
PHYSICAL REVIEW RESEARCH 5, L042024 (2023)
Letter

Observing parity-time symmetry breaking in a Josephson parametric amplifier
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A coupled two-mode system with balanced gain and loss is a paradigmatic example of an open quantum
system that can exhibit real spectra despite being described by a non-Hermitian Hamiltonian. We utilize a
degenerate parametric amplifier operating in three-wave mixing mode to realize such a system of balanced
gain and loss between the two quadrature modes of the amplifier. By examining the time-domain response of the
amplifier, we observe a characteristic transition from real-to-imaginary energy eigenvalues associated with the
parity-time symmetry breaking transition.
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Parity-time (PT ) symmetry was introduced as a com-
pelling paradigm for open quantum systems described by
non-Hermitian Hamiltonians that can still have real energy
spectra [1]. Originally introduced in the context of complex
potentials, the study of PT symmetry has taken on important
relevance due to progress in optics [2]. A paradigmatic exam-
ple for demonstrating PT symmetry consists of two coupled
optical modes with balanced gain and loss. These PT dimers
have been studied extensively in a range of experimental plat-
forms [3–9]. Of particular interest are exceptional point (EP)
degeneracies [10,11], which have been identified to confer
interesting advantages and functionalities, such as enhanced
sensitivity [12–14] and tuning capabilities [15]. Recently,
there have been efforts to extend the study of exceptional
points to the quantum domain with recent superconducting
circuit experiments utilizing purely lossy dynamics to real-
ize passive PT symmetry [16–19]. Alternatively, Hamiltonian
dilation [20] can be used to simulate arbitrary Hamiltoni-
ans, a method that has been employed with nitrogen-vacancy
centers [21,22]. In the quantum domain, amplification is con-
strained by the requirement that the commutation relation
between operators is maintained—leading to fundamental
limits for added quantum noise in amplifiers [23]. In particu-
lar, dissipation-free gain, and therefore noiseless amplification
can be achieved in the context of squeezing—where one
quadrature is amplified and its conjugate is deamplified, pre-
serving the operator commutation relation. In this Letter,
we investigate the realization of a PT -dimer system in this
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dissipation-free setting [24]. This goes beyond prior work
where incoherent gain is associated with added noise. We
utilize a parametric amplifier [25–27] operating in three-wave
mixing mode, where the two quadratures of an electromag-
netic mode are either amplified or squeezed, corresponding
to the respective gain and loss in the PT -dimer model. A
detuning between the pump frequency and the amplifier’s
resonance introduces coupling between the two quadratures,
allowing us to observe the interplay between coupling and
gain/loss that characterizes the PT symmetry breaking transi-
tion in the transient response of the amplifier. This observation
opens the door to a new class of quantum microwave de-
vices that harness non-Hermiticity and exceptional points for
a variety of purposes including nonreciprocity [28], enhanced
sensing [29,30], and the study of novel topological quantum
materials [31–36].

The PT dimer is considered to be one of the simplest
systems obeying PT symmetry, and has thus been studied in
a diverse range of contexts [3–9,15–19,21,22]. As we depict
in Fig. 1(a), the PT dimer consists of two modes, which we
label A and B. The two modes are respectively subject to gain
and loss given by rate γ /2. The system is invariant under the
PT operation as the parity operator switches the modes A and
B and time reversal exchanges gain and loss. The two modes
are coupled at a rate g. The time evolution of the PT dimer is
given by the equation of motion,

i∂t

(
A
B

)
= HPT

(
A
B

)
, (1)

where

HPT =
(+i γ

2 g
g −i γ

2

)
= gσx + i

γ

2
σz. (2)

Examining the eigenvalues of HPT ,

λ± = ±
√

g2 − (γ /2)2, (3)
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FIG. 1. The PT dimer. (a) The PT dimer consists of two coupled
modes with respective gain and loss. (b) The complex eigenvalue
spectrum of the PT dimer exhibits a transition from purely imaginary
to purely real eigenvalues separated by an exceptional point. For the
plot, γ = 1.

we can see that the coupling rate g can tune the system from
a region of “unbroken” PT symmetry (g > γ/2), where the
eigenvalues are strictly real, to a region of “broken” PT sym-
metry (g < γ/2), where the eigenvalues are purely imaginary.
The real and imaginary parts of the eigenvalues are displayed
in Fig. 1(b). The exceptional point is the degeneracy of the
system and occurs at g = γ /2, where HPT is not diagonaliz-
able and there is a single eigenmode of the system.

The PT dimer exhibits many of the salient features of
non-Hermitian systems. The tuning of the eigenvalues from
real-to-imaginary regions corresponds to the “PT symmetry
breaking transition.” In the unbroken region, the dynamics
are oscillatory, and in the broken region the dynamics are
amplifying or deamplifying for the modes with respective
gain or loss [16,21]. Near the exceptional point degeneracy,
the eigenvalues depend sensitively on the control parameter g,
leading to enhanced sensitivity [12–14] to a small perturbation
δg. The eigenvectors of Eq. (2) can be written as

|±〉 ∝
(

λ±
g

)
,

which indicates how the eigenvectors are generally
nonorthogonal, and coalesce at the EP. Finally, as
parametrized in Eq. (2), there is only one relevant
control parameter, yet if another parameter is included,
the eigenvalues can be tuned to be complex rather than
purely real or imaginary. In this case, the topology of
the Riemann manifold that describes the complex energy
becomes an interesting tuning landscape i.e. changing the
control parameters enables encircling the EP, with intriguing
features of nonreciprocity [15] and chiral behavior [19].

In this Letter, we utilize a Josephson parametric amplifier
to realize the essential physics of the PT dimer. Josephson
parametric amplifiers utilize nonlinearity imparted by Joseph-
son junctions in a superconducting circuit to perform wave
mixing between a strong classical pump and weak quan-
tum signals [25]. These amplifiers are utilized broadly in
the circuit quantum electrodynamics architecture [37,38] for
achieving quantum noise limited amplification and have also
been employed for research into quantum nonlinear dynamics
[39,40]. Here, we focus on the case of three-wave mixing,

where one pump photon at frequency ωp converts into one
signal photon at frequency ωs and one idler photon at fre-
quency ωi operating in degenerate mode, where the signal is
degenerate with the idler (ωs = ωi = ωp/2). The Hamiltonian
of such a parametric amplifier can be expressed in the rotating
frame as [41]

HDPA = δa†a + ν

2
(ia†2 − ia2), (4)

where δ ≡ (ωp/2 − ω0) is the detuning from the resonance of
the amplifier at frequency ω0, ν is the pump strength, and a
(a†) is the photon annihilation (creation) operator for photons
at the signal frequency. The last two terms in the Hamiltonian
imply the three-wave mixing process between two signal pho-
tons and one pump photon; since the pump drive is far stronger
than any other signal involved in the system, it is treated as
classical.

Even though the system consists of a single bosonic
mode, a and a† are still coupled through the parametric drive
and can be written in vector basis |a〉 = (a, a†)T , where
(·)T represents the transpose operation. The Heisenberg
equation of motion can be formally written as

i∂t |a〉 =
(

δ iν
iν −δ

)
|a〉. (5)

To illustrate the connection between the degenerate
parametric amplifier and the PT dimer, we now transform to
the quadrature basis {I = (a + a†)/

√
2, Q = (a − a†)/i

√
2}.

In this basis, the Heisenberg equation of motion is given by

i∂t

(
I

iQ

)
=

(
iν δ

δ −iν

)(
I

iQ

)
. (6)

This evolution matrix realizes the PT -dimer Hamiltonian
Eq. (2). Here, the pump is the source of coherent gain and
loss and the detuning is equivalent to the coupling. This
system exhibits a PT transition when the threshold (δ = ν)
is crossed. At |δ| > |ν| the pump drive is too weak to pin the
signal’s phase hence the system exhibits oscillatory behavior
in the two quadratures—corresponding to the PT symmetry
unbroken regime. However, in the case of |δ| < |ν|, the pump
is sufficient to give one quadrature gain while squeezing the
other quadrature—corresponding to the PT symmetry broken
regime.

So far, our discussion has focused on Hamiltonian dy-
namics, yet to probe the associated physics, an experimental
device requires input and output ports. These will allow us to
inject probe signals, and monitor the dynamics of the quadra-
tures via a weakly coupled output port. Formally, the operator
for the output mode is given aout = √

κouta, where κout is the
coupling rate to the output port. Hence, the output quadra-
tures (Iout, Qout ) will simply be proportional to the quadratures
(I, Q) of the amplifier. Additionally, due to this dissipation of
the output port, the associated dynamics will occur in the tran-
sient response of the amplifier as it evolves to a steady state.

We designed a narrow-bandwidth three-wave mixing am-
plifier. Figure 2(a) displays the photograph of the device
which is patterned as a single-layer device with Josephson
junctions formed from double-angle evaporated aluminum.
The equivalent circuit schematic, shown in Fig. 2(b), displays
a device with Ca = 1.085 pF capacitance, La = 0.92 nH linear
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FIG. 2. Degenerate parametric amplifier. (a) Optical micrograph
of the device. (b) Circuit schematic of the device; the input port
(1) is used for both pump and signal inputs, and the output port
(2) is used to monitor the amplifier dynamics. (c) The amplifier is
flux biased to generate a first-order flux sensitivity to the pump.
When pumped at ωp, the amplifier frequency is modulated at ωp. We
probe the response of a small signal at frequency ωs = ωp/2. (d) The
amplifier’s frequency response exhibits enhanced transmission near
the resonance frequency, with amplification above the response when
the pump is turned on.

inductance, and LJ = 0.516 nH Josephson inductance. When
coupled to the 50-
 input/output port with a capacitance of
Cc = 84 fF, the amplifier resonance frequency (without flux
bias) is at 4.028 GHz with a quality factor of 20 × 103. The
Josephson inductance is realized as an array of four supercon-
ducting quantum interference devices (SQUIDs). The SQUID
loop areas are 5.5 × 5 µm2, and the critical current of each
SQUID is 3.2 µA. A high-bandwidth microwave input line
is coupled to the SQUID array with a mutual inductance of
80 pH, allowing the microwave drive to modulate LJ at twice
the amplifier frequency. Additionally, residual capacitive cou-
pling between the input line and the amplifier allows us to
inject a small signal via this port.

The device is wire-bonded to a microwave circuit board
and cooled to 20 mK and protected from magnetic flux
and electromagnetic radiation with associated shielding. The
pump port of the device is filtered and attenuated (total of
50 dB attenuation). The device output passes through two
cryogenic circulators and is amplified by a high electron mo-
bility transistor (HEMT) amplifier. We use an external coil
to apply a dc flux bias to the system of approximately �0/6,
where �0 is the magnetic flux quantum. As is shown in
Fig. 2(c), this flux bias results in a linear coupling between
the pump and the amplifier, allowing the pump to modulate
the Josephson inductance at the pump frequency.

We first characterize the amplifier response in the fre-
quency domain. Figure 2(d) displays the transmission through
the amplifier when the pump tone is off (no gain) and when it
is set to achieve a gain of approximately 4.2 dB. The trans-
mission exhibits a resonant response, with gain evident as an
increase in the transmission.

At this point, we have introduced a narrow-bandwidth
parametric amplifier that is optimized for examining the

FIG. 3. Time-domain response. (a) The microwave setup in-
cludes a signal probe that is phase locked to the pump frequency
(dashed line). Single-sideband modulation shifts the probe signal
to be degenerate with the pump ωs = ωp/2. The output signal is
demodulated. (b) The gain of the amplifier is phase sensitive; we
sweep the phase of the probe signal so that one quadrature is ampli-
fied and the other is squeezed. (c) Time-domain response of I� and
Q� where the signal and pump are turned on simultaneously. I� and
Q� are demodulated to obtain I and Q. (d) The time evolution of I
(solid) and Q (dashed) for two different values of the detuning.

interplay of gain/loss and coupling characteristic of the PT
dimer. To probe the PT symmetry breaking transition, we now
turn to the time-domain response of the amplifier. Figure 3(a)
displays the microwave modulation/demodulation and timing
of the experiment. We utilize two (pump, signal) microwave
generators operating at ωp and ωs − � = ωp/2 − �, which
are interferometrically locked via frequency doubling and
demodulation to maintain exquisite phase stability. The signal
generator’s tone is upconverted by � using single-sideband
modulation and combined with the pump tone. Signals that
are transmitted through the amplifier are demodulated at
frequency ωs − �, leading to heterodyne detection.

Since the amplifier is operated in degenerate mode (2ωs =
ωp), the amplification is phase sensitive, i.e., signals that are
in phase with the pump are amplified, and signals that are in
quadrature with the pump are deamplified. Figure 3(b) dis-
plays the amplifier transmission as the relative phase between
the pump and signal is tuned, showing the characteristic re-
sponse of phase-sensitive amplification. We choose the phase
offset φ0 = 45◦ which corresponds to amplification of the
input signal.

Figure 3(c) displays a representative time-domain response
of the amplifier. At t = 0 the probe signal and pump are turned
on, and the demodulated and digitized quadratures show
an increasing envelope with modulation at the heterodyne
frequency �/2π = 5 MHz. We further demodulate this het-
erodyne signal to determine the quadratures I and Q. We use
a Savitzky-Golay filter with a window size of 500 ns and poly-
nomial order of 5 to smooth the data. In Fig. 3(d), we display
the time response of I, Q for different choices of the detuning
between the signal/pump and amplifier resonance. The evolu-
tion of (I, Q) exhibits a transition from oscillatory to saturated

L042024-3



GAIKWAD, KOWSARI, CHEN, AND MURCH PHYSICAL REVIEW RESEARCH 5, L042024 (2023)

FIG. 4. PT symmetry breaking transition in a parametric amplifier. The graphs display the time response of I vs δ for three different pump
strengths, increasing sequentially corresponding to ν/2π = 0.013 (a), 0.046 (b), and 0.072 (c) MHz. The grayscale plots are normalized to
the steady state response (given by the value at a time duration of 7.6 µs, shown in the top panel). The side panels display the time evolution
of (I, Q) for a time duration of 7.512 µs. The lower panels display the extracted frequency from the transient response (markers). The error
bars represent estimated errors of the fits and the dashed line gives the fit of the model’s data. The red curves indicate the eigenvalues of the
PT -dimer Hamiltonian [Eq. (6)]. A clear transition from oscillatory to amplified behavior corresponds to the PT symmetry breaking transition.

exponential dynamics. This is the basis of the PT symmetry
breaking transition which we now explore in further detail.

Figure 4 displays the time response of I versus detuning
for three different pump strengths. For clarity, the grayscale
plots are normalized to emphasize small amplitude features.
The normalization factor (S) is depicted in the top panels.
Figure 4(a) displays the response at low pump amplitude,
where the gain is small. We observe oscillation of I in time,
with a frequency consistent with the detuning. As the pump
strength is increased [Figs. 4(b) and 4(c)] we observe a clear
transition from oscillatory to nonoscillatory dynamics as the
absolute value of the detuning is decreased. The evolution of
I vs Q for select detunings is shown in the associated side
panels; these plots also highlight how there are values of the
detuning where the dynamics are alternately oscillatory or
nonoscillatory.

The observed data are in reasonable agreement with a
simple model that takes into account the self-Kerr nonlinearity
(χ ) and the probe signal at the Hamiltonian level,

H = δa†a + i
ν

2
(a†2 − a2) − χa†2a2 + iλ(a† − a). (7)

Here, λ is the probe signal strength. To model the ampli-
fier dynamics, we initialize the oscillator in its ground state
[i.e., |ψ (0)〉 = |0〉] and let the state evolve under the influ-
ence of the Hamiltonian [Eq. (7)]. We model the effect of
the output port by adding a Lindblad dissipator term

√
κa,

where κ/2π = 0.19 MHz is determined from the measured
quality factor of the device. We use the QUTIP [42,43] mas-
ter equation solver to obtain the time evolution of I and Q
for different detunings. The input drive starts acting on the

amplifier at t = 0 at the same time three-wave mixing is also
turned on. From the time evolution of the I quadrature we fit
the evolution to the function A(t ) = A0e−αt sin(ωt + φ) + A1

to determine the frequency of oscillation ω, which is displayed
in the lowest panel. We apply the same analysis to the exper-
imental data, where we seed the fit with initial guesses based
on the results of the model. In practice, the fits which involve
values of α and ω on the same order, are rather unconstrained
(as indicated by the large estimated errors of the fits) and the
analysis only demonstrates that the data are consistent with
the model. We tune the model’s relative value of χ to achieve
the best agreement with the experimental data. This fit yields
a self-Kerr value of approximately χ/2π = 0.095 MHz and
three different pump strengths as ν/2π = 0.013, 0.046, and
0.072 MHz. For comparison, we also display the associated
eigenvalues of Eq. (6) based on the extracted values of ν from
the model.

The data exhibit asymmetry about zero detuning that arises
due to the presence of the self-Kerr term in the Hamiltonian
(7). The self-Kerr energy always decreases the resonance fre-
quency, causing this term to dominate at the negative detuning
values. Future work that strives to probe quantum correlations
and entanglement in the output modes of the amplifier [24]
may have to adopt strategies to reduce the self-Kerr of such
amplifier devices [44].

Our work establishes a connection between the transient
dynamics of Josephson parametric amplifiers and the cele-
brated physics of the PT symmetry breaking transition. In
the context of optical devices, PT symmetry and exceptional
points have had a profound impact, demonstrating a broad
range of devices and functionalities. Future exploration of
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exceptional points with Josephson circuits can focus on
quantum correlations and noise features in proximity to ex-
ceptional points, with applications in sensing and quantum
information processing.
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