave scrambling and thereby
paves the way to coherent control in the multiple partial-wave
regime.

Application: Coherent control of spin relaxation in Sr+-Rb
collisions. The PWPL phenomenon was first predicted to oc-
cur in spin relaxation in ion-atom collisions [30,33], making
hybrid ion-atom systems [32] ideal for investigating PWPL-
assisted coherent control. Consider a rubidium atom (87Rb)
prepared in a superposition of hyperfine states |2,−1〉B and
|2, 0〉B, colliding with a trapped strontium ion 88Sr+ pre-
pared in a superposition of Zeeman states |1/2,−1/2〉A and
|1/2, 1/2〉A. We present the results for relaxation to the final
states |1/2,−1/2〉A |1, 0〉B ≡ |↓〉 and |1/2,+1/2〉A |1, 0〉B ≡
|↑〉, as these states have larger cross sections than the final
states |1/2,±1/2〉A |1,−1〉B and |1/2,±1/2〉A |1, 1〉B.

To motivate experimental studies we carried out rigorous
coupled-channel (CC) calculations of Sr+-Rb collisions using
state-of-the-art ab initio interaction potentials and second-
order spin-orbit interactions, as described in Ref. [30]. To
ensure numerical convergence of the results for collision ener-
gies ranging from 1 µK to 50 mK, we used extended CC basis
sets including up to 80 partial waves.

The control indices Rc,ent and Rc,sup for Sr+-Rb calculated
from exact CC results, are shown in Fig. 1(a). The high value
of the entangled control index, Rc,ent, demonstrates that effi-
cient control is possible in the multiple partial-wave regime.
For the final state |↑〉, Rc,ent is close to 1, indicating complete
control, whereas for the final state |↓〉, Rc,ent is around 0.5–0.6.
Remarkably, the high entangled control index remains mostly
independent of collision energy, indicating robust control over
a wide energy range. Variation of the control can be caused
by the presence of resonances, for example, at E = 100 µK,
400 µK, and 5 mK.

As expected, the control index for the nonentangled su-
perposition, Rc,sup, is affected by satellite terms, which can

FIG. 1. (a) Control indices Rc,ent and Rc,sup for the transition from
the entangled and nonentangled superpositions to the final states |↓〉
and |↑〉. (b) Satellite term index Rsat for the final states |↓〉 and |↑〉.

be quantified using the parameters Rsat [Eq. (10)] shown in
Fig. 1(b). For the final state |↑〉, the satellite terms are signif-
icant, resulting in a large difference between Rc,ent and Rc,sup,
with Rc,sup being around 0.2–0.3. In contrast, the satellite
terms are small for the final state |↓〉, resulting in a small
difference between Rc,ent and Rc,sup, with Rc,sup ≈ 0.4–0.5.
The reason for the smaller impact of the satellite terms on the
final state |↓〉 is that for this state, the interfering transitions
conserve the total internal angular momentum projection,
mi

A + mi
B = m f

A + m f
B, whereas the transitions in the satel-

lite terms do not. The situation is the opposite for the final
state |↑〉. These results highlight a complex trade-off between
the partial wave scrambling and satellite terms. Even though
partial-wave scrambling is less significant for the final state
|↑〉, the overall control is better for the final state |↓〉 due to
the smaller effect of the satellite terms.

To illustrate coherent control in the multiple partial-wave
regime, we consider the experimentally realistic case
of Sr+-Rb collisions at 50 mK [30]. At this collision
energy, convergence was obtained for �max = 80, for which
(
∑lmax

�=0 2� + 1) × (
∑lmax

�′=0 2�′ + 1) = 4.3 × 106, but only
5000 terms make a significant contribution to the cross
sections. Figures 2(a)–2(d) illustrate coherent control of the
cross section by varying the phase angle β of the initial
superposition (4). To obtain the best visibility V , the value
of η is fixed at η = π/2 and 21π/32 for the final states
|↓〉 and |↑〉, respectively (see Supplemental Material for
the discussion of the dependence of the visibility with η

[40]). We observe a remarkable instance of complete control
of scattering from the entangled superposition to the final
state |↑〉, showing near vanishing of the cross section due to
destructive interference [see Fig. 2(c)]. The minimum value of
the cross section is 6.2 a.u., which is three orders of magnitude
smaller than the maximum value of 2517.3 a.u. This complete
control is made possible by the clustering of the optimal
control parameters η

�,m�,�
′,m′�

min and β
�,m�,�

′,m′�
min [see Figs. 4(c)

and 4(d)], caused by PWPL. Note that if these parameters
were randomly distributed, the entangled control index Rc,ent
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FIG. 2. Coherent control of scattering cross sections and branch-
ing ratios for Sr+-Rb collisions with 5000 partial-wave contributions
(�m�, �

′m′
�). Cross sections (a) from |�ent〉 to |↓〉, (b) from |�sup〉

to |↓〉, (c) from |�ent〉 to |↑〉 and (d) from |�sup〉 to |↑〉. Branching
ratios σ↓/σ↑ (e) from |�ent〉 and (f) from |�sup〉. The parameter η

is kept constant, η = π/2 for σ↓, while η = 21π/32 for σ↑ and the
branching ratios.

would be equal to ∼1/
√

5000 = 0.01, significantly smaller
than the calculated value. When the initial superposition is
nonentangled, complete destructive interference is countered
by the presence of satellite terms, resulting in a variation
from 1926.6 to 3350.2 a.u., which remains significant and
certainly large enough to be detected in modern hybrid
trapped ion-atom collision experiments [30–33].

FIG. 3. Phase variation of the 5000 significant partial-wave con-
tributions (�m�, �

′m′
�) to the cross sections for the final states (a) |↓〉

and (b) |↑〉. The value of η is fixed at η = π/2 and 21π/32 for the fi-
nal states |↓〉 and |↑〉, respectively. All partial-wave contributions are
plotted to illustrate the phase locking, with less efficiency observed
for the final state |↓〉.

FIG. 4. Distribution of the optimal parameters η
�m�,�

′m′
�

min and

β
�,m�,�

′,m′�
min for the final states (a), (b) |↓〉 and (c), (d) |↑〉. Each

point corresponds to a pair (�m�, �
′m′

�). The weight w is calcu-
lated by the sum of squared magnitudes of T -matrix elements:
w = |Tm1Am2B�m�→ f �′m′

�
|2 + |Tm2Am1B�m�→ f �′m′

�
|2.

For the final state |↓〉, the clustering of β
�,m�,�

′,m′�
min is

less effective than for |↑〉, as shown in Figs. 3(a) and 4(a).
More detrimental for the control, the distribution of the other
optimal parameter, η

�m�,�
′m′

�

min [see Fig. 4(b)], is broad, high-

lighting the importance of the distribution of η
�m�,�

′m′
�

min . The
PWPL effect locks the difference of T -matrix phases but not
the ratio of their magnitudes, and thus does not guarantee the

clustering of η
�m�,�

′m′
�

min . While this limitation can prevent PWPL
from completely solving the problem of partial-wave scram-
bling, we observe that despite the relatively broad distribution
of ratios, a good degree of control is still achievable in the
multiple partial-wave regime, with σsup→ f (η, β ) ranging from
2085.5 to 6131.7 a.u. The inclusion of the satellite terms has
a slight impact on the control, resulting in a variation from
1827.7 to 3850.7 a.u.

As noted above, the control of the scattering to the final
states |↓〉 and |↑〉 is optimized in different regions of parame-
ter space allowing for efficient control of the corresponding
branching ratio σ↓/σ↑, as shown in Figs. 2(e) and 2(f) at
η = 21π/32. With the entangled superposition Eq. (4), ex-
tremely robust control is achieved, with σ↓/σ↑ varying by
three orders of magnitude (from 0.949 41 to 960.66), owing
to the complete control of σ↑. When using the nonentangled
superposition (3), the presence of satellite terms limits the
extent of control over the branching ratio to 0.66–2.26, which
is large enough to be experimentally measurable.

Conclusion. In summary, we have shown that partial-
wave phase locking enables coherent control in the multiple
partial-wave regime via a dramatic reduction of partial-
wave scrambling. The clustering of the optimal superposition

parameters β
�,m�,�

′,m′
�

min enabled by PWPL allows for the syn-
chronized control of different partial-wave contributions to the
total scattering cross section. In cases where the distribution

L042025-4



ROBUST COHERENT CONTROL OF TWO-BODY … PHYSICAL REVIEW RESEARCH 5, L042025 (2023)

of the optimal control parameters η
�,m�,�

′,m′
�

min is broad, such as
for the final state |↓〉, partial-wave scrambling is only partially
eliminated by PWPL. Even though the satellite terms reduce
the control with nonentangled superpositions, our rigorous
CC calculations show that coherent control over state-to-state
integral cross sections and of the branching ratios is signifi-
cant and measurable. Therefore, collisions between 87Rb and
88Sr+, observed in a series of recent experiments [30–32],
appear to be ideal for an experimental observation of coher-
ent control of two-body scattering outside of the ultracold
domain. As the PWPL phenomenon was shown to apply to
any quasiresonant scattering process [33], a wide range of
these processes could soon become amenable to robust coher-
ent control. Furthermore, the extreme sensitivity of coherent
control to the PWPL effect implies that the study of collisions

of atoms and molecules prepared in a coherent superposition
of internal states provides an ideal approach for investigating
the PWPL effect.

Note added in proof. External magnetic fields typically used
in trapped ion-atom collision experiments can cause decoher-
ence due to field inhomogeneities and lift the degeneracy of
atomic or molecular levels, reducing the efficiency of coherent
control. The latter issue can be resolved by tuning the mag-
netic field to a “magic point”, where the degeneracy lifting
is small compared to collision energy, which is possible for
Rb-Sr+ collisions at 50 mK in magnetic fields below 500 G.
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