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We report on the first results for the second-order perturbation theory correction to the ground-state energy
of a nuclear many-body system in a continuum quantum Monte Carlo calculation. Second-order (and higher)
perturbative corrections are notoriously difficult to compute in most ab initio many-body methods, where
the focus is usually on obtaining the ground-state energy. By mapping our calculation of the second-order
energy correction to an evolution in imaginary time using the diffusion Monte Carlo method, we are able to
calculate these nuclear corrections for the first time. After benchmarking our method in the few-body sector,
we explore the effect of charge-independence-breaking terms in the nuclear Hamiltonian. We then employ that
approach to investigate the many-body, perturbative, order-by-order convergence that is fundamental in modern
theories of the nucleon-nucleon interaction derived from chiral effective field theory. We find cutoff-dependent
perturbativeness between potentials at higher chiral order and also that the difference between leading order and
next-to-leading order potentials is nonperturbative; both of these results have important implications for future
nuclear many-body calculations. Our approach is quite general and promises to be of wide applicability.
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Nuclear many-body theory has been experiencing a renais-
sance over the last two decades, with several techniques now
being routinely used to carry out first-principles studies of
many strongly interacting nucleons [1]. These include exact
diagonalization approaches (when the basis size is manage-
able) [2], quantum Monte Carlo (QMC) methods (stochastic
evolution, whether in the continuum [3] or on a lattice [4]),
more or less controlled truncations such as many-body pertur-
bation theory (limiting oneself to the first several orders), [5,6]
self-consistent Green’s function approaches (implementing a
specific class of diagrams up to infinite order), and [7] coupled
cluster (generating npnh excitations off a reference state) [8]
and its younger cousin the in-medium similarity renormal-
ization group [9]. Several of these approaches are also very
important in broader applications of the quantum many-body
problem, including, for example, condensed-matter physics
and the study of ultracold atoms [10–14]. The difference be-
tween nuclear and other many-body techniques is driven by
the two (or higher-)-body interaction at play.

Using nucleons as degrees of freedom, the interaction
between particles has historically been written down as the
combination of short-range or contact terms and terms corre-
sponding to the exchange of mesons (most notably pions). The
study of nuclear interactions itself has been rejuvenated by the
aforementioned renaissance in nuclear many-body techniques
(see, e.g., Refs. [15–35]); another driving force has been the
recasting of earlier phenomenological forces in the language
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of effective field theory [36]. The contact terms arising in
the context of pionless effective field theory (EFT), also of
applicability to cold atoms, where the range of the interaction
is much shorter than the interparticle spacing, are then supple-
mented by the exchange of the lightest mesons, most notably
in the context of chiral EFT. Several open questions remain
at the forefront of the study of nuclear forces, such as the
few-body observables that should be used as constraints, the
importance of higher orders and uncertainty estimates, as well
as the determination of an appropriate (renormalization-group
invariant) power-counting scheme [37]. Once again, much
of the recent progress (and hope for further developments)
has been driven by the interplay of novel nuclear many-body
techniques and designer nuclear forces.

As noted, an important open question, on which much
work has been dedicated recently, relates to the relative impor-
tance of power counting and nonperturbative renormalization
in chiral EFT. Given the significance of the interface be-
tween nuclear forces and many-body techniques, a newcomer
might be forgiven for assuming that the problem of pertur-
bative vs nonperturbative force vs many-body technique will
have received considerable attention. However, until very re-
cently this has not been the case; to see why, let us recall
the quantum-mechanical expressions for first- and second-
order corrections to the ground-state energy for a given
perturbation V ′:
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where ψ0, ψk , E0, and Ek are the ground and kth excited
eigenstates and energies of the unperturbed Hamiltonian, re-
spectively; crucially, all of these are many-body entities, i.e.,
in contradistinction to the textbook case, they cannot be tack-
led analytically. The problem becomes immediately apparent:
While the first-order correction E (1)

0 is easily computable
in a many-body context [e.g., in the diffusion Monte Carlo
(DMC) method the propagator would involve the unperturbed
Hamiltonian and the observables would involve V ′], com-
puting the second-order correction E (2)

0 is dramatically more
complicated, as it requires knowledge of the complete energy
spectrum Ek . While progress has been made on tackling indi-
vidual excited states in an ab initio setting, e.g., by imposing
the appropriate symmetries on a variational wave function
[38], this is still a manual process (separately designing a
new wave function for each new state) that cannot be easily
generalized beyond a handful of cases.

This significant task is woefully underdiscussed in the
many-body literature; even the few exceptions cast the prob-
lem in quite different language (cumulant autocorrelation
functions in Ref. [39], auxiliary fields in Ref. [40], or static
response in Ref. [41]). In the present Letter, we show how to
map the computation of the second-order energy correction
E (2)

0 to an evolution in imaginary time; we do this (for the first
time) in the context of a continuum QMC technique oriented
toward nuclear forces, but the recasting we employ is much
more general and could plausibly be implemented in other
areas of physics or distinct many-body techniques. Both for
reasons of clarity and in order to establish our approach’s
credentials, we start from (i) a trivial (two-body) application
as a benchmarking exercise; we then turn to (ii) a more
challenging application, resulting from the introduction of a
charge-independence-breaking term in the nuclear interaction.
Significantly, we then turn to the main application, namely
(iii) using this approach as a detailed probe of the pertur-
bativeness (or lack thereof) of chiral EFT interactions at the
many-body level.

Crucially, the nonperturbative calculation does not corre-
spond to an ad hoc interaction employed merely to make
higher-order terms small [22,40] but to an actual chiral EFT
interaction in widespread use (the local next-to-next-to lead-
ing order (N2LO) interaction of Gezerlis et al. [19]). While
Ref. [40] demonstrated the use of second-order perturba-
tion theory in nuclear-physics quantum Monte Carlo, it was
limited to the use of a single cutoff. In other words, our
approach will allow us to study how perturbative different
nuclear interactions are at the many-body level, going beyond
first-order perturbation theory. The fact that we address three
distinct applications reflects the generality of the proposed
methodology.

We compute Eq. (1) using the DMC method. We first start
with many sets of particle positions (walkers) that are dis-
tributed according to a trial wave function ψT by a preliminary
variational Monte Carlo (VMC) calculation [42]. The DMC
method then projects out the lowest-energy eigenstate ψ0 by
treating the Schrödinger equation as a diffusion equation in
imaginary time τ and propagating the trial wave function up
to large τ . This can be demonstrated by expanding the trial
wave function in terms of the complete set of exact eigen-
states, ψT = ∑

i αiψ
(0)
i , and then applying the imaginary time

propagation operator

lim
τ→∞ ψ (τ ) = lim

τ→∞ exp[−(Ĥ0 − ET )τ ]ψT ∝ ψ
(0)
0 . (2)

Since DMC projects out the ground-state wave function of the
system of interest, we start our calculation of the second-order
energy correction by assuming we have access to the ground
state, and we consider the quantity
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By an insertion of the identity, and then a splitting of the sum
between k = 0 and k �= 0, Eq. (3) can be recast as
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In the limit of long imaginary time the exponential in the
second term can be neglected and by comparing with Eq. (1),
we see we have recovered both the first- and the second-order
corrections to the ground-state energy,

I (T → ∞) = (
E (1)

0

)2T − E (2)
0 . (5)

Therefore, for a given perturbation V ′, the second-order cor-
rection to the ground-state energy can be computed in a
many-body context by implementing Eq. (3).

The question then is how to evaluate Eq. (3) in a QMC
context, where we are starting with a realistic trial wave func-
tion, and not the ground state. The plan will be to compute the
integrand of Eq. (3), fit its behavior to the form of Eq. (4), and
finally employ an extrapolated estimate. In a DMC calculation
the full imaginary time τ is broken into many successive
small-τ segments, which means our quantity of interest can
be written as 〈

ψ
(0)
0

∣∣V ′ ∏
n

e−[Ĥ0−E0]�τV ′∣∣ψ (0)
0

〉
, (6)

or as a Monte Carlo integral,

Istep =
∫

dRdR′V ′(R′)G̃(R′, R; �τ )V ′(R)ψ2
T (R), (7)

where ψT is our trial wave function and G̃(R′, R; �τ ) is the
importance-sampled short-imaginary-time propagator [43].
We can then finally rewrite Eq. (7) as a twice importance-
sampled Monte Carlo integral,

Istep ≈
∑N−1

i=0 wiV ′(R′
i )V

′(Ri,0)∑N
i=0 wi

, (8)

where N is the number of walkers, and the weights wi are cal-
culated according to exp[−�τ (EL(R) + EL(R′) − 2ET )/2] as
is standard [44]. The R′

i are positions distributed according to
G̃ and the Ri,0 are positions distributed according to the trial
wave function. An example calculation of Eq. (3) in a DMC
context by way of Eq. (8) is shown in Fig. 1 (the physical
details will be introduced in due course). By comparing with
Eq. (8), we can trace the behavior of the integral I . We should
expect that at very small τ the integral should be equal to
〈V ′2〉, since the exponential in Eq. (3) has only just started
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FIG. 1. A DMC calculation of Eq. (8) for perturbation from a
neutron-neutron interaction to a neutron-proton interaction. By com-
paring with Eq. (8) we see the expected behavior. At very small
τ we essentially recover 〈V ′2〉 and in the limit of long τ we have
the expected result that Istep decays down to 〈V ′〉2. (See text for more
details.)

to decay. In addition, we expect the integral to decay to 〈V ′〉2

in the limit of large τ based on Eq. (4).
Therefore, to compute the second-order energy correction

using Eq. (3), we compute Eq. (8) at every step of the DMC
process. To find an accurate estimate for the second-order
correction, we perform two DMC runs. First we perform
an initial run starting from walkers distributed according to
the trial wave function, and then we perform a second run
starting from walkers distributed according to the projected
ground-state wave function. We then compute an extrapo-
lated estimate between this ground-state initialized run and
the initial trial wave-function run, which is necessary for the
expectation value of any operator that does not commute with
the Hamiltonian when forward-walking techniques are not
employed [45]. To benchmark this method, the second-order
energy corrections were calculated and compared against non-
perturbative results for a variety of few-body systems in a
harmonic oscillator potential with the oscillator frequency ω.
To perform these calculations we used a harmonic oscillator
eigenstate basis trial wave function, with variational parame-
ters differing slightly from the ground-state wave function of
trapped particles, in the spirit of Ref. [46].

Our initial few-body tests involve starting from nonin-
teracting particles in the harmonic trap and perturbatively
including an interaction in the form of a simple Gaussian
interaction, V ′ = ae−q2(r2−r1 )2

, where a = 1.0 h̄ω and q = 1.0
fm−1. We first carry this out for simple two-particle systems
in a variety of harmonic-trap strengths. As was to be expected,
we see that the quality of the answer provided by perturbation
theory (whether first or second order) is reasonable, as long as
the perturbation is small. (See the first three rows of Table I.)
Though we produce the answer using the DMC machinery,
for few-body systems the results can also be produced quasi-
analytically.

TABLE I. Summary of our second-order energy corrections for
few-body systems compared against nonperturbative results. E [n]

refers to the sum of energy corrections up to the nth order. All en-
ergies are in units of h̄ω. Upper: Results for a Gaussian perturbation
between two noninteracting particles, Lower: Results for a pertur-
bation from the neutron-neutron interaction to the neutron-proton
interaction.

N h̄ω (MeV) E [0] E [1] E [2] Non-Pt.

2 1 3.0008(1) 3.1951(2) 3.1769(3) 3.1768(2)
2 2 3.0006(2) 3.1790(2) 3.1728(2) 3.1713(2)
2 5 3.0013(2) 3.1231(2) 3.1220(2) 3.1211(1)
2 1 2.57335(7) 2.58457(8) 2.58437(8) 2.58427(6)
4 1 6.5582(4) 6.5876(4) 6.5865(4) 6.5866(4)
6 1 10.0465(4) 10.0898(4) 10.0885(6) 10.0876(4)

However, because our interest lies in applying our method
to nuclear systems, we now introduce our general unperturbed
Hamiltonian,

Ĥ0 =
N∑

i=1

(
− h̄2

2m
∇2

i + 1

2
ω2r2

i

)
+

N∑
i< j′

V (ri j′ ), (9)

where N is the total number of particles and V (ri j′ ) is the inter-
action between spin-up (primed) and spin-down (unprimed)
particles. In the case of the nucleon-nucleon interaction, this
V (ri j′ ) contains contributions like the tensor force, spin orbit,
etc. Here, with a view to abstracting away the details of the
interaction (allowing us to employ sophisticated wave func-
tions in DMC), we limit ourselves to low density (and s-wave
interactions).

Historically, nuclear many-body calculations have used
phenomenological potentials that are fit to experimental data
[3,47]. For this initial nuclear investigation we employ a
phenomenological potential of the Pöschl-Teller type as in
Ref. [45],

V (r) = −v0
h̄2

m

μ2

cosh2 μr
, (10)

where v0 and μ are parameters that can be tuned in order to re-
produce the scattering length and effective range of a nuclear
interaction, which describes the interaction completely at low
energies [48].

Having benchmarked the method at the two-body level, we
now consider a range of particle numbers up to N = 6 and
set our unperturbed interaction to correspond to a neutron-
neutron interaction (still in a harmonic trap). Starting from
this unperturbed neutron system, we apply a perturbation such
that we move the system from a two-neutron interaction to
a neutron-proton one (a charge-independence-breaking term
that is known to be of small magnitude),

V ′ = Vnp − Vnn, (11)

as illustrated in the upper panel of Fig. 2.
The nonperturbative ground-state energies of particles in-

teracting through the nn or np potentials are compared against
our perturbative calculations in the bottom three rows of
Table I. We can see that, while the first-order correction does
a reasonable job of approximating the neutron-proton case,
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FIG. 2. Upper panel: Perturbing potential given by the difference
between the s-wave neutron-neutron interaction and the neutron-
proton interaction. Lower panel: Perturbation given by the difference
between the 1S0 N2LO and NLO chiral EFT interactions for a range
of coordinate space cutoff values.

the second-order correction is required in order to accurately
reproduce the nonperturbative neutron-proton ground-state
energy to within one standard deviation.

Having applied our method to the few-body sector where
the perturbation is not too difficult to handle, we now turn
to a realistic nuclear system. For this study we modify our
Hamiltonian from Eq. (9), removing the external one-body
oscillator potential. We also use N = 66 particles as this gives
a very good approximation to the thermodynamic limit [49].
In addition, since both the VMC method and the DMC method
depend strongly on the choice of the trial wave function
(the latter due to the presence of the fermion sign problem,
tackled via the fixed-node prescription), and we are interested
in the physics of pure infinite neutron matter, where pairing
is known to be important [45,50], we make use of periodic
boundary conditions and the Jastrow-BCS wave function [51],

ψT =
∏
i �= j′

f (ri j′ )A

⎡
⎣∏

i< j′
φ(ri j′ )

⎤
⎦. (12)

As in Eq. (9), the primed indices correspond to spin-up neu-
trons, and the unprimed indices correspond to spin-down
neutrons. The pairing functions φ(r) = β̃(r) + ∑

n αneikn·r
capture both long- and short-range physics as described in
Ref. [51].

In recent decades, the ab initio many-body community has
largely moved on from phenomenological potentials like the
ones used for our preliminary tests, and modern interactions
have been built using a chiral EFT framework. In addition
to reproducing known two-body experimental results, these
chiral EFT interactions also capture the important symmetries
from the underlying theory of quantum chromodynamics [52].
Chiral EFT also provides a systematic expansion for the nu-
clear force, with terms included at successive orders based on
their importance following a power-counting scheme [53],

Vchiral = V (0) + V (2) + V (3) + . . . , (13)

FIG. 3. Comparison between the nonperturbative results for
NLO and N2LO and the perturbative results for a perturbation from
NLO to N2LO at both first and second order for pure neutron matter
(PNM) with N = 66 over a range of system densities and coordinate-
space cutoffs.

where the superscript keeps track of the power of the expan-
sion parameter Q/	b, which depends on the momenta of the
nucleons, or the pion mass (Q), and the scale at which the
chiral EFT expansion breaks down (	b). This is a perturba-
tive expansion so it should, properly speaking, be employed
as such in a many-body technique; as stated earlier, such
a fusing of nonperturbative and perturbative approaches has
been hampered due to technical difficulties in the past. Having
proposed our method, we are now in a position to tackle this
issue directly.

This expansion structure informed the choice of interac-
tions used for this work. To study the physics of neutron
matter, we use the chiral EFT interactions of Ref. [16] that
have been tuned to reproduce the dominant 1S0 channel in-
teraction between opposite spin neutrons. We start from an
unperturbed system with an interaction containing terms up to
NLO and perturb to include terms at N2LO,

V ′ = VN2LO − VNLO, (14)

for a range of coordinate space cutoffs, as seen in the bottom
panel of Fig. 2.

The result of carrying out such a many-body computation
up to second-order in perturbation theory is shown in Fig. 3 for
a number of densities; this is the main upshot of the present
work. (Finite-size effects are quite minimal for a homoge-
neous gas [41,54].) It is worth emphasizing that when the
core of the potential is soft (R0 � 1.1 fm) the second-order
perturbation theory results for treating the difference between
N2LO and NLO as a perturbation match the nonperturbative
N2LO results to within 1% error.
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This follows the general trend found via an exact diago-
nalization for the deuteron in Ref. [55]. In each case we see
that the first-order correction is positive, and the second-order
correction is negative. It can also be seen that at the higher
densities the agreement between the N2LO results and the
second-order perturbation theory results is worsened. This is
likely due to the fact that at large densities other interaction
channels become important and so we are no longer in the
regime where the neutron-neutron interaction is correctly de-
scribed by a pure 1S0 interaction.

The results for R0 = 1.0 fm in Fig. 3 suggest that the strong
repulsive core coincides with the need to use at least third-
order corrections and raises the question as to whether the
perturbative-based chiral EFT interactions are appropriately
behaved [56,57]. We have also attempted to perturb from NLO
to LO, with the perturbation VLO − VNLO, (and vice versa)
with limited success. This provides further evidence that the
difference between LO and NLO is not perturbative.

In summary, we have developed a method for calculat-
ing the second-order perturbation theory correction to the
ground-state energy in a continuum quantum Monte Carlo
context. We have benchmarked this method against nonper-

turbative results in the few-body sector and performed initial
calculations for few-body neutron systems in a trap that could
pave the way for more complicated four-species calculations
in the future. Finally, we have completed the first calculations
for pure infinite neutron matter that include the second-order
correction to the ground-state energy. In addition, we have
also tested the behavior of popular chiral EFT interactions
and found indications of nonperturbativeness. In the future,
this method has broad applicability and could become a staple
in the toolbox of anyone making use of DMC methods or
its extensions (e.g., the auxiliary-field diffusion Monte Carlo
method or the Green’s function Monte Carlo method.
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